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Université Paris-Saclay
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Some notations

We list some notations used throughout the text.

The symbol N denotes the set of the natural numbers starting from 0.

If (M, T , µ) is a measure space and f : M → C is a measurable function, then we denote the essential range
and the essential supremum of f w.r.t. the measure µ:

essµ Ran f
def
=
{
z ∈ C : µ

{
x ∈M :

∣∣z − f(x)
∣∣ < ε

}
> 0 for all ε > 0

}
,

essµ sup |f | def
= inf

{
a ∈ R : µ

{
x ∈M :

∣∣f(x)
∣∣ > a

}
= 0
}
.

If the measure µ is obvious in the context, we will omit to indicate it in the notations.

In the following, we will consider linear operators acting on a comple Banach space, which we will usually
denote by the letter B, but a large part of the notes will be focussed on the case of Hilbert spaces. What we
call a Hilbert space will mean a separable complex Hilbert space, which we will generally denote by H.

Because we’ll have in mind mostly Hilbert spaces made of functions on Rd or some domain Ω ⊂ Rd, we will
denote the “vectors” of H by u, v, w . . .. For two vectors u, v ∈ H, 〈u, v〉 will denote the sesquilinear scalar
product of u and v. If several Hilbert spaces are considered in the problem, we will specify the scalar product
with the notation 〈u, v〉H. To respect the convention in quantum mechanics, our scalar products will always be
linear with respect to the second argument, and antilinear with respect to the first one:

∀α ∈ C 〈u, αv〉 = 〈ᾱu, v〉 = α〈u, v〉.

For example, the scalar product in the Lebesgue space L2(R) is defined by

〈f, g〉L2 =

∫
R
f(x)g(x) dx.

If A is a finite or countable set, `2(A) denotes the vector space of square-summable functions u : A→ C:∑
a∈A

∣∣u(a)
∣∣2 <∞.

This forms a Hilbert space, equipped with the scalar product

〈u, v〉 =
∑
a∈A

u(a)v(a).

Note that when A = N or A = Z the functions u are sometimes written as sequences: u(a) = ua.

L(B) and K(B) denote the spaces of continuous linear operators, respectively of compact operators from B to
B. A similar notation applies also to bounded, resp. compact opertors on a Hilbert space H.
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Some functional spaces

If Ω ⊂ Rd is a domain (= convex open set) and k ∈ N, then Hk(Ω) denotes the kth Sobolev space on Ω, i.e. the
space of functions in L2, whose partial derivatives up to order k are also in L2(Ω). The Sobolev space Hk(Ω)
is equipped with the scalar product:

〈u, v〉Hk =
∑
|α|≤k

〈∂αu, ∂αv〉L2 , (0.0.1)

where α = (α1, . . . , αd) ∈ Nd is a multiindex, and ∂α = ∂α
1

x1
· · · ∂αdxd is the multi-derivative operators. It is

complete w.r.t. the norm associated with this scalar product.

We will use a notation frequent in the theory of partial differential equations: the symmetric derivative
operator Dx = 1

i ∂x, as well as its multi-derivative version

Dα = Dα1
x1
· · ·Dαd

xd
= (−i)|α|∂α, α ∈ Nd.

By Hk
0 (Ω) we denote the completion in Hk(Ω) of the subspace C∞c (Ω) (with respect to the norm of Hk(Ω)).

The symbol Ck(Ω) denotes the space of functions on Ω whose partial derivatives up to order k are continuous;
in particular, the set of the continuous functions is denoted as C0(Ω). This should not be confused with the
notation C0(Rd) for the space of continuous functions f : Rd → C vanishing at infinity: lim|x|→∞ f(x) = 0. The

subscript comp on a functional space indicates that its elements have compact supports: for instance H1
comp(Rd)

is the space of functions in H1(Rd) having compact supports.

We denote by F : L2(Rd)→ L2(Rd) the Fourier transform, defined for f ∈ S (Rd) by:

Ff(ξ) =
1

(2π)d/2

∫
Rd
f(x) e−iξ·x dx.

The normalization makes this transform unitary on L2(Rd, dx). The Fourier transformed function Ff will

sometimes be denoted by f̂ .

5



Chapter 1

What is a Spectrum ?

1.1 The spectrum in physics

The term “spectrum” first appeared in different domains of physics; originally it described the decomposition
of the light observed from the spatial objects (like the sun, or other stars), when observed through a device
able to separate the different colors (that is, the different frequencies of the received light). Quite often, one
could observe peaks of luminosity at certain frequencies, above a more or less uniform “background”. Chemists
observed that the light emitted by some gases always produced peaks at the same frequencies: the emitted
spectra were thus characteristic of chemical elements, and allow to identify the presence of these elements in
distant bodies (e.g. stars).

In the study of electric circuits and electronics, one often observes a time signal (e.g. of the voltage along
some part of the circuit). This time signal S(t) can be analyzed through the Fourier transform, or the Laplace
transform

Ŝ(ω) =

∫ ∞
0

e−iωtS(t) dt

(we assume that the signal vanishes for negative times). Often one cannot detect the phase of Ŝ(ω), but only
observes |Ŝ(ω)|2, which is called the power spectrum of the signal S(t). For instance, the RLC circuit leads to a
power spectrum which is peaked near the characteristic frequency ω0 = 1√

LC
, the width of the peak depending

on the value of the resistance R (in case of vanishing resistance, the signal is a δ peak at ω = ω0).

In both examples, the spectrum corresponds to a decomposition in frequency. The hope is to analyze a
(possibly complicated) time signal, through a (hopefully small) set of characteristic frequencies, which would
contain most of the “interesting” information of the signal.

1.2 An example: Schrödinger evolution in quantum mechanics

This analysis is most relevant when the dynamics under study can be modeled by a semigroup generated by a
linear operator. We will take for example the case of Quantum Mechanics, where the notion of spectrum acquired
a central place, which acted as a strong incentive to the fast development of spectral theory in mathematics.

The state of a quantum particle evolving in some domain (“box”) Ω ⊂ Rd is represented by a time-dependent
wavefunction

ψ : R 3 t 7→ ψ(t) ∈ L2(Ω) .

The state of the particle at time t ∈ R is represented by the function ψ(t) ∈ L2(Ω). Quantum mechanics is
a probabilistic theory: if one uses a device to measure the position of the particle at time t, then |ψ(t, x)|2
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represents the probability density to detect the particle at the point x. With this probabilistic interpretation
in mind, one needs to enforce the normalization:

∀t ∈ R, ‖ψ(t)‖L2 = 1.

Quantum mechanics prescribes the law of evolution of ψ(t): it is given by the (time dependent) Schrödinger
equation

i~
∂

∂t
ψ(t, x) = − ~2

2m
∆ψ(t, x) + V (x)ψ(t, x),

where ∆ =
∑d
j=1

∂2

∂x2
j

is the Laplacian, and the real valued function V : Ω→ R represents the potential energy

of the particle (e.g. the electric potential, if the particle carries an electric charge).

By rescaling the units of time and space, we can remove the physical constants, to obtain1:

i
∂

∂t
ψ(t, x) = −∆ψ(t, x) + V (x)ψ(t, x) = [P ψ](t) (1.2.1)

where P = −∆+V appears as a linear operator acting on the Hilbert spaceH = L2(Ω); it is called a Schrödinger
operator, or also the Hamiltonian of this quantum system. This equation therefore takes the form of a linear
evolution equation, where the operator P acts as the generator of a semigroup on H. The operator P is
unbounded on H.

Several mathematical questions pop up. A generic function ψ ∈ L2 does not admit derivatives in L2, so ∆ψ is
not well-defined on L2. This means that the operator ∆ is not defined on the whole of L2, but only on a linear
subspace of that space, namely the Sobolev space H2(Ω). If the potential V is bounded on Ω, then P is still
well-defined on H2(Ω). We call H2(Ω) the domain of the operator P , denoted by D(P ). In this course we will
pay a special attention to the domains of operators.

Another question (both physical and mathematical) concerns the boundary behaviour of the functions ψ(t):
from physical ground, we may want to assume that the wavefunctions ψ(t, x) vanish when x approaches the
boundary of the box ∂Ω. One may want to take into account such a physical constraint, when defining the
domain of P .

1.2.1 The Schrödinger group

Semigroup theory, in particular the Hille-Yosida theorem, teaches us that, under favorable conditions on the
operator P : D(P )→ H, this operator will generate a semigroup of evolution, meaning that for any initial data
ψ(0) ∈ D(P ), the equation (1.2.1) admits a unique solution ψ ∈ C1(R+,H), defined through a semigroup of
bounded operators S(t) : H → H: ψ(t) = S(t)ψ(0). What is remarkable is that this semigroup extends to the
full Hilbert space H, namely the evolution is actually defined even for initial data ψ(0) 6∈ D(P ).

The “favorable conditions” on the operator H can be expressed in terms of the resolvent of the operator,
which will play a crucial role in these notes. We will give a more formal definition of the resolvent, but roughly
speaking it is a family of bounded operators R(z) = (P − z)−1 : H → H, depending on complex parameter z
defined on some open subset of C.

In the case of the Schrödinger operator P acting on L2(Ω), which is symmetric, these conditions can be
replaced by a positivity argument, provided the potential V is bounded from below. We will see that, if one
makes “good” choices of domain D(P ), the operator P is not only symmetric, but actually selfadjoint. In this
case, the semigroup generated by P extends to a unitary group (U t)t∈R on L2(Ω), which describes the quantum
evolution:

∀t ∈ R, ψ(t) = U tψ(0).

Formally, we will often write U t = e−itP , eventhough the exponential of P cannot be defined by a power series
because the powers Pn have smaller and smaller domains when n→∞.

1Implicitly, the functions ψ and V have been modified by the rescaling, but we keep the same notations.
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1.2.2 Spectral expansion

In order to describe more quantitatively the behaviour of ψ(t) = U tψ(0), one is lead to study the spectrum of
the operator P . Let us restrict ourelves to the case where

i) the “box” Ω is bounded,

ii) one imposes Dirichlet boundary conditons on Ω,

iii) and the potential V ∈ L∞(Ω).

In that case, we will show that the spectrum of P is purely discrete: it is composed of a countable set of real
eigenvalues (λj)j∈N of finite multiplicities, associated with a family of eigenfunctions (ϕj)j∈N which form an
orthonormal Hilbert basis of L2(Ω). This spectral information allows to expand the evolved state ψ(t), taking
into account the decomposition of ψ(0) in this eigenbasis:

ψ(0) =
∑
j∈N
〈ϕj , ψ(0)〉ϕj ∀t ∈ R, ψ(t) =

∑
j∈N

e−itλj 〈ϕj , ψ(0)〉ϕj . (1.2.2)

We note that the spectrum of the differential operator P generally depends on the choice of its domain D(P ),
and so does the expansion (1.2.2). For instance, requiring Dirichlet, vs. Neumann boundary conditions, leads
to two different discrete spectra for P . This shows that the question of domain is not just a mathematical
subtlety, but it directly impacts the evolution of the quantum state.

1.2.3 Stationary states

The above expansion shows that, if the initial state is an eigenstate of P , namely ψ(0) = ϕj for some j, then
the evolution of ψ is very simple:

ψ(t) = e−itλj ψ(0) = e−itλj ϕj .

The global phase factor e−itλj is not detectable physically, which explains why such a particle is said to occupy
a stationary state. This solution shows that the system will remain for ever in the state ϕj . As a result, a large
part of atomic and molecular physics consists in computing the eigenvalues (λj) and eigenstates (ϕj) of the
corresponding Hamiltonian operator.

Yet, this description of atoms is too simplistic. Indeed, in atomic physics textbooks, the evolution of the
atom (or molecule) is usually described as a sequence of “jumps” between different stationary states ϕi → ϕj ,
induced by the absorption or emission of a photon of energy

hPlanckνij = |λj − λi|.

Such an evolution through “jumps” cannot simply result from the Schrödinger group described above, it requires
to incorporate the interaction between the atom and the electromagnetic field embodied in the photons. We will
not pursue this project in these notes. Still, the above equation shows that measuring the energy (≡ frequency
νij) of emitted or absorbed photons allows to reconstruct the spectra of atoms and molecules.

1.3 Example of the heat equation

Let us briefly describe another equation making use of the spectral decomposition of the Laplacian on a bouded
open set Ω ⊂ Rd. The heat equation

∂tθ(t, x) = D∆θ(t, x)

describes the evolution of the temperature θ(t, x) in a body Ω, when this body is inserted in a thermostat
of given temperature θth ∈ R, starting from a given temperature distribution θ(0, x). Here D > 0 is a fixed
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parameter, called the diffusion constant; as above, by rescaling the space or time, we may assume that D = 1.
The function u(t) = θ(t)−θth describes the relative temperature wr.r.to the thermostat. The physical condition
of thermal contact at the boundary of Ω imposes the constraint θ(t, x) = θth for all t > 0, x ∈ ∂Ω. It is easier

to consider the relative temperature u(t, x)
def
= θ(t, x) − θth, which satisfies the Dirichlet boundary conditions,

and satisfies the same heat equation as θ. The discrete spectrum of P = −∆ implies the following spectral
expansion for the function u:

u(t) =
∑
j∈N

e−tλj 〈ϕj , u0〉ϕj . (1.3.3)

As opposed to the expansion (1.2.2), we see that the above expansion is dominated by its first few terms when
t → ∞. To understand the long time behaviour of the heat equation, it is not necessary to identify the full
spectrum, but only the “bottom” of the spectrum of P .

This example shows that, quite often, a partial description of the spectrum (like the identification of the
bottom of the spectrum, or the presence of a spectral gap at the bottom), already provides relevant physical
information for equations like the heat equation.

Focussing on selfadjoint operators on Hilbert spaces

In situations where the spectrum of P is not purely discrete, a similar (yet more complicated) decomposition can
be written. Such a decomposition uses the spectral theorem for selfadjoint operators. The power of this theorem,
and its relevance for quantum mechanics, induce us to devote a large part of the present notes to the specific
case of selfadjoint operators defined on a Hilbert space. We will already see that the precise identification of
such operators (including their domains) requires some care. A nice way to construct such selfadjoint operators
is through the use of quadratic forms.

Yet, spectral expansions (possibly with some remainder term) can also be helpful in nonselfadjoint situations,
for instance when the natural functional space is not a Hilbert space, but only a Banach space, for instance a
space of Lebesgue type Lp(Ω), a Sobolev space based on such an Lp. Alternatively, the applications of spectral
theory to statistical physics or dynamical systems theory, often use spaces of finitely differentiable functions
Ck(Ω), or spaces of analytic functions Cω(Ω) and their variants.
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Chapter 2

Bounded vs. Unbounded operators

In this section, after recalling the definition of a bounded operator on a Hilbert (or Banach) space, we start
to describe a more general class of linear operators, namely (densely defined) unbounded operators, which will
constitute the main focus of these notes. The Schrödinger operator P = −∆ + V on L2(Ω) mentioned in the
introduction is and example of such unbounded operators; actually, all differential operators belong to that
class, which explains the importance of the study of these operators towards understanding linear (and actually,
also nonlinear) Partial Differential Equations.

2.1 Some definitions

A linear operator T on a Banach space B is a linear map from a subspace D(T ) ⊂ B (called the domain of T ) to
B. The domain is an important component of the definition of the operator, so one should actually denote the
operator by the pair (T,D(T )). Yet, we will often omit to mention the domain, keeping the shorter notation T .

Across these notes, we will most of the time assume that the domain D(T ) is a dense subspace of B (w.r.to the
natural topology of B). On a Hilbert space H, a characterization of that density is the property D(T )⊥ = {0},
where •⊥ is the orthogonal space to •.

The range of (T,D(T )) is the set RanT
def
= {Tu : u ∈ D(T )}; this is obviously a linear subspace of B. We say

that a linear operator T is bounded if the quantity

µ(T )
def
= sup

u∈D(T )
u 6=0

‖Tu‖
‖u‖

is finite. On the opposite, an operator (T,D(T )) will be said to be unbounded if µ(T ) =∞.

If D(T ) = B and T is bounded, then the operator T : B → B is continuous. The set of continuous operators on

B forms a vector space, denoted by L(B). Equipped with the norm ‖T‖ def
= µ(T ), this space has the structure of

a Banach algebra: it is a Banach space, and also hosts an internal product S, T ∈ L(B) 7→ ST = S ◦ T ∈ L(B),
with the inequality ‖ST‖ ≤ ‖S‖ ‖T‖.

Proposition 2.1.1. Assume (T,D(T )) is a bounded linear operator on B with a dense domain D(T ). Then T
can be uniquely extended to a continuous linear operator defined on all of B. This extension is called the closure
the T , and is usually denoted by T .

Proof. Let us consider an element u ∈ B \ D(T ). By the density of D(T ) in B, we may consider a sequence
(un ∈ D(T ))n∈N converging to u in B. The sequence (Tun)n∈N satisfies ‖Tun− Tum‖ ≤ µ(T )‖un− um‖, hence
it is a Cauchy sequence in B, and admits a limit w ∈ B. Let us decide that w is the image of u through an
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extended operator T ; we need to check that this image does not depend on the choice of sequence converging
to u. Indeed, if (ũn) is another sequence converging to u, with T ũn converging to some w̃ ∈ B, then considering
the alternating sequence (u0, ũ0, u1, ũ1, . . .) shows that w = w̃, therefore the image of u is unique. It is easy to
check that the resulting operator T is linear, and bounded, with the same norm ‖T‖ = µ(T ).

2.1.1 Closed and closable unbounded operators

If (T,D(T )) is unbounded, it is not possible to extend it to all of B in a natural way. Yet, we can aim at an
alternative property, closedness, which refers to a topological property of the graph of T .

Definition 2.1.2 (Graph of a linear operator). The graph of a linear operator (T,D(T )) is the set

grT
def
=
{

(u, Tu) : u ∈ D(T )
}
⊂ B × B.

This is obviously a linear subspace of B × B.

For two linear operators T1 and T2 in B, we write T1 ⊂ T2 if grT1 ⊂ grT2. Namely, T1 ⊂ T2 means that
D(T1) ⊂ D(T2) and that T2u = T1u for all u ∈ D(T1); the operator T2 is then called an extension of T1, while
T1 is called a restriction of T2.

Definition 2.1.3 (Closed operator, closable operator).

• An operator (T,D(T )) on B is called closed if its graph is a closed subspace in B × B.

• An operator (T,D(T )) on B is called closable, if the closure grT of the graph of T in B × B is still the
graph of a certain operator, which we call T . The latter operator T is called the closure of T .

Note that gr(S) determines S since p1(gr(S)) = D(S) (where p1 : B × B → B denotes the projection onto
the first variable) and for u ∈ D(S), Su is the unique v ∈ B such that (u, v) ∈ gr(S). Hence, the second item
in Definition 2.1.3 indeed defines the closure T of T unambiguously. And, of course, the closure T is a closed
operator since gr(T ) = gr(T ) is closed.

An easy exercise shows that any continuous operator T ∈ L(B) is closed. The following result shows that the
converse is also true: an operator defined on the whole space B and having closed graph is bounded.

Proposition 2.1.4 (Closed graph theorem). A linear operator T on B with D(T ) = B is closed if and only if
it is bounded.

Proof. The implication bounded =⇒ closed is obvious. Conversely, let us assume that T is closed withD(T ) = B.
Its graph grT is thus a closed linear subspace of the Banach space B × B, hence grT can be viewed itself as a
Banach space. Consider the two natural projections p1, p2 : B × B → B; they are obviously continuous linear
maps. Their restrictions on grT → B are still continuous. In particular, the first projection p1 : grT → B
is a continuous bijection (because D(T ) = B). The isomorphism theorem then states that its inverse map
q : B → grT is also a continuous bijection. Finally, the composition p2 ◦ q : B → B is continuous. But note that
p2 ◦ q is nothing but T itself.

(u, Tu) −→ p2 Tu
q ↑↓ p1 ↗ T
u

Similarly, if we start from a bounded operator (T,D(T )) defined on a dense domain, the extension T con-
structed in Proposition 2.1.1 is the closure of T .

The closedness property can be characterized in terms of sequences.
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Proposition 2.1.5. A linear operator T in B is closed if and only if, for any sequence (un)n∈N ∈ D(T )N

satisfying the following two conditions:

i) the sequence (un)n∈N converges in B to some element u ∈ B,

ii) the sequence (Tun)n∈N converges to v ∈ B,

then one has u ∈ D(T ) and v = Tu.

In some sense, there is no natural way to extend a closed operator T .

Another useful characterization of the closedness property can be obtained by introducing an auxiliary norm
on D(T ), called the graph norm.

Definition 2.1.6 (Graph norm). Let (T,D(T )) be a linear operator on B. We define on D(T ) the function:

u 7→ ‖u‖T
def
= ‖u‖B + ‖Tu‖B.

One easily checks that it makes up a norm on D(T ). We call it the graph norm for T and sometimes write
‖u‖D(T ) = ‖u‖T .

If B = H is a Hilbert space, the graph norm is usually defined alternatively as

‖u‖′T
def
=
√
‖u‖2H + ‖Tu‖2H

This definition has the advantage to be a Hilbert norm, associated with the scalar product 〈u, v〉T = 〈u, v〉 +
〈Tu, Tv〉. This norm is equivalent with ‖ · ‖T .

If T is bounded, the graph norm is equivalent with the standard norm. But this is not the case for an
unbounded operator. We now want to describe the role of the graph norm with respect to the closedness
property.

Proposition 2.1.7 (Characterization of closed operators). A linear operator (T,D(T )) on B is closed if and
only if the domain D(T ), equipped with the graph norm, is a complete (hence a Banach) space.

Proof. Recalling the definition of ‖ · ‖D(T ), we notice that (un)n∈N is a Cauchy sequence of (D(T ), ‖ · ‖D(T )) if
and only if (un, Tun)n∈N is a Cauchy sequence of B ×B. As a consequence, (D(T ), ‖ · ‖D(T )) is complete if and
only if (gr(T ), ‖ · ‖B×B) is, that is to say if and only if the linear subspace gr(T ) is closed in B × B, that is to
say, by definition, if and only if the operator (T,D(T )) is closed.

Let us now turn to the discussion of closable operators. First, as it name indicates, a closable operator is an
operator that can be extended as a closed operator.

Proposition 2.1.8. An operator (T,D(T )) is closable (in the sense of Definition 2.1.3) if and only if there
exists a closed operator (T̃ ,D(T̃ )) such that T ⊂ T̃ . If so, the closure T of T is the smallest closed extension of
T in the sense (T ⊂ T̃ , T̃ closed ) =⇒ T ⊂ T̃ .

Note that a closable operator (T,D(T )) may admit several closed extensions. Its closure (T ,D(T )) is the
smallest closed extension.

Remark 2.1.9 (Characterization of the graph of a linear operator). A subset G ⊂ B × B is the graph of a
linear operator if and only if G is a vector subspace of B × B and satisfies the single valued property

(0, y) ∈ G =⇒ y = 0. (2.1.1)

These two properties are of course satisfied by gr(T ). Conversely, if G is a vector subspace satisfying (2.1.1),
then (x, y1) ∈ G and (x, y2) ∈ G imply y1 = y2. As a consequence, the map T : D(T ) := p1(G) → B (where
p1 denotes the first projection), which to x maps the unique y ∈ B such that (x, y) ∈ G, is a well defined map.
Moreover, D(T ) = p1(G) is a linear subspace of B, T is linear, and by definition gr(T ) = G.
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Proof of Proposition 2.1.8. Of course if (T,D(T )) is closable in the sense of Definition 2.1.3, then gr(T ) = gr(T ),
so in particular T ⊂ T where T is closed.

Conversely, if T ⊂ T̃ with T̃ closed, then gr(T ) ⊂ gr(T̃ ) whence gr(T ) ⊂ gr(T̃ ) since T̃ is closed. As
a consequence, if (0, y) ∈ gr(T ), then (0, y) ∈ gr(T̃ ), and hence y = 0 since gr(T̃ ) has the single valued
property (2.1.1). Thus, gr(T ) also has the single valued property (2.1.1), and, henceforth is a graph according
to Remark 2.1.9. That is to say, by Definition 2.1.3, T is closable and T is defined by gr(T ) = gr(T ) ⊂ gr(T̃ )
and in particular T ⊂ T̃ .

Before describing the relationship between closability and the graph norm ‖ · ‖D(T ), let us recall the definition
of the completion of a normed vector space in Theorem 2.1.10.

Theorem 2.1.10 (Completion of a normed vector space). Let (E, ‖ · ‖E) be a normed vector space. Then there
is another normed vector space (Ê, ‖ · ‖Ê) such that

i) E ⊂ Ê and ‖ · ‖Ê
∣∣
E

= ‖ · ‖E;

ii) (Ê, ‖ · ‖Ê) is complete (hence it is a Banach space);

iii) E is dense in (Ê, ‖ · ‖Ê).

Moreover, two such spaces (Ê, ‖ · ‖Ê) are isometric, so we call (Ê, ‖ · ‖Ê) the completion of (E, ‖ · ‖E) (defined
modulo isometry).

For later purposes, we now recall a way to construct (Ê, ‖ · ‖Ê) from (E, ‖ · ‖E). First, we define

Ê := {Cauchy sequences of (E, ‖ · ‖E)}/ ∼, where

(un)n∈N ∼ (ũn)n∈N if and only if ‖un − ũn‖E → 0 (2.1.2)

is an equivalence relation on set of Cauchy sequences of (E, ‖ · ‖E). This set is a vector space and E ⊂ Ê in
the sense that, for u ∈ E the sequence (un)n∈N given by un = u for all n ∈ N is a Cauchy sequence (and is
equivalent to all sequences converging towards u). One then defines, for u = (un)n∈N in Ê,

‖u‖Ê := lim
n→∞

‖un‖E ,

where the limit in the right-hand side exists since the sequence
(
‖un‖E

)
n∈N is Cauchy in R+ (since (un)n∈N is

Cauchy in (E, ‖ · ‖E)). One can finally check that, with these definitions, (Ê, ‖ · ‖Ê) is complete and E is dense

in (Ê, ‖ · ‖Ê), yielding a proof of Theorem 3.1.8.

To state an analogue statement of Theorem 2.1.7 for closable operators, we notice that for any operator
(T,D(T )), the canonical injection

i : D(T ) → B,
u 7→ u,

is continuous with ‖u‖B ≤ ‖u‖D(T ) for all u ∈ D(T ), by definition of the graph norm. In case T is not closed

(that is to say if (D(T ), ‖ · ‖D(T )) is not complete in view of Proposition 2.1.7), we let let (D̂, ‖ · ‖D̂) be the

completion of the normed space (D(T ), ‖ · ‖D(T )). The map i extends by density from D(T ) to D̂ as a linear

continuous map which we denote î

î : D̂ → B, (2.1.3)

and which satisfies
‖̂i(u)‖B ≤ ‖u‖D̂ for all u ∈ D̂, and î|D(T ) = i.

Proposition 2.1.11 (Characterization of closable operators). Let (T,D(T )) be a linear operator on B. The
following statements are equivalent:
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i) (T,D(T )) is closable;

ii) the map î defined in (2.1.3) is injective. If so, we may identify the completion D̂ of D(T ) as a subspace
of B (through î) and we have D(T ) ⊂ D̂ ⊂ B, with continuous embeddings. In addition, the domain of the

closure of T is given by D(T ) = D̂ = D(T )
D̂

= D(T )
‖·‖D(T )

.

iii) for any sequence (un)n∈N of D(T ) such that un → 0 in B and Tun → v in B, one has v = 0;

The second point is a bit subtle: a normed space like (D(T ), ‖ · ‖T ) always admit a formal completion, see
Theorem 2.1.10, that is a Banach space D̂ such that D(T ) embeds into D̂ isometrically, and in a dense way.
However, in general it is not clear whether D̂ can be identified with a subspace of the initial Banach space B.
See Example 2.1.15 for a counter-example to this property.

Proof of Proposition 2.1.11. (i) =⇒ (iii) If T is closable, then by definition gr(T ) = gr(T̃ ) with T̃ closed. Let
(un)n∈N ∈ D(T )N be such that un → 0 in B and Tun → v in B. Then for all n ∈ N, (un, Tun) ∈ gr(T ). Letting
n → +∞, we deduce that (0, v) ∈ gr(T ). Since gr(T ) = gr(T̃ ), it has the single valued property (2.1.1) and
hence v = 0 and (iii) is proved.

(iii) =⇒ (ii) We assume Item (iii) and prove that î is injective. To this aim, we use the representation of D̂
as the completion of D(T ) by the procedure described in (2.1.2). Let u = (un)n∈N ∈ D̂ be such that î(u) = 0,
that is to say 0 = î(u) = limn→+∞ i(un) where the limit is in B, which means un → 0 in B. Now (un)n∈N is a
Cauchy sequence in D(T ) and in particular (Tun)n∈N is a Cauchy sequence in B, so that there exists v ∈ B such
that Tun → v in B. According to (iii), we deduce that v = 0, that is to say Tun → 0 in B. As a consequence,
we have

‖u‖D̂ = lim
n→+∞

‖un‖D(T ) = lim
n→+∞

‖un‖+ ‖Tun‖ = 0,

and hence u = 0. That is to say, î is injective, whence (ii).

(ii) =⇒ (i) Assume î is injective. Thus, we may identify the completion D̂ of D(T ) as a subspace of B through
î and we have D(T ) ⊂ D̂ ⊂ B, with continuous embeddings. Moreover, the operator T belongs to L(D(T ),B)
and (a slight variant of) Proposition 2.1.1 allows to extend it by density as a linear map T ∈ L(D̂;B). The
operator (T ,D(T )) := (T , D̂) defined this way is closed since (D̂, ‖ · ‖D(T )) = (D̂, ‖ · ‖D̂) is complete and using
Proposition 2.1.7. It is thus a closed extension of T and hence T is closable according to Proposition 2.1.8.
Moreover, the dense inclusion D(T ) ⊂ D̂ shows that D̂ is minimal and hence T is the closure of T .

We now give some examples of closed and closable unbounded operators.

Example 2.1.12 (Multiplication operator). Take H = L2(Rd) and pick f ∈ L∞loc(Rd). Define a linear operator
Mf in H as follows:

D(Mf ) = {u ∈ L2(Rd) : fu ∈ L2(Rd)} and Mfu = fu for u ∈ D(Mf ).

It can be easily seen that D(Mf ), equipped with the graph norm ‖ · ‖′Mf
, coincides with the weighted space

L2
(
Rd, (1 + |f |2)dx

)
, which is a Hilbert space, hence complete. This shows that Mf is closed.

Exercise 2.1.13. For any p ∈ [1,∞[, one may define a closed multiplication operator Mf on B = Lp(Rd) in a
similar way.

Using the Fourier transform, we are able to transform certain multiplication operators on H = L2 into
differential operators with constant coefficients. Let us start with the most famous one, the Laplacian on Rd,
which will appear many times in these notes.

Example 2.1.14 (Laplacians in Rd). Take H = L2(Rd) and consider two operators in H:

T0u = −∆u, D(T0) = C∞c (Rd),
T1u = −∆u, D(T1) = H2(Rd) (second Sobolev space).

14



We are going to show that T0 = T1 (this implies that T1 is closed, while T0 is not).

For this aim, we will use the Fourier transform to transform the differential operator ∆ into a multiplication
operator.

When acting on a function f ∈ S (Rd), we have the identity

F∆f(ξ) = −|ξ|2Ff(ξ), ξ ∈ Rd,

showing that −∆ is conjugate to the multiplication operator by |ξ|2.

By duality, the above identity holds as well for distributions f ∈ S ′(Rd). But we would like to restrict −∆
to the Sobolev space H2(Rd). How does this space translate on the Fourier side?

f ∈ H2(Rd)⇐⇒ f̂ , ξj f̂ , ξjξkf̂ ∈ L2(Rd), for any indices j, k.

The conditions on the right-hand side can be simplified. Indeed, the bounds:

∀ξ ∈ Rd, ∀j, k = 1, . . . , d, |ξjξk| ≤
ξ2
j + ξ2

k

2
≤ |ξ|2, |ξj | ≤

1 + ξ2
j

2
≤ (1 + |ξ|2), (2.1.4)

imply that

f ∈ H2(Rd)⇐⇒ (1 + |ξ|2)f̂ ∈ L2(Rd)
⇐⇒ (1−∆)f ∈ L2(Rd)
⇐⇒ f, ∆f ∈ L2(Rd) .

(2.1.5)

The first line shows that the operator T1, with domain H2(Rd), is unitarily conjugate through the Fourier
transform to the operator T̂ defined by

D(T̂ ) = {g ∈ L2 : |ξ|2g ∈ L2}, T̂ g(ξ) = |ξ|2g(ξ).

In other words, we have the exact conjugacy

T1 = F−1 T̂ F , D(T1) = F−1D(T̂ ).

This conjugacy shows the following relation between the graphs of the two operators:

grT1 = {(F−1u,F−1T̂ u) : u ∈ D(T̂ )} = K(gr T̂ ),

where K is the linear operator on L2×L2 defined by K(u, v) = (F−1u,F−1v). The unitarity of F implies that
K acts unitarily on L2 × L2, in particular it maps closed sets to closed sets.

Now, the example 2.1.12 shows that the multiplication operator T̂ is closed on L2(Rd), which means that gr T̂
is closed in L2 × L2. Finally, grT1 = K(gr T̂ ) is a closed set too, hence T1 is closed.

Since T0 is a restriction of the closed operator T1, namely D(T0) ⊂ D(T1), it follows that grT0 is a graph.
Hence T0 is closable, and the domain of its closure D(T 0) is the closure of D(T0) in the graph norm of T0

(Proposition 2.1.11).

What is this graph norm? The inequalities (2.1.4) show that the standard norm on H2, expressed through
the Fourier conjugacy, reads:

‖f‖2H2 = ‖f̂‖2L2 +
∑
j

‖ξj f̂‖2L2 +
∑
j,k

‖ξjξkf̂‖2L2 ,

This norm is equivalent with the modified norm

‖f‖2modif
def
= ‖f̂‖2L2 + ‖|ξ|2f̂‖2 = ‖f‖2L2 + ‖∆f‖2L2 ,
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namely the graph norm of T0, so the two norms generate the same topology. The space D(T1) = H2 is hence
complete w.r.to the norm ‖ · ‖modif = ‖ · ‖T1

∼ ‖ · ‖H2 (using Proposition 2.1.7, this is a second way to prove
that T1 is closed).

Finally, we know that D(T0) = C∞c is a dense subspace in H2 (w.r.to the corresponding Sobolev norm), hence
its closure in H2 is the full space H2 = D(T1). In conclusion, D(T0) = H2 = D(T1), or equivalently T0 = T1.

Let us now exhibit a simple operator which does NOT admit a closure.

Example 2.1.15 (Non-closable operator). Take B = Lp(R) for some p ∈ [1,∞[, and pick a nontrivial function
g ∈ B. Consider the rank-1 operator L defined on D(L) = C0(R) ∩ Lp(R) by Lf = f(0)g. Let us show that
this operator is not closable.

Choose some nontrivial function f ∈ D(L). It is easy to construct two sequences (fn)n∈N, (gn)n∈N in D(L)
such that both converge in Lp to f , but with fn(0) = 0 and gn(0) = 1 for all n. Then for all n we have Lfn = 0,
while Lgn = g: both sequences Lfn and Lgn converge to different limits. This shows that the closure of grL in
B × B is not a graph, since it contains both elements (f, 0) and (f, g). Hence L is not closable.

If we try to complete D(L) w.r.to the graph norm ‖ · ‖L, we will obtain a space B̃ isometric to Lp(R) × R,
which takes into account both the limiting function limn f ∈ Lp(R), and the limiting values limn fn(0). The
space B̃ is “larger” than Lp(R), since it records the extra information of the value taken by the function at zero.

The next example generalizes the case of the Laplacian, and shows that considering differential operators
acting on a domain Ω $ Rd with boundaries makes the analysis more tricky.

2.1.2 Partial differential operators

Let Ω be an open subset of Rd and P (x,Dx) be a partial differential expression with C∞ coefficients:

P (x,Dx) =
∑
|α|≤m

aα(x)Dα, aα ∈ C∞(Ω),

where we use the notation Dx = 1
i ∂x, and Dα = Dα1

x1
· · ·Dαd

xd
for multiple derivatives. Choosing as reference

space H = L2(Ω), this differential expression defines a linear operator P on the domain D(P ) = C∞c (Ω),
Pu(x) = P (x,Dx)u(x). Like in the example of the Laplacian, we try to extend P to some larger subspace of
L2.

The theory of distributions teaches us that, for any u ∈ L2, the expression P (x,Dx)u makes sense as a well-
defined distribution in D ′(Ω), yet generally this distribution is not in L2. However, if a sequence (un)n∈N ∈
D(P )N converges to 0 in L2, and satisfies Pun → v in L2, then the two limits hold as well in D ′. Because P
acts continuously D ′ → D ′, the limit v must be equal to the (unique) distribution defined by P (0) = 0. Hence,
v = 0 in D ′ and thus in L2, whence Item (iii) of Proposition 2.1.11 is satisfied and hence that P is closable. Its
closure P =: Pmin is called the minimal closed extension of P , or the minimal operator. The above reasoning
also shows that grP = grP must be included in the set{

(u, f) ∈ H ×H : P (x,Dx)u = f in D ′(Ω)
}
. (2.1.6)

The above set defines a closed graph in L2 ×L2, the corresponding operator is called the maximal extension of
P , or the maximal operator, and is denoted by Pmax. Its domain is

D(Pmax) =
{
u ∈ H : P (x,Dx)u ∈ H

}
,

where, as above, P (x,Dx)u is understood in the sense of distributions.

We have already shown the inclusion Pmin ⊂ Pmax, and we saw in the Example 2.1.14 of the Laplacian on Rd,
that one can have Pmin = Pmax. But one may easily find examples where this equality does not hold, and the
inclusion Pmin ⊂ Pmax is strict.
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Example 2.1.16. If we take P (x,Dx) = d/dx and Ω = R∗+, with domain D(P ) = C∞c (R∗+), we find for the
minimal closed extension

D(Pmin) = C∞c (R∗+)
H1

= H1
0 (R∗+),

(the space of functions in H1(R∗+) vanishing at x = 0), since the graph norm ‖ · ‖P is equivalent with the H1

norm. On the other hand,

D(Pmax) = {u ∈ L2(R∗+), u′ ∈ L2(R∗+)} = H1(R∗+)

(with no condition at x = 0). which is strictly larger than H1
0 (R∗+).

In general, one may expect that Pmin $ Pmax if Ω has a boundary.

Such questions become more involved if one studies partial differential operators with more singular coefficients
(e.g. with coefficients which are not smooth but just belong to some Lp), since one cannot easily define their
action on distributions. During the course, we will nevertheless deal with certain classes of such operators (one
easy case is the multiplication operator by an L∞loc function of Example 2.1.12).

