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UNIQUE CONTINUATION FOR SCHRODINGER OPERATORS WITH
PARTIALLY GEVREY COEFFICIENTS

SPYRIDON FILIPPAS, CAMILLE LAURENT, AND MATTHIEU LEAUTAUD

ABSTRACT. We prove a local unique continuation result for Schrodinger operators
with time independent Lipschitz metrics and lower-order terms which are Gevrey 2 in
time and bounded in space. This implies global unique continuation from any open set
in a connected Riemannian manifold. These results relax in the same geometric setting
the analyticity assumption in time of the Tataru-Robbiano-Zuily-Hormander theorem
for these operators. The proof is based on (i) a Tataru-Robbiano-Zuily-Hérmander type
Carleman estimate with a nonlocal weight adapted to the anisotropy of the Schrodinger
operator and (ii) the description of the conjugation of the Schrédinger operator with
Gevrey coefficients by this nonlocal weight. We also obtain similar results for the plate
operator.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Background and results. In this article we are interested in the unique contin-
uation problem for a family of time-dependent Schrodinger operators. For a general
differential operator
6Xj
1.1) P= > a,(x)DZ, where Dy, =—, meN,
jcl<m '

on an open set Q C R” the problem of unique continuation is the following question:
Given w C Q a small subset of Q and u a solution of Pu = 0 in Q, does the observation

Received by the editors July 15, 2024, and, in revised form, March 3, 2025, and March 31, 2025.

2020 Mathematics Subject Classification. Primary 35B60, 35Q41, 47F05, 93B07, 93C20, 93C73.

Key words and phrases. Unique continuation, Carleman estimates, Schrodinger operators, Gevrey
regularity.

The third author was partially supported by the Institut Universitaire de France and the Agence Nationale
de la Recherche under grants SALVE (ANR-19-CE40-0004) and ADYCT (ANR-20-CE40-0017).

©2025 by the author(s) under Creative Commons Attribution 3.0 License (CC BY 3.0)

321


https://doi.org/10.1090/cams/50

322 S. FILIPPAS, C. LAURENT, AND M. LEAUTAUD

of u in w determine u everywhere? By linearity, this property reformulates as
1.2 (Pu=0inQ, u=0inw)=u=0inQ.

If P is a conservative time-dependent Schrodinger operator and u solves Pu = 0 with
[|u(t, || 2@ =1 for all ¢, then |u(t, x)|?dx is a probability density expressing the like-
lihood of finding at time ¢ the quantum particle u at position x. In this case, the unique
continuation property gives information about the localization (or delocalization) of
the quantum particle u. Also, if P is an evolution operator, the unique continuation
property (L.2) is intimately related to the question of finite or infinite speed of propa-
gation, and has key applications to control theory. In that setting, it is related to the
possibility of driving the state of the system, with the action of a localized external
force (located on w), from some initial state to a chosen target state. We refer to the
discussion on control theory in Section [.2.

In order to prove a unique continuation property like ([.2), which is global in nature,
the most efficient strategy is often to study first the question of local unique continua-
tion: given x, € Q C R" and S 3 x, a smooth oriented hypersurface, do we have:

(1.3) (Pu=0inQ, u=0inS~NQ)=> x, & supp(w),

where we denote by S~ one side of the oriented hypersurface S? In this case, one is
interested in propagating uniqueness/nullity from one side of the hypersurface S to
(a small neighborhood of) the other side. If the property ([.3) holds for a sufficiently
large family of hypersurfaces, then one can hope to iterate the local result to deduce
a global unique continuation statement like ([[.Z). The local geometric conditions on
the oriented surface S for which (.3) holds naturally translate into global geometric
constraints for the global unique continuation property (L.2). In addition to geometric
conditions, it turns out that the regularity of the coefficients of P plays a decisive role
in the proof of the local (and hence global) unique continuation property. On the one
hand, the Holmgren-John theorem [Ho6r63, Theorem 5.3.1] yields unique continuation
assuming all coefficients of P (i.e. all a,’s for all |a| < m in ([.1))) are real-analytic and
the hypersurface S is noncharacteristic, that is to say

(1.4) Pm(Xg, d¥(Xp)) #0, where S ={¥ =0},
and
(1.5) Pm(%,8) == D ag(x)E”

la|l=m

is the so-called principal symbol of the operator P. On the other hand, if one is inter-
ested in C* (or C¥) regularity, Hormander’s theorem [H6r94, Theorem 28.3.4] yields
unique continuation under a (rather strong, unless if P is elliptic, a case which is not
considered in the present article) so-called pseudoconvexity condition (that is to be
checked on the whole cotangent space over X, see (.9)). The seminal result of Rob-
biano [Rob91] for hyperbolic operators, subsequently improved in [HO6r92], paved the
way