2.2 Adjoint of an operator on a Hilbert space

In this section, we restrict ourselves to operators T defined on a Hilbert space B = H. In this framework, we will
define and study the adjoint operator of T ; we will see that the very definition of the adjoint is not completely
obvious in cases where T is unbounded on H.

Note that adjoints can also be defined on Banach space B, yet the adjoint operator then acts on the dual
space B′, which is generally different from B. We will not address this situation in these notes.

2.2.1 Adjoint of a continuous operator

For a continuous operator T ∈ L(H), its adjoint T ∗ is defined by the identity

〈u, Tv〉 = 〈T ∗u, v〉 for all u, v ∈ H. (2.2.7)

The fact that these identities uniquely define the operator T ∗ comes from the Riesz representation theorem: for
each u ∈ H the map H 3 v 7→ 〈u, Tv〉 ∈ C is a continuous linear functional; the Riesz theorem states that there
exists a unique vector w ∈ H such that 〈u, Tv〉 = 〈w, v〉 for all v ∈ H. One can then easily check that the map
u 7→ w is linear, and by estimating the above scalar product with v = w, one finds that this map is bounded:

〈w,w〉 = 〈u, Tw〉 =⇒ ‖w‖2 ≤ ‖u‖‖T‖‖w‖ =⇒ ‖w‖ ≤ ‖T‖‖u‖

We may hence denote this map by: w = T ∗u, thus defining the continuous linear operator T ∗. The above
bound shows that ‖T ∗‖ ≤ ‖T‖. Actually, the symmetry of (2.2.7) shows that (T ∗)∗ = T , hence we actually
have ‖T ∗‖ = ‖T‖.

2.2.2 Adjoint of an unbounded operator

Let us try to generalize this construction to an unbounded operator T . As we will see, the main difficulty
consists in properly defining the domain of T ∗.

Definition 2.2.1 (Adjoint operator). Let (T,D(T )) be a linear operator in H, with D(T ) dense in H. We then
define its adjoint operator (T ∗, D(T ∗)) as follows.

The domain D(T ∗) consists of the vectors u ∈ H for which the map D(T ) 3 v 7→ 〈u, Tv〉 ∈ C is a bounded
linear form on H. For such u there exists, by the Riesz theorem, a unique vector (which we denote by T ∗u)
such that 〈u, Tv〉 = 〈T ∗u, v〉 for all v ∈ D(T ).
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We notice that our assumption of a dense domain D(T ) = H is crucial here: if it is not satisfied, then there
are several ways to extend the linear form defined on D(T ), into a bounded linear form on H. Equivalently, the
vector T ∗u is not uniquely determined, since one can add to T ∗u an arbitrary vector in D(T )⊥. Hence, when
we mention the adjoint of an operator T , we always (implicitly or explicitly) assume that D(T ) is dense.

Let us give a geometric interpretation of the adjoint operator. Consider the linear “−π/2 rotation” operator

J : H×H → H×H, J(u, v) = (v,−u) .

We notice that J commutes with taking the orthogonal complement in H × H: for any subset V ⊂ H × H,
J(V )⊥ = J(V ⊥).

Proposition 2.2.2 (Geometric interpretation of the adjoint). Let T be a linear operator in H, with dense
domain D(T ). Then the graph of the adjoint operator T ∗ is given by:

grT ∗ = J(grT )⊥ = J
(
(grT )⊥

)
. (2.2.8)

Proof. By definition, u ∈ D(T ∗) iff there exists a vector T ∗u such that, for any v ∈ D(T ),

0 = 〈u, Tv〉H − 〈T ∗u, v〉H
=
〈
(u, T ∗u), (Tv,−v)

〉
H×H

=
〈
(u, T ∗u), J(v, Tv)

〉
H×H .

(2.2.9)

Equivalently, u ∈ D(T ∗) iff there exists T ∗u ∈ H such that (u, T ∗u) is orthogonal to the subspace J(grT ).
Hence, the set of admissible pairs (u, T ∗u) is given by the orthogonal complement to J(grT ). We know that
these pairs form a graph (due to the density of D(T ), to each admissible u corresponds a unique T ∗u). We
finally get the required identify grT ∗ = J(grT )⊥.

A byproduct of the equalities (2.2.9) is the identity

KerT ∗ = (RanT )⊥ . (2.2.10)

As a simple application we obtain

Proposition 2.2.3. i) The adjoint T ∗ is a closed operator.

ii) If T is closable, then T ∗ = (T )∗.

Proof. In (2.2.8), we remember that the orthogonal complement of a subspace is always a closed subspace, so
grT ∗ is closed, meaning that T ∗ is a closed operator.

Besides, the map J is continuous, and the orthogonal complement of a subspace is equal to the orthogonal
complement of its closure, so

J(grT )⊥ = J(grT )
⊥

= J(grT )⊥ = J(grT )⊥,

which proves the second item.

So far, we do not know if the domain of the adjoint operator could be nontrivial. This is discussed in the
following proposition.

Proposition 2.2.4 (Domain of the adjoint). Let (T,D(T )) be a closable operator on H, with dense domain.
Then

i) D(T ∗) is a dense subspace of H;
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ii) T ∗∗
def
= (T ∗)∗ = T .

Proof. We first prove Item (i) by showing that D(T ∗)⊥ = {0}. Let w ∈ D(T ∗)⊥, that is to say 〈u,w〉 = 0 for
all u ∈ D(T ∗). Then for all u ∈ D(T ∗) one has

〈J(u, T ∗u), (0, w)〉H×H = 〈u,w〉+ 〈T ∗u, 0〉 = 0,

which means that (0, w) ∈ J(grT ∗)⊥. We now claim that J(grT ∗)⊥ = grT . Admitting the claim, we have
(0, w) ∈ J(grT ∗)⊥ = grT and, since the operator T is closable, the closure grT must be a graph and thus
w = 0. This proves that D(T ∗)⊥ = {0}, that is D(T ∗) = H. To prove the claim, Proposition 2.2.2 implies
gr(T ∗) = J(gr(T )⊥). As a consequence, recalling that J ◦J = −1, we have J(gr(T ∗)) = J ◦J(gr(T )⊥) = gr(T )⊥

and thus
(
J(gr(T ∗))

)⊥
= (gr(T )⊥)⊥ = gr(T ), which is the claim.

To prove Item (ii), we notice that, since T ∗ has dense domain from (i), Equation (2.2.8) from Proposition 2.2.2
applies to T ∗ and yields gr(T ∗)∗ = J(gr(T ∗))⊥. Applying the same equation to T implies

gr(T ∗)∗ = J(gr(T ∗))⊥ =
(
J ◦ J((grT )⊥)

)⊥
=
(

gr(T )⊥
)⊥

= gr(T ) = gr(T ),

where the last equality comes from the fact that T is closable.

Remark 2.2.5. In the above Proposition, the closability of T is a necessary assumption. Indeed, let us
come back to the Example 2.1.15 of the nonclosable operator L. The adjoint of this operator has for domain
D(L∗) = {g}⊥, a closed subspace of codimension 1, hence not dense on L2. Note that the operator L∗ vanishes
on this domain.

Let us consider some examples of adjoints of closable operators.

Example 2.2.6 (Adjoint of a bounded operator). The general definition (2.2.1) for the adjoint operator is
compatible with the definition of the adjoint of a continuous linear operators given in section 2.2.1: in case T
is bounded and D(T ) = H, the domain of the adjoint is D(T ∗) = H, and the relation 〈u, Tv〉 = 〈T ∗u, v〉 for all
u, v ∈ H fully defines T ∗.

Example 2.2.7 (Laplacian on Rd). Let us consider again the operators T0 and T1 from Example 2.1.14, and
show that T ∗0 = T1.

By definition, the domainD(T ∗0 ) consists of the functions u ∈ L2(Rd) for which there exists a vector f ∈ L2(Rd)
such that

∀v ∈ D(T0) = C∞c (Rd),
∫
Rd
u(x)(−∆v)(x)dx =

∫
Rd
f(x)v(x)dx .

This equation exactly means that f = −∆u in D ′(Rd). Therefore, D(T ∗0 ) consists of the functions u ∈ L2

such that the distribution −∆u is actually in L2. The identities (2.1.5) showed that this is exactly the space
H2(Rd) = D(T1). So D(T ∗0 ) = D(T1), and the two operators both act by u 7→ −∆u, they are thus identical.

Let us come back to the simplest differential operator, which appeared in Example 2.1.16.

Example 2.2.8. Consider the operator A0 acting through A0u = Dxu
def
= −i ddxu for u ∈ D(A0) = C∞c (]0, 1[).

In Example 2.1.16 we showed that the “minimal operator” A0 = A0,min admits the domain D(A0) = H1
0 (]0, 1[).

Let us show that the adjoint A∗0 admits the larger domain D(A∗0) = H1(]0, 1[). Indeed, if v ∈ C∞c (]0, 1[), the
equation

〈u,Dxv〉 = 〈Dxu, v〉
holds for any u ∈ C∞(]0, 1[) thanks to an integration by parts, and the resulting linear form in v can be
continuously extended to all of v ∈ L2, as long as Dxu ∈ L2, hence as long as u ∈ H1(]0, 1[). The action of A∗0
is also by A∗0u = Dxu, so A∗0 is equal to the maximal operator A0,max.

To anticipate the Definition 2.2.10 below, the operator A0 is symmetric, but not essentially selfadjoint, since
A0 $ A∗0. Equivalently, the non-inclusion A∗0 6⊂ A∗∗0 = A0 shows that the operator A∗0 is not symmetric.

Exercise 2.2.9. Remember the multiplication operator Mf from Example 2.1.12, for a complex valued function
f ∈ L∞loc. Show that (Mf )∗ = Mf̄ .
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2.2.3 Symmetric and Selfajdoint operators

The following definition introduces classes of linear operators defined on a Hilbert space, which will be studied
intensively in this course.

Definition 2.2.10 (Symmetric, self-adjoint, essentially self-adjoint operators). An operator (T,D(T )) on a
Hilbert space is said to be symmetric (or Hermitian) if

〈u, Tv〉 = 〈Tu, v〉 for all u, v ∈ D(T ).

Equivalently, T is symmetric iff T ⊂ T ∗ (that is, T ∗ is an extension of T ).

• T is called selfadjoint if T = T ∗ (in particular, D(T ) = D(T ∗))

• T is called essentially selfadjoint if T is closable and T is self-adjoint: T = (T )∗ = T ∗.

An important feature of symmetric operators is their closability:

Proposition 2.2.11. A symmetric operator (T,D(T )) is necessarily closable.

Proof. Indeed, for a symmetric operator T we have grT ⊂ grT ∗ and, due to the closedness of T ∗, grT ⊂ grT ∗.
As a consequence (see Remark 2.1.9 and its use in the proof of Proposition 2.1.8), grT is a graph, the graph of
the closure T .

An interest of essentially selfadjoint operators lies in the following result.

Proposition 2.2.12. An essentially selfadjoint operator admits a unique selfadjoint extension.

Proof. Let (T,D(T )) be essentially selfadjoint operator, and let (S,D(S)) be a selfadjoint extension of T . Since
S is closed, the inclusion T ⊂ S implies T ⊂ S. On the other hand, Equation 2.2.8 in Proposition 2.2.2 implies
that

T ⊂ S ⇐⇒ grT ⊂ grS =⇒ (grS)⊥ ⊂ (grT )⊥ =⇒ grS∗ ⊂ grT ∗ ⇐⇒ S∗ ⊂ T ∗.

As a consequence, we finally have T ⊂ S = S = S∗ ⊂ T ∗ = T , where the last equality comes from the fact that
T is self-adjoint (since T is essentially selfadjoint). Hence S = T .

Example 2.2.13 (Free Laplacian on Rd). The Laplacian T1 from Example 2.1.14 is selfadjoint. Indeed, we
have shown in Ex. 2.2.7 that T ∗0 = T1, hence T ∗1 = T ∗∗0 = T0 = T1, where the last equality uses Ex. 2.1.14. This
shows that T1 is selfadjoint, while its restriction T0 is essentially selfadjoint.

The operator T1 is called the free Laplacian on Rd.

Example 2.2.14 (Continuous symmetric operators are selfadjoint). For T ∈ L(H), being symmetric is equiv-
alent to being selfadjoint, since the domains of T and T ∗ are both the full space H.

Example 2.2.15 (Selfadjoint multiplication operators). As follows from example 2.2.9, the multiplication
operator Mf on L2(Rd) from example 2.1.12, with D(Mf ) = {u ∈ L2, fu ∈ L2} is self-adjoint iff f(x) ∈ R for
a.e. x ∈ Rd.

The following proposition will allow to construct a large class of self-adjoint operators.

Proposition 2.2.16. Let T be an injective selfadjoint operator, then its inverse, defined by D(T−1)
def
= RanT

and for u ∈ RanT , T−1u
def
= the unique v ∈ D(T ) such that Tv = u, is also selfadjoint (notice that the inverse

may be unbounded).

Note that an implicit assumption is that T has dense domain, and an implicit conclusion is that RanT =
D(T−1) is dense in H as well.
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Proof. Let us first show that D(T−1) = RanT is dense in H. Let u ⊥ RanT , then 〈u, Tv〉 = 0 for all v ∈ D(T ).
This can be rewritten as 〈u, Tv〉 = 〈0, v〉 for all v ∈ D(T ), which shows that u ∈ D(T ∗), with image T ∗u = 0.
Since by assumption T ∗ = T , we have u ∈ D(T ) and Tu = 0. Since T in injective, the vector u must be trivial.
Hence RanT is dense.

Now consider the “switch operator” S : H ×H → H ×H given by S(u, v) = (v, u). One has then grT−1 =
S(grT ). We conclude the proof by noting that S commutes with the operation of the orthogonal complement
in H×H and anticommutes with J . From the assumption grT = grT ∗ = J(grT )⊥, we draw:

grT−1 def
= S(grT )

ass.
= S(grT ∗) = S

(
J(grT )⊥

)
= −JS

(
(grT )⊥

)
= J

(
S grT

)⊥
= J(grT−1)⊥ = gr(T−1)∗.

Proving the symmetry of an unbounded operator is often easy (for differential operators, this fact often involves
some integration by parts); but proving selfadjointness requires a precise identification of the domains, which
may be quite difficult in general. This is a reason why, in the next section, we will appeal to quadratic forms
to construct selfadjoints operators.

Yet, one may use the following criteria to check essential selfadjointness, or selfadjointness.

Proposition 2.2.17 (Criteria for selfadjointness). Assume the operator (T,D(T )) is symmetric on the Hilbert
space H. Then the following properties are equivalent:

i) (T,D(T )) is essentially selfadjoint (selfadjoint);

ii) Ker(T ∗ + i) = Ker(T ∗ − i) = {0} (and furthermore (T,D(T )) is closed);

iii) Ran(T + i), Ran(T − i) are dense in H (are equal to H).

Proof. We first give the proofs for the “selfadjoint case”, the “essentially selfadjoint case” being treated after-
wards.

i) =⇒ ii): Assume T is selfadjoint and u ∈ Ker(T ∗ + i) (the case Ker(T ∗ − i) is treated similarly). Then
u ∈ D(T ) and Tu + iu = 0, and hence 〈Tu, u〉 + i‖u‖2 = 0. This implies u = 0 when taking imaginary part
since 〈Tu, u〉 ∈ R, T being selfadjoint.

ii) =⇒ iii): we have 0 = Ker(T ∗ ± i) = Ran(T ∓ i)⊥, which shows that Ran(T ± i) is dense. Assuming the
closedness of T , we want to show the closedness of Ran(T ± i). For this, we use “Pythagore’s theorem”:

‖(T + i)u‖2 = 〈(T + i)u, (T + i)u〉 = 〈Tu, Tu〉+ 〈u, u〉

Assume that a sequence (un ∈ D(T )) is such that the sequence ((T + i)un) is Cauchy. The above equality
then shows that so are (un) and (Tun). The closedness of T then implies that un → u and Tun → Tu, hence
(T +i)un → (T +i)u ∈ Ran(T +i). As a result, Ran(T +i) is closed, and is equal to H. The proof for Ran(T −i)
is identical.

iii) =⇒ i) The symmetry means that T ⊂ T ∗, and we want to show the inverse inclusion T ∗ ⊂ T .

Take any v ∈ D(T ∗); one then has (T ∗ + i)v ∈ H. From the assumption that Ran(T + i) = H, there
exists u ∈ D(T ) such that (T ∗ + i)v = (T + i)u; since T ⊂ T ∗ (T is symmetric), this identity also reads
(T ∗ + i)u = (T ∗ + i)v, hence v − u ∈ Ker(T ∗ + i) = Ran(T − i)⊥. The assumption Ran(T − i) = H shows that
u = v, so that v ∈ D(T ), and finally D(T ∗) ⊂ D(T ).

To conclude the proof of the proposition, we need to consider the “essentially selfadjoint case”. The proofs
of i) =⇒ ii) and ii) =⇒ iii) are contained in the “selfadjoint case” so it only remains to prove iii) =⇒ i) in
this case. The assumption is Ran(T + i) = Ran(T − i) = H. Since T is assumed to be symmetric, it is closable
according to Proposition 2.2.11. Hence, T ± i is closable as well with T ± i = T ± i. As a consequence, we have
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gr(T ± i) = gr(T±i) and in particular Ran(T ± i) = Ran(T±i), and hence Ran(T±i) = H by assumption. The
operator T satisfies assumption iii) of the “selfadjoint case” and the implication iii) =⇒ i) of the proposition
in this case implies that T is selfadjoint, whence T is essentially selfadjoint.

Variants of Proposition 2.2.17 are given by Remark 2.2.18 and Proposition 2.2.19.

Remark 2.2.18. The criteria in Proposition 2.2.17 are using the operators (T ± i) and (T ∗ ± i). Proposi-
tion 2.2.17 can be modified in several ways. For example, it still holds if one replaces (T ± i) by (T ± iλ) for
any λ ∈ R \ {0} (the same proof actually applies verbatim). This is sometimes useful since taking λ a large
parameter can sometimes help in estimates.

If T is also semibounded below, we have the following alternative version:

Proposition 2.2.19 (Self-adjointness criterion for semibounded operators). Let (T,D(T )) be a symmetric
operator on a Hilbert space H, such that T ≥ 0 (that is to say, (u, Tu) ≥ 0 for all u ∈ D(T )). Then, for any
a > 0, the following three assertions are equivalent.

i) (T,D(T )) is essentially selfadjoint (resp. selfadjoint);

ii) Ker(T ∗ + a) = {0} (resp. and furthermore (T,D(T )) is closed);

iii) Ran(T + a) is dense in H (resp. is equal to H).

The proof, which mimics that of Proposition 2.2.17, is left as an exercise.

Remark 2.2.20 (Why focus on selfadjoint operators?). As mentioned in the introduction, selfadjoint operators
lie at the heart of quantum mechanics, not just in as Hamiltonians generating the quantum evolution, but also
as quantum observables, selfadjoint operators representing the quantities which can (in theory) be measured in
an experiment.

Mathematically, selfadjoint operators enjoy a very special spectral structure: we will establish in Chapter 5
the spectral theorem for selfadjoint operators, which provides a general description of these operators, in terms of
their spectral measure. From this theorem we will also construct a functional calculus for selfadjoint operators,
that is define operators of the form f(T ), for T selfadjoint and f : R→ C is an arbitrary function.

2.3 Exercises

We recall the definitions of an isometry, a unitary operator, and of unitarily equivalent operators.

Definition 2.3.1 (Unitary operator, unitarily equivalent operators). Let H1 and H2 be two Hilbert spaces.
We say that a bounded linear map U ∈ L(H1;H2) is

i) an isometry if ‖Uv‖H2
= ‖v‖H1

for all v ∈ H1, or equivalently U∗U = IH1
;

ii) a unitary operator if U is an isometric isomorphism, or equivalently a surjective isometry, or equivalently
if U∗U = IH1

and UU∗ = IH2
.

Let (A1, D(A1)) be a linear operator on H1 and (A2, D(A2)) be a linear operator on H2. We say that A1 and
A2 are unitarily equivalent if there exists a unitary operator U ∈ L(H1;H2) such that D(A2) = UD(A1) and
U∗A2Uf = A1f for all f ∈ D(A1).

Exercise 2.3.2. (a) Let two operators A and B be unitarily equivalent (see Definition 2.3.1). Show that A is
closed/symmetric/self-adjoint iff B has the same property.

(b) Let (λn) be an arbitrary sequence of complex numbers, n ∈ N. In the Hilbert space `2(N) consider the
operator S:

D(S) =
{

(xn) : there exists N such that xn = 0 for n > N
}
, S(xn) = (λnxn).
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Describe the closure of S.

(c) Now let H be a separable Hilbert space and T be a linear operator in H with the following property: there
exists an orthonormal basis (en)n∈N of H with en ∈ D(T ) and Ten = λnen for all n ∈ N, where λn are some
complex numbers. We take as D(T ) the finite linear combinations of the (en).

i) Describe the closure T of T . Hint: one may use (a) and (b).

ii) Describe the adjoint T ∗ of T .

iii) Let all λn be real. Show that the operator T is self-adjoint.

Exercise 2.3.3. Let A and B be self-adjoint operators in a Hilbert space H such that D(A) ⊂ D(B) and
Au = Bu for all u ∈ D(A). Show that D(A) = D(B). (This property is called the maximality of self-adjoint
operators.)

Exercise 2.3.4. We consider a linear operator A on a Hilbert space H, and a continuous operator B on the

same space; we define their sum A+B as the operator S with domain D(S) = D(A), such that Su
def
= Au+Bu

for each u ∈ D(S). (We note that defining the sum of two unbounded operators is a nontrivial task in general,
due to questions of domains.)

(a) Assume A is a closed operator and B is continuous. Show that A+B is closed.

(b) Assume, in addition, that A is densely defined. Show that (A+B)∗ = A∗ +B∗ (here the sum A∗ +B∗ is
defined similarly as A+B).

Exercise 2.3.5. Let H = L2(]0, 1[). For α ∈ C, consider the operator Tα acting as Tαf = if ′ on the domain

D(Tα) =
{
f ∈ C∞

(
[0, 1]

)
: f(1) = αf(0)

}
.

(a) Describe the adjoint of Tα.

(b) Describe the closure Sα
def
= Tα.

(c) Find all α for which Sα is selfadjoint.
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Chapter 3

Operators and quadratic forms

In this section, we will focus on operators defined on a Hilbert space. In many situations, the action of the
operator is clear (typically it is a differential operator), but the difficult point is to identify the domain of the
operator which provides it with “good properties”, namely selfadjointness.

To construct such a “good domain”, we will start by defining a quadratic form on H (more precisely, the form
will be defined on a dense subspace of H). Provided this form enjoys some properties (which are usually easy
to verify), we will extract from the form an operator which will automatically be selfadjoint. The advantage
of this procedure is that the domain of the quadratic form is usually easier to construct, or describe, than the
domain of the resulting operator. This procedure can thus be seen as a “fast track” to construct selfadjoint
operators, without need to explicitly describe their domains.

3.1 From quadratic form to operator

A sesquilinear form q on a Hilbert space H, with domain D(q) ⊂ H, is a map

q : D(q)×D(q)→ C ,

which is linear with respect to the second argument and antilinear with respect to the first one. By default
we assume that D(q) is a dense subspace of H. (In the literature, one uses also the terms bilinear form and
quadratic form.) The sesquilinear form q is said to be:

• bounded, if D(q) = H and there exists M > 0 such that
∣∣q(u, v)

∣∣ ≤M‖u‖ · ‖v‖ for all u, v ∈ H;

• elliptic (or coercive), if it is bounded and there exists α > 0 such that
∣∣q(u, u)

∣∣ ≥ α‖u‖2 for all u ∈ H;

• symmetric if q(v, u) = q(u, v) for all u, v ∈ D(q),

• semibounded from below if for some c ∈ R one has q(u, u) ≥ c‖u‖2 for all u ∈ D(q); in this case we write
q ≥ c;

• positive or non-negative, if one can take c = 0 in the previous item;

• positive definite or strictly positive, if one can take c > 0 in the previous item.

Implicit in the definition of a form semibounded from below is that q(u, u) ∈ R for all u ∈ H. Recalling the
polarization formula for sesquilinear forms

q(u, v) =
1

4

(
q(u+ v)− q(u− v) + iq(u− iv)− iq(u+ iv)

)
, u, v ∈ H,
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where, for short, we have written q(w) = q(w,w), one deduces that such a q is necessarily symmetric in this
case.

Notice the subtle differences between ellipticity and strict positivity. It is important to notice that the above
properties refer to the Hilbert norm on H. Later we will introduce a second norm, in general stronger than
‖ · ‖H; when mentioning one of the above properties, it will be important to specify w.r.to which norm the form
q is bounded, or semibounded below etc.

3.1.1 Starting from an elliptic form on V

One may canonically associate a linear operator to any bounded form. For a moment we switch notations, and
call A our operator, defined on a Hilbert space V.

Definition 3.1.1 (Operator associated with a bounded form).
Let V be a Hilbert space and let q be a bounded sesquilinear form on V. Then, by the Riesz representation
theorem, there is a unique operator Aq ∈ L(V) such that

q(u, v) = 〈u,Aqv〉V for all u, v ∈ V.

In the sequel we will often drop the subscript q, and write A instead of Aq.

The following theorem will be crucial for our constructions, it relates ellipticity of the quadratic form with
invertibility of the operator.

Theorem 3.1.2 (Lax-Milgram theorem). If a quadratic form q on V is elliptic, then the associated operator
Aq ∈ L(V) is an isomorphism of V, that is, Aq is invertible and A−1

q ∈ L(V).

Proof. By assumption, one can find two constants α,C > 0 such that

α‖v‖2 ≤
∣∣ q(v, v)

∣∣ ≤ C‖v‖2 for all v ∈ V.

This implies α‖v‖2 ≤
∣∣q(v, v)

∣∣ =
∣∣〈v,Av〉∣∣ ≤ ‖v‖ · ‖Av‖. Hence,

‖Av‖ ≥ α‖v‖ for all v ∈ V. (3.1.1)

Step 1. The above inequality shows that A is injective.

Step 2. Let us show that RanA is closed. Assume that fn ∈ RanA and that fn converge to f in V. By the
result of step 1, there are uniquely determined vectors vn ∈ V with fn = Avn. The sequence (fn) = (Avn) is
convergent, hence is Cauchy. By (3.1.1), the sequence (vn) is also Cauchy, hence, due to the completeness of
V, it converges to some v ∈ V. Since A is continuous, Avn converges to Av. Hence, f = Av, which shows that
f ∈ RanA

Step 3. Let us finally show that RanA = V. Since we already showed that RanA is closed, it is sufficient to
show that (RanA)⊥ = {0}. Let u ⊥ RanA, then q(u, v) = 〈u,Av〉 = 0 for all v ∈ V . Taking v = u we obtain
q(u, u) = 0, hence u = 0 by ellipticity of q.

3.1.2 From V to H

We now extend the above construction to unbounded forms.

Definition 3.1.3 (Operator defined by a quadratic form). Like in Theorem 3.1.2, consider an elliptic quadratic
form q on a Hilbert space V. Moreover, assume that V embeds continuously and densely into another Hilbert
space H, that is to say V ⊂ H and that there exists a constant c > 0 such that ‖u‖H ≤ c‖u‖V for all u ∈ V
(that is, the V-norm is stronger than the H-norm) and VH = H.
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Let us construct a linear operator T = Tq on the larger space H, associated with q as follows.
1. The domain D(T ) consists of the vectors v ∈ V ⊂ H for which the map V 3 u 7→ q(u, v) can be extended to
a continuous antilinear map H → C.
2. By the Riesz representation theorem, for such v there exists a unique fv ∈ H such that q(u, v) = 〈u, fv〉H for

all u ∈ V; we then set Tv
def
= fv.

Notice the difference between the operator T : D(T ) ⊂ H → H constructed above, and the bounded operator
A : V → V constructed in Definition (3.1.1): the duality defining these operators comes from different scalar
products, namely the one on H for T , resp. the one on V for A. So the actions of the two operators are genuinely
different, even if both of them are well-defined on D(T ):

for any u, v ∈ D(T ) ⊂ V, q(u, v) = 〈u,Av〉V = 〈u, Tv〉H .

The subtlety of the construction comes from the different vector spaces which are into play:
- the “large” Hilbert space H, equipped with its scalar product 〈·, ·〉H and norm ‖ · ‖H;
- the “small” Hilbert space V ⊂ H, which is the domain of q, equipped with the scalar product 〈·, ·〉V and norm
‖ · ‖V ; the quadratic form q is elliptic on this Hilbert space V, but generally not on H!
– the domain D(T ) ⊂ V of the operator T .

To avoid confusions, we will keep on the scalar products the subscripts H or V .

Theorem 3.1.4. The operator constructed in Definition 3.1.3 satisfies the following properties.

i) the domain of T is dense in H;

ii) T : D(T )→ H is bijective;

iii) T−1 ∈ L(H).

Proof. Let v ∈ D(T ). Using the V-ellipticity of q and the relation between V and H, we find:

α‖v‖2H ≤ αc2‖v‖2V
ellip.

≤ c2
∣∣q(v, v)

∣∣ = c2
∣∣〈v, Tv〉H∣∣ CS≤ c2‖v‖H · ‖Tv‖H,

showing that

‖Tv‖H ≥
α

c2
‖v‖H. (3.1.2)

This inequality shows that T in injective.

Let us show that T : D(T )→ H is surjective. Let h ∈ H and let A ∈ L(V) be the operator associated with q.
The map V 3 u 7→ 〈u, h〉H ∈ C is a continuous antilinear map V → C, so from Riesz’s theorem, one can find
w ∈ V such that

〈u, h〉H = 〈u,w〉V for all u ∈ V.

Denote v
def
= A−1w ∈ V, then

〈u, h〉H = 〈u,Av〉V = q(u, v).

By definition this means that v ∈ D(T ) and h = Tv. Hence, T is surjective and injective, and the inverse is
bounded by (3.1.2): ‖T−1‖ ≤ c2/α.

It remains to show that the domain of T is dense in H. Let h ∈ H with 〈u, h〉H = 0 for all u ∈ D(T ). Since
T is surjective, there exists v ∈ D(T ) with h = Tv. Taking now u = v we obtain 0 = 〈v, Tv〉H = q(v, v); the
V-ellipticity of q finally gives v = 0, and h = 0.

If the form q enjoys some additional properties, the associated operators T do so as well. Our main construc-
tions of selfadjoint operators will come from the following theorem.

Theorem 3.1.5 (Selfadjoint operators defined by forms). In Definition 3.1.3, assume furthermore that the
sesquilinear form q is symmetric. Then the associated operator T satisfies:
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i) T is a selfadjoint operator on H (in particular D(T ) is dense in H);

ii) D(T ) is a dense subspace of the Hilbert space V.

Proof. For any u, v ∈ D(T ) we have:

〈u, Tv〉H
def
= q(u, v)

symmetry
= q(v, u) = 〈v, Tu〉H = 〈Tu, v〉H.

This shows that T is symmetric: T ⊂ T ∗.

Take v ∈ D(T ∗). We know from the previous theorem that T is surjective. This means that we can find
v0 ∈ D(T ) such that Tv0 = T ∗v. Then for all u ∈ D(T ) we have:

〈Tu, v〉H = 〈u, T ∗v〉H = 〈u, Tv0〉H = 〈Tu, v0〉H.

Since T is surjective, this implies that v = v0 ∈ D(T ), hence T = T ∗.

Let us now show the density of D(T ) in V. Let h ∈ V such that 〈v, h〉V = 0 for all v ∈ D(T ). Since the
operator A ∈ L(V) associated with q is invertible, we may define f = A−1h ∈ V. We then have the equalities

0 = 〈v, h〉V = 〈v,Af〉V = q(v, f)
symm.

= q(f, v) = 〈f, Tv〉H = 〈Tv, f〉H.

Since the vectors Tv cover the full space H when v runs over D(T ), this imples f = 0 and h = Af = 0. This
proves that D(T ) is dense in V.

3.1.3 Starting from a quadratic form on H

In the above definitions, the Hilbert space V preceded the appearance of H. The space V also coincides with
the domain of the form q. In practice, H is usually defined beforehand, and one has to identify V, together with
its Hilbert structure, so as to make the form q V-elliptic.

This motivates the following definition:

Definition 3.1.6 (Closed quadratic form). A sesquilinear form q on a Hilbert space H with a dense domain
D(q) ⊂ H is said to be closed if the following properties are satisfied:

• q is symmetric;

• q is semibounded from below: there exists C ≥ 0 such that q(u, u) ≥ −C‖u‖2H for all u ∈ D(q);

• The domain D(q), equipped with the scalar product

〈u, v〉q
def
= q(u, v) + (C + 1)〈u, v〉H (3.1.3)

is a Hilbert space.

As opposed to our previous construction, this definition starts from the “large” Hilbert space, and constructs
an auxiliary norm ‖ · ‖q on the domain D(q), making this domain complete.

Notice that the notion of closed form is quite different with that of a closed operator, which already makes
sense on a Banach space. In the case of forms, closedness requests symmetry and semiboundedness. A reason
for the differences between the two notions is that we do not have a notion of a graph of a quadratic form.

Proposition 3.1.7 (Operators defined by closed forms). Let q be a closed sesquilinear form in H. Then the
associated linear operator (T,D(T )) is selfadjoint on H. This operator is also automatically bounded from below:

〈u, Tu〉H ≥ −C‖u‖2H, for any u ∈ D(T ).
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Proof. If q is closed, one simply takes
(
D(q), 〈·, ·〉q

)
as the auxiliary Hilbert space V ⊂ H in Def. 3.1.3, with the

norm ‖ · ‖V = ‖ · ‖q. One has indeed ‖u‖2q = q(u, u) + (C + 1)‖u‖2H ≥ ‖u‖2H, showing that ‖ · ‖V is stronger than
‖ · ‖H.

The modified form q̃ : V × V → C defined by q̃ = q(u, v) + (C + 1)〈u, v〉H is V-bounded:

|q̃(u, v)| = |〈u, v〉q| ≤ ‖u‖q ‖v‖q,

and V-elliptic:
q̃(u, u) = ‖u‖2q.

The operator T̃ constructed from q̃ is hence selfadjoint on H, with domain D(T̃ ) ⊂ V. Finally, we notice that
T = T̃−(C+1)Id is the operator associated with q; as a sum of a selfadjoint operator with a bounded selfadjoint
operator, it is also selfadjoint, with the same domain D(T ) = D(T̃ ).

Like in the case of operators, the forms we will encounter will not always be closed. The main question is
whether they can be made so, up to an extension of their domain. Before defining closable forms, let us recall
the definition of the completion of a pre-Hilbert space. It is similar to that of the completion of a normed vector
space in Theorem 2.1.10 above, with in addition an inner-product.

Theorem 3.1.8 (Completion of a pre-Hilbert space). Let (E, p) be a pre-Hilbert space. Then there is another
pre-Hilbert space (Ê, p̂) such that

i) E ⊂ Ê and p̂|E = p;

ii) (Ê, p̂) is complete (hence it is a Hilbert space);

iii) E is dense in (Ê, p̂).

Moreover, two such spaces (Ê, p̂) are isometric, so we call (Ê, p̂) the completion of (E, p) (defined modulo
isometry).

For later purposes, we now recall a way to construct (Ê, p̂) from (E, p). First, we define

Ê := {Cauchy sequences of (E, p)}/ ∼, where

(un)n∈N ∼ (ũn)n∈N if and only if ‖un − ũn‖p → 0 (3.1.4)

is an equivalence relation on the set of Cauchy sequences of (E, p). This is a vector space and E ⊂ Ê in the
sense that, for u ∈ E the sequence (un)n∈N given by un = u for all n ∈ N is a Cauchy sequence (and is equivalent
to all sequences converging towards u). On then defines, for u = (un)n∈N and v = (vn)n∈N two elements in Ê,

p̂(u,v) := lim
n→∞

p(un, vn),

where the limit in the right-hand side exists since the sequence
(
p(un, vn)

)
n∈N is Cauchy in R+ (since (vn)n∈N

and (vn)n∈N are Cauchy in (E, p)). One can finally check that, with these definitions, (Ê, p̂) is complete and E
is dense in (Ê, p̂), yielding a proof of Theorem 3.1.8.

We may now define closable forms. Let (q,D(q)) be a sesquilinear form semibounded from below on H, namely
q(u, u) ≥ −C0‖u‖2H for all u ∈ H. Then

〈u, v〉q := q(u, u) + (C0 + 1)〈u, v〉H, u, v ∈ D(q)

is an inner product on D(q) and we write ‖u‖2q := 〈u, u〉q. Then the canonical injection

i : D(q) → H,
u 7→ u,
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is continuous with ‖u‖H ≤ ‖u‖q for all u ∈ D(q). We let (D̂, 〈·, ·〉q̂) be the completion of the pre-Hilbert
space (D(q), 〈·, ·〉q) (note that in the case q is definite positive, it is simpler to take q here). We denote by
‖w‖2q̂ := 〈w,w〉q̂ the associated norm.

The map i extends by density from D(q) to D̂ as a linear continuous map which we denote î

î : D̂ → H, (3.1.5)

and which satisfies
‖̂i(u)‖H ≤ ‖u‖q̂ for all u ∈ D̂, and î|D(q) = i.

Before defining closable form, we give the (very natural) definition of the extension of a form.

Definition 3.1.9 (Extension of a form). Let (q,D(q)) and (q̃, D(q̃)) be two sesquilinear forms on the Hilbert
space H. We say that q̃ is an extension of q if

D(q) ⊂ D(q̃), and q̃|D(q)×D(q) = q.

Definition 3.1.10 (Closable form). Let (q,D(q)) be a sesquilinear form semibounded from below on H. We
say that q is closable, if the map î defined in (3.1.5) is injective. If so, we identify D̂ as a subset of H (through
î) and we have D(q) ⊂ D̂ ⊂ H, with continuous embeddings. The form (q̄, D(q̄)) defined by

D(q̄) := D̂, q̄(u, v) := 〈u, v〉q̂ − (C0 + 1)〈u, v〉H

is called the closure of the form (q,D(q)) and is an extension of (q,D(q)).

As for operators, we have a sequential characterization of closable forms.

Lemma 3.1.11 (Sequential characterization of closable forms). Let (q,D(q)) be a sesquilinear form semibounded
from below on H. The form q is closable if and only if for any (un)n∈N ∈ D(q)N which is Cauchy in (D(q), 〈·, ·〉q)
and such that un → 0 in H, we have ‖un‖q → 0.

An advantage of this characterization is that it does not make any reference to the completion (D̂, 〈·, ·〉q̂)
appearing in the definition of a closable form.

Proof. The map î is injective if and only if

w ∈ D̂, î(w) = 0 =⇒ w = 0 in D̂.

From the discussion following Theorem 3.1.8, w = (wn)n∈N is a Cauchy sequence in (D(q), 〈·, ·〉q) (modulo the

equivalence relation (3.1.4)). The fact that w = 0 in D̂ is equivalent to ‖wn‖q → 0. Finally the fact that

î(w) = 0 rewrites equivalently as

wn = i(wn) = î(wn)→ î(w) = 0, in H

where the first two equalities hold since wn ∈ D(q), and the convergence holds in H by continuity of î.

The next proposition explains why the name closable.

Proposition 3.1.12. A sesquilinear form (q,D(q)) semibounded from below on H is closable if and only if it
admits a closed extension. If so, the closure (q̄, D(q̄)) defined in Definition 3.1.10 is the smallest closed extension
of (q,D(q)) in the following sense: if q̃ is a closed extension of q, then q̃ is also an extension of q̄.

Proof. On the one hand if q is closable, the the closure q̄ defined in Definition 3.1.10 is a closed extension.

On the other hand, let (q̃, D(q̃)) be a closed extension of (q,D(q)). We then define (q̌, D(q̌)) as follows:

D(q̌) := D(q)
‖·‖q̃

the closure of D(q) in the Hilbert space (D(q̃), ‖ · ‖q̃) and q̌ := q̃|D(q̌)×D(q̌). Closedness of q̃
yields

D(q̌) ⊂ D(q̃) ⊂ H.
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By definition q̃ is an extension of q̌. Moreover, D(q̌) is a closed vector space in a Hilbert space so it is a
Hilbert space (endowed with the inner product 〈·, ·〉q̌ associated to q̌). Finally, by definition, D(q) is dense in
(D(q̌), 〈·, ·〉q̌). From the uniqueness of the completion of the pre-Hilbert space (D(q), 〈·, ·〉q) in Theorem 3.1.8,
we deduce that (D(q̌), 〈·, ·〉q̌) is the completion of (D(q), 〈·, ·〉q), whence (q̌, D(q̌)) is the closure of (q,D(q)),
namely (q̌, D(q̌)) = (q̄, D(q̄)). Moreover, we have proved that the closed extension (q̃, D(q̃)) is also an extension
of (q̌, D(q̌)), proving the last statement of the proposition.

Let us now exhibit a non-closable (yet semicbounded) quadratic form.

Example 3.1.13 (Non-closable form). TakeH = L2(R) and consider the form defined on D(q) = L2(R)∩C0(R)
by q(u, v) = u(0)v(0); it is obviously symmetric and positive. Let us show that it is not closable, using
Lemma 3.1.11. We take the q-norm ‖u‖2q = q(u, u) +‖u‖2. As in Example 2.1.15, consider a sequence (un) such
that

un ∈ C∞c (R), un(0) = 1, un → 0 in L2(R).

This sequence satisfies un ∈ D(q), un → 0 in H but ‖un‖q → 1 6= 0 and Lemma 3.1.11 implies that q is not
closable.

Remark that this counter-example is based on the same phenomenon as the non-closable operator of Exam-
ple 2.1.15, namely the fact that L2 functions are not defined pointwise.

3.1.4 Various Laplacians

Let us give some “canonical” examples of forms, from which we will extract selfadjoint operators. We focus on
various versions of the Laplacian.

Example 3.1.14 (Dirichlet forms). Consider the Hilbert space H = L2(Rd) and the Dirichlet form

q(u, v) =

∫
Rd
∇u∇v dx, with domain D(q) = H1(Rd) .

This form is closed, since ‖ · ‖q = ‖ · ‖H1 , and H1(Rd) is known to be complete. Let us find the associated
operator T , which will automatically be selfadjoint.

Let f ∈ D(T ) and g
def
= Tf , then for any u ∈ H1(Rd) we have∫

Rd
∇u∇f dx =

∫
Rd
ug dx.

In particular, this equality holds for u ∈ C∞c (Rd), which gives∫
Rd
ug dx =

∫
Rd
∇u∇f dx =

∫
Rd

(−∆u)f dx = 〈f,−∆u〉D′,D = 〈−∆f, u〉D′,D .

It follows that g = −∆f in D ′(Rd). Therefore, for each f ∈ D(T ) we must have ∆f ∈ L2(Rd), which by (2.1.5)
means that f ∈ H2(Rd). Conversely, f ∈ H2 is a sufficient condition to extend the antilinear form

u 7→ q(u, f) =

∫
Rd
u(−∆f) dx

to all u ∈ L2. According to the Definition 3.1.3, this shows that D(T ) = H2(Rd).

In other words, the operator T constructed from the form q is T = T1, where T1 is the free Laplacian in Rd
(see Definition 2.2.13). We thus recover the fact that the free Laplacian on Rd is selfadjoint.
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Example 3.1.15 (Neumann boundary condition on the halfline). Take H = L2(]0,∞[), and consider the form

q(u, v) =

∫ ∞
0

u′(x) v′(x)dx, D(q) = H1(]0,∞[). (3.1.6)

This form is semibounded below and closed (this is due to the completeness of H1 w.r.to the norm ‖·‖H1 = ‖·‖q).
Let us describe the associated operator T .

For v ∈ D(T ), there exists fv ∈ H such that∫ ∞
0

u′(x) v′(x) dx =

∫ ∞
0

u(x) fv(x) dx

for all u ∈ H1. Taking here u ∈ C∞c , we obtain just the definition of the distributional derivative: fv = −(v′)′ =
−v′′ in D ′(]0,∞[). As we require fv ∈ L2, the function v must be in H2(]0,∞[), and Tv = fv = −v′′.

Now, notice that for v ∈ H2(]0,∞[) and u ∈ H1(]0,∞[) the integration by parts gives:∫ ∞
0

u′(x)v′(x)dx = u(x)v′(x)
∣∣∣x=∞

x=0
−
∫ ∞

0

u(x)v′′(x)dx.

If we want the identity q(u, v) = 〈u, Tv〉H to be continuously extended to all u ∈ L2, the boundary term at
x = 0 must vanish; this will be the case if we ensure the additional condition v′(0) = 0 (remember that for
v ∈ H2(]0,∞[), we have v′ ∈ H1(]0,∞[) ⊂ C0([0,∞[), so the value v′(0) is well-defined). This condition is
necessary and sufficient for this extension to hold.

In conclusion, the operator associated with the form (3.1.6) is T
def
= TN , which acts as TNv = −v′′ on the

domain D(TN ) =
{
v ∈ H2(0,∞) : v′(0) = 0

}
. It will be referred to as the (positive) Laplacian with the

Neumann boundary condition, or simply the Neumann Laplacian on ]0,∞[. It is automatically selfadjoint on
L2.

The following example starts with a slight modification of the form (3.1.6).

Example 3.1.16 (Dirichlet boundary condition on the halfline). Take H = L2(0,∞). Consider the following
form, which is a restriction of the previous one,

q0(u, v) =

∫ ∞
0

u′(x)v′(x)dx, with the domain D(q0) = H1
0 (0,∞). (3.1.7)

This form, which is a restriction of (3.1.6), is still semibounded below and closed (because H1
0 is complete with

respect to the H1-norm). Due to this restricted domain, no boundary term appears when integrating by parts,
which means that the associated operator TD acts as TDv = −v′′ on the domainD(TD) = H2(0,∞)∩H1

0 (0,∞) =
{v ∈ H2(0,∞) : v(0) = 0}. This operator will be referred to as the (positive) Laplacian with the Dirichlet
boundary condition, or Dirichlet Laplacian for short.

Remark 3.1.17. In the two previous examples we see an important feature: the fact that one closed form
extends another closed form (here, D(q0) ⊂ D(q)) does not imply the same ordering between the associated
operators: D(TD) 6⊂ D(TN ).

Example 3.1.18 (Neumann/Dirichlet Laplacians: general case). The two previous examples can be generalized
to the multidimensional case. Let Ω be an open subset of Rd. In H = L2(Ω), consider two sesqulinear forms:

q0(u, v) =

∫
Ω

∇u∇vdx, D(q0) = H1
0 (Ω),

q(u, v) =

∫
Ω

∇u∇vdx, D(q) = H1(Ω).

Both forms are closed and semibounded from below, and one can easily show that the respective operators TD
and TN act both as u 7→ −∆u. One has D(TD) = {u ∈ H1

0 (Ω),∆u ∈ L2(Ω)}.
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Assuming in addition that Ω is a bounded domain with a regular enough boundary ∂Ω (say, C2), then one
can show (using elliptic regularity up to the boundary) that

D(TD) = H2(Ω) ∩H1
0 (Ω) = {u ∈ H2(Ω) : u|∂Ω = 0},

D(TN ) = {u ∈ H2(Ω) :
∂u

∂n

∣∣
∂Ω

= 0},

where n = n(x) denotes the outward pointing unit normal vector on ∂Ω 3 x, and the restrictions to the
boundary should be understood as the respective traces of the functions on the boundary. If the boundary is
not regular, the domains become more complicated, in particular, the domains of TD and TN are not necessarily
included in H2(Ω), see e.g. detailed results in Grisvard’s book [5]. Nevertheless, the operator TD is called the
Dirichlet Laplacian in Ω and TN is called the Neumann Laplacian.

These constructions are relevant only if the boundary of Ω is non-empty: if Ω = Rd, then q = q0, because as
H1(Rd) = H1

0 (Rd), hence TD = TN = T1 the free Laplacian.

3.2 Semibounded operators and Friedrichs extensions

The goal of this section is to start from a linear operator T on H enjoying “good” properties (namely, symmetric
and semibounded from below), and construct an extension of this operator which is selfadjoint, called the
Friedrichs extension of T . The strategy is to make a “detour” through quadratic forms: schematically, the
construction goes as follows:

(T,D(T ))→ (q,D(q))→ (q̄, D(q̄))→ (TF , D(TF )) .

Let us start with the definition of the “good properties” we require T to enjoy. In Section 3.1 we have seen the
definition of a quadratic form being semibounded from below. A similar notion exists for linear operators:

Definition 3.2.1 (Semibounded operator). Let T be a symmetric operator T on H. T is said to be semibounded
from below if there exists a constant C ∈ R such that

〈u, Tu〉 ≥ C〈u, u〉 for all u ∈ D(T ),

and in that case we write T ≥ C, or T ≥ C Id.

From an operator T we naturally induce a sesqulinear form q = qT on H, with domain D(q)
def
= D(T ):

q(u, v)
def
= 〈u, Tv〉, ∀u, v ∈ D(T ).

Proposition 3.2.2. If T is semibounded from below, then the associated sesqulinear form qT is semibounded
from below and closable (see Def. 3.1.10).

Proof. The semiboundedness of q directly follows from the analogous property of T . For simplicity, we will
consider in the proof that T ≥ 1, so that the q-norm can simply be chosen as ‖u‖q = q(u, u)1/2.

To show the closability of q, we use the sequential characterization of Lemma 3.1.11. We are thus left to show
the following assertion.

Assertion. If (wn) ⊂ D(q) is a q-Cauchy sequence converging to zero in H, then limn→∞ ‖wn‖q = 0.

We already noticed that (‖wn‖q)n∈N is a nonnegative Cauchy sequence, so it converges to some limit Nw ≥ 0.
Suppose by contradiction that Nw > 0. Now let us split

q(wn, wm) = q(wn, wn) + q(wn, wm − wn),

and consider the Cauchy-Schwarz inequality:∣∣q(wn, wm − wn)
∣∣ ≤ ‖wn‖q‖wm − wn‖q ≤ C ‖wm − wn‖q .

32



Combining these two expressions with the fact that wn is q-Cauchy, we see that for any ε > 0 there exists nε > 0
such that

∣∣q(wn, wm)−N2
w

∣∣ ≤ ε for all n,m > nε. We now use the definition of the form q, and take ε = N2
w/2.

Then, for n,m > nε we have ∣∣〈wn, Twm〉H∣∣ =
∣∣q(wn, wm)

∣∣ ≥ N2
w

2
. (3.2.8)

On the other hand, if we fix some m ≥ nε and take the limit n→∞, the left-hand side goes to 0 since wn
H→ 0,

so we obtain a contradiction. The Assertion is proved, and thus according to Lemma 3.1.11, the Proposition as
well.

Remark 3.2.3. Note that, in view of Example 3.1.13, not all semibounded sesquilinear forms are closable. The
key additional assumption in Proposition 3.2.2 is that the form q = qT is associated to an operator T . This
assumption is only used in (3.2.8) (in order to “put all the action of q on wm”).

The closability of q, together with Prop. 3.1.7 allows us to construct a selfadjoint extension of T .

Definition 3.2.4 (Friedrichs extensions). Let T be a linear operator in H which is semibounded from below.
Consider the sesquilinear form q associated with T , and its closure q̄. The operator TF := Tq̄ associated with
the form q̄ is a selfadjoint extension of T called the Friedrichs extension of T .

As a consequence, any semibounded operator admits a selfadjoint extension. Let us notice that, in general, such
an operator T could admit several selfadjoint extensions. The above procedure selects one of these extensions.

Proof. According to Proposition 3.2.2, the form q is closable and according to Proposition 3.1.7, the operator
Tq̄ associated with the closed form q̄ is automatically selfadjoint. It only remains to check that the operator Tq̄
is an extension of T . To this aim, recall (see Definition 3.1.3) that v ∈ D(Tq̄) if and only if v ∈ D(q̄) and there
is C > 0 such that |q̄(u, v)| ≤ C‖u‖H for all u ∈ D(q̄). If v ∈ D(T ) = D(q) ⊂ D(q̄) (by definition of D(q) and
of q̄), then

|q̄(u, v)| = |q(u, v)| = |〈u, Tv〉H| ≤ ‖Tv‖H‖u‖H, for all u ∈ D(q),

and, since D(q) is dense in D(q̄) for ‖ · ‖q̄, this estimate also holds for all u ∈ D(q̄). In particular, v ∈ D(Tq̄).
Now, for v ∈ D(T ) ⊂ D(Tq̄), we have by definition (see Definition 3.1.3)

〈u, Tq̄v〉H = q̄(u, v) = q(u, v) = 〈u, Tv〉H, for all u ∈ D(q)

and hence for all u ∈ H by density of D(q) in H. This proves that Tq̄v = Tv for all v ∈ D(T ) ⊂ D(Tq̄) and, in
conclusion, that T ⊂ Tq̄, i.e. Tq̄ is indeed an extension of T .

Proposition 3.2.5. If T is a selfadjoint operator and is semibounded from below, then it is equal to its own
Friedrichs extension.

Proof. Let q be the sesquilinear form associated with T . It is closable, and the domain of its closure V def
= D(q̄)

is given by the closure of D(T ) w.r.t. the norm ‖ · ‖q. By definition, the domain D(TF ) is the set of v ∈ V
s.t. the map u ∈ V 7→ q̄(u, v) extends to a bounded antilinear form on H; hence D(TF ) ⊃ D(T ). On the other
hand, v ∈ D(T ∗) iff u ∈ D(T ) 7→ 〈Tu, v〉 extends to a bounded antilinear form on H. Since u ∈ V 7→ q̄(u, v) is
already an extension of u ∈ D(T ) 7→ 〈Tu, v〉, we see that extending the latter allows to extend the former: this
means that D(TF ) ⊂ D(T ∗). Since T is selfadjoint, we draw D(T ) = D(TF ), hence T = TF .

Remark 3.2.6 (Form domain). The domain of the associated closed form q̄ is usually called the form domain
of T , and is denoted by Q(T ). The form domain plays an important role in the analysis of selfadjoint operators,
see e.g. the Chapter 8 on variational methods. We have seen that

D(T ) ⊂ Q(T ) ⊂ H,

with continuous and dense embeddings. Yet, for u, v ∈ Q(T ) one sometimes uses the abusive notation 〈u, Tv〉
to denote q̄(u, v), eventhough v may not belong to D(T ).
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Example 3.2.7 (Semibounded Schrödinger operators). A basic example for the Friedrichs extension is delivered
by Schrödinger operators with semibounded potentials. Let W ∈ L2

loc(Rd,R) and W ≥ −C, C ∈ R (i.e. W is
semibounded from below). On H = L2(Rd), we consider the operator T acting as Tu(x) = −∆u(x)+W (x)u(x)
on the domain D(T ) = C∞c (Rd). This operator is clearly symmetric and semibounded from below:

∀u ∈ C∞c (Rd), 〈u, Tu〉 = ‖∇u‖2 +

∫
W |u|2 dx ≥ −C‖u‖2 . (3.2.9)

The Friedrichs extension TF of T will be called the Schrödinger operator with potential W . Note that the
expression in the middle of (3.2.9) allows to define the sesqulinear form q associated with T :

q(u, v) =

∫
Rd
∇u∇v dx+

∫
Rd
W uv dx.

Let us denote by q̄ the closure of q. For u to be in D(q̄), both terms in the above expression must be finite, so
D(q̄) is included in the following weighted Sobolev space:

D(q̄) ⊂ H1
W (Rd) def

=
{
u ∈ H1(Rd) :

∫
|W ||u|2 dx <∞

}
.

We actually have the equality D(q̄) = H1
W (Rd) (see Theorem 8.2.1 in Davies’s book [4] for a rather technical

proof), but the inclusion will suffice for our purposes.

We now extend the construction of Schrödinger operators to a class of potentials which are not semibounded
from below, but which are still bounded from below by a specific negative function (see Corollary 3.2.10). The
main interest of this class of potentials is that they include the physically relevant Coulomb potential.

Proposition 3.2.8 (Hardy’s inequality). Let d ≥ 3. Then, for any u ∈ C∞c (Rd), the following inequality holds:∫
Rd

∣∣∇u(x)
∣∣2dx ≥ (d− 2)2

4

∫
Rd

∣∣u(x)
∣∣2

|x|2
dx. (3.2.10)

The restriction on the dimension is necessary to make the function x 7→ |x|−2 locally integrable near the origin.

Remark 3.2.9 (Uncertainty principles). Before proving Hardy’s inequality, let us argue that this inequality can
be intepreted as a form of uncertainty principle, similar to the well-known Heisenberg uncertainty principle in
quantum mechanics or harmonic analysis. The latter takes the following form: for any u ∈ C∞c (Rd) normalized
as ‖u‖L2 = 1, one has

‖∇u‖L2‖|x|u‖L2 ≥ C0, with the constant C0 =
d

4
.

The interpretation is the following: a function which is very localized near x = 0, thus for which ‖|x|u‖L2 is
much smaller than ‖u‖L2 = 1, must have a large gradient (in the L2 sense). Conversely, a very “flat” function,
for which ‖∇u‖ � ‖u‖, must be quite delocalized, forcing ‖|x|u‖L2 to be large.

In quantum mechanics, the two above factors can be interpreted as the quantum averages, for the normalized
state u, of the positive Laplacian (the “kinetic energy” operator), respectively of the operator of multiplication
by |x|2:

‖∇u‖2 = 〈u,−∆u〉 = 〈u, (−i∇)2u〉 def
= Eu(D2

x),

‖|x|u‖2 = 〈u, |x|2u〉 def
= Eu(|x|2).

Written in these probabilistic notations, the uncertainty principle reads:

Eu((−i∇)2)Eu(|x|2) ≥ C2
0 ⇐⇒ Eu((−i∇)2) ≥ C2

0

Eu(|x|2)
, for all normalized u.
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Expressed in these notations, the right-hand side in Hardy’s inequality takes the form of the quantum average
of the operator of multiplication by 1

|x|2 :

Eu((−i∇)2) ≥ C1 Eu
( 1

|x|2
)
, with the constant C1 =

(d− 2)2

4
.

Hence, Hardy’s inequality essentially amounts to remplacing, on the right-hand side, the inverse average 1
Eu(|x|2) ,

by the average of the inverse, Eu( 1
|x|2 ). Both inequalities have a similar meaning: a function with a small gradient

Eu((−i∇)2) must be delocalized, hence it cannot concentrate too much at the origin, which prevents Eu( 1
|x|2 )

from exploding.

Proof. The proof of the Hardy inequality borrows the same methods as the proof of the Heisenberg uncertainty
principle. For any γ ∈ R, we construct the mixed operator

u ∈ C∞c (Rd) 7→ Pγu(x)
def
=

1

i
∇u(x) + iγ

x

|x|2
u(x),

Now, the obvious inequality
‖Pγu‖2L2 ≥ 0, for any u ∈ C∞c (Rd),

may be expanded into:∫
Rd

∣∣∣∇u(x)
∣∣∣2dx+ γ2

∫
Rd

∣∣u(x)
∣∣2

|x|2
dx ≥ γ

∫
Rd

(
x · ∇u(x)

u(x)

|x|2
+ x · ∇u(x)

u(x)

|x|2
)
dx. (3.2.11)

Using the identities

∇|u|2 = u∇u+ u∇u, div
( x

|x|2
)

=
d− 2

|x|2
,

and integration by parts, the integral in the right-hand side of (3.2.11) becomes∫
Rd

( x

|x|2
·
(
∇u(x)u(x) +∇u(x)u(x)

)
dx =

∫
Rd

x

|x|2
· ∇
∣∣u(x)

∣∣2 dx
= −

∫
Rd

div
( x

|x|2
) ∣∣u(x)

∣∣2 dx = −(d− 2)

∫
Rd

|u(x)|2

|x|2
dx.

The above expression could be recast into the “magic fact” that sum of commutators
∑d
j=1[ 1

i ∂j ,
xj
|x|2

] gives

back a multiple of the operator 1
|x|2 , which already appears on the left-hand side of (3.2.11). Finally, inserting

this equality into (3.2.11) gives∫
Rd

∣∣∇u(x)
∣∣2dx ≥ −γ((d− 2) + γ

) ∫
Rd

∣∣u(x)
∣∣2

|x|2
dx.

In order to maximize the coefficient before the integral, we adjust the parameter γ to the value γ = −(d− 2)/2,
which yields Inequality (3.2.10) and concludes the proof.

From Hardy’s inequality, we draw the following criterium for a semibounded Schrödinger operator.

Corollary 3.2.10. Let d ≥ 3 and W ∈ L2
loc(Rd) be real valued, with W (x) ≥ − (d−2)2

4|x|2 − C for some C ∈ R.

Then the operator T = −∆ + W defined on the domain C∞c (Rd \ {0}), is semibounded from below, hence it
admits a selfadjoint extension.

Notice that we need to be careful when multiplying by the potential W : applying this multiplication to a
function u ∈ C∞c (Rd) with u(0) 6= 0 will not produce a function in L2(Rd) if d ≤ 4, since 1

|x|4 is not locally

integrable at the origin. This is why we need to define the operator T on C∞c (Rd \ 0).
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Note also that, even if the classical hamiltonian (x, ξ) 7→ |ξ|2 +W (x) is not bounded from below, the associated
quantum hamiltonian T = −∆ + W is. See Example 3.2.11 below for a discussion in the case of the Coulomb
potential.

Example 3.2.11 (Coulomb potential). In the ambient space R3, the Coulomb potential generated by a charge
placed at the origin, is of the form W (x) = C

|x| , where C ∈ R is the product of the charges of the particle at the

origin and of the particle at the point x. If both particles have charges of the same sign, they repel each other,
implying that W (x) grows to +∞ when |x| → 0. In the case of opposite charges, C < 0, and the potential
energy goes to −∞ when |x| → 0: the particles attract each other.

We want to show that whatever the value of C ∈ R, the operator T = −∆ + C/|x| acting on C∞c (R3) is
semibounded from below. In the “repulsive situation” C ≥ 0, we are in the situation of Example 3.2.7, since
the potential is positive; the operator is then positive as well (the sum of two positive operators is obviously
positive). On the opposite, in the case C < 0, it is not clear whether the operator is bounded from below:
could the quantum particle “collapse” to the origin under the attraction of the charge at the origin, leading to
arbitrary negative values of 〈u, Tu〉?

We are going to show that this collapse is impossible: eventhough W (x) → −∞ when |x| → 0, the operator
T = −∆ + C

|x| will be bounded from below, due to the uncertainty principle embodied in Hardy’s inequality.

For any u ∈ C∞c (R3) and any p ∈ R∗, we may write:∫
R3

|u|2

|x|
dx =

∫
R3

p|u| |u|
p|x|

dx ≤ p2

2

∫
R3

|u|2dx+
1

2p2

∫
R3

|u|2

|x|2
dx

Hardy

≤ p2

2

∫
R3

|u|2dx+
1

8p2

∫
R3

|∇u|2dx.

As a consequence (remember that C < 0):

〈u, Tu〉 =

∫
R3

|∇u|2dx− |C|
∫
R3

|u|2

|x|
dx ≥

(
1− |C|

8p2

)∫
R3

|∇u|2dx− |C|p
2

2

∫
R3

|u|2dx.

We may now pick p =
√
|C|
8 to make the operator T bounded from below by −|C|

2

16
.

As a consequence, for any C ∈ R the above operator T can be extended to a selfadjoint Friedrichs extension.

3.3 Exercises

Exercise 3.3.1. Show that the following sesquilinear forms q are closed and semibounded from below, and
describe the associated selfadjoint operators on H (α ∈ R is a fixed parameter):

(a) H = L2([0,∞[), D(q) = H1([0,∞[), q(u, v) =

∫ ∞
0

u′(s)v′(s) ds+ αu(0)v(0).

(b) H = L2(R), D(q) = H1(R), q(u, v) =

∫
R
u′(s)v′(s) ds+ αu(0) v(0).

(c) H = L2([0, 1]), D(q) =
{
u ∈ H1([0, 1]) : u(0) = u(1)

}
, q(u, v) =

∫ 1

0

u′(s)v′(s) ds.

Exercise 3.3.2. This exercise shows a possible way of constructing the sum of two unbounded operators under
the assumption that one of them is “smaller” that the other one. In a sense, we are going to extend the
construction of Exercise 1.4.

Let H be a Hilbert space, q be a closed sesquilinear form on H, and T the self-adjoint operator on H associated
with q. Let B be a symmetric linear operator in H such that D(q) ⊂ D(B) and such that there exist α, β > 0
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with ‖Bu‖2 ≤ αq(u, u) + β‖u‖2 for all u ∈ D(q). Consider the operator S on D(S) = D(T ) defined by
Su = Tu+Bu. We are going to show that S is self-adjoint.

(a) Consider the sesquilinear form s(u, v) = q(u, v) + 〈u,Bv〉, D(s) = D(q). Show that s is closed.

(b) Let S̃ be the operator associated with s. Show that D(S̃) = D(T ) and that S̃u = Tu+Bu for all u ∈ D(T ).

(c) Show that S is self-adjoint.

Exercise 3.3.3. In the examples below the Sobolev embedding theorem and the previous exercise can be of
use.

(a) Let v ∈ L2(R) be real-valued. Show that the operator A having as domain D(A) = H2(R) and acting by
Af(x) = −f ′′(x) + v(x)f(x) is a self-adjoint operator on L2(R).

(b) Let v ∈ L2
loc(R) be real-valued and 1-periodic, i.e. v(x+ 1) = v(x) for all x ∈ R. Show that the operator

A with the domain D(A) = H2(R) acting by Af(x) = −f ′′(x) + v(x)f(x) is self-adjoint.

(c) Let H = L2(R3). Suggest a class of unbounded potentials v : R3 → R such that the operator Af(x) =
−∆f(x) + v(x)f(x), with the domain D(A) = H2(R3), is self-adjoint on H.

Exercise 3.3.4. (a) Let H be a Hilbert space and A be a closed densely defined operator in H (not necessarily
symmetric). Consider the operator L given by

Lu = A∗Au, u ∈ D(L) =
{
u ∈ D(A) : Au ∈ D(A∗)

}
.

We will write simply L = A∗A having in mind the above precise definition. While the above is a natural
definition of the product of two operators, it is not clear if the domain D(L) is sufficiently large. We are going
to study this question.

i) Consider the sesquilinear form b(u, v) = 〈Au,Av〉+ 〈u, v〉 on H defined on D(b) = D(A). Show that this
form is closed.

ii) Let B be the self-adjoint operator associated with the form b. Find a relation between L and B and show
that L is densely defined, self-adjoint and positive.

iii) Let A0 denote the restriction of A to D(L). Show that A0 = A.

(b) A linear operator A acting in a Hilbert space H is called normal if D(A) = D(A∗) and ‖Ax‖ = ‖A∗x‖ for
all x ∈ D(A).

i) Show that any normal operator is closed.

ii) Let A be a closed operator. Show: A is normal iff A∗ is normal.

iii) Let A be a normal operator. Show: 〈Ax,Ay〉 = 〈A∗x,A∗y〉 for all x, y ∈ D(A) ≡ D(A∗).

iv) Let A be a closed operator. Show: A is normal iff AA∗ = A∗A. Here both operators are defined as in (a),
the operator AA∗ being understood as (A∗)∗A∗.
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Chapter 4

Spectrum and resolvent

We will now focus on the central topic of this course, namely the spectrum of (mostly unbounded) linear
operators.

4.1 Definitions

In this section we will consider operators (T,D(T )) defined on a Banach space B, or sometimes only a Hilbert
space H, and with dense domain D(T ).

On a d-dimensional vector space, the spectrum of an operator (which can be represented as a matrix) is
identical to the union of all eigenvalues of the operator; it is composed of at most d complex numbers.

On infinite dimensional vector spaces, the situation is more complicated: the eigenvalues of the operator are
usually only one part of the spectrum, namely the point spectrum, while the full spectrum can be more easily
defined through its complement, called the resolvent set of the operator.

Definition 4.1.1 (Resolvent set, spectrum, point spectrum). Let (T,D(T )) be a linear operator on a Banach
space B. The resolvent set resT consists of the complex numbers z ∈ C for which the operator T−z : D(T )→ B
is bijective, and its inverse (T − z)−1 is a continuous operator from B to B.

The spectrum specT of T is defined by specT
def
= C\resT . The point spectrum specp T is the set of eigenvalues

of T , namely the set of points z ∈ C such that Ker(T − z) 6= {0}. The dimension of Ker(T − z) is called the
geometric multiplicity of the eigenvalue z.

The resolvent set, respectively the spectrum of T are often denoted by ρ(T ), resp. σ(T ) = spec(T ).

Proposition 4.1.2. If resT 6= ∅, then T must be a closed operator.

Proof. Let z ∈ resT , then the graph gr(T − z)−1 of the continuous operator (T − z)−1 is closed (by the closed
graph theorem). Since gr(T − z) = S(gr(T − z)−1) where S(u, v) = (v, u), the graph of T − z is also closed,
since the involution S is continuous.

Proposition 4.1.3. Let T be a closed operator on B. Then one has the following equivalence:

z ∈ resT ⇐⇒
{

Ker(T − z) = {0} and Ran(T − z) = B
}
.

Proof. The implication (⇒) follows from the definition.
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(⇐) Assume (T,D(T )) is a closed operator, and z ∈ C such that Ker(T − z) = {0} and Ran(T − z) = B. The
operator (T − z)−1 is then well-defined on the whole of B, and has a closed graph (since the graph of T − z is
closed); by the closed graph theorem, this operator is continuous.

Notice that, as opposed to finite-dimensional situations, the condition Ker(T − z) = {0} alone does not suffice
to characterize the spectrum; it only characterizes the point spectrum of T .

The resolvent is a family of operators {(T − z)−1 ; z ∈ resT}, which enjoys interesting properties. It will be
very important in the rest of these lectures. We first recall a few facts:

Lemma 4.1.4 (Neumann series inversion). Assume A ∈ L(B) is such that ‖A‖ < 1. Then the operator
(I −A) ∈ L(B) is invertible, and its inverse can be expressed as a Neumann series:

(I −A)−1 =
∑
n≥0

An .

As a first application, let us observe the case of bounded operators.

Proposition 4.1.5 (Spectrum of bounded operators). Let T be a continuous operator on B. Then the resolvent
set of T is not empty. More precisely, it contains {z ∈ C ; |z| > ‖T‖L(B)}.

Proof. If |z| > ‖T‖, then the operator (zI − T ) = z(I − z−1T ) can be inverted by Neumann series:

|z| > ‖T‖ =⇒ (zI − T )−1 = z−1
∑
n≥0

(z−1T )n .

The resolvent is a function of z ∈ resT , valued in L(B). An important property will be the holomorphy of
this function, a notion which directly generalizes the holomorphy of complex valued functions.

Definition 4.1.6. Let Ω ⊂ C be open. An operator valued function z ∈ Ω 7→ A(z) ∈ L(B) is said to be

holomorphic (or strongly analytic) at a point z0 ∈ Ω if the ratio A(z)−A(z0)
z−z0 admits a limit in L(B) when z → z0

in Ω. The limit, denoted A′(z0), is the (holomorphic) derivative of A(z) at the point z0.

As for complex-valued holomorphic functions, if a function z 7→ A(z) has a convergent Taylor series at a point
z0, then it is smooth function of z near z0, and in particular holomorphic at this point. The converse is also
true, as for usual complex-valued holomorphic functions.

Lemma 4.1.7. If z 7→ A(z) is holomorphic in all points of a ball B(z0, r), r > 0, then the function A(z) admits
a convergent Taylor series at the point z0.

Like for scalar valued holomorphic functions, the coefficients A(n)(z0)/n! of the Taylor series can be obtained
by the Cauchy formula centered at z0:

1

n!
A(n)(z0) =

1

2iπ

∮
|z−z0|=r−ε

A(z)

(z − z0)n+1
dz .

Proposition 4.1.8 (Elementary properties of the resolvent). The set resT is open, so its complement specT
is closed. The operator function

resT 3 z 7→ RT (z)
def
= (T − z)−1 ∈ L(B) ,

called the resolvent of T , is holomorphic and satisfies the following identities:

RT (z1)−RT (z2) = (z1 − z2)RT (z1)RT (z2) , (Resolvent identity) (4.1.1)

RT (z1)RT (z2) = RT (z2)RT (z1) , (commutative family) (4.1.2)

d

dz
RT (z) = RT (z)2 , (4.1.3)

for all z, z1, z2 ∈ resT .
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Proof. Let z0 ∈ resT . The obvious equality

(T − z0)(T − z0)−1 = I : B → B ,

implies the following one:
T − z =

(
I − (z − z0)RT (z0)

)
(T − z0).

The map (T − z0) is bijective D(T )→ B and, if |z− z0| < 1/‖RT (z0)‖, then the operator on the right-hand side
admits a bounded inverse B → B, which can be obtained through a Neumann series. This implies that such
values z ∈ resT . Moreover, one has the series representation

RT (z) =
(
I − (z − z0)RT (z0)

)−1
RT (z0) =

∑
j∈N

(z − z0)jRT (z0)j+1, . (4.1.4)

This representation shows that RT exists in a neighbourhood of z0, and that it depends holomorphically on z
in this neighbourhood.

The resolvent identity (4.1.1) is obtained through easy manipulations:

I − (T − z2)RT (z2) = 0

⇐⇒ I − {(T − z2) + (z2 − z1)}RT (z2) = (z1 − z2)RT (z2)

⇐⇒ I − (T − z1)RT (z2) = (z1 − z2)RT (z2)

⇐⇒ RT (z1)−RT (z2) = (z1 − z2)RT (z1)RT (z2) .

The commutativity of the family {RT (z), z ∈ res(T )} directly follows from this identity. Besides, taking z2 in
a ball B(z1, r) ⊂ res(T ) and taking z2 → z1 in this ball, we draw from this identity, and the continuity of RT
w.r.t. z, the derivative identity (4.1.3).

4.2 Examples

Let us consider a series of examples featuring various situations where an explicit calculation of the spectrum
is possible. We emphasize that the point spectrum is usually a proper subset of the spectrum.

Before turning to examples, let us state the following general fact.

Proposition 4.2.1. Let (T,D(T )) be a closed operator on some Hilbert space H. Then

spec(T ∗) = specT = {z̄ ; z ∈ spec(T )}.

Proof. For any z ∈ res(T ), the operator [(z − T )−1]∗ satisfies

∀v ∈ H, ∀u ∈ D(T ∗), 〈[(z − T )−1]∗(z̄ − T ∗)u, v〉 = 〈(z̄ − T ∗)u, (z − T )−1v〉
= 〈u, (z − T )(z − T )−1v〉 = 〈u, v〉

(notice that (z−T )−1v is automatically in D(T )). This shows that [(z−T )−1]∗(z̄−T ∗) = ID(T∗). The equality

(z̄−T ∗)[(z−T )−1]∗ = IH is proved similarly. This shows that z̄ ∈ res(T ∗), and therefore resT ⊂ res(T ∗). Since
for a closed operator T ∗∗ = T , we obtain the reverse inclusion, hence the equality for the resolvent sets. The
statement is obtained by taking the complementary sets.

4.2.1 Spectrum of bounded operators

We start by a simple, yet not completely obvious fact.

Proposition 4.2.2. Let T be a continuous operator on a Banach space B. Then its spectrum is nonempty:
specT 6= ∅.
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Proof. We know that for |z| > ‖T‖L(B), the operator (z−T )−1 can be represented by a Neumann series, and is
holomorphic. Assuming that res(T ) = C means that this operator valued holomorphic function can be continued
to all of C. For any vectors v ∈ B and continuous linear form L ∈ B∗, the function z 7→ L

(
(z − T )−1v

)
is

thus entire and bounded; besides, it decays to zero when |z| → ∞. Liouville’s theorem then implies that this
function vanishes identically. Since it is the case for any v ∈ B and L ∈ B∗, the operator (z − T )−1 vanishes
identically, which is a contradiction.

Proposition 4.2.3 (Invertible continuous operator). Assume T ∈ L(B) is invertible with bounded inverse.
Then spec(T−1) = 1

spec(T ) = { 1
z ; z ∈ spec(T )}.

Proof. For any 0 6= z ∈ res(T ), we may write

(T − z)−1 =
(
zT (z−1 − T−1)

)−1
= (z−1 − T−1)−1z−1T−1 ,

which shows that (z−1 − T−1)−1 is bounded, hence z−1 ∈ res(T−1). Besides, T−1 is invertible, hence 0 ∈
res(T−1). We have shown that 0 6= z ∈ resT =⇒ z−1 ∈ resT−1. Exchanging the roles of T and T−1, we obtain
the reverse inclusion. Finally, 0 is in the resolvent sets of T and T−1, hence

res(T−1) = {z−1 ; z ∈ res(T )} ∪ {0} ,

from where we deduce the statement.

This proposition allows to constrain the spectrum of unitary operators on a Hilbert space H.

Corollary 4.2.4. Let H be a Hilbert space, and U : H → H be a unitary operator (see Definition 2.3.1). Then
spec(U) ⊂ {z ∈ C ; |z| = 1}.

Example 4.2.5 (Shift on Z). Let us define the shift operator on Z, S : `2(Z)→ `2(Z) by (Su)(n) = u(n+ 1).
Then spec(S) = {z ∈ C ; |z| = 1}.

Proof. The above corollary shows the inclusion. To show that eiθ ∈ spec(S) for any θ ∈ [0, 2π[, we will construct
quasimodes associated with the spectral value eiθ. Namely, for any small ε > 0, there exists a nonzero uθ,ε ∈ `2,
such that

‖(S − eiθ)uθ,ε‖ ≤ ε‖uθ,ε‖ . (4.2.5)

The sequence (uθ,1/m)m≥1 then shows that (S−eiθ) is not invertible with bounded inverse, hence eiθ ∈ spec(S).

Definition 4.2.6. Nontrivial vectors uθ,ε satisfying (4.2.5) are called quasimodes of S, with quasi-eigenvalue
eiθ, and error (or discrepancy) ε.

How to construct such quasimodes? If we tried to construct an eigenstate (S− eiθ)u = 0, it would necessarily
take the form

uθ(n) = eiθ uθ(n− 1) = einθ uθ(0) ,

which gives a sequence uθ 6∈ `2. Hence eiθ is not in the point spectrum, which shows that the point spectrum
is empty.

In order to contruct a quasimode, we may truncate the formal eigenvector uθ, taking for some N > 0 the
vector

uθ,N (n) = 1l|n|≤Ne
inθ.

An easy computation shows that ‖uθ,N‖ =
√

2N + 1 while ‖(S−eiθ)uθ,N‖ =
√

2, so this state is an ε-quasimode
for ε = N−1/2.

One can obtain a smaller error by smoothly truncating the above formal eigenstate. Namely, we fix some
auxiliary function χ ∈ C1

c (]− 1, 1[), and define

uε(n)
def
= χ(nε) einθ .
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We notice that this sequence is supported in the interval {|n| ≤ 1/ε}. We then check that

uε(n+ 1)− eiθuε(n) = ei(n+1)θ
(
χ((n+ 1)ε)− χ(nε)

)
=⇒ |[Suε − eiθuε](n)| ≤ ε sup

t∈[nε;(n+1)ε]

|χ′(t)|

Squaring this expression and summing over n ∈ Z, we find that

‖Suε − eiθuε‖2 ≤ ε
∑
n∈Z

sup
t∈[nε;(n+1)ε]

|χ′(t)|2 .

The sum on the RHS converges to Cχ
def
=
∫
R |χ

′(t)|2 dt <∞ when ε→ 0, so for ε > 0 small enough we have:

‖Suε − eiθuε‖2 ≤ ε2Cχ.

On the other hand, we check that

‖uε‖2 =
∑
n∈Z
|χ(nε)|2 = ε−1

(∫
R
|χ(t)|2 dt+ o(1)ε→0

)
.

Comparing the two expressions, we see that there exists C > 0 such that, for ε > 0 small enough,

‖Suε − eiθuε‖ ≤ C ε ‖uε‖ .

Another method of proof will be presented later, which uses the fact that the Fourier transform maps S to a
simple multiplication operator on [0, 1[.

Example 4.2.7 (Left shift and right shift on N). Let us now consider the shift operator acting on the single-
sided sequences `2(N). It is still defined by Tu(n) = u(n + 1). This operator is not an isometry on `2(N), it
is a contraction of norm ‖T‖ = 1 Given λ ∈ {0 < |z| < 1}, we see that the sequence u(n) = λn belongs to
`2(N) and satisfies Tu = λu. We also have Ker(T ) = span(u) with u defined by u(n) = δ0,n. We deduce that
spec(T ) = {|z| ≤ 1} (the spectrum is closed; for points in {|z| = 1}, one can also construct a variant of the
quasimodes of Example 4.2.5, and show that these points do not belong to specp(T )), and most it consists in
eigenvalues: specp(T ) = {|z| < 1}.

The adjoint of this operator is given by T ∗(u(0), u(1), u(2) . . .) = (0, u(0), u(1), u(2) . . .). Its spectrum can
be obtained through the general Proposition 4.2.1. Proposition 4.2.1, applied to the continuous operator T of
Example 4.2.7, implies that spec(T ∗) = {|z| ≤ 1}. However, that spectrum is not of the same nature as spec(T ).
A simple computation shows that for any z ∈ C, Ker(T ∗ − z) = {0}, so specp(T

∗) = ∅. On the other hand, for

|z| < 1 we have Ker(T ∗ − z) = {0} and Ran(z̄ − T ∗) = Ker(z − T )⊥ has codimension one. In this situation we
say that z̄ belongs to the residual spectrum of T ∗ (see Definition 4.2.8 below).

4.2.2 Different subsets of the spectrum

In this very short section, we give the definition of different subsets of the spectrum, which are illustrated by
the examples above.

Definition 4.2.8 (Residual spectrum). Let (T,D(T )) be a closed linear operator on H. We say that z lies in
the residual spectrum of T if Ker(T − z) = {0} and Ran(T − z) is not dense in H.

The residual spectrum is not a very useful notion in spectral theory. As opposition, the discrete and the
essential spectra are central objects in spectral theory, that will be studied in Chapters 7 and 8 below.
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Definition 4.2.9 (Discrete vs. essential spectrum). The spectrum of an operator (T,D(T )) splits into two
parts:
1. the discrete spectrum specd(T ) made of eigenvalues with finite algebraic multiplicities, which are isolated
from the rest of the spectrum;
2. the essential spectrum specess(T ) = spec(T ) \ specd(T ).

We recall that the algebraic multiplicity of an eigenvalue z is the dimension of
⋃
n≥1[Ker(T − z)n].

By “isolated from the rest of the spectrum”, we mean that for each such eigenvalue zi, there is some radius
ri > 0 s.t. {0 < |zi| < ri} ∩ spec(T ) = ∅.

In general specd(T ) is a subset of specp(T ); for instance, the shift operator T on `2(N) (Example 4.2.7) has
no discrete spectrum, but the open unit disk is made of eivenvalues.

4.2.3 Evolution operators

Let us consider a situation where a continuous operator T ∈ L(B) models the evolution of a state u0 ∈ B, that is
it embodies a certain dynamical system. One is then interested by the evolution of the state for long times, that
is the behaviour of Tnu0 when n → ∞. An important information is then the spectral radius of the operator
T .

Definition 4.2.10. Let T ∈ L(B). We define the spectral radius of T by:

r(T )
def
= sup{|z| ; z ∈ spec(T )} .

Notice that the supremum is well-defined, since we know that spec(T ) 6= ∅. The Proposition 4.1.5 already
shows that r(T ) ≤ ‖T‖. The following theorem connects this radius with the long time iterates of the operator.

Theorem 4.2.11. Let T ∈ L(B). Then r(T ) = limn→∞ ‖Tn‖1/n.

Proof. The inequality ‖Tn+m‖ ≤ ‖Tn‖ ‖Tm‖ shows that the sequence tn
def
= log ‖Tn‖ is subadditive. As a

result, the sequence (tn/n) converges to a limit, hence its exponential is the limit of ‖Tn‖1/n, which we call r.
Let us check that this limit is the spectral radius.

Take z ∈ C such that |z| > r. then for any 0 < ε < |z| − r, there exists nε ∈ N such that for any n ≥ nε,
‖Tn‖ ≤ (|z| − ε)n. As a result, the series

∑
n∈N

Tn

zn converges, which shows that z ∈ res(T ). This shows that
r(T ) ≤ r.

On the opposite, since {|z| > r} ⊂ resT , the function w 7→ (I −wT )−1 is well-defined and analytic in the disk
{|w| < r(T )−1}, so its series expansion converges in this disk. Take any r0 > r(T ). The Cauchy formula then
allows to compute Tn by integrating on the circle {|z| = r0}:

Tn =
1

2iπ

∮
|z|=r0

(z − T )−1 zn dz . (4.2.6)

Since ‖(z−T )−1‖ ≤ C on the circle |z| = r0, we find the bounds ‖Tn‖ ≤ C ′ rn0 forall n ∈ N, and thus r ≤ r0.

For an initial state u0 ∈ B, we then have, for any ε > 0 and n large enough, the bound

‖Tnu0‖ ≤ (r(T ) + ε)n ‖u0‖ .

If we have more informations on the spectrum, the long time behaviour can be made more precise. This is
the case if the external spectrum is discrete (see Definition 4.2.9).
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Let us assume that the “external spectrum” of a bounded evolution operator T is discrete, which means that
for some rint < r(T ) we have

spec(T ) ∩ {rint ≤ |z| ≤ r(T )} = specd(T ) ∩ {rint ≤ |z| ≤ r(T )} ,

then this external (and compact) part of the spectrum contains only finitely many eigenvalues, all of finite
multiplicities. We assume that {|z| = rint}∩ spec(T ) = ∅. It is then possible to take into account these external
eigenvalues in the description of Tnu0, starting from the integral representation (4.2.6). The discrete external
spectrum shows that (z − T )−1 is holomorphic in {rint ≤ |z|} \ specd(T ). It is then possible to deform the
contour {|z| = r(T ) + ε} into the union of {|z| = r∫ } with the small circles {|z − zi| = ri}:

Tn =
1

2iπ

∮
|z|=rint

(z − T )−1 zn dz +
∑
i

1

2iπ

∮
|z−zi|=ri

(z − T )−1 zn dz.

For n = 0, the integral around the eigenvalue zi produces the spectral projector

Πi =
1

2iπ

∮
|z−zi|=ri

(z − T )−1 dz.

The fact that Πi is a projector can be shown by using the resolvent identity (Exercise).
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Figure 4.1: Spectrum of a quasicompact operator.

This spectral projector naturally commutes with T : [T,Πi] = 0, implying that T preserves the generalized
eigenstate Vi = Ran Πi. We may then call this finite rank operator Ti = T|Vi . It admits as only eigenvalue
zi, but can feature a nontrivial Jordan structure. In the simple case where there is no Jordan structure, then
TnΠi = (Ti)

nΠi = zni Πi. In the limit n→∞, these external eigenvalues allow to expand Tn as:

Tn =
∑
i

zni Πi +O(rnint)L(B), n→∞,

where the sum over eigenvalues is finite. In the case of nontrivial Jordan blocks, the operator Ti takes the form
of (zi + Ji)Πi, where Ji : Vi → Vi is nilpotent, so that

(Ti)
n = (zi + Ji)

nΠi = zni

n∑
k=0

(
n

k

)( 1

zi
Ji

)k
Πi
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The nilpotency of Ji implies that for some di > 1, Jdii = 0, hence the above sum actually stops at the order
k = min(n, di − 1). As a function of n, the sum is a product of zni with an operator-valued polynomial in n of
degree ≤ di − 1.
An operator T with such an external discrete spectrum is said to be quasicompact.

Let us now restrict ourselves to operators acting on a Hilbert space H. The spectral radius of a bounded
selfadjoint operator is easy to determine.

Proposition 4.2.12. Let T ∈ L(H) be selfadjoint. Then its spectral radius r(T ) = ‖T‖.

Proof. The statement just comes from the following variational identification:

‖T‖2 = sup
u∈H, ‖u‖=1

‖Tu‖2 = sup
u∈H, ‖u‖=1

〈Tu, Tu〉 = sup
u∈H, ‖u‖=1

〈T 2u, u〉 ≤ ‖T 2‖ .

On the other hand, ‖T 2‖ ≤ ‖T‖2, so finally we have for any selfadjoint continuous operator ‖T 2‖ = ‖T‖2. Since
T 2 is itself selfadjoint, we have then ‖T 4‖ = ‖T 2‖2 = ‖T‖4. Iterating this procedure, we see that for any j ≥ 1,

‖T 2j‖ = ‖T‖2j . We thus deduce that

r(T ) = lim
j→∞

‖T 2j‖2
−j

= ‖T‖ .

4.2.4 Unbounded operators

All the following examples live on a Hilbert space.

Example 4.2.13 (Multiplication operator). Let (X,M, µ) be a measure space and

f : (X,M, µ)→ C

be a measurable function. The essential range of f is defined by:

ess-ranµ f =
{
z ∈ C : µ

{
x ∈ X : |f(x)− z| < ε

}
> 0 for all ε > 0

}
.

Proposition 4.2.14 (Spectrum of a multiplication operator). Let (X,M, µ) be a σ−finite measure space, let
f ∈ L∞loc(X,µ;C), and consider the multiplication operator Mf acting on L2(X) = L2(X,µ;C), as defined in
Example 2.1.12 by

D(Mf ) = {u ∈ L2(X) : fu ∈ L2(X)} and Mfu = fu for u ∈ D(Mf ).

Then,

specMf = ess-ranµ f,

specpMf =
{
z ∈ C : µ{x ∈ X : f(x) = z} > 0

}
.

Proof. Let z /∈ ess-ranµ f , showing that for some ε > 0, |f(x)−z| ≥ ε for µ-a.e. x. The function x 7→ (f(x)−z)−1

is therefore in L∞(X,µ). As a result, the multiplication operator M1/(f−z) is bounded on L2(X,µ), and one
easily checks that it is the inverse of the operator (Mf − z).

On the other hand, let z ∈ ess-ranµ f . For any m ∈ N, we denote

S̃m
def
=
{
x ∈ X : |f(x)− z| < 2−m

}
,
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and, by definition of ess-ranµ f , we have µ(S̃m) > 0. Since (X,M, µ) is σ−finite, there exists a subset Sm ⊂ S̃m
of strictly positive but finite measure 0 < µ(Sm) < +∞. If φm is the characteristic function of Sm, one has∥∥(Mf − z)φm

∥∥2
=

∫
Sm

∣∣f(x)− z
∣∣2∣∣φm(x)

∣∣2 dµ(x) ≤ 2−2m
∥∥φm∥∥2

. (4.2.7)

The vector φm is a quasimode of Mf , of quasi-eigenvalue z and error 2−m. Since the error can be chosen
arbitrary small, the operator (Mf − z) cannot be inverted with bounded inverse. Indeed, if this were the case,
there would be some C > 0 such that

∀m ≥ 1, ‖φm‖ = ‖(Mf − z)−1(Mf − z)φm‖ ≤ C‖(Mf − z)φm‖ .

For m large enough, these inequalities contradict the ones above. This shows the statement on specMf .

To prove the assertion on the point spectrum, we remark that the condition z ∈ specpMf is equivalent to the

existence of φ ∈ L2(Rd, (1 + |f |2)dµ) such that
(
f(x)− z

)
φ(x) = 0 for µ-a.e. x. This means that φ(x) = 0 for

µ-a.e. x in {f(x) 6= z}. If we further assume hat {x ; f(x) = z} is negligible, then we would have φ(x) = 0
for µ-a.e. x, or φ = 0 in L2(µ), so φ cannot be an eigenstate. We deduce that µ(f−1(z)) = 0 implies that
z 6∈ specp(Mf ).

On the opposite, if µ(f−1(z)) > 0, using that (X,M, µ) is σ−finite, there exists a measurable subset Σ ⊂
{x : f(x) = z} of strictly positive but finite measure. The function φ = 1lΣ is then an element of D(Mf ) since
φ = 1lΣ ∈ L2(X) and fφ = z1lΣ ∈ L2(X), and it is an eigenfunction of Mf with eigenvalue z.

We notice that the above example is already nontrivial when the function f ∈ L∞(X,µ), and the operator
Mf : L2(X,µ)→ L2(X,µ) is bounded.

Exercise 4.2.15. If µ is the Lebesgue measure and f ∈ C(Rd,C), then its essential range coincides with the
closure of its range.
But if (xn ∈ Rd)n∈S is a finite or countable family with no accumulation point, and µ =

∑
n∈S δxn , then

ess-ranµ f =
⋃
n∈S{f(xn)}.

In the Hilbert space context, an important property of the spectrum of an operator (T,D(T )) is its invariance
through unitary conjugacy (see Definition 2.3.1).

Proposition 4.2.16 (Spectrum and unitary conjugacy). Let (A1, D(A1)) be a linear operator on a Hilbert space
H1 and (A2, D(A2)) a linear operator on a Hilbert space H2. Assume that A1 and A2 are unitarily equivalent
in the sense of Definition 2.3.1. Then specA1 = specA2 and specpA1 = specpA2.

Proof. See Exercise 4.3.8.

Let us make use of this unitary invariance of the spectrum, to analyze our old friend, the free laplacian on Rd.

Example 4.2.17. Let T = T1 be the (positive) free Laplacian on Rd (see Definition 2.2.13). As seen above,
through the Fourier transform on L2(Rd), T is unitarily equivalent to the multiplication operator by the function
f(ξ) = |ξ|2. By Propositions 4.2.14 and 4.2.16, we find specT1 = [0,+∞) and specp T1 = ∅.

An interesting example of space L2(R, µ) is the case of the discrete measure µ =
∑
n∈Z δn. This space is

equivalent with the Hilbert space `2(Z).

Example 4.2.18 (Discrete multiplication operator). Take H = `2(Z). Consider an arbitrary function a : Z→
C, n 7→ an, and the associated multiplication operator Ma:

D(Ma) =
{

(un) ∈ `2(Z) : (anun) ∈ `2(Z)
}
, (Mau)n = anun.
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Similarly to Example 2.1.12, one can show that Ma is a closed operator. Applying the rule of Example 4.2.14,
we may extend the function a to all of R (ex. by ã(x) = 0 for x 6∈ Z), and then view Ma as the multiplication
operator Mã by this function ã : R→ C. Because ess-ranµ(ã) = {an : n ∈ Z}, while ã−1(z) has positive measure
only if z = an for some n ∈ Z, we then find that

specMa = specMã = ess-ranµ(ã) = {an : n ∈ Z}, specpMa = {an : n ∈ Z}.

For each value an0
, set Λ(an0

) = {m ∈ Z : am = an0
}. The eigenspace associated with the eigenvalue an0

is
easy to describe:

Ker(Ma − an0
) = span

{
δm : m ∈ Λ(an0

)
}
,

where the vector (δm)n = δmn (Kronecker symbol).

Example 4.2.19 (Harmonic oscillator). Let H = L2(R). Consider the operator T0 := −d2/dx2 + x2 defined
on the Schwartz space D(T0) := S (R). We see that this operator is semibounded from below and denote by
T its Friedrichs extension. The operator (T,D(T )) is called the quantum harmonic oscillator ; it is one of the
basic operators appearing in quantum mechanics.

One can easily see that the numbers λn = 2n−1 are eigenvalues of T0, n ∈ N∗, and the associated eigenfunctions
φn are given by

φ1(x) = c1 exp(−x2/2), φn(x) = cn(−d/dx+ x)n−1φ1(x), n ≥ 2 ,

where cn are normalization constants. It is known that the functions (φn) (called Hermite functions) form an
orthonormal basis in L2(R). We remark that φn ∈ D(T0) for all n, hence, T0 is essentially self-adjoint (see
Exercise 2.3.2c). This means, in particular, that T = T0.

Furthermore, using the unitary map U : L2(R)→ `2(N), Uf(n) = 〈φn, f〉, one easily checks that the operator
T is unitarily equivalent to the operator of multiplication by (λn) in `2(N), cf. Example 4.2.18, which gives

specT = specp T = {2n− 1 : n ∈ N∗}.

Hence, for this operator, the spectrum is only composed of the point spectrum.

Example 4.2.20 (A finite-difference operator). Consider again the Hilbert space H = `2(Z) and the operator
T in H acting as (Tu)n = un−1 + un+1. Clearly, T ∈ L(H) and ‖T‖ ≤ 2. To find its spectrum, we consider the
map

Φ : `2(Z)→ L2([0, 1[, dx), (Φu)(x) =
∑
n∈Z

une
2πinx,

where the sum on the right-hand side should be understood as a series in L2. Φ is is the inverse of the Fourier
series expansion of a function in L2([0, 1[). From Plancherel’s identity, this map is unitary. On the other hand,
for any u ∈ `2(Z) supported at a finite number of points we have

Φ(Tu)(x) =
∑
n

(Tu)n e
2πinx

=
∑
n

un−1 e
2πinx +

∑
n

un+1 e
2πinx

=
∑
n

un e
2πi(n+1)x +

∑
n

un e
2πi(n−1)x

= e2πix
∑
n

un e
2πinx + e−2πix

∑
n

une
2πinx

= 2 cos(2πx)(Φu)(x).

This shows that the operator ΦTΦ∗ is exactly the multiplication by f(x) = 2 cos(2πx) on the space L2([0, 1[);
its spectrum coincides with the segment [−2, 2], i.e. with the essential range of f . So we have specT = [−2, 2]
and specp T = ∅.
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Notice that, by using the same unitary transformation, one shows that the shift operator (Su)n = un+1

on `2(Z) is conjugate to the multiplication by e2iπx on L2([0, 1[, dx). We thus easily recover that spec(S) =
{e2iπx , x ∈ [0, 1[}, with no point spectrum.

The next example shows that, as opposed to the case of bounded operators, nontrivial unbounded operators
may have an empty spectrum.

Example 4.2.21 (Empty spectrum). Take H = L2([0, 1], dx) and consider the operator T defined on the
domain D(T ) =

{
f ∈ H1(0, 1) : f(0) = 0

}
, acting as Tf = f ′. One can easily see that for any g ∈ L2(0, 1) and

any z ∈ C the equation (T − z)f = g admits the unique solution in D(T ), given by

f ∈ H1(0, 1), and f(x) =

∫ x

0

ez(x−t)g(t) dt, ∀x ∈ [0, 1[.

This shows that (T − z) : D(T )→ H is a bijection, and one easily checks that this inverse map (T − z)−1 : g ∈
H 7→ f ∈ H is a bounded operator on H. So we have obtained resT = C and thus specT = ∅.

Example 4.2.22 (Empty resolvent set). Let us modify the previous example. Take H = L2([0, 1], dx) and
consider the operator T acting as Tf = f ′ on the domain D(T ) = H1([0, 1]). Now, for any z ∈ C we see
that the function φz(x) = ezx belongs to D(T ) and satisfies (T − z)φz = 0. Therefore, specp T = specT = C
(although the operator T is closed, since the space (D(T ), ‖ · ‖D(T )) is a Hilbert space).

As we can see in the two last examples, for general operators one cannot say much on the location of the
spectrum. In what follows we will study mostly self-adjoint operators on a Hilbert space H, whose spectral
theory is much better understood than in the nonselfadjoint case.

4.3 Basic facts on the spectra of self-adjoint operators

In this section we will “prepare the ground” for the spectral theorem of selfadjoint operators, and the associated
functional calculus. The following two propositions will be of importance during the whole course.

Proposition 4.3.1. Let T be an operator with dense domain, acting on a Hilbert space H, and z ∈ C. Then

Ker(T ∗ − z̄) = Ran(T − z)⊥, (4.3.8)

Ran(T − z) = Ker(T ∗ − z̄)⊥. (4.3.9)

Proof. Note that the second equality can be obtained from the first one by taking the orthogonal complement.
Let us prove the first equality. Since D(T ) is dense, the condition f ∈ Ker(T ∗−z̄) is equivalent to 〈(T ∗−z̄)f, g〉 =
0 for all g ∈ D(T ), which can be also rewritten as

〈T ∗f, g〉 = z〈f, g〉 for all g ∈ D(T ).

By the definition of T ∗, one has 〈T ∗f, g〉 = 〈f, Tg〉 and

〈f, Tg〉 − z〈f, g〉 ≡ 〈f, (T − z)g〉 = 0 for all g ∈ D(T ),

i.e. f ⊥ Ran(T − z).

Proposition 4.3.2 (The spectrum of a selfadjoint operator is real). Let T be a selfadjoint operator in a Hilbert
space H, then specT ⊂ R, and for any z ∈ C \ R, the norm of the resolvent is bounded by:∥∥(T − z)−1

∥∥ ≤ 1

| Im z|
. (4.3.10)
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Proof. Let z ∈ C \ R and u ∈ D(T ). We have

〈u, (T − z)u〉 = 〈u, Tu〉 − Re z〈u, u〉 − i Im z〈u, u〉.

Since T is self-adjoint, the number 〈u, Tu〉 is real. Therefore,

| Im z|‖u‖2 ≤
∣∣〈u, (T − z)u〉∣∣ ≤ ∥∥(T − z)u

∥∥ · ‖u‖,
which shows that ∥∥(T − z)u

∥∥ ≥ | Im z| · ‖u‖. (4.3.11)

It follows from here that Ran(T − z) is closed (exactly as in the proof of the Lax-Milgram theorem 3.1.2), that
Ker(T − z) = {0} and, by proposition 4.3.1, than Ran(T − z) = H. Therefore, (T − z)−1 ∈ L(H), and the
estimate (4.3.10) follows from (4.3.11).

We have already mentioned that the spectral radius of a bounded selfadjoint operator is equal to r(T ) = ‖T‖.
Since the spectrum is real, the spectral radius corresponds to max(|min spec(T )|,max spec(T )), so spec(T ) ⊂
[−‖T‖, ‖T‖], and at least one of the boundaries of the interval belong to the spectrum. This fact may also be
seen as a consequence of the following classical and useful lemma, which we state without proof.

Lemma 4.3.3. For all T ∈ L(H), we have

‖T‖ = sup
u,v∈H\{0}

|〈u, Tv〉|
‖u‖‖v‖

.

For all T ∈ L(H), such that T ∗ = T , we have

‖T‖ = sup
u∈H\{0}

|〈u, Tu〉|
‖u‖2

.

We can be a bit more precise.

Proposition 4.3.4 (Location of the spectrum of bounded self-adjoint operators). Let T ∈ L(H) be selfadjoint.
Denote

m = m(T ) = inf
u6=0

〈u, Tu〉
〈u, u〉

, M = M(T ) = sup
u6=0

〈u, Tu〉
〈u, u〉

,

then specT ⊂ [m,M ] and {m,M} ⊂ specT . We also have ‖T‖ = max(|m|, |M |).

Proof. We already proved that specT ⊂ R. For λ ∈]M,+∞[ we have

〈u, (λ− T )u〉 ≥ (λ−M)‖u‖2,

so by the Lax-Milgram theorem, (T − λ)−1 ∈ L(H) . In the same way one shows that specT ∩ (−∞,m) = ∅.

Let us show that M ∈ specT (for m the proof is similar). The quadratic form (u, v) 7→ 〈u, (M − T )v〉 is
nonnegative, it is called a semi-scalar product, and satisfies as well a Cauchy-Schwarz inequality:∣∣〈u, (M − T )v〉

∣∣2 ≤ 〈u, (M − T )u〉 · 〈v, (M − T )v〉.

Taking the supremum over all u ∈ H with ‖u‖ ≤ 1 we obtain from Lemma 4.3.3 that∥∥(M − T )v
∥∥2 ≤ ‖M − T‖ ·

〈
v, (M − T )v

〉
.

By assumption, one can construct a sequence (vn) with ‖vn‖ = 1 such that 〈vn, T vn〉 →M as n→∞. By (4.3),
we have then (M − T )vn → 0, so the operator M − T cannot have bounded inverse. Thus M ∈ specT .

The fact that ‖T‖ = max(|m|, |M |) is e.g. a consequence of Lemma 4.3.3.
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Corollary 4.3.5. If T = T ∗ ∈ L(H) and specT = {0}, then T = 0.

Proof. By proposition 4.3.4 we have m(T ) = M(T ) = 0. This means that 〈u, Tu〉 = 0 for all u ∈ H, and by
polarization, 〈u, Tv〉 = 0 for all u, v ∈ H.

Notice that the conclusion does not apply for a general bounded operator (think of a nilpotent finite rank
operator).

Let us combine all of the above to show the following

Theorem 4.3.6 (Non-emptiness of spectrum). The spectrum of a selfadjoint operator (T,D(T )) on a Hilbert
space H is a non-empty closed subset of the real line.

Note that the operator is not necessarily bounded. The proof however relies on properties of the bounded
selfadjoint operator T−1 (see Proposition 2.2.16), to which Propositions 4.2.2 and Corollary 4.3.5 apply.

Proof. In view of Proposition 4.1.8 (closedness of the spectrum) and 4.3.2 (real spectrum), it only remains to
show the non-emptyness of the spectrum. Let T be a self-adjoint operator in a Hilbert spaceH. By contradiction,
assume that specT = ∅. Then, first of all, T−1 ∈ L(H). Let z ∈ C \ {0}. One can easily show that the operator

Lz
def
= −T

z

(
T − 1

z

)−1

≡ −1

z
− 1

z2

(
T − 1

z

)−1

belongs to L(H), and that (T−1 − z)Lz = Lz(T
−1 − z) = IH. Therefore, z ∈ res(T−1). Since z was an

arbitrary non-zero complex number, we have spec(T−1) ⊂ {0}. Since T−1 is bounded, Proposition 4.2.2 shows
that its spectrum is non-empty, hence we must have specT−1 = {0}. On the other hand, T−1 is selfadjoint
by Proposition 2.2.16, so Corollary 4.3.5 imposes that T−1 = 0, which contradicts the definition of the inverse
operator.

4.3.1 Exercises

Exercise 4.3.7. [Jordan block of an isolated eigenvalue] Let T ∈ L(B), and let z1 be one isolated eigenvalue
of finite multiplicity, so that for r > 0 small enough, spec(T ) ∩ {|z − z1| ≤ r} = {z1}.

i) show that

Π
def
=

1

2iπ

∮
|z−z1|=r

(z − T )−1 dz

is a projector, namely it satisfies Π2 = Π. For this, express Π2 by a double contour integral, and use the
resolvent identity.

ii) show that Π commutes with T , hence that T preserves V def
= Ran(Π). Show that

T Π = ΠT = ΠTΠ =
1

2iπ

∮
|z−z1|=r

(z − T )−1 z dz

iii) We call the finite rank operator T1 = ΠTΠ. Show that for any z ∈ res(T ), the resolvent satisfies

(z − T )−1Π = (z − T1)−1Π .

Deduce that the spectrum of T1 in {0 ≤ |z| < r} reduces to {zi}, and therefore that T1 takes the form
T1 = z1IV + J , where J : V → V is nilpotent of order ≤ D (that is, JD = 0), where D = dimV.

iv) Compute Tn1 for any n ≥ 1.
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Exercise 4.3.8. i) Let two operators A and B be unitarily equivalent (see Definition 2.3.1 and Exer-
cise 2.3.2). Show that specA = specB and specpA = specpB.

ii) Let µ ∈ resA ∩ resB. Show that A and B are unitarily equivalent iff their resolvents RA(µ) and RB(µ)
are unitarily equivalent.

iii) Let A be a closed operator. Show that specA∗ = {z : z ∈ specA} and that the resolvent identity
RA(z)∗ = RA∗(z) holds for any z ∈ resA.

iv) Let k ∈ L1(R). Consider on L2(R) the operator A, Af(x) =
∫
R k(x− y)f(y) dy. Show: (i) the operator A

is well-defined and bounded, (ii) the spectrum of A is a connected set.

Exercise 4.3.9. i) Let Ω ⊂ Rn be a non-empty open set and let L : Ω → M2(C) be a continuous matrix
valued function such that L(x)∗ = L(x) for all x ∈ Ω. Define an operator A in H = L2(Ω,C2) by

Af(x) = L(x)f(x), D(A) =
{
f ∈ H :

∫
Ω

‖L(x)f(x)‖2C2dx < +∞
}
.

Show that A is self-adjoint and explain how to calculate its spectrum using the eigenvalues of L(x).

Hint: For each x ∈ Ω, let ξ1(x) and ξ2(x) be suitably chosen eigenvectors of L(x) forming an orthonormal
basis of C2. Consider the map

U : H → H, Uf(x) =

(〈
ξ1(x), f(x)

〉
C2〈

ξ2(x), f(x)
〉
C2

)

and the operator M = UAU∗.

ii) In H = `2(Z) consider the operator T given by

Tf(n) = f(n− 1) + f(n+ 1) + V (n)f(n), V (n) =

{
4 if n is even,

−2 if n is odd.

Calculate its spectrum.

Hint: Consider the operators

U : l2(Z)→ l2(Z,C2), Uf(n) :=

(
f(2n)

f(2n+ 1)

)
, n ∈ Z,

F : `2(Z,C2)→ L2
(
(0, 1),C2

)
, (Ff)(θ) =

∑
n∈Z

f(n)e2πinθ.

Write explicit expressions for the operators S := UTU∗ and Ŝ := FSF ∗ and use the item i).

Exercise 4.3.10. On H, let A be a semibounded from below selfadjoint operator. Show:

i) inf specA = inf
x∈D(A)
x 6=0

〈x,Ax〉
〈x, x〉

.

ii) inf specA = inf
x∈Q(A)
x 6=0

〈x,Ax〉
〈x, x〉

, where Q(A) is the form domain of A.
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Chapter 5

Spectral theory of compact operators

5.1 Definitions and elementary properties

It is assumed that the the reader already has some knowledge of compact operators. Before introducing the
concept of compact operator, let us recall Riesz’s theorem.

Theorem 5.1.1 (Riesz’s theorem). In a Banach space B, for V ⊂ B a subspace, the intersection V ∩ BB(0, 1)
is compact iff V is finite dimensional.

We now recall the definition of compact operators.

Definition 5.1.2. A linear operator T : B1 → B2 is called compact, if the image of the unit ball in B1 is
relatively compact in B2. In particular, T is continuous.

We denote by K(B1,B2) the subspace of L(B1,B2) formed by the compact operators.

Remark 5.1.3. It follows from Theorem 5.1.1 that finite rank operators are always compact, whereas the
identity of a Banach space never compact in infinite dimension.

Note also that an operator is compact if it transforms bounded sequences into convergent subsequence after
extraction.

As a first property of compact operators, we check that limits of compact operators are compact.

Proposition 5.1.4. The space K(B1,B2) is closed in L(B1,B2).

Proof. Assume that (Tj)j≥1 are a family of compact operators, and that ‖Tj − T‖L(B1,B2) → 0 when j → ∞.
Let us consider a sequence (un)n≥1 in the unit ball of B1. From the compactness of T1, we can extract a
subsequence (uϕ1(k))k≥1 of (un) (that is, ϕ1 : N∗ → N∗ is strictly growing), such that T1uϕ1(k) admits a limit
v1 ∈ B2 when k →∞.

Then, from the sequence (uϕ1(k))k≥1 we can further extract a subsequence (uϕ2(k))k≥1 such that T2uϕ2(k)

converges to some v2 ∈ B2. And so on: for each j ≥ 2, there is a subsequence (uϕj(k))k≥1 of (uϕj−1(k))k≥1, such
that Tjuϕj(k) → vj .

What can we do with this “sequence of thinner and thinner sequences” (ϕj(k))k≥1? It does not make sense
to consider the limit j →∞ of those sequences, because this limit could actually be empty. Instead, we invoke
a diagonal trick, that is define the “diagonal sequence”

ϕ̃(n)
def
= ϕn(n), n ≥ 1.
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For each j ≥ 1, the integers (ϕ̃(n))n≥j are elements of the sequence (ϕj(k))k≥1, therefore

Tjuϕ̃(n)
n→∞→ vj .

We now use the assumption ‖Tj − T‖ → 0, to show that

‖vj − vj′‖ = lim
n→∞

‖Tjuϕ̃(n) − Tj′uϕ̃(n)‖ ≤ C ‖Tj − Tj′‖,

where C is a global bound for the sequence (un). The above expression converges to zero when j, j′ → ∞,
showing that the (vj) form a Cauchy sequence in B2, and thus converge to some v ∈ B2. We easily check that
the limit operator satisfies Tuϕ̃(n) → v. Hence, we have extracted a subsequence of (un), such that Tuϕ̃(n)

converges. This proves the compactness of T .

Before providing different characterizations of compact operators, we recall that any Hilbert space is locally
compact in the weak topology:

Proposition 5.1.5. Let H be a Hilbert space. Then:
i) Any bounded sequence (un)n∈N in H contains a weakly convergent subsequence: one can extract a subsequence
(unk)k≥1 converging weakly to some u ∈ H, that is such that

∀v ∈ H, 〈v, unk〉
k→∞→ 〈v, u〉 .

ii) Conversely, any weakly converging subsequence is necessarily bounded.

The first point of Proposition 5.1.5 can be proven using a diagonal extraction argument as in the proof of
Proposition 5.1.5 if H is separable (and with the Banach-Alaoglu theorem if not). The second point is a
consequence of the Banach-Steinhaus theorem.

We now provide various characterizations of compact operators between Hilbert spaces. Those characteriza-
tions (in particular i)) are also valid on certain types of Banach spaces, namely the ones satisfying the Property
of Approximation.

Theorem 5.1.6 (Characterizations of a compact operator on a Hilbert space). Let H1,H2 be two Hilbert spaces,
and let T : H1 → H2 be a continuous operator. Then the following statements are equivalent:
i) There exists a sequence (Tn)n∈N of finite rank operators, such that ‖Tn − T‖L(H1,H2) → 0.
ii) T is compact.
iii) The image T (B(0, 1)) is compact.
iv) For any sequence (un)n in H1 which weakly converges to u ∈ H1, then (Tun)n strongly converges to Tu in
H2.
v) If (en)n∈N forms an orthonormal family in H1, then ‖Ten‖ → 0.

Proof. i) → ii): for any n ≥ 0, the image Tn(B(0, 1)) is contained in a ball in a finite dimensional subspace,
it is therefore precompact. This shows that each Tn is a compact operator. Prop. 5.1.4 then ensures that the
limit operator T is compact.

ii) → iii): Since B(0, 1) ⊂ B(0, 2), the image T (B(0, 1)) is precompact. There remains to show that it
is closed. Take a sequence (un)n≥1 in B(0, 1). From the compactness of T , we may extract a subsequence
(uϕ0(k))k≥1 such that Tuϕ0(k) → v ∈ H2. On the other hand, from Prop. 5.1.5 we can extract from the bounded
sequence (uϕ0(k))k≥1 a subsequence (uϕ1(k))k≥1 which weakly converges to some u ∈ H1; one easily checks that

this weak limit u belongs to B(0, 1) as well:

‖u‖ ≥ ‖u‖ ‖uϕ1(k)‖ ≥ |〈u, uϕ1(k)〉| → ‖u‖2.

For any w ∈ H2, we have the limits:

〈T ∗w, uϕ1(k)〉 → 〈T ∗w, u〉 = 〈w, Tu〉,
〈w, Tuϕ1(k)〉 → 〈w, v〉 ,
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which shows that v = Tu ∈ T (B(0, 1)). This image is therefore closed, hence compact.

iii)→ iv): without loss of generality, let us assume that a sequence (un)n ⊂ H1 weakly converges to 0. From
Prop. 5.1.5, the sequence (un)n is necessarily bounded: ‖un‖ ≤ C. The assumption tells us that (Tun)n belongs
to a compact set, hence it admits a limit point v ∈ H2, which can be reached by extracting a subsequence
(Tuϕ(k))k. As a result, for any w ∈ H2,

〈w, Tuϕ(k)〉 → 〈w, v〉, while 〈T ∗w, uϕ(k)〉 → 〈T ∗w, 0〉 = 0 .

We deduce that v = 0 is the only limit point; this means that the full sequence (Tun)n converges to 0, as stated.

iv) → v): for any orthonormal family (en)n of H1, one has en ⇀ 0, so the assumption iv) implies that
Ten → 0.

v) → i): a natural guess would be to use the restricted operators T| span(e1,...,en) as approximants for T . Yet,
the assumption Ten → 0 is not sufficient to produce a direct bound on T| span(e1,...,en)⊥ .

We instead reason ab absurdo. Namely, we assume that there exists ε > 0 such that, for any finite rank
operator R, ‖T − R‖ ≥ ε. In particular, this implies ‖T‖ ≥ ε, so there exists a normalized state e1 ∈ H1 such
that ‖Te1‖ ≥ ε. Let us now iteratively construct an orthonormal family (e1, e2, . . .), such that ‖Tej‖ ≥ ε for all
ej ; this will thus contradict the statement v).
Let us assume we have constructed (e1, . . . , en) with the above property Call Πn the orthogonal projector on
span(e1, . . . , en). Then ‖T − TΠn‖ ≥ ε implies the existence of u 6= 0 such that

‖(T (I −Πn)u‖ ≥ ε‖u‖ ≥ ε‖(1−Πn)u‖,

where we used Pythagore’s theorem for the last inequality. We then define the normalized vector

en+1
def
=

(1−Πn)u

‖(1−Πn)u‖
,

it is orthogonal to e1, . . . , en, and satisfies ‖Ten+1‖ ≥ ε. This constructs our infinite family (e1, . . .), and gives
a contradiction with v).

Remark 5.1.7. 1. Using the weak compactness property of Prop. 5.1.5, the statement iv) shows that T is
compact iff any bounded sequence (un) ⊂ H1 admits a subsequence (unk) such that Tunk converges (strongly)
in H2.

2. The statement i) induces the fact that if A ∈ L(B) is a continuous operator and B ∈ K(B) is a compact
one, then the products AB and BA are compact operators. One says that the space K(B) forms a two-sided
ideal of L(B).

Examples of compact operators

1. On `2(Z), consider the multiplication operator T = Mf by a function (fn)n∈Z such that fn → 0 when

|n| → ∞. We already know that ‖Mf‖ = maxn |fn|. Let us define TN
def
= TΠN , where ΠN is the orthogonal

projector on span(e−N , . . . , eN ). We then check that

‖T − TN‖ = max
|n|>N

|fn|
N→∞→ 0,

so the criterium i) in Thm 5.1.6 shows that T is compact. Note that we have already seen that spec(T ) =
{fn, n ∈ N} = {fn, n ∈ N} ∪ {0}, that is to say, spec(T ) consists in a sequence of complex numbers converging
to zero, union {0}. We shall see later on that this is precisely the structure of all compact operators in infinite
dimensional Hilbert spaces.

2. Let us consider the space L2(T), for T = R/Z the 1-dimensional torus. Through the Fourier transform F ,
L2(T) is unitarily identified with `2(Z). We have seen that this Fourier transform conjugates the operator −∆T

54



with the multiplication by the function (f(n) = n2)n∈Z on `2(Z). Taking any real s > 0, we define the operator
(1−∆T)−s/2 through the inverse Fourier conjugacy with the multiplication by the function (fs(n) = 1

(1+|n|2)s )n∈Z

on `2(Z). Since s > 0 and since the Fourier conjugacy is unitary, the operator (1 − ∆T)−s/2 is compact on
L2(T). Such an operator (1−∆T)−s/2 are said to be regularizing: it maps an L2 function to a smoother function,
belonging to some Sobolev space Hs(T) with positive index s.

In the section 5.6 we will study various families of compact operators: Hilbert-Schmidt and trace-class oper-
ators.

5.2 Preliminaries

Before turning to Fredholm theory, let us recall (without proof) two facts of linear algebra, that is to say, which
involve no topology.

Definition 5.2.1. Let E be a vector space and F ⊂ E a linear subspace, we set

codim(F ) = codimE(F ) := dim(E/F ) ∈ N ∪ {+∞},

where E/F = E/ ∼ with u ∼ v ⇐⇒ u− v ∈ F is the quotient vector space.

The first fact of linear algebra is the following.

Lemma 5.2.2 (Linear algebra). Let E be a vector space and F ⊂ E a linear subspace. Then for any linear
subspace G ⊂ E such that E = F ⊕ G, we have G ' E/F (linear isomorophism) and in particular dimG =
codimF .

In other words, codimF is the dimension of any linear supplement of F in E. The second fact of linear algebra
is a version of the rank-nullity theorem.

Lemma 5.2.3 (Linear algebra). Let E1, E2 be two vector spaces and f : E1 → E2 be a linear map. Then, the
map

E1/Ker(f) → Ran(f)
x+ Ker(f) 7→ f(x)

is a linear isomorphism. In particular, Ran(f) ' E1/Ker(f) and rank(f) := dim Ran(f) = codim(Ker(f)) ∈
N ∪ {+∞}.

From these two elemtary lemmas, we deduce the following useful result (which involves topology!).

Corollary 5.2.4. Let H be a Hilbert space and T ∈ L(H). Assume that Ran(T ) is closed. Then Ran(T ) '
Ran(T ∗) (linear isomorphism), and, in particular rank(T ) = rank(T ∗).

Note that, as a particular case, the adjoint of a finite rank operator has finite rank.

Proof. From Lemma 5.2.3 applied to T ∗, we have Ran(T ∗) ' H/Ker(T ∗). Since we always have Ker(T ∗) =
Ran(T )⊥, we deduce Ran(T ∗) ' H/Ran(T )⊥. But since we assume Ran(T ) is closed, we also have Ran(T ) ⊕
Ran(T )⊥ = H, and we deduce from Lemma 5.2.2 that Ran(T ∗) ' H/Ran(T )⊥ ' Ran(T ).

A consequence of this, together with Theorem 5.1.6, is the following result.

Proposition 5.2.5. Let T be a compact operator on a Hilbert space H. Then its adjoint T ∗ is also compact.

Proof. If T is approximated by a sequence (TN ) of finite rank operators, then T ∗N has finite rank from Corol-
lary 5.2.4 and ‖T ∗ − T ∗N‖ = ‖T − TN‖ → 0, that is, T is approximated by the finite rank operators T ∗N . We
deduce that T ∗ is compact as well.
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5.3 Analytic Fredholm theory

We now describe the spectral properties of a holomophic family of compact operators on a Hilbert space. This
is part of the analytic Fredholm theory.

Theorem 5.3.1 (Analytic Fredholm theorem). Let Ω ⊂ C a domain of the complex plane, and

z ∈ Ω 7→ T (z) ∈ K(B)

a holomorphic family of compact operators. Then:
(a) either (I − T (z))−1 does not exist as bounded operator for any z ∈ Ω;
(b) or (I−T (z))−1 exists in L(B) for z ∈ Ω\S, where S is a discrete set of Ω. (I−T (z))−1 is then a meromorphic
operator valued function in Ω, and the residue on each pole zj is an operator of finite rank. Besides, for each
zj ∈ S there exists uj ∈ B s.t. T (zj)uj = uj.

As an application, for T ∈ K(B) and z ∈ Ω = C∗, we take T (z) = 1
zT . Since (I − z−1T ) can be inverted for z

large enough, we are necessarily in the second alternative.

Corollary 5.3.2. For T ∈ K(B) and z0 ∈ C∗, either (z0 − T ) : B → B is invertible with bounded inverse, or
Ker(z0 − T ) 6= {0}, in which case this kernel has finite dimension.

Proof. We will restrict here the proof to the Hilbert space setting, so that any compact operator T can be
approached by a family of finite rank operators, as shown in Thm 5.1.6.

The idea of the proof is to “project” the spectral problem on finite dimensional subspaces, using the approxi-
mation of the compact operators by finite rank ones.

Let us assume that (I − T (z))−1 exists at z = z0 ∈ Ω. For a given ε > 0, the compact operator T (z0) can be
approximated by an operator TN of rank N : ‖T (z0)− TN‖ ≤ ε.

Besides, by continuity of z 7→ T (z), we know that for |z − z0| ≤ r small enough (in particular, such that all
such z lie in Ω), ‖T (z)− T (z0)‖ ≤ ε. As a result,

∀z ∈ D(z0, r), ‖T (z)− TN‖ ≤ 2ε .

By Neumann series, if we had chosen ε < 1/2, we can invert
(
I − (T (z)− TN )

)
in that disk, and call its inverse

R(z)
def
=
(
I − (T (z)− TN )

)−1
, holomorphic in z ∈ D(z0, r) .

An easy factorization shows that

(I − T (z)) =
(
I − (T (z)− TN )

) (
I −R(z)TN

)
,

which implies that (I − T (z)) is invertible iff
(
I −R(z)TN

)
is invertible, in which case we have

(I − T (z))−1 =
(
I −R(z)TN

)−1
R(z) ,

and this operator is holomorphic for s ∈ D(z0, r).

Through this algebraic manipulation, we have replaced the question of the invertibility of (I − T (z)) by the
invertibility of

(
I − R(z)TN

)
, which is a finite rank perturbation of the identity, locally holomorphic in z. Let

us show that this second invertibility problem can be mapped to the one of some N ×N matrix.

Since TN has rank N , there exists (ψ1, . . . , ψN ) a basis for Ran(TN ) and (φ1, . . . , φN ) a basis for Ker(TN )⊥ =
Ran(T ∗N ), such that

TNu =

N∑
j=1

〈φj , u〉ψj .
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Then the spectral equation (I − T (z))u = 0 is equivalent with
(
I −R(z)TN

)
u = 0, which can be written:

u =

N∑
j=1

〈φj , u〉R(z)ψj .

If we write this vector as u =
∑
j αjR(z)ψj , the coefficients αj satisfy

∀j = 1, . . . , N, αj =

N∑
k=1

〈φj , R(z)ψk〉αk ,

or in matrix notation ~α = MN (z)~α, with the matrix MN (z) having entries 〈φj , R(z)ψk〉, which depend holo-
mophically on z.

We have transformed our spectral problem into the problem of inverting IN −MN (z); the non-invertibility of
this square matrix is equivalent with the determinantal equation

d(z)
def
= det(IN −MN (z)) = 0 .

The matrix MN (z) is sometimes called an effective Hamiltonian for the initial invertibility problem.

The function d(z) is holomorphic in Ω, so it is either vanishing everywhere, on only on a discrete set S ⊂ Ω.

On a point such that d(z) = 0, the eigenvector ~α ∈ CN such that (IN −MN (z))~α = 0 leads to an eigenvector
u ∈ B such that (I − T (z))u = 0.

On the opposite, if d(z) 6= 0, for a given f ∈ H we may solve the equation (I−T (z))uz = f by the noticing that
uz also satisfies (I−R(z)TN )uz = R(z)f . The state R(z)TNuz belongs to RanR(z)TN , so it can be decomposed

in the basis (ψj(z) = R(z)ψj)j=1,...,N of that subspace: there exists a z-dependent vector ~β(z) = (β1, . . . , βN )
s.t.

uz = R(z)f +
∑
j

βj(z)ψj(z) .

After a straightforward computation, we find that the vector ~β(z) is uniquely given by

~β(z) = (IN −MN (z))−1
(
〈φj , R(z)f〉

)
.

Putting together these expressions, we obtain:

(I − T (z))−1f = R(z)f +t(R(z)~ψ) (IN −MN (z))−1〈~φ,R(z)f〉

This element is meromorphic in z, with poles of finite rank. Note that the residue at any pole z, is independent
of the integer N , as long as the latter is large enough.

The codimension of Ran(I − T (z)) in H is equal the codimension of Ran(IN −MN (z)) in CN .

The proof for a general Banach space does not use the approximation by finite rank operators.

5.4 The Fredholm alternative

The next proposition shows that for z 6= 0, we can be more precise on the relative dimensions of Ker(T − z)
and Ran(T − z).

Theorem 5.4.1 (Fredholm alternative). Let T be a compact operator on a Hilbert space H. Then

i) Ker(I − T ) has finite dimension;
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ii) Ran(I − T ) is closed, of finite codimension;

iii) codim Ran(I − T ) = dim Ker(I − T ∗) = dim Ker(I − T ).

Remark 5.4.2. A bounded operator T ∈ L(H) is said to be Fredholm if both Ker(T ) has finite dimension
and Ran(T ) has finite codimension. In this situation, one defines the index of T by ind(T ) := dim Ker(T ) −
codim Ran(T ) ∈ N. Theorem 5.4.1 states that if K compact, then I − K is a Fredholm operator of index
ind(1−K) := dim Ker(1−K)− codim Ran(1−K) = 0.

Remark 5.4.3. Note that an interesting particular case of Theorem 5.4.1 is that Ran(I − T ) = H if and only
if Ker(I − T ) = {0}. That is to say, I − T is surjective if and only if it is injective (as in finite dimension). In
a sense, the Fredholm alternative shows that the operators (I − T ), with T compact, behave like operators on
finite dimensional spaces. We know that a linear operator A on a finite dimensional space is injective if and
only if it is surjective, with dim Ker(A) = dim Ran(A)⊥, and we see a similar feature in the case of I − T .

Proof of Theorem 5.4.1. Let us show that the space Ran(I − T ) is closed. Assume that for some sequence (un)
in Ker(I − T )⊥, we have

vn
def
= (I − T )un → v ∈ H.

We claim that there exists c > 0 such that

∀u ∈ Ker(I − T )⊥, ‖(I − T )u‖ ≥ c‖u‖.

Before proving this claim, let us use it. The limit (I−T )un → v implies that ((I−T )un)n is a Cauchy sequence;
the claim shows that (un)n is itself a Cauchy sequence, hence it converges to some u ∈ H. The continuity of
(I − T ) implies that (I − T )u = v, hence v ∈ Ran(I − T ): this shows that this subspace is closed.

Let us now prove the claim, by reasoning ab absurdo. The inverse statement would imply the existence of
a sequence (un)n of normalized vectors in Ker(I − T )⊥, such that ‖(I − T )un‖ ≤ 1

n . Since the states are
normalized, one can extract a weakly converging subsequence uϕ(k) ⇀ u∞. The compactness of T implies that
Tuϕ(k) → Tu∞. On the other hand, we have assumed that un − Tun → 0, hence the sequence uϕ(k) strongly
converges to Tu∞. Since the strong limit must be equal to the weak one, we deduce that Tu∞ = u∞. This
shows that u∞ ∈ Ker(I − T ). On the other hand, since uϕ(k) ∈ Ker(I − T )⊥, their limit u∞ ∈ Ker(I − T )⊥ as
well. Both properties would imply that u∞ = 0, which contradicts the normalization ‖un‖ = 1. This proves
the claim.

We already have the general identity Ker(I − T ∗) = Ran(I − T )⊥. Taking the orthogonal spaces, we get

Ker(I − T ∗)⊥ =
(

Ran(I − T )⊥
)⊥

= Ran(I − T ) = Ran(I − T ) .

We know that Ker(I − T ∗) 6= {0} iff 1 ∈ spec(T ∗) iff 1 ∈ spec(T ) iff Ker(I − T ) 6= {0}, and this is equivalent
with the fact that (I − T ) is not surjective.

There remains to show that Ker(I − T ) and Ker(I − T ∗) have the same dimensions. We already know that if
one space is nontrivial, then so is the second one. Let us first show that dim Ker(I − T ) ≤ dim Ran(I − T )⊥.
To do this, let us split H into the two orthogonal decompositions

H = Ker(I − T )⊕Ker(I − T )⊥,

H = Ran(I − T )⊥ ⊕ Ran(I − T ).

Let us assume ab absurdo that dim Ker(I − T ) > dimRan(I − T )⊥. In that case, there exists a surjective map
ϕ : Ker(I − T ) → Ran(I − T )⊥. From the inequality of dimensions, this map is not injective: there exists
u0 ∈ Ker(I − T ) such that ϕ(u0) = 0.

Using the first decomposition, let us now define the linear map T : H → H by

T (u) =

{
u− ϕ(u), for u ∈ Ker(I − T )

Tu, for u ∈ Ker(I − T )⊥ ,
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completing by linearity. This linear map is the sum of a finite rank operator and a compact one, so it is
compact. Besides, the above definition, and the surjectivity of ϕ show that (I − T ) is surjective. From the
above equivalences, this would imply that (I − T ) is injective, which contradicts (I − T )u0 = ϕ(u0) = 0. We
hence proved that Ker(I − T ) ≤ Ran(I − T )⊥ = Ker(I − T ∗). Exchanging T and T ∗, we obtain the requested
equality.

5.5 The spectrum of compact operators on Hilbert spaces

Using this Fredholm alternative, we are now ready to describe the spectrum of a compact operator on H.

Theorem 5.5.1 (Spectrum of compact operator). Let H be an infinite-dimensional Hilbert space and T ∈ K(H).
Then

(a) 0 ∈ specT ;

(b) specT \ {0} is composed of at most countably many eigenvalues of T ; each eigenvalue is isolated from the
rest of the spectrum, and of finite multiplicity: for any n ≥ 1 the dimensions dim Ker(T − λj)n are finite,
and saturate after a certain power nj.

(c) If we order the eigenvalues by decreasing moduli |λ1| ≥ |λ2| ≥ · · · , we are in one and only one of the
following situations:

– specT \ {0} = ∅,
– specT \ {0} is a finite set of eigenvalues λ1, . . . , λN ,

– specT \ {0} is an infinite sequence (λn)n≥1 converging to 0.

(d) On the opposite, {0} makes up the essential spectrum of T .

These properties can be summarized by the fact that specT \ {0} is composed of discrete spectrum.

The point (c) is simply a reformulation of (b).

Proof. (a) Assume that 0 /∈ specT , then T−1 ∈ L(H), and the operator I = T−1T is compact. This is possible
only if H is finite-dimensional.

(b) If λ 6= 0 we have T − λ = −λ(1 − T/λ), and by the Fredholm alternative the condition λ ∈ specT is
equivalent to Ker(1− T/λ) = Ker(T − λ) 6= {0}. A value λ 6= 0 satisfying this condition is thus an eigenvalue,
of finite multiplicity, and it is isolated from the rest of the spectrum1. This isolation property implies that
the nontrivial spectrum is at most countable: indeed, this isolation shows that any annulus { 1

n+1 < |z| ≤
1
n}

contains at most finitely may eigenvalues.

(d) if T has no or finitely many nonzero eigenvalues, 0 is an isolated spectral point, but it cannot be a finite
multiplicity eigenvalue. Indeed, the sum of all the generalized eigenspaces associated with the λj 6= 0 and with
λN+1 = 0 would be finite dimensional.

We now specifically study the spectra of compact selfadjoint operators. To this aim, let us recall the following
definition.

Definition 5.5.2. A family (φj)j∈J is a Hilbert basis of H if it is

i) an orthonormal family, i.e. i, j ∈ J =⇒ 〈φi, φj〉 = δij ;

1This deserves a proof...
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ii) complete or total, i.e. span({φj , j ∈ J} = H (or equivalently {φj , j ∈ J}⊥ = {0}).

We also recall that any Hilbert space admits a Hilbert basis

• which is countable ifH is separable (the latter being obtain from a dense family by using the Gram-Schmidt
algorithm), and in this case any Hilbert basis is countable;

• which is uncountable if H is not separable (the latter being obtain from the Zorn lemma), and in this case
any Hilbert basis is uncountable.

Recall that only the first case is useful in practice since L2(Ω, dx) is separable for Ω ⊂ Rd.

Theorem 5.5.3 (Spectral theory of compact self-adjoint operator). Let T = T ∗ ∈ K(H), then

i) spec(T ) \ {0} consists in isolated real eigenvalues with finite multiplicity;

ii) there exists a Hilbert basis of H consisting of eigenvectors of T .

Again, spec(T ) \ {0} forms either a real sequence converging to 0 or a finite set.

Proof. Let (λn)n≥1 be the distinct nonzero eigenvalues of T , ordered by decreasing moduli; this set can be
empty, finite or infinite countable. Since T is self-adjoint, these eigenvalues are real. For n ≥ 1, denote

En
def
= Ker(T − λn) the corresponding finite dimensional eigenspace. We also call E0

def
= Ker(T ), which can

be trivial, finite dimensional or infinite dimensional. Due to selfadjointness, one can easily see that En⊥Em
for any pair n 6= m. Denote by F the linear hull of ∪n≥0En. We are going to show that F is dense in H,
equivalently that F⊥ = {0}.

Clearly, we have T (F ) ⊂ F . Due to the selfadjointness of T we also have T (F⊥) ⊂ F⊥. Denote by T̃ the
restriction of T to F⊥; then T̃ is compact, self-adjoint, and its spectrum equals {0}, so T̃ = 0. But this means
that F⊥ ⊂ KerT = E0 ⊂ F which shows that F⊥ = {0}.

Taking an orthonormal basis in each subspace (En)n≥0, we obtain an orthonormal basis in the whole space
H. We may relabel the nonzero eigenvalues by (µk)k≥1, with repetitions according to the multiplicities, and
corresponding eigenstates φk. The operator T can then be represented by:

T =
∑
k≥1

µk〈φk, ·〉φk . (5.5.1)

This expansion is called the spectral decomposition of T . Notice that the sum may be empty, finite or countable,
and that the basis states in KerT do not contribute.

Let us finish this section by defining the singular values of a general compact operator.

Theorem 5.5.4. For any operator T ∈ K(H), there exist two orthonormal bases (φj)j≥1 and (ψj)j≥1, and a
decreasing sequence of positive numbers (sj)j≥1, converging to zero, such that

T =
∑
j≥1

sj〈φj , ·〉ψj . (5.5.2)

The (sj)j≥1 are called the singular values of the operator T .

The above representation, valid for any compact operator, is in general different from the representation (5.5.1)
for selfadjoint compact operators. The two coincide only when T is positive.
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Proof. The operator T ∗T is compact, selfadjoint and positive, so its spectral decomposition can be written:

T ∗T =

N∑
k=1

s2
k〈φk, ·〉φk ,

simply by defining sk =
√
µk > 0. Here N is either finite or infinite, according to the number of nonzero

eigenvalues. The (φk)k=1,...,N generate the sum of eigenspaces associated with nonzero eigenvalues. If necessary,
we may then append an orthonormal basis of KerT to obtain an orthonormal basis (φj)k of H. We then also
append the values sj = 0 associated with these extra vectors.

For each j = 1, . . . , N , we define ψ̃j = Tφj , and normalize it into ψj =
ψ̃j
‖ψ̃j‖

=
ψ̃j
sj

. One easily checks that

(ψj)j=1,...,N forms an orthonormal family, which can be completed by and orthonormal basis of Ran(T )⊥ =
Ker(T ∗) if necessary, to obtain an o.n.b. of all H.

An easy computation shows that the action of T on the o.n.b. (φj)j corresponds to the expansion (5.5.2).

5.6 An example of compact operators on H: Hilbert-Schmidt oper-
ators

5.6.1 Integral operators

An important class of compact operators on Lp spaces is composed of integral operators, that is operators
defined by an integral kernel enjoying certain properties. For simplicity we restrict our attention to the case
H = L2(Ω, dx), where Ω ⊂ Rd is an open set.

Let K ∈ L1
loc(Ω × Ω). We consider the operator TK acting on essentially bounded functions with compact

support u ∈ L∞comp(Ω) as follows:

TKu(x) =

∫
Ω

K(x, y)u(y) dy . (5.6.3)

We would first like to find conditions under which the expression (5.6.3) defines a bounded operator on H =
L2(Ω). A standard result in this direction is provided by the following important theorem.

Theorem 5.6.1 (Schur’s test). Assume that

M1 = ess− sup
x∈Ω

∫
Ω

∣∣K(x, y)
∣∣dy <∞ and M2 = ess− sup

y∈Ω

∫
Ω

∣∣K(x, y)
∣∣dx <∞.

Then the operator defined by (5.6.3) extends to a continuous linear operator TK : L2 → L2, and its norm
satisfies the bound

‖TK‖L(L2) ≤
√
M1M2 .

Proof. We have

|TKu(x)|2 ≤
(∫

Ω

√
|K(x, y)|

√
|K(x, y)| |u(y)| dy

)2

C−S
≤
∫

Ω

|K(x, y)| dy
∫

Ω

|K(x, y)| · |u(y)|2 dy

x−a.e.
≤ M1

∫
Ω

|K(x, y)| · |u(y)|2 dy.

integrating over x, we get ‖TKu‖2 ≤M1

∫
Ω

∫
Ω

∣∣K(x, y)
∣∣|u(y)|2 dy dx

Fubini
≤ M1M2‖u‖2.
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Proposition 5.6.2. Another class of integral operators are bounded, namely those such that K ∈ L2(Ω × Ω).
One indeed has the bound

‖TK‖ ≤ ‖K‖L2(Ω×Ω) .

Proof. For any u ∈ L2(Ω), we find

|TKu(x)|2 =
∣∣∣ ∫ K(x, y)u(y) dy

∣∣∣2
C−S
≤
∫
|K(x, y)|2 dy

∫
|u(y)|2 dy

=⇒ ‖TKu‖2 ≤
∫∫
|K(x, y)|2 dy dy ‖u‖2 = ‖K‖2L2 ‖u‖2

The next section will show that the operators associated with such L2 kernels form an important class of
compact operators.

5.6.2 Hilbert-Schmidt operators

To obtain a class of compact integral operators we introduce the following class of operators.

Definition 5.6.3. An operator T ∈ L(H) is said to be Hilbert-Schmidt if, for some orthonormal basis (en)n≥1

of H the sum
‖T‖22

def
=
∑
n≥1

‖Ten‖2 is finite. (5.6.4)

For any two Hilbert-Schmidt operators T, T ′, one defines their Hilbert-Schmidt scalar product as follows:

〈T, T ′〉HS =
∑
n≥1

〈en, T ∗T ′en〉 .

(the Cauchy-Schwartz inequality ensures that the sum converges). One obviously has 〈T, T 〉HS = ‖T‖22. This
explains why ‖T‖2 is called the Hilbert-Schmidt norm of T .

This definition could let believe that the choice of o.n.b. (en) matters. This is fortunately not the case.

Proposition 5.6.4 (Hilbert-Schmidt norm). An operator T is Hilbert-Schmidt if and only if (sj)j ∈ `2, where
where (sj)j denote the singular values of T and we then have

‖T‖22 =
∑
j≥1

s2
j , (5.6.5)

In particular, the quantity ‖T‖2 does not depend on the choice of the basis (en)n. The operator norm satisfies

‖T‖ ≤ ‖T‖2. (5.6.6)

Moreover, the adjoint operator T ∗ is also Hilbert-Schmidt with ‖T ∗‖2 = ‖T‖2.

Proof. Let (en)n and (fm)m be two orthonormal bases. Using the resolution of identity associated with these
two bases, we get∑

n

‖Ten‖2 =
∑
n

(∑
m

∣∣〈fm, T en〉∣∣2) =
∑
m

(∑
m

∣∣〈T ∗fm, en〉∣∣2) =
∑
m

‖T ∗fm‖2.

Note that the two sums could be switched since all terms are positive.
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This equality shows that the expression (5.6.4) is independent of the choice of the basis. It also shows that
that ‖T ∗‖2 = ‖T‖2. If we take for basis (en) the basis (φj) associated with the singular value decomposition
(5.5.2), we see that

‖T‖22 =
∑
j≥1

s2
j .

To show ‖T‖ ≤ ‖T‖2, choose some o.n.b. (en)n, and for any u ∈ H, call the coefficients un = 〈en, u〉.

‖Tu‖2 =
∥∥∥∑

n

unTen

∥∥∥2

≤
(∑

n

|un| ‖Ten‖
)2 C−S
≤
∑
n

|un|2
∑
n

‖Ten‖2 = ‖T‖22 ‖u‖2.

Due to the characterization (5.6.5) in terms of singular values, the space of Hilbert-Schmidt operators is often
denoted by S2(H), the second Schatten class of the Hilbert space H. This class forms a Hilbert space, when
equipped with the H-S scalar product.

Remark 5.6.5. The compact operators T satisfying the property∑
j

sj <∞

are also interesting. They are called trace class operators, and form the first Schatten class S1(H). We will
not study them any further in these notes, but only mention that this class of operators admit a trace linear
functional, which is defined, for any given o.n.b. (en)n, by

trT =
∑
n

〈en, T en〉 .

This trace extends the usual trace functional of finite rank operators.

These operators can be equipped with a so-called trace norm, defined by:

‖T‖tr
def
=
∑
j

sj .

This trace norm is equal to the trace of the operator

|T | def
=
√
T ∗T ,

where the square root of the positive operator T ∗T can be defined either by spectrally, replacing the positive
eigenvalues µk by their square roots sk =

√
µk.

The crucial property of Hilbert-Schmidt operators is their compactness.

Proposition 5.6.6. Any Hilbert-Schmidt operator is compact. In other words, the class S2(H) ⊂ K(H).
Besides, finite rank operators are dense in the Hilbert space S2(H).

Proof. Let us choose an o.n.b. (en). For any u ∈ H, we have the expansion

Tu =

∞∑
n=1

〈en, u〉Ten.

For N ≥ 1, let us define the truncated operators

TNu =

N∑
n=1

〈en, u〉Ten.
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These operators are obviously of finite rank. Using the inequality (5.6.6), we find:

‖T − TN‖2 ≤ ‖T − TN‖22 =
∑

n≥N+1

‖Ten‖2
N→∞−−−−→ 0.

This proves the compactness of T , norm-limit of the finite rank operators TN . Incidentally, we also proved that
TN converges to T in the H-S norm. Hence finite rank operators are dense in the Hilbert space S2(H).

The following proposition gives a nice characterization of Hilbert-Schmidt operators as a particular class of
integral operators.

Proposition 5.6.7 (Hilbert-Schmidt operators as integral operators). Let H = L2(Ω). An operator T in H is
Hilbert-Schmidt iff there exists an integral kernel K ∈ L2(Ω× Ω) such that T = TK , cf. Eq. (5.6.3).

In that case, we have the equality
‖TK‖2 = ‖K‖L2(Ω×Ω).

We thus recover the norm inequality of Prop. 5.6.2.

Proof. Let first K ∈ L2(Ω × Ω). Let us show that the associated operator TK is Hilbert-Schmidt. Let (en)
be a Hilbert basis of L2(Ω), then the family of functions em,n(x, y) := em(x)en(y) forms a Hilbert basis of
L2(Ω)⊗ L2(Ω) ' L2(Ω× Ω). Again, by expanding the identity in the o.n.b. (en), we find:

‖TK‖22 =
∑
n≥1

‖TKen‖2 =
∑
m,n≥1

∣∣〈em, TKen〉∣∣2 =
∑
m,n≥1

∣∣∣ ∫
Ω

em(x)
(∫

Ω

K(x, y) en(y) dy
)
dx
∣∣∣2

=
∑
m,n≥1

∣∣∣ ∫
Ω

∫
Ω

em(x) en(y)K(x, y) dx dy
∣∣∣2 =

∑
m,n≥1

∣∣〈em,n,K〉∣∣2 = ‖K‖2L2(Ω×Ω).

Conversely, let T be a Hilbert-Schmidt operator on H. Let us choose an o.n.b. (en), and let us use the same
finite rank approximations TN of T as in the proof of Prop. 5.6.6. We have, for any u ∈ H and with un = 〈en, u〉
as before:

TNu =

N∑
n=1

〈en, u〉Ten =

N∑
n=1

∑
m≥1

〈en, u〉 〈em, T en〉 em.

If we take

KN (x, y)
def
=

N∑
n=1

∑
m≥1

en(y) 〈em, T en〉 em(x) =

N∑
n=1

∑
m≥1

〈em, T en〉 em,n(x, y),

we see that TNu(x) =
∫
KN (x, y)u(u) dy, which shows that TN is equal to the integral operator TKN . In turn,

the kernel KN belongs to L2(Ω× Ω):∫
|KN (x, y)|2 dx dy =

∫ ∣∣∣ N∑
n=1

∑
m≥1

〈em, T en〉 em,n(x, y)
∣∣∣2 dx dy

=

N∑
n,n′=1

∑
m,m′≥1

〈em,n, em′,n′〉L2(Ω×Ω 〈em, T en〉 〈em′ , T en′〉

=

N∑
n=1

∑
m≥1

|〈em, T en〉|2

=

N∑
n=1

‖Ten‖2 = ‖TN‖22 .
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The proof of Prop. 5.6.6 actually shows that ‖TN − T‖2 → 0. Hence, the kernels KN form a Cauchy sequence
in L2(Ω× Ω), which converge to a kernel K, and we have T = TK .
We have thus obtained a unitary equivalence between S2(H) (equipped with the H-S scalar product) and
L2(Ω× Ω).

One can easily see that the operator TK is self-adjoint iff K(x, y) = K(y, x) for a.e. (x, y) ∈ Ω × Ω. The
characterization of H-S operators from their integral kernel (Proposition 5.6.7) often allows to identify the H-S
property rather easily. For this reason, it is often easier to prove that an operator is H-S, rather than trying to
directly prove that it is compact.

If we now focus on self-adjoint compact operators, we see that a compact self-adjoint operator T is H-S iff its
nonzero eigenvalues (µk) (counted with multiplicities) satisfy∑

k≥1

µ2
k = ‖T‖22 <∞ .

Moreover, by Proposition 5.6.7, for T = TK one has the exact equality (trace formula)∑
k≥1

µ2
k = ‖K‖2L2(Ω×Ω).

This expression may be used to estimate properties of the eigenvalues from the integral kernel.

5.7 Unbounded operators with compact resolvent

Now that we have analyzed the spectral properties of compact operators, we will apply these results to a
particular family of operators, namely the resolvents of certain unbounded selfadjoint operators on a Hilbert
space H.

Note that, given an operator (T,D(T )), if there is z0 ∈ res(T ) such that RT (z0) = (T − z0)−1 is compact,
then for all z ∈ res(T ), the resolvent RT (z) = (T − z)−1 is compact. This follows from the resolvent identity
(Proposition 4.1.8) RT (z) = RT (z0)+(z−z0)RT (z)RT (z0) together with the fact that composition of a compact
with a bounded operator is a compact operator. For this reason, we say that the operator T has compact
resolvent, or equivalently, compact resolvents.

Proposition 5.7.1 (Selfadjoint operators with compact resolvent). Assume that (T,D(T )) is selfadjoint on H,
and that for some z0 ∈ res(T ), the resolvent (T − z0)−1 is a compact operator.

Then the spectrum of T is purely discrete, it consists in isolated real eigenvalues (λn)n≥1 of finite multiplicities,
with |λn| → ∞, associated with an orthonormal basis (φn)n. Here the eigenvalues λn are not necessarily distinct
from one another, each value appears as often as its multiplicity.

Such a (T,D(T )) is said to be an operator of compact resolvent.

Proof. Through the resolvent identity, the compactness of (T − z0)−1 implies the compactness of all resolvents
(T − z)−1, z ∈ res(T ). We claim that this compactness implies that res(T ) ∩ R 6= ∅. This will be shown later
through the spectral theorem, see Example 6.3.15 below. Let us admit this fact for now: we may then assume
that z0 ∈ R∩ res(T ). In this case, T − z0 is selfadjoint and, according to the compact-resolvent assumption and
Proposition 2.2.16, the resolvent (T − z0)−1 is compact and selfadjoint, it admits discrete nonzero eigenvalues
(µn)n≥1, associated with an orthonormal family (φn). I claim that Ker(T − z0)−1 = {0}: indeed, the existence
of a nontrivial eigenstate (T − z0)−1φ0 = 0 would imply

0 = (T − z0)(T − z0)−1φ0 = φ0 ,

hence a contradiction. This implies that the family (φn)n≥1 generates all H, in particular the sequence of
nonzero eigenvalues (µn)n≥1 is infinite, and converges to 0.
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For any such eigenvalue, we have

(T − z0)−1φn = µn φn

=⇒ φn = µn (T − z0)φn

=⇒ Tφn = (z0 + µ−1
n )φn .

The o.n.b. (φn) thus forms a basis of eigenstates of T , associated with the eigenvalues λn = (z0 + µ−1
n )

(counted with multiplicities). Since µn → 0, the eigenvalues of T satisfy |λn| → ∞. In particular, they have no
accumulation point. The full spectrum of T is thus discrete.

Before giving examples of such operators, we provide characterizations that are useful in practice.

Proposition 5.7.2. Let (T,D(T )) be an operator with res(T ) 6= ∅. Then T has compact resolvent if and only
if the canonical embedding i : (D(T ), ‖ · ‖D(T ))→ (H, ‖ · ‖) is compact.

Recall that an operator with res(T ) 6= ∅ is automatically closed from Proposition 4.1.2.

Proof. (⇐) Assume that i is compact. Then, for z ∈ res(T ), we decompose (T − z)−1 ∈ L(H) as i ◦ (T − z)−1,
where we see (T − z)−1 ∈ L(H;D(T )) and i ∈ L(D(T );H). Hence it is the composition of a continuous and a
compact maps and thus is compact.

(⇒) We let z ∈ res(T ) and assume that (T − z)−1 ∈ K(H) is compact. We prove that i(BD(T )(0, 1)) is
contained in a compact set of H. We have

i(BD(T )(0, 1)) = {i(u), u ∈ D(T ), ‖u‖+ ‖Tu‖ ≤ 1}
⊂ Ez := {u ∈ D(T ), ‖u‖+ ‖(T − z)u‖ ≤ 1 + |z|}.

But u ∈ Ez if and only if u = (T − z)−1v with v ∈ H and ‖(T − z)−1v‖+ ‖v‖ ≤ 1 + |z|. As a consequence, we
have in particular Ez ⊂ {(T − z)−1v, v ∈ H, ‖v‖ ≤ 1 + |z|}, that is to say

i(BD(T )(0, 1)) ⊂ Ez ⊂ (T − z)−1(BH(0, 1 + |z|)),

which is a compact set since (T − z)−1 is compact. This proves that the embedding i is compact, and concludes
the proof of the lemma.

For an example of such operators, we come back to the construction of selfadjoint operators associated with
closed quadratic forms, see Section 3.

We recall the Theorem 3.1.5 and the more particular Prop. 3.1.7, which start from a symmetric (resp. closed)
quadratic form q, such that the form domain D(q) = V is complete w.r.t. the form norm ‖ · ‖q = ‖ · ‖V , and
construct from there a selfadjoint (resp. selfadjoint and bounded below) operator (T,D(T )).

The proof of Theorem 3.1.5 starts from Thm 3.1.4, which describes properties of the operator T constructed
from a quadratic form q elliptic on the Hilbert space (V, ‖ · ‖V), a dense subspace of the ambient space H. The
latter theorem states that the inverse operator T−1 : H → H is continuous. One can actually strengthen the
statement as follows:

Lemma 5.7.3. In the situation of Theorem 3.1.4, the operator T−1 maps H to V, and it is also continuous
from (H, ‖ · ‖H) to (V, ‖ · ‖V): T−1 ∈ L(H,V).

Proof. For any u ∈ D(T ) we have:

‖u‖H‖Tu‖H
C−S
≥
∣∣〈u, Tu〉H∣∣ = |q(u, u)|

ellipt.

≥ α‖u‖2V ≥ Cα‖u‖V‖u‖H,

i.e. ‖Tu‖H ≥ Cα‖u‖V and ‖T−1u‖V ≤ (Cα)−1‖u‖H.
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This improved control on T−1 leads to an important consequence:

Corollary 5.7.4. In the situation of Theorem 3.1.4, let us assume that the embedding j : V → H is compact.
Then the operator T−1 : H → H is a compact operator.

This applies in particular to the situations of Theorem 3.1.5 Prop. 3.1.7, if j : V → H is compact.

Proof. Indeed, the operator T−1 : H → H can be decomposed as T−1 = j ◦ L, where L is the operator T−1

viewed as an operator from H to V, which is continuous accoding to Lemma 5.7.3. Hence T−1 is compact, as
the composition of a bounded operator and a compact one.

The above can be applied to a variety of cases. To identify situations where the embedding V ↪→ H is compact,
we may invoke the following compactness criterion for a subset in L2(Rd).

Theorem 5.7.5 (Riesz-Kolmogorov Theorem). A subset F ⊂ L2(Rd) is relatively compact (i.e. has compact
closure) if and only if:

i) F is bounded: there is C > 0 such that for all u ∈ F , ‖u‖L2(Rd) ≤ C;

ii) For any ε > 0, there exists R = Rε > 0 such that

∀u ∈ F ,
∫
|x|>R

|u(x)|2 dx ≤ ε.

iii) For any ε > 0, there exists η = ηε such that

∀h ∈ Rd, |h| ≤ η, ∀u ∈ F , ‖τhu− u‖L2(Rd) ≤ ε.

Here τhu(x) = u(x− h) is the translation of u by the vector h.

This second condition is equivalent to:

iii’) For any ε > 0, there exits R̂ > 0 such that

∀u ∈ F ,
∫
|ξ|>R̂

|û(ξ)|2 dξ ≤ ε.

The property (ii) is sometimes referred to as equitightness. Roughly speaking, the elements of F are essentially
of uniform bounded support: their mass cannot escape to infinity. The property (iii) is a form of equicontinuity
(compare to the Ascoli theorem), it states that the oscillations of u are uniformly under control. As mentioned
in the statement (iii), it is equivalent with the equitightness of the Fourier transform û: this condition prevents
lack of compactness due to oscillations, that is escape of mass to infinity in the Fourier side.

Remark 5.7.6. The first versions of the theorem were proved independently by M.Riesz and by A.Kolmogorov,
complemented by Tamarkin. It contained the extra condition that F must be bounded in L2(Rd). However,
this extra condition was later proved to be redundant by Sudakov. The theorem extends to all Lp(Ω) p ∈ [1,∞[,
and Ω an open subset of Rd.

Dirichlet Laplacian on a bounded domain

The first example we provide is the Dirichlet Laplacian T0 = −∆Ω on an open set Ω ⊂ Rd, defined in Exam-
ple 3.1.18. If Ω is bounded, then the embedding of V = H1

0 (Ω) to H = L2(Ω) is compact.

This should be a well-known fact, but let us check it using the Riesz-Kolmogorov theorm. One needs to prove
that the unit ball in H1

0 (Ω) is precompact in L2(Ω). First, the equitightness property i) is obvious, due to the
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compact support. Any function u ∈ H1
0 (Ω) with ‖u‖H1 ≤ 1 extends to u ∈ H1(Rd), so we may use the Fourier

transform criterion ii′). The fact that ‖u‖H1 ≤ 1 implies that∫
|ξ|>R

|û(ξ)|2 dξ ≤ 1

R2

∫
|ξ|>R

|ξ|2 |û(ξ)|2 dξ ≤ 1

R2
‖u‖2H1 ≤

1

R2
.

This directly proves the property ii′), hence the compactness of the embedding H1
0 (Rd) ↪→ L2(Rd).

From the Corollary 5.7.4, we deduce that the operator L = (T0 +1)−1 is compact and self-adjoint. This shows
that the Dirichlet Laplacian admits a discrete spectrum (λn)n≥1. From Poincaré’s inequality we already know
that all eigenvalues of T0 are strictly positive, hence the eigenvalues λn → +∞.

The eigenvalues λn are called the Dirichlet eigenvalues of the domain Ω. An important part of modern
analysis, spectral geometry, study the relations between the geometric and topological properties of Ω, and the
distribution of its Dirichlet eigenvalues.

Schrödinger operators with a confining potential

Let us discuss another class of operators with compact resolvents, namely the Schrödinger operators T = −∆+V ,
where the potential V ∈ L2

loc(Rd) lower semibounded and infinite at infinity:

w(r)
def
= essinf |x|≥r V (x)

r→∞→ +∞ ,

Such a potential is said to be confining, since in classical mechanics particles of total energy E > 0 are confined
(trapped) in the region AE = {x ∈ Rd, V (x) ≤ E}, which is bounded in Rd.

The operator T = −∆+V can be properly defined through the Friedrichs extension of the differential operator
T0 = −∆ + V acting on C∞c (Rd), as discussed in Example 3.2.7. We already know that T is self-adjoint and
semibounded from below on H = L2(Rd). The following theorem shows that T has discrete spectrum.

Theorem 5.7.7. If the potential V ∈ L2
loc(Rd) is confining, then the selfadjoint Schrödinger operator T = −∆+

V admits a compact resolvent. As a result, its spectrum is purely discrete, with finite multiplicity eigenvalues
λn → +∞. Moreover, the operator T admits a Hilbert basis of eigenfunctions.

Proof. As follows from Example 3.2.7, it is sufficient to show that the embedding of V = H1
V (Rd) ↪→ L2(Rd) is

compact, where V is equipped with the norm

‖u‖2V = ‖u‖2H1 + ‖
√
V u‖2L2 .

Let B be the unit ball in V. We will show that B is relatively compact in L2(Rd) using the Riesz-Kolmogorov
Theorem 5.7.5.

The equitightness condition i) follows from∫
|x|≥R

|u(x)|2dx ≤ 1

w(R)

∫
|x|≥R

V (x)|u(x)|2 ≤ 1

w(R)
‖
√
V u‖2L2 ≤

1

w(R)
‖u‖2V .

For the condition ii) we have:∫
Rd

∣∣u(x+ h)− u(x)
∣∣2dx =

∫
Rd

∣∣∣ ∫ 1

0

d

dt
u(x+ th)dt

∣∣∣2dx
=

∫
Rd

∣∣∣ ∫ 1

0

h · ∇u(x+ th)dt
∣∣∣2dx ≤ h2

∫
Rd

∫ 1

0

∣∣∇u(x+ th)
∣∣2dt dx

≤ h2

∫ 1

0

∫
Rd

∣∣∇u(x+ th)
∣∣2dx dt = h2‖∇u‖2L2 ≤ h2‖u‖2V .
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The confining assumption of Theorem 5.7.7 is not necessary to ensure a discrete spectrum. For example, it is
known that the Schrödinger operator on L2(Rd) with potential V (x1, x2) = x2

1x
2
2 admits a compact resolvent,

although that potential is not confining.

A rather simple necessary and sufficient condition is known in the case d = 1:

Proposition 5.7.8 (Molchanov criterium). The operator T = −d2/dx2 + V has a compact resolvent iff

∀δ > 0, lim
x→∞

∫ x+δ

x

V (s)ds = +∞ .

Necessary and sufficient conditions are also available for the multi-dimensional case, but their forms are more
complicated. An advanced reader may refer to [10] for the discussion of such questions.
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Chapter 6

The spectral theorem for selfadjoint
operators

Some points in this section are just sketched to avoid technicalities. A more detailed presentation can be found
in [4, Chapter 2] or in [12, Section 12.7].

Given a selfadjoint operator (T,D(T )) on a Hilbert space H, the goal of the present chapter is to give a
meaning to the operator f(T ), where f is a sufficiently general function on R; here R represents the “spectral
real line”, and we will use the parameter λ ∈ R to represent the corresponding variable. We have several
interesting functions in mind:

i) for z ∈ C \R, the function fz(λ) = 1
λ−z will lead to the resolvent fz(T ) = (T − z)−1. These functions will

be a “benchmark” for our functional calculus.

ii) the characteristic functions on a Borel set on R, e.g. an interval I ⊂ R. Indeed, we will see later that 1lI(T )
is the associated spectral projector on the interval I. The functions 1lI(T ) are bounded, but unfortunately
they are not smooth, so dealing with them will require some efforts.

iii) some functions will be issued from certain evolution equations. For instance, the function λ 7→ e−itλ will
lead to e−itT , the propagator of the Schrödinger equation generated by the Hamiltonian T . This function
is smooth and bounded.

6.1 The case of operators with compact resolvent

To prepare the ground, let us first consider (T,D(T )) to be a selfadjoint operator with a compact resolvent.
As shown in the previous section, there exists then an orthonormal eigenbasis (en)n∈N and associated (real)
eigenvalues of finite multiplicities (λn)n∈N, such that

∀u ∈ D(T ), Tu =
∑
n∈N

λn〈en, u〉en ,

and the domain D(T ) is the subspace of H composed of the vectors u ∈ H such that∑
n∈N

λ2
n

∣∣〈en, u〉∣∣2 <∞ .

For f ∈ Cb(R) (the space of bounded continuous functions), one can define an operator f(T ) ∈ L(H) by the
expansion

f(T )u =
∑
n∈N

f(λn) 〈en, u〉en .
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This expression is equivalent with the following procedure. Introduce the map U : H → `2(N) defined by
Uu = (un)n∈N, where un = 〈en, u〉. This map is unitary, it is simply the expansion of u in the eigenbasis
(en) of T . Through this diagonalization, the conjugated operator UTU∗ is merely the selfadjoint multiplication
operator (un) 7→ (λnun) on `2(N), cf. Example 4.2.18. Similarly, for any f ∈ Cb(H), the conjugation of f(T ),
Uf(T )U∗, is the (bounded) multiplication operator (un) 7→ (f(λn)un) on `2(N).

f(T ) is therefore unitarily conjugated to the multiplication operator (un) 7→ (f(λn)un) on `2(N). We will
see below that this structure generalizes to arbitrary selfadjoint operators: f(T ) will be defined through a
conjugation to a multiplication operator on some (more complicated) L2 space.

Some properties of f(T )

At this stage, we can already observe some interesting properties of the operators f(T ), in this situation of
operators with compact resolvent:

(fg)(T ) = f(T )g(T ), f̄(T ) = f(T )∗, 1(T ) = Id.

These properties show that the family of operators (f(T )) form a commutative ∗-algebra.

The expansion (6.1) shows that the basis (en) is also an eigenbasis of the operator f(T ), with eigenvalues
(f(λn)). From this, we immediately deduce the formula:

spec f(T ) = f(specT ).

The expression (6.1) also provides explicit expressions to solutions of certain differential equations involving the
operator T . An example is the “T -Schrödinger equation”, which is the evolution equation of the form:

iu′(t) = Tu(t), u(0) = v ∈ D(T ), u : R→ D(T ) .

Conjugating through the diagonalizing operator U , we obtain an infinite set of independent ordinary differential
equations

u′n(t) = λnun(t) ,

which are obvious to solve as un(t) = vn e
−itλn . Conjugating back, we see that the solution to (6.1) can be

written in the form u(t) = ft(T )v, using the family of bounded functions ft(λ) = e−itλ.

6.2 Continuous functional calculus for general selfadjoint operators

In the preceding paragraph we have dealt with operator with a compact resolvent (the procedure actually applies
to any selfadjoint operator admitting an orthonormal eigenbasis). The aim of the present section is to develop
a theory for general selfadjoint operators.

6.2.1 A Cauchy formula

Notation 6.2.1. Let us recall that C0(R) denotes the class of the continuous functions f : R → C with
lim|λ|→+∞ f(λ) = 0, equipped with the sup-norm. This should not be confused with the space C0(R) = C(R) of
continuous functions on R, or the space Cc(R) = C0

c (R) of compactly supported continuous functions on R.

We say that a function f : C → C belongs to C∞(C) if the function of two real variables R2 3 (x, y) 7→
f(x + iy) ∈ C belongs to C∞(R2). In the similar way one defines the classes C∞c (C), Ck(C) etc. In what

follows we always use the notation Re z =: x, Im z =: y for z ∈ C. Using x =
z + z̄

2
and y =

z − z̄
2i

, for

f ∈ C1(C) one defines the antiholomorphic derivative

∂f

∂z̄
:=

1

2

(∂f
∂x

+ i
∂f

∂y

)
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Clearly, ∂f/∂z̄ ≡ 0 if f is a holomorphic function.

Here is a particluar case of the Stokes formula: if f ∈ C∞(C) and Ω ⊂ C is a domain with a sufficiently
regular boundary, then ∫

Ω

∂f

∂z̄
dx dy =

1

2i

∮
∂Ω

f dz.

This Stokes formula allows to recover the following Cauchy formula, presented in a slightly unusual form.

Lemma 6.2.2 (Cauchy integral formula). Let f ∈ C∞c (C), then for any w ∈ C we have

f(w) =
1

π

∫
C

∂f

∂z̄

1

w − z
dx dy.

Proof. We note first that the singularity 1/(w − z) is integrable in two dimensions, so the integral is well-
defined. Let Ω be a large disk containing the support of f and the point w. For small ε > 0 denote the small
disk Bε := {z ∈ C : |z − w| ≤ ε}, and set Ωε := Ω \Bε. Using the Stokes formula we have:

1

π

∫
C

∂f

∂z̄

1

w − z
dx dy =

1

π

∫
Ω

∂f

∂z̄

1

w − z
dx dy

= lim
ε→0

1

π

∫
Ωε

∂f

∂z̄

1

w − z
dx dy = lim

ε→0

1

π

∫
Ωε

∂

∂z̄

(
f(z)

1

w − z

)
dx dy

= lim
ε→0

1

2πi

∮
∂Ωε

f(z)
1

w − z
dz

=
1

2πi

∮
∂Ω

f(z)
1

w − z
dz − lim

ε→0

1

2πi

∮
|z−w|=ε

f(z)
1

w − z
dz.

The first term on the right-hand side is zero, because f vanishes on the boundary of Ω. The second term can
be calculated explicitly:

lim
ε→0

1

2πi

∮
|z−w|=ε

f(z)
1

w − z
dz = lim

ε→0

1

2πi

∫ 2π

0

f(w + εeit)
iεeitdt

w − (w + εeit)

= − lim
ε→0

1

2π

∫ 2π

0

f(w + εeit)dt = −f(w),

which gives the result.

The main idea of the subsequent presentation is to define the operators f(T ), for a self-adjoint operator T ,
using an operator valued generalization of the Cauchy integral formula. Namely, taking f̃ ∈ C∞c (C,C), to define

f̃(T )
def
=

1

π

∫
C

∂f̃

∂z̄
(T − z)−1 dx dy . (6.2.1)

In view of the singularity of the resolvent (T −z)−1 when z approaches the real line, it is not clear whether the
above integral actually converges. Besides, the above formula starts from a function f̃ defined on the complex
plane, and returns an operator f̃(T ). On the opposite, in Section 6.1 we were constructing operators f(T )
associated with functions f defined over the real line. Can we connect the two formulations?

The strategy to address these two questions will be to start from a function defined on the real line, f ∈
C∞c (R,C), and extend this function to a function f̃ defined on the complex plane, in a way such as to ensure
that the integral (6.2.1) is well-defined. This extension can be done in various ways, but all of them share the
property to be almost analytic.
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6.2.2 Almost analytic extensions

Let f ∈ C∞(R). Pick n ∈ N and a smooth function τ : R → R such that τ(s) = 1 for |s| < 1 and τ(s) = 0 for

|s| > 2. For x, y ∈ R and set σ(x, y)
def
= τ(y/〈x〉). Define then the function f̃ ∈ C∞(C) by

f̃(z) =

[ n∑
r=0

f (r)(x)
(iy)r

r!

]
σ(x, y). (6.2.2)

For x ∈ R, we clearly have f̃(x) = f(x), so f̃ is an extension of f . Besides, if supp f ⊂ [−a, a], one easily finds1

that supp f̃ ⊂ [−a, a]× [−2〈a〉, 2〈a〉]. Let us now show that the function f̃ is almost analytic when y → 0. Let
us remark that if g is holomorphic in some tubular neighbourhood of R, then for any x ∈ R and y ≤ ε, we have
the power series expansion

g(x+ iy) =
∑
r≥0

g(r)(x)
(iy)r

r!
.

The expression (6.2.2) tries to mimick the following expression, in cases where f is only smooth on R. Computing
its anti-holomorphic derivative, we find

∂f̃

∂z̄
=

1

2

[
n∑
r=0

f (r)(x)
(iy)r

r!

](
∂xσ + i∂yσ

)
+

1

2
f (n+1)(x)

(iy)n

n!
σ . (6.2.3)

The derivatives ∂xσ, ∂yσ can be nonzero only in the region {|y| ≥ 〈x〉 ≥ 1}, thus away from the real axis. As a
result, in the strip {|y| ≤ 1} the above derivative satisfies∣∣∣∂f̃

∂z̄
(x, y)

∣∣∣ ≤ 1

2n!
|f (n+1)(x)| |y|n , (6.2.4)

in particular it converges fast to zero when y → 0. An extension f̃ with this property is said to be almost
analytic of order n. In the case f is compactly supported, the RHS of (6.2.4) is O(yn) uniformly w.r.t. x ∈ R.

In the next section, we will use such an extension f̃ in the formula (6.2.1), in order to define the operator
f(T ).

6.2.3 The Helffer-Sjöstrand formula

Now let T be a self-adjoint operator in a Hilbert space H. For f ∈ C∞c (R), construct an almost analytic
extension f̃ of f of some order n ∈ N to be defined below, and define the operator f(T ) by

f(T ) :=
1

π

∫
C

∂f̃

∂z̄
(T − z)−1 dx dy. (6.2.5)

This integral expression is called the Helffer-Sjöstrand formula. We need to show several points: that the
integral is well-defined, that it does not depend in the choice of σ and n etc. This will be done is a series of
lemmas.

Let us address the first question, namely the convergence of the integral (6.2.1). As shown in Proposition 4.3.2,
the resolvent is bounded by ‖(T − z)−1‖ ≤ 1/| Im z|, while the estimate (6.2.4) shows that, if f is compactly
supported, that ∂̃f/∂z̄(x+ iy) = O(yn) for any fixed x, so the integrand in (6.2.5) forms a continuous family of
bounded operators; the integral is therefore well-defined, and produces a bounded operator.

Let us show that the resulting operator does not depend on the choice of almost analytic extension.

Lemma 6.2.3. If F ∈ C∞c (C) and F (x+ iy) = O(y2) as y → 0, then

A :=
1

π

∫∫
C

∂F

∂z̄
(T − z)−1 dx dy = 0.

1We recall the Japanese brackets notation 〈•〉 = (1 + | • |2)1/2.
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Proof. By choosing a sufficiently large N > 0 one may assume that the support of F is contained in Ω := {z ∈
C : |x| < N, |y| < N}. For small ε > 0 define Ωε := {z ∈ C : |x| < N, ε < |y| < N}. Using the Stokes formula
we have

A = lim
ε→0

1

π

∫∫
Ωε

∂F

∂z̄
(T − z)−1 dx dy = lim

ε→0

1

2πi

∮
∂Ωε

F (z) (T − z)−1 dz.

The boundary ∂Ωε consists of eight segments. The integral over the vertical segments and over the horizontal
segments with y = ±N are equal to 0 because the function F vanishes on these segments. It remains to estimate
the integrals over the segments with y = ±ε. Here we have ‖(T − z)−1‖ ≤ ε−1 and

‖A‖ ≤ lim
ε→0

1

2π

∫
R

(
|F (x+ iε)|+ |F (x− iε)|

)
ε−1dx = lim

ε→0
O(ε) = 0.

Corollary 6.2.4. For f ∈ C∞c (R), the integral (6.2.5) is independent of the choice of parameters n ≥ 1 and σ
defining the almost-analytic extension f̃ .

Proof. For f ∈ C∞c (C), let us consider two almost analytic extensions f̃1, f̃2 of f , constructed with order n1 ≥ 1
and cutoff σ1 (resp. n2 ≥ 1, σ2). Assuming n1 ≤ n2, the equation (6.2.2) shows that

f̃2 − f̃1(z) =
( n1∑
r=0

f (r)(x)
(iy)r

r!

)
[σ2(z)− σ1(z)] +O(yn1+1) .

The definitions of σ1, σ2 show that these two functions are equal to unity in the strip {|y| ≤ 1}. As a result,
we have

f̃2 − f̃1(z) = O(yn1+1), x ∈ supp f, |y| ≤ 1 .

Applying Lemma 6.2.3 to F := f̃2 − f̃1, we get the result.

Let us now study some basic properties of the operator f(T ).

Lemma 6.2.5. Let f ∈ C∞c (R) with supp f ∩ specT = ∅, then f(T ) = 0.

Proof. If f ∈ C∞c (R), then automatically f̃ ∈ C∞c (C). One can find a finite family of closed curves γr which
enclose a domain U containing supp f̃ , but with no intersection with spec(T ). Using an extension of the Stokes
formula to operator valued functions, we get

f(T ) =
1

π

∫∫
U

∂f̃

∂z̄
(T − z)−1 dx dy

=
1

π

∫∫
U

∂

∂z̄

(
f̃(z)(T − z)−1

)
dx dy

Stokes
=

∑
r

1

2πi

∮
γr

f̃(z) (T − z)−1dz.

Since f̃ vanishes on γr, all the terms in the sum vanish.

6.2.4 An algebra of smooth decaying functions

We will now extend the above calculus to an algebra of functions A ⊃ C∞c (R), which are not compactly
supported, but decay fast enough when |x| → ∞. This algebra will have the advantage to contain the functions
rw(λ) = (λ− w)−1 for w ∈ C \ R, which will be important below.

For β < 0 we denote by Sβ the set of smooth functions f : R→ C satisfying the following estimates:

∀n ∈ N, ∃cn > 0, ∀x ∈ R,
∣∣f (n)(x)

∣∣ ≤ cn〈x〉β−n .
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(the constants cn > 0 may depend on the function f). This set obviously forms a vector space of smooth
functions.

We now define the class
A :=

⋃
β<0

Sβ .

Applying recursively the Leibniz formula, one can show that A forms an algebra of smooth functions. Moreover,
if f = P/Q, where P and Q are polynomials with degP < degQ and Q(x) 6= 0 for x ∈ R, then f ∈ A.

For any n ≥ 1 we introduce the following norm on A:

‖f‖n :=

n∑
r=0

∫
R

∣∣f (r)(x)
∣∣ 〈x〉r−1dx.

The above norms induce continuous embeddings A → C0(R). Moreover, one can prove that the space C∞c (R)
is dense in A, with respect to any norm ‖ · ‖n.

Proposition 6.2.6. The functional calculus presented above for compactly supported smooth functions contin-
uously extends to functions f ∈ A. The operator f(T ) can then be defined by the same formula (6.2.5), and is
independent of the choice of almost analytic extension f̃ of f .

Proof. For any function f ∈ C∞c (R) and an almost analytic extension f̃ of order n ≥ 1, an explicit computation
using (6.2.3) and the support properties of σ and ∂̄σ leads to the bound

‖f(T )‖ ≤ C
n∑
r=0

∫
|f (r)(x)|

(∫
〈x〉≤|y|≤2〈x〉

|y|r−2

r!
dy
)
dx

+

∫
|f (n+1)(x)|

(∫
|y|≤2〈x〉

|y|n−1

n!
dy
)
dx

≤ C ‖f‖n+1 , (6.2.6)

with a constant C > 0 independent of the support of f , but depending on τ and n. Hence, for a family (fj) of

functions fj ∈ C∞c converging to a function f ∈ A (in the sense that all the norms ‖f − fj‖k
j→∞−−−→ 0), we see

that taking almost analytic extensions f̃j of some common order n ≥ 1, we find that the sequence of operators
(fj(T ))j≥1 is Cauchy in L(H). As a result, it converges to some bounded operator, which we call f(T ). An
easy verification shows that f(T ) does not depend on the choice of approximating sequence (fj), and that this

operator can be obtained by the integral (6.2.1), with f̃ the analytic extension of f .

The direct inspection of the integrals defining fj(T ) show that they converge to the same integral involving

the function f̃ , the latter integral being well defined.

Let us continue to study the operators f(T ) for f ∈ A, making use of the fact that this space is an algebra.

Proposition 6.2.7. For f, g ∈ A one has (fg)(T ) = f(T )g(T ).

Proof. By the density argument, is it sufficient to consider the case f, g ∈ C∞c (R). Let K and L be large balls
containing the supports of f̃ and g̃ respectively. Using the notation w = u+ iv, u, v ∈ R, one can write:

f(T )g(T ) =
1

π2

∫
K×L

∂f̃

∂z̄

∂g̃

∂w̄
(T − z)−1(T − w)−1 dx dy du dv.

Using the resolvent identity

(T − z)−1(T − w)−1 =
1

w − z
(T − w)−1 − 1

w − z
(T − z)−1
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we rewrite the preceding integral in the form

f(T )g(T ) =
1

π2

∫
L

∂g̃

∂w̄
(T − w)−1

(∫
K

∂f̃

∂z̄

1

w − z
dx dy

)
du dv

− 1

π2

∫
K

∂f̃

∂z̄
(T − z)−1

(∫
L

∂g̃

∂w̄

1

w − z
du dv

)
dx dy.

By Lemma 6.2.2, we have∫
K

∂f̃

∂z̄

1

w − z
dx dy = πf(w),

∫
L

∂g̃

∂w̄

1

w − z
du dv = −πg(z),

and we get

f(T )g(T ) =
1

π

∫
L

f̃(w)
∂g̃

∂w̄
(T − w)−1du dv +

1

π

∫
K

g̃(z)
∂f̃

∂z̄
(T − z)−1dx dy

=
1

π

∫
K∪L

∂(f̃ g̃)

∂z̄
(T − z)−1dx dy

=
1

π

∫
C

∂(̃fg)

∂z̄
(T − z)−1dx dy +

1

π

∫
C

∂(f̃ g̃ − (̃fg))

∂z̄
(T − z)−1dx dy

= (fg)(T ) +
1

π

∫
C

∂(f̃ g̃ − (̃fg))

∂z̄
(T − z)−1dx dy.

By a direct calculation, one can see that (f̃ g̃ − (̃fg))(z) = O(y2) for small y, so Lemma 6.2.3 shows that the
second integral vanishes.

The following Lemma will allow to relate the operators f(T ) constructed above, to the most natural bounded
operators we had already associated with T , namely its resolvent.

Lemma 6.2.8. Take any w ∈ C \ R. The the function λ ∈ R 7→ rw(λ) = (λ − w)−1 belongs to A, and the
corresponding quantization satisfies rw(T ) = (T − w)−1.

Proof. The fact that rw ∈ A follows from our above remark on rational functions P/Q.

There remains to show that the operator rw(T ) constructed from the HS formula actually coincides with
the resolvent (T − w)−1. We only provide the main line of the proof without technical details. Use first the
independence of n and σ. We take n = 1 and put σ(z) = τ(My/〈x〉) where M > 0 is sufficiently large, so that
w /∈ suppσ. Without loss of generality we assume Imw > 0. For large m > 0 consider the region

Ωm := {z ∈ C : |x| < m,
〈x〉
m

< y < 2m}.

Using the definition and the Stokes formula (since (T − z)−1 is holomorphic on Ωm), we have

rw(T ) = lim
m→∞

1

π

∫
Ωm

∂r̃w
∂z̄

(T − z)−1 dx dy = lim
m→∞

1

2πi

∮
∂Ωm

r̃w(z) (T − z)−1 dz.

Next, we want to estimate the difference∮
∂Ωm

(
r̃w(z)− rw(z)

)
(T − z)−1 dz,

for large values of m. Let us first write down the explicit expression for r̃w(z):

r̃w(z) =
1−

( −iy
x−w

)n+1

z − w
σ(x, y),
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We see that for m > 2M , the integral on the bottom side of ∂Ωm lies in region where σ = 1, so it can be
bounded by: ∫ m

−m

1

|z − w|
( 〈x〉/m
|x− w|

)n+1 m

〈x〉
≤ Cw

∫ m

−m

1

〈x〉
( 〈x〉/m
〈x〉

)n+1 m

〈x〉
≤ CwCm−n.

The integrals on the two vertical segments of ∂Ωm are estimated by∫ m

1

1

|m+ iy − w|
1

y
dy ≤ C logm

m
.

Finally, the integral on the top side of ∂Ωm is easily bounded by O(1/m). These estimates show that

lim
m→∞

∮
∂Ωm

(
r̃w(z)− rw(z)

)
(T − z)−1 dz = 0 ,

so we arrive at

rw(T ) =
1

2πi
lim
m→∞

∮
∂Ωm

1

z − w
(T − z)−1 dz.

For sufficiently large m one has the inclusion w ∈ Ωm. Since z 7→ (T − z)−1 is holomorphic in Ωm, the
Cauchy formula2 implies that the above integral provides the value of (T − z)−1 at the point z = w, namely
rw(T ) = (T − w)−1.

Let us now study the action of complex conjugation on f ∈ A.

Lemma 6.2.9. For any f ∈ A we have:

(a) f̄(T ) = f(T )∗,

(b)
∥∥f(T )

∥∥ ≤ ‖f‖∞.

Proof. The item (a) follows directly from the equalities(
(T − z)−1

)∗
= (T − z̄)−1, f̃(z) = ˜̄f(z̄).

To show the bound (b), take an arbitrary c > ‖f‖∞ and define g(s) := c−
√
c2 − |f(s)|2. One can show that

g ∈ A. There holds f̄f −2cg+g2 = 0, and using the preceding lemmas we obtain f(T )∗f(T )−cg(T )−cg(T )∗+
g(T )∗g(T ) = 0, therefore

f(T )∗f(T ) +
(
c− g(T )

)∗(
c− g(T )

)
= c2.

Let u ∈ H. Using the preceding equality we have:∥∥f(T )u
∥∥2 ≤

∥∥f(T )u
∥∥2

+
∥∥(c− g(T )

)
u
∥∥2

=
〈
u, f(T )∗f(T )u

〉
+
〈
u,
(
c− g(T )

)∗(
c− g(T )

)
u
〉

= c2‖u‖2.

As c > ‖f‖∞ was arbitrary, this concludes the proof.

Notice how the estimate (b) strengthen the norm estimates (6.2.6) we had obtained above: the higher deriva-
tives f (r) entering in the norms ‖f‖n are actually irrelevant to bound ‖f(T )‖, which only depends on the
sup-norm of f . This remark will allow us to extend the calculus from the algebra A to the space C0(R) of
continuous functions decaying to zero at infinity.

2To verify that the Cauchy formula holds as well for operator valued functions, one may compute, for any u, v ∈ H, the bracket
〈u, rw(T )v〉.
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Theorem 6.2.10 (Continuous functional calculus). Let T be a self-adjoint operator in a Hilbert space H. There
exists a unique linear map

C0(R) 3 f 7→ f(T ) ∈ L(H)

with the following properties:

• f 7→ f(T ) is an algebra homomorphism,

• f̄(T ) = f(T )∗,

• ‖f(T )‖ ≤ ‖f‖∞,

• if w /∈ R and rw(s) = (s− w)−1, then rw(T ) = (T − w)−1,

• if supp f does not meet specT , then f(T ) = 0.

Proof. Existence. If one replaces C0 by A, everything is already proved. But A is dense in C0(R) w.r.t. the
sup-norm, because C∞c (R) ⊂ A, so the same type of density argument as in the proof of Prop. 6.2.6 leads to
the construction of f(T ) for f ∈ C0(R).

Uniqueness. If we have two such maps, they coincide on the functions f which are linear combinations of rw,
w ∈ C \ R. But such functions are dense in C0 by the Stone-Weierstrass theorem, so, again using the density
argument, both maps coincide on C0.

Remark 6.2.11. • One may wonder why to introduce the class of functions A: one could just start by C∞c
which is also dense in C0. The reason is that, if f ∈ C∞c , we have no operator of reference to compare
with f(T ). On the other hand, it is naturally expected that for rw(λ) = (λ − w)−1 we should have
rw(T ) = (T −w)−1. So it is important to have an explicit formula for a sufficiently large class of functions
containing all such rw.

• The approach based on the Helffer-Sjöstrand formula, which is presented here, allows one to consider
bounded and unbounded selfadjoint operators at once. The same results can be obtained by other methods,
starting e.g. with polynomial functions of bounded operators instead of resolvents, see for example,
Sections VII.1 and VIII.3 in the book [7].

6.3 Borelian functional calculus and L2 representation

Now we would like to extend the functional calculus to more general functions, not necessarily continuous and
not necessarily vanishing at infinity. To do this, we will invoke a duality argument.

Definition 6.3.1 (Invariant and cyclic subspaces). Let H be a Hilbert space, L be a closed linear subspace of
H, and T be a self-adjoint linear operator in H.

Assume T to be bounded. We say that L is an invariant subspace of T (or just T -invariant) if T (L) ⊂ L. We
say that L is a cyclic subspace of T with cyclic vector v if L coincides with the closed linear hull of all vectors
p(T )v, where p are polynomials.

Let now T be general, possibly unbounded. We say that L is an invariant subspace of T (or just T -invariant)
if (T − z)−1(L) ⊂ L for all z /∈ R. We say that L is a cyclic subspace of T with cyclic vector v if L coincides
with the closed linear space of all vectors (T − z)−1v with z /∈ R.

From the selfadjointness of T , if L is T -invariant, then L⊥ is also T -invariant.

Proposition 6.3.2. Both definitions of an invariant/cyclic subspace are equivalent for bounded selfadjoint
operators.
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Proof. Let T = T ∗ ∈ L(H). We note first that resT is a connected set.

Let a closed subspace L be T -invariant in the sense of the definition for bounded operators. If z ∈ C and
|z| > ‖T‖, then z /∈ specT and

(T − z)−1 = −z
(

1− T

z

)−1

= −
∞∑
n=0

z−n−1Tn.

If u ∈ L, then Tnu ∈ L for any n. As the series on the right hand side converges in the operator norm sense
and as L is closed, (T − z)−1u belongs to L.

Let us denote W =
{
z ∈ resT : (T − z)−1(L) ⊂ L

}
. As just shown, W is non-empty. On the other hand, W

is closed in resT in the relative topology: if u ∈ L, zn ∈W and zn converge to z ∈ res(T ), then (T −zn)−1u ∈ L
and (T − zn)−1u converge to (T − z)−1u, so the latter belongs to L; as a result, z ∈W . On the other hand, W
is open: if z0 ∈W and |z − z0| is sufficiently small, then

(T − z)−1 =
∑
n=0

(z − z0)n(T − z0)−n−1,

see (4.1.4), and (T − z)−1L ⊂ L. Therefore, W = resT , which shows that L is T -invariant in the sense of the
definition for general operators.

Now let T = T ∗ ∈ L(H), and assume that L is T -invariant in the sense of the definition for general operators,
i.e. (T − z)−1(L) ⊂ L for any z /∈ R. Pick any z /∈ R and any u ∈ L. We can represent Tu = vL + v⊥, where
vL ∈ L and v⊥ ∈ L⊥ are uniquely defined vectors. As L⊥ is T -invariant, (T − z)−1v⊥ ⊂ L⊥. On the other hand

(T − z)−1v⊥ = (T − z)−1(Tu− vL)

= (T − z)−1
(
(T − z)u+ zu− vL

)
= u+ (T − z)−1(zu− vL).

As zu−v⊥ ∈ L, both vectors on the right-hand side are in L. Therefore, (T−z)−1v⊥ ∈ L, so that (T−z)−1v⊥ = 0
and finally v⊥ = 0, which shows that Tu = vL ∈ L. The equivalence of the two definitions of an invariant
subspace is proved.

On the other hand, for both definitions, L is T -cyclic with cyclic vector v iff L is the smallest T -invariant
subspace containing v. Therefore, both definitions of a cyclic subspace also coincide for bounded selfadjoint
operators.

6.3.1 Spectral representation, cyclic case

Theorem 6.3.3 (Representation by a multiplication operator (cyclic case)). Let T be a self-adjoint linear
operator in H and let S := spec(T ). Assume that H is a cyclic subspace for T with a cyclic vector v.
Then there exists a finite measure µ on S with µ(S) ≤ ‖v‖2 and a unitary map U : H → L2(S, dµ) with the
following properties:

• a vector x ∈ H is in D(T ) iff hUx ∈ L2(S, dµ), where h is the function on S given by h(s) = s,

• for any ψ ∈ U
(
D(T )

)
, there holds UTU−1ψ = hψ.

In other words, T is unitarily equivalent to the operator Mh of the multiplication by h in L2(S, dµ).

Proof. Step 1. We recall that we know how to construct the operator f(T ) for functions f ∈ C0(R). Consider
the map φ : C0(R)→ C defined by φ(f) =

〈
v, f(T )v

〉
, where v is our cyclic vector. Let us list the properties of

this map:

79



• φ is linear,

• φ(f̄) = ¯φ(f),

• if f ≥ 0, then φ(f) ≥ 0. This follows from

φ(f) =
〈
v, f(T )v

〉
=
〈
v,
√
f(T )

√
f(T )v

〉
=
∥∥√f(T )v

∥∥2
.

•
∣∣φ(f)

∣∣ ≤ ‖f‖∞ ‖v‖2.

By the Riesz representation theorem there exists a unique regular Borel measure µ on R such that

φ(f) =

∫
R
fdµ for all f ∈ C0(R).

Moreover, for supp f ∩ S = ∅ we have f(T ) = 0 hence φ(f) = 0, which implies that suppµ ⊂ S. We can thus
write 〈

v, f(T )v
〉

=

∫
S

fdµ for all f ∈ C0(R). (6.3.7)

Step 2. For any function f ∈ C0(R), its restriction to S identifies to an element of L2(S, dµ). We then have

〈f|S , g|S〉L2(S,µ) =

∫
S

f̄g dµ = φ(f̄g)

=
〈
v, f(T )∗g(T )v

〉
H =

〈
f(T )v, g(T )v

〉
H.

Denote the space M :=
{
f(T )v : f ∈ C0(R)

}
⊂ H, then the preceding equality means that the map

U∗ : C0(R) ⊂ L2(S, dµ) 7→ M ⊂ H, U∗f|S = f(T )v

is isometric, hence injective. By definition of M, it is also surjective. Moreover, M is dense in H, because v is
a cyclic vector. Furthermore, since µ is regular, C0(R) is a dense subspace of L2(S, dµ). Therefore, U∗ can be
uniquely extended to a unitary map from L2(S, dµ) to H. We keep denoting this extension by the same symbol
U∗, and call its inverse U : H → L2(S, µ), which is also unitary.

Step 3. Let f, fj ∈ C0(R) and ψj := fj(T )v, j = 1, 2. There holds〈
ψ1, f(T )ψ2

〉
=
〈
f1(T )v, f(T )f2(T )v

〉
=
〈
v, (f̄1 f f2)(T )v

〉
=

∫
S

f̄1 f f2 dµ

= 〈Uψ1,MfUψ2〉,

where Mf is the operator of the multiplication by f in L2(S, dµ). In particular, for any w /∈ R and rw(s) =
(s− w)−1 we obtain

Urw(T )U∗ξ = Mrwξ for all ξ ∈ L2(S, dµ).

The operator U maps the set Ran rw(T ) ≡ D(T ) to the range of Mrw . In other words, U is a bijection from
D(T ) to

RanMrw =
{
φ ∈ L2(S, dµ) : hφ ∈ L2(S, dµ)

}
= D(Mh).

Therefore, if ξ ∈ L2(S, dµ), then ψ := rwξ ∈ D(Mh),

Trw(T )U∗ξ = (T − w)rw(T )U∗ξ + wrw(T )U∗ξ = U∗ξ + wrw(T )U∗ξ

and, finally,

UTU∗ψ = UTU∗rwξ = UTrw(T )U∗ξ = U
(
U∗ξ + wrw(T )U∗ξ

)
= ξ + wrwξ = hψ.
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6.3.2 Spectral representation, general case

We may now get rid of the assumption that H admits a cyclic vector.

Theorem 6.3.4 (L2 representation, noncyclic case). Let T be a self-adjoint operator on a Hilbert space H with
specT =: S. Then there exists N ⊂ N, a finite measure µ on S×N and a unitary operator U : H → L2(S×N, dµ)
with the following properties.

• Let h : S × N → R be given by h(s, n) = s for each n ∈ N . A vector u ∈ H belongs to D(T ) iff
hUu ∈ L2(S ×N, dµ),

• for any ξ ∈ U
(
D(T )

)
there holds UTU∗ξ = Mhξ.

S ×N can be viewed as the union of #N copies of S. The set N can be taken to be an interval {1, . . . , n0}
for n0 ∈ N∗ ∪∞.

Proof. Using an induction argument, one can find a finite or countable subset N ⊂ N and nonempty closed
mutually orthogonal subspaces Hn ⊂ H with the following properties:

• H =
⊕

n∈N Hn,

• each Hn is a cyclic subspace of T with cyclic vector vn satisfying ‖vn‖ ≤ 2−n.

The restriction Tn of T to Hn is a self-adjoint operator on Hn, and one can apply to all these operators the
preceding Thm 6.3.3, which gives associated measures µn on the n-th copy of S, with µn(S) ≤ 4−n, and unitary
maps Un : Hn → L2(S, dµn). Now one can define a global measure µ on S ×N by µ

(
Ω× {n}

)
= µn(Ω), and a

unitary map

U : H ≡
⊕
n∈N
Hn → L2(S ×N, dµ) ≡

⊕
n∈N

L2(S, dµn)

by U(ψn) = (Unψn). One can easily check that all the required properties are verified.

Remark 6.3.5. • The previous theorem shows that any self-adjoint operator is unitarily equivalent to a
multiplication operator on some L2 space. This multiplication operator is sometimes called a spectral rep-
resentation of T . This representation is not unique, because the decomposition of H into cyclic subspaces
is not unique.

• The cardinality of the set N is not unique either. The minimal cardinality among all possible N is called
the spectral multiplicity of T , and it generalizes the notion of multiplicity for eigenvalues. Calculating the
spectral multiplicity for a selfadjoint operator T is not easy.

The last Thm 6.3.4 can be used to generalize the functional calculus of Thm 6.2.10, from function f ∈ C0(R)
to a more general class of functions. In the rest of the section we use the function h and the measure µ from
Theorem 6.3.4 without further specification.

Definition 6.3.6 (Bounded Borelian functions). Let B∞ be the space of bounded Borelian functions f : R→ C.
We equip this space with the following topology: we say that a sequence (fn ∈ B∞)n∈N converges to f ∈ B∞,

and write fn
B∞−−→ f , if the two following conditions hold:

• there exists a uniform C > 0 such that for any n ∈ N, sups |fn(s)| ≤ C;

• fn(s)→ f(s) for all s ∈ R (simple convergence).

This topology on B∞ will be the “symbolic version” of the following topology on the space of bounded
operators.
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Definition 6.3.7 (Strong convergence). We say that a sequence An ∈ L(H) strongly converges to A ∈ L(H),
and write A = s− limn→∞An, if Au = limn→∞Anu for any u ∈ H. In general, this notion of convergence is
weaker than the convergence in the topology of L(H).

We are now in position to construct a functional calculus of our selfadjoint operator T for functions f ∈ B∞.

Theorem 6.3.8 (Borel functional calculus). (a) Let T be a selfadjoint operator on a Hilbert space H. There
exists a map B∞ 3 f 7→ f(T ) ∈ L(H) extending the map from Theorem 6.2.10, and satisfying the same
properties, except that the estimate ‖f(T )‖ ≤ ‖f‖∞ can be improved to ‖f(T )‖ ≤ sups∈S |f(s)| (we recall
that S = spec(T )).

(b) This extension is unique if we further assume the property that fn
B∞−−→ f implies f(T ) = s− lim fn(T ).

Proof. Consider the unitary map U from Theorem 6.2.10. For f ∈ B∞, let us define

f(T ) := U∗Mf◦hU .

One easily checks that all the properties stated in Theorem 6.2.10 hold, so this extension satisfies (a).

To prove (b) we remark that the map just defined satisfies the requested condition: if ξ ∈ L2(S, dµ) and

fn
B∞−−→ f , then the theorem of dominated convergence shows that fn ◦ hξ converges to f ◦ hξ in L2(S ×N, dµ).

Through the conjugacy by U , this exactly means that f(T ) = s− limn→∞ fn(T ).

On the other hand, C0(R) is dense in B∞, so any f(T ) can also be defined as the strong limit of operators
fn(T ) with fn ∈ C0(R); this makes the extension unique.

The unitary conjugacy of T with a multiplication operator leads us to straightforward, yet important corol-
laries. Their proofs are elementary modifications of the constructions given for the multiplication operator in
Example 4.2.14.

Corollary 6.3.9. • specT = essµ Ranh.

• for any f ∈ B∞ one has spec f(T ) = essµ Ran f ◦ h,

• in particular, ‖f(T )‖ = essµ sup |f ◦ h|.

Remark 6.3.10. One can also define operators f(T ) with unbounded, locally bounded Borel functions f by
ϕ(T ) = U∗Mf◦hU . These operators may be unbounded (depending on the measure µ), but they are selfadjoint
for real valued f : this follows from the selfadjointness of the multiplication operator Mf◦h, on its natural
domain.

Example 6.3.11. The usual Fourier transform on R is a classical example of a spectral representation. For
example, Take H = L2(R, dx) and T0 = −id/dx with the natural domain D(T0) = H1(R, dx). If F is the
Fourier transform, then FT0F∗ is exactly the operator of multiplication Mx on L2(R, dx), hence S = specT0 =
specMx = R. So F is a unitary operator which maps T0 to a multiplication operator.
For bounded Borel functions f : R → C, one can define the operator f(T0) by f(T0) = F∗MfF , where Mf is
the operator of multiplication by f . Such operator f(T0) is called a Fourier multiplier, it is a particular case of
a pseudodifferential operator.
Let us look at some particular examples. Consider the translation operator A on H which is defined by
Au(x) = u(x+ 1). It is a bounded operator, and for any v ∈ S (R) we have FAF∗v(p) = eipv(p). This means
that A = eiT0 , and this gives the relation specA = {z : |z| = 1}.
On may also look at the operator B defined by

Bu(x) =

∫ x+1

x−1

u(t)dt.

Using the Fourier transform one can show that B = f(T0), where f(x) = 2 sinx/x. As a consequence, specB =
f(R) = [2 sin x1

x1
, 2], where x1 ∈]π, 2π[ is the first nontrivial root of the equation tanx = x.

82



6.3.3 Generalized spectral representation

For practical computations, one does not need the canonical representation from Thm 6.3.4 to construct the
Borel functional calculus. It is sufficient to represent T as T = U∗MϕU , where U : H → L2(X, dµ) for
some topological space X, µ a regular finite measure on X, Mh the multiplication operator by some function
h : X → R. Then for any bounded Borel function f on R, one can define f(T ) = U∗Mf◦hU .

Example 6.3.12. For example, for the free Laplacian T = −∆ on H = L2(Rd) the above is realized with
X = Rd, U being the d-dimensional Fourier transform, and h(p) = p2 for all momenta p ∈ Rd. This means that
the operators f(T ) act by

f(T )u(x) =
1

(2π)d/2

∫
Rd
f(p2)û(p)eipx dx ,

namely the are Fourier multipliers with symbol p 7→ f(p2). For example, the operator

√
−∆ + 1u(x) =

1

(2π)d/2

∫
Rd

√
1 + p2û(p)eipx dx .

From this expression, one can easily show that D(
√
−∆ + 1) = H1(Rd).

Example 6.3.13. Another classical example is provided by the Fourier series. Take H = `2(Zd) and let a
function t : Zd → R satisfy t(−m) = t(m) and

∣∣t(m)
∣∣ ≤ c1e−c2|m| with some c1, c2 > 0. Define T by

Tu(m) =
∑
n∈Zd

t(m− n)u(n).

One can easily see that T is bounded. If one introduces the unitary map Φ : H → L2(Td), T := R/Z,

Φu(x) =
∑
m∈Zd

e2πim·xu(m), where m · x := m1x1 + · · ·+mdxd ,

then T = Φ∗MhΦ where

h(x) =
∑
m∈Zd

t(m) e2πimx

is the Fourier series with coefficients (t(m))m∈Zd .

Example 6.3.14. A less obvious example is given by the Neumann Laplacian TN on the half-line, defined in
Example 3.1.15.

Let T be the free Laplacian on L2(R), with domain D(T ) = H2(R). Denote by G := L2
e(R) the subspace of

L2(R) consisting of the even functions. Clearly, G is an invariant subspace for (T,D(T )) (the second derivative
of an even function is also an even function), and the restriction of T to G, with domain G∩D(T ), is a self-adjoint
operator. Let us denote this restriction by (A,D(A)).
Introduce now the a map Φ : L2(R+) → G by Φu(x) = 2−1/2u

(
|x|
)
. One easily checks that Φ is unitary, and

that D(A) = Φ
(
D(TN )

)
.

We notice that the space G is also invariant through the Fourier transform F (the Fourier transform of an even
function is also an even function). So we have the two conjugacies TN = Φ∗AΦ and A = F∗M̃ϕF , where M̃ϕ is

the multiplication by the function h(p) = p2 on G. Finally, M̃h = ΦMhΦ∗, where Mh is the multiplication by h
on L2(R+).

Finally, we obtain TN = U∗MhU with U = Φ∗FΦ, and U is unitary as composition of three unitary operators.
By a direct calculation, for u ∈ L2(R+) ∩ L1(R+) one has

Uu(p) =

√
2

π

∫ ∞
0

cos(px)u(x) dx.

This transform U is sometimes called the cosine transform. Roughly speaking, U is the Fourier transform
restricted to the even functions, together with some identifications.

An interested reader may adapt the preceding constructions to the Dirichlet Laplacian TD on the half-line,
see Example 3.1.16.
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Example 6.3.15. [Operators with compact resolvents] Let us fill the gap which was left open in section 5.7.
Namely let us show that if a selfadjoint operator T has a compact resolvent, then specT 6= R.

Assume ab absurdo that specT = R and consider the function g given by g(x) = (x − i)−1. Then g(T ) =
(T − i)−1 is a compact operator, and its spectrum has at one accumulation point, namely the origin.

On the other hand, using Corollary 6.3.9 and the continuity of g, one gets the equality spec g(T ) = g(specT ) =
g(R); this set is a continuous curve in C, which has infinitely many accumulation points. Therefore we get a
contradiction

6.4 Some applications of the spectral theorem

In this chapter we discuss some direct applications of the spectral theorem to the estimates of the spectra
of self-adjoint operators. We still use without special notification the measure µ and the function h from
Theorem 6.3.4, or from the generalization of subsection 6.3.3. An important fact is that we will not need a
precise description of the spectral measure µ to obtain the following applications: we will just use the fact that
our selfadjoint operator is conjugate to some multiplication operator on some L2 space.

Theorem 6.4.1 (Distance to spectrum). Let T be a self-adjoint operator in a Hilbert space H, and 0 6= u ∈
D(T ), then for any z ∈ C one has the estimate

dist(z, specT ) ≤
∥∥(T − z)u

∥∥
‖u‖

.

More precisely, if z 6∈ specT , one has the equality

‖(T − z)−1‖ =
1

dist(z, specT )
.

We notice that this equality improves the estimate ‖(T − z)−1‖ ≤ 1
| Im z| for z ∈ C \ R.

Proof. If z ∈ specT , then the left-hand side is zero, and the inequality is obvious. Assume now that z /∈ specT .
By Corollary 6.3.9, one has, with rz(λ) = (λ− z)−1:

‖(T − z)−1‖ = essµ sup |rz ◦ h| =
1

essµ inf |λ− z|
=

1

dist(z, specT )
,

which gives for any u ∈ H:

‖u‖ = ‖(T − z)−1(T − z)u‖ ≤ 1

dist(z, specT )
‖(T − z)u‖.

Remark 6.4.2. The previous theorem is one of the basic tools to approximately identify the spectrum of a
selfadjoint operator. It is important to understand that the resolvent estimate obtained in Theorem 6.4.1 uses
in an essential way the selfadjointness of the operator T . For nonself-adjoint operators the estimate fails even
in the finite-dimensional case. For example, take H = C2 and

T =

(
0 1
0 0

)
,

then specT = {0}, and for z 6= 0 we have

(T − z)−1 = − 1

z2

(
z 1
0 z

)
.

84



For the vectors e1 = (1, 0) and e2 = (0, 1) one has 〈e1, (T−z)−1e2〉 = −z−2. This shows that ‖(T−z)−1‖ ≥ |z|−2,
which is larger than |z|−1 when |z| < 1.

In the infinite dimensional case, one can construct examples with ‖(T − z)−1‖ ∼ dist(z, specT )−n for any
power n.

6.4.1 Spectral projectors of selfadjoint operators

We now consider the main application of the Borelian functional calculus, namely the construction of spectral
projectors of general selfadjoint operators. These projectors will provide an intrinsic spectral representation of
T , independent of the choices of cyclic vectors we had to do in Thm 6.3.4, generalizing the spectral decomposition

T =
∑
j≥1

λj Πλj

for a selfadjoint operator with purely discrete spectrum (λj)j≥1.

Definition 6.4.3 (Spectral projectors). Let T be a self-adjoint operator on a Hilbert space H and Ω ⊂ R be
a Borel subset. The spectral projector of T on Ω is the operator ΠΩ := 1lΩ(T ), where 1lΩ is the characteristic
function on Ω (this function obviously belongs to B∞).

The following proposition summarizes the most important properties of the spectral projectors.

Proposition 6.4.4. The spectral projectors (ΠΩ)Ω associated with a selfadjoint operator satisfy the following
properties:

i) for any Borel subset Ω ⊂ R, the associated spectral projection ΠΩ is an orthogonal projector commuting
with T . In particular, ΠΩD(T ) ⊂ D(T ).

ii) Π(a,b) = 0 if and only if specT ∩ (a, b) = ∅.

iii) for any λ ∈ R there holds Ran Π{λ} = Ker(T − λ), and u ∈ Ker(T − λ) iff u = Π{λ}u.

iv) specT = {λ ∈ R : Π(λ−ε,λ+ε) 6= 0 for all ε > 0}.

Proof. The proof uses the unitary conjugacy of T with the multiplication by h on L2(X,µ), and the simultaneous
conjugacy of ΠΩ with the multiplication by 1lΩ ◦ h.

To prove (1) we remark that 12
Ω = 1Ω and 1Ω = 1Ω, which yields Π2

Ω = ΠΩ and ΠΩ = Π∗Ω: this shows that
ΠΩ is an orthogonal projector. The commutativity with T is a general property of all operators f(T ) for any
f ∈ B∞. After conjugacy by U , we remember that D(T ) corresponds to D(Mh) ⊂ L2(X,µ). Now, ξ ∈ D(Mh)
iff hξ ∈ L2, and from the boundedness of f , we then also have

h (f ◦ h) ξ = (f ◦ h)h ξ ∈ L2(X,µ),

showing that Mf◦h preserves D(Mh), and that it commutes with Mh.

To prove (2) we note that the condition Π(a,b) = 0 is, by definition, equivalent to 1l(a,b) ◦ h = 0 µ-a.e., which
in turn means that (a, b) ∩ essµ Ranh = ∅. It remains to recall that essµ Ranh = specT , see Corollary 6.3.9.

The items (3) and (4) are drawn from the characterization of the point spectrum, resp. spectrum, of a
multiplication operator, see Prop. 4.2.14.

The spectral projectors were defined after we constructed the full B∞ functional calculus. For elementary
subsets Ω ⊂ R, one can obtain more direct expressions of ΠΩ using our ubiquitous resolvent operators.
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Proposition 6.4.5 (Spectral projection to a singleton). For any λ ∈ R, the spectral projector to the singleton
{λ} (namely, the eigenspace of T for the value λ) can be computed as the following limit:

Π{λ} = s− lim
ε→0+

−iε(T − λ− iε)−1.

Proof. For ε > 0 consider the function fε : R→ C

fε(x) := − iε

x− λ− iε
= −iε rλ+iε

It satisfies the following properties:

• |fε| ≤ 1,

• fε(λ) = 1,

• if x 6= λ, then fε(x)
0−−−→

ε↘0
.

Altogether, this means that fε
B∞−−→ 1l{λ}. By Thm 6.3.8, Π{λ} = s− limε↘0 fε(T ), and it remains to note that

fε(T ) = −iε(T − λ− iε)−1 by Theorem 6.2.10.

Proposition 6.4.6 (Stone’s formula). For a < b one has:

Π(a,b) +
1

2
Π{a,b} = Im

1

π
s− lim
ε↘0

∫ b

a

(T − λ− iε)−1 dλ =
1

π
s− lim
ε↘0

∫ b

a

Im (T − λ− iε)−1 dλ

where we recall the notation for bounded operators ImA = 1
2i (A−A

∗).

The left hand side means that the contribution of the boundary points {a, b} to the projector is halved.

Proof. For ε > 0, consider the function

fε(x) =
1

π

∫ b

a

Im
1

x− λ− iε
dλ.

By direct computation, we find

fε(x) =
1

π

∫ b

a

ε

(λ− x)2 + ε2
dλ =

1

π

(
arctan

b− x
ε
− arctan

a− x
ε

)
.

Therefore, |fε| ≤ 1, and

lim
ε→0+

fε(x) =


0, x /∈ [a, b],

1, x ∈ (a, b),
1

2
, x ∈ {a, b},

= 1l(a,b)(x) +
1

2
1l{a,b}(x) .

The rest follows as in the previous proposition.

The following formula can be useful for the computation of spectral projections on isolated components of the
spectrum.

Proposition 6.4.7 (Spectral projection on isolated part of spectrum). Let ω ⊂ C be a connected open set

containing an isolated part of the spectrum of T , meaning that Γ
def
= ∂ω does not intersect specT . Call Ω = ω∩R.

Then the spectral projector on Ω is given by

ΠΩ =
1

2πi

∮
Γ

(z − T )−1 dz ,

where the contour Γ is oriented anticlockwise.
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Proof. If s is an intersection point of Γ with R, then, by assumption s /∈ specT , so s /∈ essµ Ranh. On the other
hand, for s ∈ R \ Γ we find, using the Cauchy formula,

1

2πi

∮
Γ

(z − s)−1dz =

{
1, s is inside Γ,

0, s is outside Γ.

Therefore, for µ-a.e. x ∈ X, one has

1

2πi

∮
Γ

(z − h(x))−1 dz = 1lΩ ◦ h(x) .

One can finally replace h(x) by T using the L2(X,µ) representation of Theorem 6.3.8.

6.4.2 Spectral projectors as a projector valued measure

Below we group some properties satisfied by the spectral projectors (ΠΩ).

Proposition 6.4.8. The family of spectral projectors (ΠΩ)Ω∈B(R) satisfies the following properties:
(a) Each ΠΩ is an orthogonal projector;
(b) Π∅ = 0 and ΠR = IdH;

(c) For any disjoint union Ω =
⊔
n∈N Ωn, we have ΠΩ = s− limN→∞

∑N
n=0 ΠΩn ; (d) For any pair of Borel sets

Ω1, Ω2, ΠΩ1
ΠΩ2

= ΠΩ1∩Ω2
.

From these proprerties, one easily checks that for any state φ ∈ H, the map

Ω ∈ B(R) 7→ µφ(Ω)
def
= 〈φ,ΠΩφ〉 (6.4.8)

defines a finite Borel measure on R.

Any family of projectors (ΠΩ)Ω∈B(R) satisfying the properties in Prop. 6.4.8 is said to define a projection valued
measure (PVM).

Theorem 6.4.9. Let a family of projectors (ΠΩ)Ω∈B(R) define a projection valued measure. Let f : R → C be
a bounded Borel function.

Then we may define a unique operator in L(H) as follows. We define its diagonal components:

∀φ ∈ H, 〈φ,Bφ〉 def
=

∫
R
f(λ) dµφ(λ) ,

and then complete the definition by polarization.

From this expression and the definition (6.4.8) of the measure µφ, it is natural to denote this operator by:

B =

∫
R
f(λ) dΠλ .

Remark 6.4.10. We may extend the definition to any unbounded Borel function g : R→ C. The operator∫
g(λ) dΠλ is well-defined on the domain Dg

def
= {φ ∈ H :

∫
|g(λ)|2 dµφ <∞}.

Example 6.4.11. Let (T,D(T )) be selfadjoint on H. Then the associated spectral projectors (ΠΩ(T )) form a
PVM. For any f ∈ B∞, we recover this way the operator

f(T ) =

∫
R
f(λ) dΠλ .

By taking g(λ) = λ, we also recover a representation of the operator T itself:

T =

∫
R
λ dΠλ , defined on the domain D(T ) = {φ ∈ H :

∫
λ2 dµφ <∞}. (6.4.9)

Theorem 6.4.12 (Spectral theorm, PVM representation). There is a 1-to-1 correspondence between selfadjoint
operators (T,D(T )) on H and PVM (ΠΩ)Ω∈B(R). The correspondence is given by the expression (6.4.9).
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6.5 Application of the spectral theorem to Schrödinger propagators

The functional calculus allows one to easily define the propagator for the Schödinger equation generated by a
selfadjoint operator (the Hamiltonian of the system).

Theorem 6.5.1 (Schrödinger propagator). Let (T,D(T )) be a selfadjoint operator on H. The propagator for
the Schrödinger equation generated by T

i
d

dt
ψ(t) = T ψ(t), ψ(0) = ψ0 ∈ H ,

is the family of operators (U(t))t∈R which solves the above equation through ψ(t) = U(t)ψ0.

These operators can be constructed through functional calculus: if we call et : R → C the function defined by
et(λ) = e−itλ, then

U(t) = et(T ) .

By an abuse of notation, one sometimes notes U(t) = e−itT .

Applying the spectral theorem to T allows to easily show the above theorem, as well as the following propertie:
(a) (U(t))t∈R forms a strongly continuous unitary group. Namely, U(t1)U(t2) = U(t1+t2), and s− limt→0 U(t) =
Id.
(b) For any ψ ∈ D(T ), limt→0

U(t)ψ−ψ
t = −iTψ.

(c) Conversely, for ψ ∈ H, if limt→0
U(t)ψ−ψ

t = ϕ ∈ H, then ψ ∈ D(T ) and ϕ = −iTψ.

The following theorem is a converse for the preceding one:

Theorem 6.5.2 (Stone’s theorem). If (U(t))t∈R forms a strongly continuous unitary group on H, then there
exists (T,D(T )) a selfadjoint operator with dense domain, such that U(t) = e−itT is the group generated by T .

The operator T is called the infinitesimal generator of the group (U(t))t∈R.

We won’t give the proof of this theorem, which is a particular case of the more general analysis of contractive
strongly continuous semigroups. See for instance [13, Chap. 5.1].

6.6 Spectral decomposition of Tensor products

Tensor products of Hilbert spaces naturally appear when considering differential operators acting in several
dimensions: L2(Rd1+d2) = L2(Rd1)⊗ L2(Rd2). If a selfadjoint differential operator T acts separately on the d1

first variables and on the d2 last ones, in the form

T = T1 + T2 ,

where Ti acts on the di first (resp. last) variables, then the spectral analysis of T can often be reduced to the
spectral analyses of T1 and T2. This reduction of dimension can be very helpful in practice.

In this section we will present a general theorem, and then apply it to particular Schrödinger type operators.
A more detailed discussion of tensor products can be found e.g. in [7, Sections II.4 and VIII.10] or in [13,
Sections 1.4 and 4.5].

We will present a more general situation than the above L2 spaces framework. Let (Tj , D(Tj)) be selfadjoint
operators on Hilbert spaces Hj , j = 1, . . . , n. To any monomial λm1

1 · . . . λmnn , mj ∈ N, one can associate the
operator Tm1

1 ⊗ ·Tmnn acting on the tensor product space H := H1 ⊗ · · · ⊗ Hn as follows: we first define it on
tensor product states Ψ = ψ1 ⊗ · · · ⊗ ψn:

(Tm1
1 ⊗ · · · ⊗ Tmnn )(ψ1 ⊗ · · · ⊗ ψn) = Tm1

1 ψ1 ⊗ · · · ⊗ Tmnn ψn, where each ψj ∈ D(T
mj
j ) ,

and then extend it by linearity on Ψ ∈
⊗n

j=1D(Tj). Here the zero power T 0
j equals the identity operator on

Hj .
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Remark 6.6.1. For an operator (T,D(T )) acting on a Hilbert space H, the domains of its powers D(Tn) are
usually defined in a recursive way:

D(T 0) = H, D(Tn) =
{
u ∈ D(T ) : Tu ∈ D(Tn−1)

}
for n ∈ N.

Exercise 6.6.2. Show that for a selfadjoint operator (T,D(T )), one hasD(Tn) = RanRT (z)n, for any z ∈ resT ,
and that D(Tn) is dense in H for any n.

Using the above construction, one can associate with any real valued polynomial P on Rn of degree N > 0, a
linear operator P (T1, · · · , Tn) on H defined on the subspace of H consisting of the linear combinations of the
vectors of the form ψ1 ⊗ · · · ⊗ ψn with ψj ∈ D(TNj ), namely on

n⊗
j=1

D(TNj ) .

Theorem 6.6.3 (Spectrum of a tensor product operator). Denote by B the closure of the above operator
P (T1, . . . , Tn). Then B is selfadjoint, and

specB =
{
P (λ1, . . . , λn) : λj ∈ specTj , j = 1, . . . , n

}
.

Sketch of the proof. The complete proof involves a number of technicalities, see e.g. [7, Section III.10], but
the main idea is rather simple. By the spectral theorem, it is sufficient to consider the case when Tj is the
multiplication by a function hj on Hj := L2(Xj , dµj). Then

H = L2(X, dµ), X = X1 × · · · ×Xn, µ = µ1 ⊗ · · · ⊗ µn the product measure,

and P (T1, . . . , Tn) acts on H through the multiplication by the function

p(x1, · · · , xn) = P
(
h1(x1), · · · , hn(xn)

)
;

Its domain includes the linear combinations of functions Ψ = ψ1 ⊗ · · · ⊗ ψn, where ψj ∈ L2(Xj , dµj) with
compact supports, so that hj is bounded when restricted to suppψj ; as a result, Ψ belongs to the domain of
the multiplication operator Mp. There remains to show that the closure of this operator is the multiplication
operator Mp on L2(X,µ), which is selfadjoint since p is real valued. The spectrum

specMp = essµ−Ran p = essµ−RanP (h1(•), h2(•), · · ·hn(•))

There remains to show that the right hand side is equal to the closure of P (specT1, . . . , specTn).

For P (λ1, . . . , λn) = λ, the continuity of P shows that, for any ε > 0,

h−1
1 (λ1 ± η)× · · · × h−1

n ((λn ± η)) ⊂ p−1((λ± ε))

for some η > 0 which can go to zero when ε→ 0. Hence, µp−1((λ± ε)) is bounded from below by

µ1

(
h−1

1 (λ1 ± η)
)
× · · · × µn

(
h−1
n (λn ± η)

)
.

If (λ1, . . . , λn) belongs to specT1× · · · × specTn, then the above left hand side is positive for any η > 0, so that
the right hand side is positive as well, showing that λ ∈ specT . This shows that

P (specT1 × · · · × specTn) ⊂ P (specT1 × · · · × specTn) ⊂ specT .

On the opposite, if λ 6∈ P (specT1 × · · · × specTn), then

|P (λ1, . . . , λn)− λ| ≥ ε for all (λ1, . . . , λn) ∈ specT1 × · · · × specTn ,

hence
|p(x1, . . . , xn)− λ| ≥ ε for µ-almost every (x1, . . . , xn) ,

which shows that λ 6∈ specT .
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Let us now present an example of separable differential operator, to which the above theorem applies.

Example 6.6.4 (Laplacian on a rectangular domain). Let a, b > 0 and Ω = (0, a) × (0, b) ⊂ R2, H = L2(Ω),
and TD be the Dirichlet Laplacian on Ω.

One can show that TD can be obtained using the above procedure, using the representation

T = La ⊗ 1 + 1⊗ Lb,

where by L1 we denote the Dirichlet Laplacian on H1 := L2
x((0, a)), i.e.

L1f = −f ′′, D(L1) = H2((0, a)) ∩H1
0 ((0, a)),

and similarly L2 is the Dirichlet Laplacian on H2 = L2
y((0, b)). Here we labeled the two L2 spaces with the

names of their respective variables.

It is known (from the exercises) that the spectrum of L1 is discrete, made of the simple eigenvalues {(πn/a)2, n ∈
N∗}, with the normalized eigenfunctions e

(a)
n =

√
2/a sin(πn • /a). According to the above theorem, the spec-

trum of T consists of the (discrete) set

{λ(a,b)
m,n =

(πm
a

)2

+
(πn
b

)2

, m, n ∈ N∗} .

The orthonormal basis (e
(a)
m ⊗ e(b)

n )m,n∈N∗ is made of eigenfunctions associated with λ
(a,b)
m,n , so the spectrum of

T is also purely discrete. The multiplicity of each eigenvalue λ is given by the number of pairs (m,n) ∈ N∗2 for

which λ = λ
(a,b)
m,n .

The same construction holds for the Neumann Laplacian on the rectangle, one obtains the same formula for
the eigenvalues but now with m,n ∈ N.

Exercise 6.6.5. Describe the spectrum of the Dirichlet Laplacian on the half-strip Ω = R∗+ × (0, b).
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Chapter 7

Perturbation theory

Perturbation theory aims at describing qualitatively or quantitatively the spectrum of an operator of the form

T = T0 +B ,

where T0 is a “well-known” operator, and B, its perturbation, is “smaller” than T0. The strategy is to use our
knowledge of T0 to say something nontrivial about the perturbed operator T , in particular about its spectrum.
In this chapter, we will state several conditions of “smallness” for B respective to T0, which will ensure various
properties of T .

7.1 Perturbations of selfadjoint operators

We recall (see Def. 2.2.10) that a linear operator (T,D(T )) on H is essentially selfadjoint if it is closable, and its
closure T is selfadjoint. And if so, it admits a unique selfadjoint extension according to Proposition 2.2.12. Let
us also recall the criteria of Prop. 2.2.17 for the (essential) selfadjointness of a symmetric operator (T,D(T )).
We also recall the variants of this results presented in Remark 2.2.18 and Proposition 2.2.19, which will be
useful in what follows.

7.1.1 The Kato-Rellich theorem

Now we would like to apply the above criteria to show that, starting from a selfadjoint operator (T0, D(T0)),
under a certain condition on the perturbations B, the perturbed operaor T = T0 + B is still still selfadjoint
for the same domain D(T0). We have already proved this property in the Exercises when B is bounded and
symmetric. We want to generalize the setup by considering unbounded perturbations B as well. However, B
still needs to be “smaller than T0”, in a precise sense, which we now introduce.

Definition 7.1.1 (Relative boundedness). Let (A,D(A)) be a self-adjoint operator on a Hilbert space H and
(B,D(B)) be a linear operator such that:
i) D(A) ⊂ D(B);
ii) there exist real numbers a, b ≥ 0 such that

‖Bu‖ ≤ a‖Au‖+ b‖u‖ for all u ∈ D(A) .

We then say that B is relatively bounded with respect to A or, for short, A-bounded.

The infimum ainf of all possible values a ≥ 0 for which such a bound holds (where b can be taken arbitrary
large, depending on a) is called the relative bound of B with respect to A.

If the relative bound is equal to 0, then B is said to be infinitesimally small with respect to A.
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Notice that if B is a bounded operator, then one can take a = 0 in the above bound.

The following theorem

Theorem 7.1.2 (Kato-Rellich). Let (T0, D(T0)) be (essentially) selfadjoint on H, and let B be a symmetric
operator on H, which is T0-bounded with a relative bound ainf < 1.

Then the operator T = T0 +B with the domain D(T ) = D(T0) is (essentially) selfadjoint.

Proof. We will give the proof for the case T0 is selfadjoint.

By assumption, one can find a ∈ (0, 1) and b > 0 such that

‖Bu‖ ≤ a‖T0u‖+ b‖u‖, for all u ∈ D(T0). (7.1.1)

Step 1. For any λ > 0 one has the Pythagore’s spliting between symmetric and skew-symmetric parts of the
operators (T0 +B ± iλ):

∀u ∈ D(T0),
∥∥(T0 +B ± iλ)u

∥∥2
=
∥∥(T0 +B)u

∥∥2
+ λ2‖u‖2.

Therefore, for all u ∈ D(T0) one can estimate

√
2
∥∥(T0 +B ± iλ)u

∥∥ ≥ ∥∥(T0 +B)u
∥∥+ λ‖u‖

≥ ‖T0u‖ − ‖Bu‖+ λ‖u‖
≥ (1− a)‖T0u‖+ (λ− b)‖u‖. (7.1.2)

Let us choose λ > b.

Step 2. Let us show that T = T0 + B, with the domain D(T0), is a closed operator. Let a sequence
(un)n ⊂ D(T0) and vn := (T0 +B)un be such that both un and vn converge in H respectively to u and v.

We see that ((T0 + B)un) is a Cauchy sequence. By (7.1.2), T0un is also a Cauchy sequence. Since T0 is
closed, the limit u = limn un belongs to D(T0), and T0un converge to ṽ = T0u. By (7.1.1), Bun is a Cauchy
sequence and is hence convergent to some w ∈ H. Let us check that this limit satisfies w = Bu. For this, take
any h ∈ D(T0); then the symmetry of B implies that

〈w, h〉 = lim
n
〈Bun, h〉 = lim

n
〈un, Bh〉 = 〈u,Bh〉 = 〈Bu, h〉 .

Summing the two limits, we get that (T0 + B)un converges to ṽ + w = (T0 + B)u. This shows that T0 + B is
closed.

Step 3. Let us show that the operators T0 + B ± iλ : D(T0) → H are bijective, at least provided λ > 0 is
chosen large enough. From Pythagore’s splitting

‖(T0 ± iλ)u‖2 = ‖T0u‖2 + λ2‖u‖2,

one draws the obvious inequalities:

‖(T0 ± iλ)u‖ ≥ ‖T0u‖, ‖(T0 ± iλ)u‖ ≥ λ‖u‖ .

Then, starting from the relative boundedness of B, we obtain:

‖Bu‖ ≤ a‖T0u‖+ b‖u‖

≤ a
∥∥(T0 ± iλ)u

∥∥+
b

λ

∥∥(T0 ± iλ)u
∥∥

≤
(
a+

b

λ

)∥∥(T0 ± iλ)u
∥∥. (7.1.3)
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Since a ∈ (0, 1), we can choose λ sufficiently large to have a+
b

λ
< 1.

Since T0 is selfadjoint, the operators T0 ± iλ : D(T0)→ H are bijections. We may thus factorize

T0 +B ± iλ =
(
I +B(T0 ± iλ)−1

)
(T0 ± iλ) ,

and the above inequality shows that

‖B(T0 ± iλ)−1‖ ≤ a+
b

λ
< 1 .

As a result, I + B(T0 ± iλ)−1 is a bijection from H to itself. Finally, T ± iλ are bijective, in particular,
Ran(T ± iλ) = H. By Prop. 2.2.17 and Remark 2.2.18, (T,D(T0)) is self-adjoint.

The part concerning the essential selfadjointness is a simple exercise along the lines of Step 2 above.

Remark 7.1.3. The condition ainf < 1 is necessary. For instance, taking (T0, D(T0)) and unbounded operator,
and B = −T0 would give T = 0, which is not selfadjoint on the domain D(T0).

7.1.2 Application: selfadjointness of Schrödinger operators

The Kato-Rellich theorem allows to construct a large family of selfadjoint Schrödinger operators, obtained e.g.
by perturbing the free Laplacian on Rd.

Theorem 7.1.4. Let V ∈ Lp(Rd)+L∞(Rd) be a real valued potential, with p = 2 if d ≤ 3 and p > d/2 if d > 3.
We say that these potentials are in the Kato-Rellich class.

Then the operator T = −∆ + V , with domain D(T ) = H2(Rd), is selfadjoint on L2(Rd), and its restriction
to C∞c (Rd) is essentially selfadjoint.

Proof. We give the proof here only for the dimensions d ≤ 3. For all f ∈ S (Rd) and λ > 0 we have the
representation

f(x) =
1

(2π)d/2

∫
Rd
eiξ·xf̂(ξ) dξ

=
1

(2π)d/2

∫
Rd

1

ξ2 + λ
(ξ2 + λ)f̂(ξ) dξ

C−S
≤ 1

(2π)d/2

∥∥∥ 1

ξ2 + λ

∥∥∥ · ∥∥∥(ξ2 + λ)f̂(ξ)
∥∥∥

≤ 1

(2π)d/2

∥∥∥ 1

ξ2 + λ

∥∥∥ · (‖ξ2f̂(ξ)‖+ λ‖f̂‖
)

≤ aλ‖∆f‖+ bλ‖f‖ ,

(7.1.4)

where

aλ =
1

(2π)d/2

∥∥∥ 1

ξ2 + λ

∥∥∥, bλ =
λ

(2π)d/2

∥∥∥ 1

ξ2 + λ

∥∥∥.
This bound can be recast into the quantitative Sobolev embedding:

∀f ∈ H2(Rd), ‖f‖∞ ≤ aλ‖∆f‖+ bλ‖f‖ . (7.1.5)

By density, for all f ∈ H2(Rd) and all λ > 0 we have

‖f‖∞ ≤ aλ‖∆f‖+ bλ‖f‖.

Notice that ξ 7→ 1

ξ2 + λ
belongs to L2(Rd) since we are in dimension d ≤ 3.
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By assumption on our potential V , we can represent it as

V = V1 + V2, with V1 ∈ L2(Rd) and V2 ∈ L∞(Rd) .

Using the Sobolev estimate (7.1.5), we obtain

∀f ∈ H2(Rd), ‖V f‖ ≤ ‖V1f‖+ ‖V2f‖
≤ ‖V1‖2‖f‖∞ + ‖V2‖‖f‖
≤ ãλ‖∆f‖+ b̃λ‖f‖ ,

with ãλ = ‖V1‖2aλ and b̃λ = ‖V1‖2bλ+‖V2‖∞. One easily checks that aλ can be made arbitrary small by taking
λ large, so the above estimate shows that the multiplication operator MV is infinitesimally small with respect
to the free Laplacian. We may thus apply the Kato-Rellich theorem to T = −∆ + V .

The essential selfadjointness of the operator restricted to C∞c (R3) comes from the essential selfadjointness of
the Laplacian restricted to that space.

In dimension d > 3, the function ξ 7→ (ξ2 + λ)−1 does not belong to L2(Rd). The Cauchy-Schwarz bound in
(7.1.4) should be replaced by a suitable Hlder inequality, leading to some Sobolev embedding theorem involving
some Lp space, in place of the bound (7.1.5).

Example 7.1.5 (Coulomb potential). Consider the three-dimensional Coulomb potential V (x) = α/|x|, α ∈ R,
describing the electrostatic interaction between two charged particles.

For any bounded open set Ω containing the origin, one has V1
def
= 1lΩV ∈ L2(R3) and V2

def
= (1 − 1lΩ)V ∈

L∞(R3), so that V = V1 + V2 ∈ L2(R3) + L∞(R3). From the previous theorem, this implies that the operator
T = −∆ + α/|x| is selfadjoint on the domain D(T ) = H2(Rd). Notice that this fact is independent on the sign
of α (repulsive, vs. attractive interaction).

We have thus proved that the Schrödinger operator with Coulomb potential T = −∆ + α
|x| , with domain

H2(R3), is selfadjoint on L2(R3).

Notice that we had already proved, in Section 3.2, that this operator, restricted to C∞c (R3), is bounded from
below, and therefore admits a selfadjoint Friedrichs extension. The present proof provides a precise information
on the domain of this selfadjoint operator.

Below we show that an assumption of boundedness from below of a Schrdinger operator implies its essential
selfadjointness. In a way, we recover here the construction of the Friedrichs extension of T , by a direct “hands-
on” computation. Notice that the potential has stronger regularity than in Corollary 3.2.10, where the potential

was assumed to be in L2
loc(Rd) (and bounded from below by − (d−2)2

4|x|2 ).

Theorem 7.1.6. Let H = L2(Rd) and let V ∈ C0(Rd) be real valued, such that, for some c ∈ R, one has the
inequality

〈u, (−∆ + V )u〉 ≥ c‖u‖2

for all u ∈ C∞c (Rd).

Then the operator T = −∆ + V with domain C∞c (Rd) is essentially selfadjoint.

Proof. By adding a constant to the potential V one can assume that T ≥ 1. In other words, using integration
by parts: ∫

Rd

∣∣∇u(x)
∣∣2 dx+

∫
Rd
V (x)

∣∣u(x)
∣∣2 dx ≥ ∫

Rd
|u(x)|2dx (7.1.6)

for all u ∈ C∞c (Rd). This inequality extends by density to all u ∈ H1
comp(Rd).

By Prop. 2.2.19, it is sufficient to show that the range of T is dense in L2(Rd). To show this density, let
f ∈ L2(Rd) such that

〈
f, (−∆ + V )u

〉
= 0 for all u ∈ C∞c (Rd). Note that T preserve the real valuedness, and

we can suppose without loss of generality that f is real valued.
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The above property means that (−∆ + V )f = 0 in the sense of D ′(Rd), or equivalently ∆f = V f . Since V is
locally bounded, the function V f is in L2

loc(Rd); the elliptic regularity then shows that f ∈ H2
loc(Rd) ∩ L2(Rd).

Let us pick a real valued cutoff function χ ∈ C∞c (Rd, [0, 1]) such that χ(x) = 1 for |x| ≤ 1, ϕ(x) = 0 for
|x| ≥ 2. For n ∈ N∗, rescale this cutoff into χn(x) := χ(x/n).

For any u ∈ C∞c (Rd) we have, by a standard computation:∫
Rd
∇(χnf)∇(χnu)dx+

∫
Rd
V χnfχnudx

=

∫
Rd

∣∣∇χn∣∣2fu dx+

∫
Rd
χn (f∇u− u∇f) · ∇χn dx+ 〈f, Tχ2

nu〉. (7.1.7)

Since χ2
nu ∈ C∞c (Rd), the last term vanishes. Since the resulting integrals only involve first derivatives of u,

and all functions are truncated in B(0, 2n), we may extend them to u ∈ H1
loc. In particular, we may take

u = f ∈ H2
loc. Then the second term in the above expression vanishes as well. Applying the inequality (7.1.6)

to the state χnf ∈ H1
comp, we obtain: ∫

Rd

∣∣∇χn∣∣2f2 dx ≥
∫
Rd
χ2
nf

2 dx .

When n tends to infinity, the left hand side goes to 0 since ∇χn is supported outside of {|x| ≤ n} and is
uniformly bounded. On the other hand, the RHS converges to ‖f‖2 when n→∞. We thus deduce that f = 0:
this shows that the range of T is dense.

7.2 Stability of the essential spectrum

In Def. 4.2.9 we introduced the splitting of specT between discrete spectrum and essential spectrum. This
splitting will be useful when considering perturbations.

We recall that the discrete spectrum specdisc T consists in the eigenvalues of finite multiplicity, which are
isolated from the rest of the spectrum (since we will be dealing with selfadjoint operators, the algebraic and
geometric multiplicities are identical).

Proposition 7.2.1. Let T be a selfadjoint operator in a Hilbert space H. Its discrete spectrum specdisc T can
be characterized in terms of the spectral projectors ΠΩ of T :

specdisc T =
{
λ ∈ specT : ∃ε > 0 such that 0 < dim Ran Π(λ−ε,λ+ε) <∞

}
. (7.2.8)

Proof. Let λ belong to the set on the RHS of (7.2.8). Since the range of Π(λ−ε,λ+ε) can only decrease when
ε↘ 0, the dimension of this range must stabilize at some value dλ > 0 when ε↘ 0, and hence the range itself:
there exists ε0 > 0 such that the operators Π(λ−ε,λ+ε) do not depend on ε if ε ∈ (0, ε0), and are nontrivial. This
implies that

Π{λ} = s− lim
ε→0+

Π(λ−ε,λ+ε) 6= 0,

hence that λ ∈ specp T by Prop. 6.4.4(3). At the same time, Π(λ−ε0,λ) = Π(λ,λ+ε0) = 0, and Prop. 6.4.4(2)
shows that λ is an isolated eigenvalue of finite multiplicity in the spectrum, hence an element in the discrete
spectrum.

Conversely, let λ be an isolated eigenvalue of finite multiplicity of T . Then there exists ε0 > 0 such that
Π(λ−ε0,λ) = Π(λ,λ+ε0) = 0, and dim Π{λ} = dim Ker(T − λ) <∞. Therefore,

dim Ran Π(λ−ε0,λ+ε0) = dim Ran Π(λ−ε0,λ) + dim Ran Π(λ,λ+ε0) + dim Ran Π{λ} < ∞ .
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On the opposite, the essential spectrum of T can be characterized by the following properties.

Proposition 7.2.2. A value λ ∈ specT belongs to the essential spectrum iff at least one of the following three
conditions holds:

• λ /∈ specp T ;

• λ is an accumulation point of specp T ;

• dim Ker(T − λ) =∞.

Furthermore, the essential spectrum is a closed set.

Proof. Each of the three conditions describes the points of the spectrum which are not isolated eigenvalues of
finite multiplicity.

For last statement, we note that specess T is obtained from the closed set specT by removing finitely or count-
ably many isolated points. Removing from specT an isolated point {λ} amounts to remove some neighbourhood
(λ− ε, λ+ ε). Removing an open set leaves our set closed, so specess T is a closed set.

Let us list some examples.

Proposition 7.2.3 (Essential spectrum of compact operators). Let T be a compact self-adjoint operator in an
infinite-dimensional space H, then specess T = {0}.

Proposition 7.2.4 (Essential spectrum of operators with compact resolvents). The essential spectrum of a
selfadjoint operator T is empty iff the operator has a compact resolvent.

Sometimes one uses the following terminology:

Definition 7.2.5 (Purely discrete spectrum). We say that a selfadjoint operator T has a purely discrete spectrum
in some interval (a, b) if specess T ∩ (a, b) = ∅.

If specess T = ∅, then we say that the spectrum of T is purely discrete.

Example 7.2.6. The free Laplacian in L2(Rd) admits the spectrum [0,+∞). This set has no isolated points,
so this operator has no discrete spectrum.

The main difference between the discrete and the essential spectra comes from their behavior with respect to
perturbations. This will be discussed in the following sections.

7.2.1 Weyl criterion and relatively compact perturbations

The main goal of this section will be to show that, starting from a selfadjoint operator (T0, D(T0)), if we add a
“sufficiently small” perturbation B to T0 (in particular, such that T0 +B remains selfadjoint), then the operator
T0+B has the same essential spectrum as T0. We refer to this property as the stability of the essential spectrum.

The “smallness” necessary for this stability phenomenon is more restrictive than the one used in the Kato-
Rellich theorem.

The following proposition transforms an isolated eigenvalue

Proposition 7.2.7. Let T be a selfadjoint operator on H, and λ0 an isolated eigenvalue of T . Then there exists
c > 0 such that ‖(T − λ0)u‖ ≥ c‖u‖ for all u ∈ D(T ) such that u ⊥ Ker(T − λ0).
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Proof. Without loss of generality, let us take λ0 = 0. Since 0 is an isolated eigenvalue of T , the distance
c := dist(0, specT \ 0) is strictly positive. We have specT ∩ (−c, c) = {0}, so that Π{0} = Π(−c,c).

So, our state u satisfies

u ⊥ Ker(T )⇐⇒ u ⊥ Ran Π{0} = Π(−c,c)

⇐⇒ u = ΠR\(−c,c)u .

We may split the state u in two orthogonal pieces:

u = u− + u+, u− = Π(−∞,−c]u, u+ = Π[c,∞)u .

Using the spectral representation of T , the state Tu+ reads

Tu+ =

∫
R
λ dΠλu+ =

∫
[c,∞)

λ dΠλu+ =

∫
R
f+(λ) dΠλu+ ,

where f+(λ) = λ on [c,∞), and can be chosen arbitrarily on (−∞, c), since for any function f , one has∫
(−∞,c) f(λ)dΠλ Π[c,∞) = 0. Let us choose f+(λ) = max(λ, c) for all λ ∈ R. We thus have

Tu+ = f+(T )u+, and similarly Tu− = f−(T )u− ,

where f−(λ) = min(λ,−c). The functions f± are bounded away from zero, and so are the corresponding
selfadjoint operators:

f−(T ) ≤ −c, f+(T ) ≥ c .

These bounds entail the norm bounds:

‖Tu−‖ = ‖f−(T )u−‖ ≥ c‖u−‖, ‖Tu+‖ = ‖f+(T )u+‖ ≥ c‖u+‖ .

On the other hand, the spaces u−, u+ (resp. f−(T )u−, f+(T )u+) are orthogonal to each other, so Pythagore’s
theorem gives

‖Tu‖2 = ‖Tu−‖2 + ‖Tu+‖2 ≥ c2(‖u−‖2 + ‖u+‖2) = c2‖u‖2 .

The following theorem is important in practice: it provides a characterization of the essential spectrum through
the construction of Weyl singular sequences, which are often quite easy to exhibit.

Theorem 7.2.8 (Weyl criterion for the essential spectrum). The condition λ ∈ specess T is equivalent to the
existence of a sequence (un)n∈N ⊂ D(T ) satisfying the following three conditions:

i) ‖un‖ ≥ 1 for all n ∈ N;

ii) un weakly converges to 0 in H;

iii) (T − λ)un converges to 0 in H.

Such a sequence will be called a singular Weyl sequence for λ. Moreover, as will be shown in the proof, one can
replace the conditions (1) and (2) by:

1’. (un)n∈N forms an orthonormal family in H.

Notice the difference with the characterization of λ ∈ specT : the latter only needs a sequence (vn)n satisfying
the conditions (1) and (3). The specificity of belonging to the essential spectrum is thus due to the condition
(2), un ⇀ 0.
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Proof. Denote by W (T ) the set of all real numbers λ to which one can associate a singular Weyl sequence.

1. Let us first show the inclusion W (T ) ⊂ specess T . Let λ ∈ W (T ) and let (un)n be an associated singular
Weyl sequence. As noticed above, the conditions (1) and (3) imply that λ ∈ specT . Assume by contradiction
that λ ∈ specdisc T and denote by Π = Π{λ} the orthogonal projector to Ker(T − λ). Since Π has finite
rank operator, it is compact, so the assumption (2) implies that the sequence Πun converges (strongly) to 0.
Therefore, the norms of the vectors wn := (1−Π)un satisfy ‖wn‖ ≥ 1/2 for n large enough. On the other hand,
the vectors (T − λ)wn = (1− Π)(T − λ)un converge to 0; because wn ⊥ Ker(T − λ), Proposition 7.2.7 implies
that ‖wn‖ ≤ C‖(T − λ)wn‖ → 0, which is a contradiction

2. Conversely, if λ ∈ specess T , then dim Ran Π(λ−ε,λ+ε) = ∞ for all ε > 0. We have to consider two cases:
i). Assume that Ran Π{λ} = ∞. Then we can consider an orthonormal family (un)n≥0 in Ker(T − λ). This
sequence is obviously a Weyl sequence for λ.

ii) Assume now that dim Ran Π(λ−ε,λ+ε) < ∞. Then we have, for any ε > 0, dim Ran Π(λ−ε,λ) = ∞ or
dim Ran Π(λ,λ+ε) = ∞. Since these quantities decay when ε → 0, one of the two operators must have infinite
rank for all ε > 0. Without loss of generality, let us assume that

∀ε > 0, Ran Π(λ,λ+ε) =∞.

Since (λ, λ + 1) =
⋂
ε>0(λ + ε, λ + 1), there exists ε1 ∈ (0, 1) such that Π[λ+ε1,λ+1) 6= 0. Similarly, there exists

ε2 ∈ (0, ε1) such that Π[λ+ε2,λ+ε1) 6= 0. Iteratively, we construct a strictly decreasing sequence εn ↘ 0 such that
Π[λ+εn+1,λ+εn) 6= 0 for all n. Now let us choose un ∈ Ran Π[λ+εn+1,λ+εn) with ‖un‖ = 1. These vectors form an
orthonormal sequence, in particular, converge weakly to 0. On the other hand,

‖(T − λ)un‖ = ‖(T − λ)Π[λ+εn+1,λ+εn)un‖ ≤ εn‖un‖ = εn,

which shows that the vectors ‖(T − λ)un‖ → 0. Therefore, (un)n forms a singular Weyl sequence, therefore
specess T ⊂W (T ).

The following theorem provides a starting point to the study of perturbations of selfadjoint operators.

Theorem 7.2.9 (Stability of the essential spectrum). Let (A,D(A)) and (B,D(B)) be selfadjoint operators
such that, for some z ∈ resA ∩ resB the difference of their resolvents K(z) := (A − z)−1 − (B − z)−1 is a
compact operator.

Then specessA = specessB.

Proof. Using the resolvent identities (Prop. 4.1.8), one sees that if K(z) is compact for some z ∈ resA ∩ resB,
then it is compact for all z ∈ resA ∩ resB.

Let λ ∈ specessA and let (un)n be an associated singular Weyl sequence. Without loss of generality we assume
that ‖un‖ = 1 for all n. We have, for any z ∈ resA ∩ resB:

lim
(
(A− z)−1 − 1

λ− z
)
un = lim

1

z − λ
(A− z)−1(A− λ)un = 0. (7.2.9)

This shows that (un) is a singular Weyl sequence for the operator (A− z)−1. Note that if z 6∈ R, this operator
is not selfadjoint, however it is normal (commutes with its adjoint), and the definition and characterization of
the essential spectrum is identical with the selfadjoint case.

On the other hand, K(z) is compact, so the sequence K(z)un strongly converges to 0. We thus deduce:

lim
1

z − λ
(B − λ)(B − z)−1un = lim

(
(B − z)−1 − 1

λ− z
)
un

= lim
(
(A− z)−1 − 1

λ− z
)
un − limK(z)un = 0.

(7.2.10)
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This shows that (un) is also a singular Weyl sequence for the operator (B−z)−1, associated to the spectal value
(λ− z)−1. From there, we want to exhibit a singular Weyl sequence for the operator B and the spectral value
λ.

Let us denote vn := (B − z)−1un. First, the assumption un ⇀ 0 easily implies that vn ⇀ 0. Second, the
equalities (7.2.10) show that (B − λ)vn converges to 0. Third, it also follows from (7.2.10) that lim ‖vn‖ =
|λ − z|−1 > 0. As a consequence, (vn) is a singular Weyl sequence for B, associated with the value λ, hence
λ ∈ specessB.

So we have shown the inclusion specessA ⊂ specessB. Since the roles of A and B can be exchanged, we have
also specessA ⊃ specessB, hence the equality between the two essential spectra.

Let us define a class of perturbations to which we may apply the preceding theorem.

Definition 7.2.10 (Relatively compact operators). Let (T0, D(T0)) be a selfadjoint operator on a Hilbert space
H, and let B be a closable linear operator on H with D(T0) ⊂ D(B). We say that B is compact with respect to
T0 (or simply A-compact) if B(T0 − z)−1 is compact for at least one z ∈ resT0. (It follows from the resolvent
identitites that this holds then for all z ∈ resT0.

The following proposition shows that the assumption of T0-relative compactness is stronger than the T0-
boundedness we used in the previous section.

Proposition 7.2.11. Let B be T0-compact, then B is infinitesimally small with respect to T0.

Proof. Let us first show that if B is T0-compact, we have:

lim
λ→+∞

∥∥B(T0 − iλ)−1
∥∥ = 0 (7.2.11)

We will proceed ab absurdo, that is assume that this limit is false. Then one can find a constant α > 0, nonzero
vectors un and a sequence (λn > 0) with limλn = +∞, such that

∥∥B(T0 − iλ)−1un
∥∥ > α‖un‖ for all n. Set

vn := (T0 − iλ)−1un. Using Pythagore’s identity

‖un‖2 =
∥∥(T0 − iλn)vn

∥∥2
= ‖T0vn‖2 + λ2

n ‖vn‖2,

we obtain
‖Bvn‖2 > α2‖T0vn‖2 + α2λ2

n ‖vn‖2.

Without loss of generality one may assume the normalization ‖Bvn‖ = 1, then the sequence T0vn is bounded
and vn converge to 0. Let z ∈ resT0, then (T0 − z)vn is also bounded, so one can extract a weakly convergent
subsequence ((T0−z)vnk)k. Due to the compactness of B(T0−z)−1, the vectors B(T0−z)−1(T0−z)vnk = Bvnk
converge to some w ∈ H with ‖w‖ = 1. On the other hand, as shown above, vnk converge to 0, and the closability
of B imposes that w = 0. This contradiction shows that (7.2.11) must hold.

As a consequence, for any a > 0 one can find λ > 0 such that ‖B(T0 − iλ)−1u‖ ≤ a‖u‖ for any u ∈ H.
Denoting v := (T0 − iλ)−1u and remembering that (T0 − iλ)−1 is a bijection between H and D(T0) we deduce
from the above estimate that

∀v ∈ D(T0), ‖Bv‖ ≤ a‖(T0 − iλ)v‖ ≤ a‖T0v‖+ aλ‖v‖

Since a > 0 is arbitrary, this proves our result.

So a combination of the preceding assertions leads us to the main theorem of this section:

Theorem 7.2.12 (Relatively compact perturbations). Let (T0, D(T0)) be a selfadjoint operator in a Hilbert
space H, and let (B,D(B)) be symmetric and T0-compact.

Then the operator T = T0 +B, with domain D(T ) = D(T0), is self-adjoint, and the essential spectra of T and
T0 coincide.
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Proof. The selfadjointness of T follows from the Kato-Rellich theorem. It remains to show that the difference
of the resolvents of T and T0 is compact. This follows directly from the obvious identity

(T0 − z)−1 − (T0 +B − z)−1 = (T0 +B − z)−1B(T0 − z)−1,

which holds for all z /∈ R.

As an easy exercise, one can show the following assertion, which can be useful in some situations.

Proposition 7.2.13. Let T0 be selfadjoint, B be symmetric and T0-bounded with a relative bound ainf < 1,
and C be T0-compact.

Then C is also (T0 +B)-compact.

7.2.2 Essential spectra of Schrödinger operators

The following class of potentials is a restricion of the Kato-Rellich class introduced in Thm 7.1.4.

Definition 7.2.14 (Kato class potential). We say that a measurable function V : Rd → R belongs to the Kato
class if, for any ε > 0, one can find real valued Vε ∈ Lp(Rd) and V∞,ε ∈ L∞(Rd) such that ‖V∞,ε‖∞ < ε and
V = Vε + V∞,ε.

Here p = 2 for d ≤ 3 and p > d/2 for d ≥ 4, like for the Kato-Rellich classes.

Theorem 7.2.15. If a potential V : Rd → R belongs to the Kato class, then MV is compact with respect to
the free Laplacian T0 = −∆ on L2(Rd). As a result, the essential spectrum of the operator T = −∆ + V , with
domain D(T ) = H2(Rd), is equal to [0,∞).

Proof. As in Thm. 7.1.4, we only give the proof for d ≤ 3. Let F denote the Fourier transform on Rd. Then,
for any f ∈ S (Rd) and z ∈ resT0 we have

∀ξ ∈ Rd,
(
F(T0 − z)−1f

)
(p) = (ξ2 − z)−1Ff(ξ).

In other words, (T0−z)−1 is a Fourier multiplier for the symbol (ξ2−z)−1. Since a Fourier multiplier corresponds
to a convolution operator, we have

(T − z)−1f(x) = gz ? f(x) =

∫
Rd
gz(x− y)f(y)dy, where gz = F−1

ξ→x(ξ2 − z)−1.

Let ε > 0 and let the decomposition V = Vε +V∞,ε be as in Definition 7.2.14. The operator Vε(T − z)−1 admits
the integral kernel K(x, y) = Vε(x) gz(x− y). Let us compute the L2 norm of this kernel:∫

Rd×Rd

∣∣K(x, y)
∣∣2 dx dy =

∫
Rd

∣∣Vε(x)
∣∣2dx ∫

Rd

∣∣gz(y)
∣∣2dy

= ‖Vε
∥∥2

2
‖gz
∥∥2
<∞ .

This means that Vε(T − z)−1 is a Hilbert-Schmidt operator, therefore is compact, see Section 5.6. At the same
time we have the easy estimate

‖V∞,ε(T − z)−1‖ ≤ ε‖(T − z)−1‖ ,

so the norm of this operator goes to zero when ε → 0. Finally, the bounded operator V (T − z)−1 can be
represented as the limit in L(L2) of the compact operators Vε(T − z)−1, when ε tends to 0. Since compact
operators form a closed subspace in L(L2), the limit operator V (T − z)−1 is compact as well.
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Example 7.2.16 (Coulomb potential). The previous theorem easily applies to the Schrdinger operators with
Coulomb potential we have mentioned in the previous section, T = −∆ + α/|x|. It is sufficient to represent

1

|x|
=

1lR(x)

|x|
+

1− 1lR(x)

|x|
,

where 1lR is the characteristic function of the ball of radius R > 0 and centered at the origin. When R is

large, the second part V∞,ε(x) =
1− 1lR(x)

|x|
is smaller than ε provided R > ε−1. So the essential spectrum of

−∆ + α/|x| is always the same as for the free Laplacian, i.e. [0,+∞).

Another typical application of the Weyl criterion concerns “partially confining” bounded potentials.

Theorem 7.2.17. Let V ∈ L∞(Rd) be real valued. Assume that there exists α ∈ R such that the set Ω :=
{
x ∈

Rd : V (x) < α
}

has a finite Lebesgue measure. Then −∆ + V has a purely discrete spectrum in (−∞, α).

Proof. Let 1lΩ be the characteristic function of Ω. Call U := (V − α)1lΩ and W := V − U . Then U ∈ Lp(Rd)
for any p ≥ 1 (since U is bounded and supported on a set of finite measure), in particular, U is of Kato class.
At the same time, W ∈ L∞(Rd) and W ≥ α. By Proposition 7.2.13, U is (−∆ +W )-compact. As a result,

specess(−∆ + V ) = specess(−∆ + W + U) = specess(−∆ + W ) .

On the other hand, specess(−∆ +W ) ⊂ spec(−∆ +W ) ⊂ [α,+∞).

Notice that we have no problem with the domains: all the operators −∆ +V and −∆ +W are defined on the
same domain H2(Rd), due to the boundedness of the potentials.

Remark 7.2.18. In the physics literature, the situation of Theorem 7.2.17 is referred to as a potential well
below the energy α. The same result holds without assumptions on V outside Ω (i.e. for unbounded potentials),
but the proof would then require a slightly different machinery, and the operator domains may be different.

101



Chapter 8

Variational methods

8.1 Max-min vs. min-max principles

Throughout the subsection, we denote by (T,D(T )) a self-adjoint operator in an infinite-dimensional Hilbert
space H, and we assume that T is semibounded from below.

By “variational methods”, we have in mind the min-max and max-min principles, which provide, in a somewhat
dual manner, explicit variational expressions for the discrete eigenvalues at the bottom of the spectrum (if any).
This method is very powerful, and allows to obtain quantitative estimates of eigenvalues for various types
of Schrdinger operators, including ones with many particles. This method is specific to selfadjoint operators
bounded from below, and the discrete spectrum at the bottom of the spectrum.

We define the bottom of the essential spectrum of T :

Σ :=

{
inf specess T, if specess 6= ∅,
+∞, otherwise.

8.1.1 The max-min theorem

Let us now state our first variational expression for the low lying eigenvalues.

Theorem 8.1.1 (Max-min principle). For n ∈ N, we introduce the following numbers:

µn = µn(T ) := sup
ψ1,...,ψn−1∈H

inf
06=ϕ∈D(T ),

ϕ⊥ψj , j=1,...,n−1

〈ϕ, Tϕ〉
〈ϕ,ϕ〉

.

Then we are in either of the following situations:

(a) µn is the nth eigenvalue of T (when ordering all the eigenvalues in increasing order, counting their mul-
tiplicities), and T has a purely discrete spectrum in (−∞, µn].

(b) µn = Σ, and µj = µn for all j ≥ n.

The numbers µn can also be expressed as follows:

µn(T ) := sup
Hn−1⊂H

dimHn−1=n−1

inf
ϕ∈D(T )∩H⊥n−1, ‖ϕ‖=1

〈ϕ, Tϕ〉
‖ϕ‖2

. (8.1.1)
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Proof. Step 1. Let us first prove two preliminary assertions.

Lemma 8.1.2. Define the numbers (µn)n≥1 as above, and consider some real number a.

rk Π(−∞,a < n if a < µn, (8.1.2)

rk Π(−∞,a) ≥ n if a > µn. (8.1.3)

Proof. Assume that the assertion (8.1.2) is false. Then, for some a < µn we have rk Π(−∞,a) ≥ n, so there exists
an n−dimensional subspace V ⊂ Ran Π(−∞,a). Since T is semibounded below, V ⊂ D(T ). By dimensional
consideration, for any (n − 1)-dimensional subspace Hn−1 ⊂ H, there exists a normalizedl vector ϕ ∈ V
orthogonal to Hn−1. The inclusion ϕ ∈ Ran Π(−∞,a) implies that 〈ϕ, Tϕ〉 ≤ a. Therefore, whatever the
subspace Hn−1, the infimum in the definition of µn is ≤ a, which gives the inequality µn ≤ a: this contradicts
our assumption, hence Eq. (8.1.2) holds.

Similarly, assume by contradiction that the assertion (8.1.3) is false. Then, for some a > µn we have
rk Π(−∞,a) ≤ n − 1. Let ψ1, . . . , ψn−1 be some vectors spanning Ran Π(−∞,a). Due to the equality Π(−∞,a) +
Π[a,+∞) = Id, for every normalized ϕ ∈ D(T ) with ϕ ⊥ span({ψj , j = 1, . . . , n − 1}), one has ϕ = Π[a,+∞)ϕ,
hence 〈ϕ, Tϕ〉 ≥ a. This implies that µn ≥ a, which contradicts ou assumption. This proves Eq. (8.1.3).

Let us now prove that µn < +∞ for any n ≥ 1 (remark that µn > −∞ follows from the semiboundedness
of T ). Assume by contradiction that µn = +∞. Then, by (8.1.2), one has rk Π(−∞,a) < n for any a ∈ R. By
taking the limit a→∞, we find eventually dim Ran Π(−∞,∞) = dimH ≤ n, which contradicts the fact that H
is infinite dimensional.

The Lemma 8.1.2 shows that the rank of Π(−∞,a) has a jump when a crosses µn: so there is spectrum of T at
the point µn. The situation splits into two cases:
Case 1: rk Π(−∞,µn+ε) =∞ for all ε > 0;
Case 2: n ≤ rk Π(−∞,µn+ε) <∞ for small enoughε > 0.

Let us consider Case 1. We are going to show that it corresponds to the case (b) of the theorem. Due to
(8.1.2), one has rk Π(µn−ε,µn+ε) =∞ for all ε > 0, so that µn ∈ specess T . On the other hand, again by (8.1.2),
specess T ∩ (−∞, µn − ε) = ∅ for all ε > 0, which proves that µn = Σ. It remains to show that µj = µn for all
j ≥ n. Assume on the opposite that µj > µn for some j > n; then, by (8.1.2), for any ε < µj − µn we have
rk Π(−∞,µn+ε) ≤ j, which contradicts the assumption of Case 1. So µj = µn.

Consider now the Case 2, namely rk Π(−∞,µn+ε) < ∞ for some ε > 0. It follows directly that the spectrum
of T is purely discrete in (−∞, µn + ε). Moreover, one can find ε1 > 0 such that Π(−∞,µn] = Π(−∞,µn+ε1).
As rk Π(−∞,µn+ε1) ≥ n by (8.1.2), we have rk Π(−∞,µn] ≥ n, which means that T has at least n eigenvalues
λ1 ≤ · · · ≤ λn (counted with multiplicities) in (−∞, µn]. If λn < µn, then rk Π(−∞,λn] ≥ n, which contradicts
to (8.1.2). This proves the equality µn = λn.

An important fact is that the infimum over ϕ ∈ D(T )∩H⊥n−1 can be replaced by the infimum over the larger
space ϕ ∈ D(T ) ∩H⊥n−1, where Q(T ) is the form domain of the operator T , namely the domain of the closure
of the quadratic form qT induced by T .

Proposition 8.1.3. One may replace the above definition of the numbers µn by

µn = sup
Hn−1⊂H

inf
ϕ∈Q(T )∩H⊥n−1

qT (ϕ)

‖ϕ‖2
. (8.1.4)

Proof. For any ϕ ∈ D(T ) one has qT (ϕ) = 〈ϕ, Tϕ〉, so the infimum in (??) is a priori lower than the one in
(??). However, D(T ) is dense in the Hilbert space Q(T ) (see Thm 3.1.5 and the subsequent discussion), so the
infimum of qT (u)/‖u‖2 over D(T ) is equal to the infimum over Q(T ). This shows that both formulas are equal
in the case of µ1. Let us check that this argument works as well for the higher values µn. Namely, the subspace
D(T ) ∩ H⊥n−1 is also dense in the space Q(T ) ∩ H⊥n−1. The space H⊥n−1 is defined by n − 1 continuous linear
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forms on H, of the form `i(u) = 〈ψi, u〉. Each such form, when restricted to the dense subspace Q(T ) ⊂ H,
remains a continuous 1-form on the Hilbert space Q(T ):

∀u ∈ Q(T ), |`i(u)| ≤ ‖`i‖H∗‖u‖H ≤ ‖̃`i‖H∗C‖u‖Q(T ) .

Each such restriction is in 1-to-1 correspondence with a state ψ̃ ∈ Q(T ):

∀u ∈ Q(T ), `i(u) = 〈ψ̃i, u〉Q(T )

As a result, Q(T )∩H⊥n−1 is the codimension-(n−1) subspace of Q(T ) defined by all vectors u ∈ Q(T ) orthogonal

to {ψ̃i, i = 1, . . . , n−1} (for the scalar product on Q(T )). This space Q(T )∩H⊥n−1 is also of codimension (n−1)
in H, so it is dense in H⊥n−1.

Similarly, inside Q(T ) ∩H⊥n−1, the subspace D(T ) ∩H⊥n−1 is dense inside Q(T ) ∩H⊥n−1.

As a result, the infimum of qT (u)/‖u‖2 over D(T ) ∩H⊥n−1 is identical to the infimum over Q(T ) ∩H⊥n−1.

Here is a simple consequence of the min-max principle, and of the above proposition.

Corollary 8.1.4. Assume there exists a nontrivial state ϕ ∈ Q(T ) such that

〈ϕ, Tϕ〉
‖ϕ‖2

< Σ .

Then T has at least one isolated eigenvalue of finite multiplicity in (−∞,Σ), which satisfies µ1 ≤
〈ϕ, Tϕ〉
‖ϕ‖2

.

Indeed, in this case one has µ1 < Σ, which means that µ1 is in the discrete spectrum. This corollary
is important in practice: many physically relevant Schrdinger operators admit discrete spectrum below some
essential spectrum. To show the existence of this discrete spectrum, it is not necessary to identify the eigenvectors
or eigenvalues, but just to construct a “good enough” trial function (or variational function) φ, which will contain
a large enough component in the range of the discrete spectrum, Ran Π(−∞,Σ), such as to satisfy the above
inequality.

8.1.2 The min-max theorem

Let us now state a dual variational formula for the low-lying eigenvalues. In some sense, this statement is more
natural than the max-min formula above.

Theorem 8.1.5 (Min-max principle). All the assertions of Theorem 8.1.1 hold if we replace the formulas for
µn by:

µn = inf
Ln⊂D(T )
dimL=n

sup
06=ϕ∈Ln

〈ϕ, Tϕ〉
〈ϕ,ϕ〉

= inf
Ln⊂Q(T )
dimL=n

sup
06=ϕ∈Ln

qT (ϕ)

〈ϕ,ϕ〉
.

Proof. We only need to prove the equivalent of Lemma 8.1.2, the rest of the proof being identical to that of
Thm 8.1.1.

The max-min and min-max principles are powerful tools for the analysis of the behavior of the eigenvalues with
respect to various parameters. As a basic example we mention the following situation, which will be applied
later to some specific operators:
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Definition 8.1.6. Let (A,D(A)) and (B,D(B)) be two selfadjoint operators on a Hilbert space H, both
semibouneded from below. We write A ≤ B if Q(A) ⊃ Q(B) and 〈u,Au〉 ≤ 〈u,Bu〉 for all u ∈ Q(B).

As a direct corollary of the max-min principle we obtain:

Corollary 8.1.7. Let A and B be self-adjoint, and A ≤ B. In addition, assume that A and B have compact
resolvents. If λj(A) and λj(B), j ∈ N, denote their eigenvalues taken with their multiplicities and enumerated
in the non-decreasing order, then λj(A) ≤ λj(B) for all j ∈ N.

8.1.3 Negative eigenvalues of Schrödinger operators

As seen above in Proposition 7.2.13, if V is a Kato class potential in Rd, then the associated Schrödinger
operator T = −∆ + V acting in H = L2(Rd) has the same essential spectrum as the free Laplacian, i.e.
specess T = [0,+∞) and Σ = 0. In the present section we would like to discuss the question on the existence of
negative eigenvalues.

We have rather a simple sufficient condition for the one- and two-dimensional cases.

Theorem 8.1.8. Let d ∈ {1, 2} and V ∈ L∞(Rd) ∩ L1(Rd) be real-valued such that

V0 :=

∫
Rd
V (x)dx < 0,

then the associated Schrödinger operator T = −∆ + V has at least one negative eigenvalue.

Proof. We assumed the boundedness of the potential just to avoid additional technical issues concerning the
domains. It is clear that V ∈ L2(Rd), and specess T = [0,+∞) in virtue of Theorem 7.2.15. By Corollary 8.1.4
it is now sufficient to show that one can find a non-zero ϕ ∈ H1(Rd) with

τ(ϕ) :=

∫
Rd

∣∣∇ϕ(x)
∣∣2dx+

∫
Rd
V (x)

∣∣ϕ(x)
∣∣2dx < 0.

Consider first the case d = 1. Take any ε > 0 and consider the function ϕε given by ϕε(x) := e−ε|x|/2. Clearly,
ϕε ∈ H1(R) for any ε > 0, and the direct computation shows that∫

R

∣∣ϕ′ε(x)
∣∣2dx =

ε

2
and lim

ε→0+

∫
Rd
V (x)

∣∣ϕε(x)
∣∣2dx = V0 < 0.

Therefore, for sufficiently small ε one obtains τ(ϕε) < 0.

Now let d = 2. Take ε > 0 and consider ϕε(x) defined by ϕε(x) = e−|x|
ε/2. We have

∇ϕε(x) = −εx|x|
ε−2

2
e−|x|

ε/2,∫
R2

∣∣∇ϕε(x)
∣∣2dx =

ε2

4

∫
R2

|x|2ε−2 e−|x|
ε

dx =
πε2

2

∫ ∞
0

r2ε−1e−r
ε

dr

=
πε

2

∫ ∞
0

ue−u du =
πε

2
,

and, as previously,

lim
ε→0+

∫
Rd
V (x)

∣∣ϕε(x)
∣∣2dx = V0 < 0,

and for sufficiently small ε we have again τ(ϕε) < 0.
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We see already in the above proof that finding suitable test functions for proving the existence of eigenvalues
may become very tricky and depending on various parameters. One may easily check that the analog of ϕε for
d = 1 does not work for d = 2 and vice versa. It is a remarkable fact that the analog of Theorem 8.1.8 does not
hold for the higher dimensions due to the Hardy inequality (Proposition 3.2.8):

Proposition 8.1.9. Let d ≥ 3 and let V : Rd → R be bounded with a compact support. For λ ∈ R consider
the Schrödinger operators Tλ := −∆ + λV , then there exists λ0 > 0 such that specTλ = [0,+∞) for all
λ ∈ (−λ0,+∞).

Proof. Due to the compactness of suppV one can find λ0 > 0 in such a way that

λ0

∣∣V (x)
∣∣ ≤ (d− 2)2

4|x|2
for all x ∈ Rd.

Using the Hardy inequality, for any u ∈ C∞c (Rd) and any λ ∈ (−λ0,+∞) we have

〈u, Tλu〉 =

∫
Rd

∣∣∇u(x)
∣∣2dx+ λ

∫
Rd
V (x)

∣∣u(x)
∣∣2dx

≥
∫
Rd

∣∣∇u(x)
∣∣2dx− λ0

∫
Rd

∣∣V (x)
∣∣ · ∣∣u(x)

∣∣2dx
≥
∫
Rd

∣∣∇u(x)
∣∣2dx− (d− 2)2

4

∫
Rd

∣∣u(x)
∣∣2

|x|2
dx ≥ 0.

As Tλ is essentially self-adjoint on C∞c (Rd), see Theorem 7.1.4, this inequality extends to all u ∈ D(Tλ), and
we obtain Tλ ≥ 0, and this means that specTλ ⊂ [0,+∞). On the other hand, specess Tλ = [0,+∞) as λV is of
Kato class (see Theorem 7.2.15).
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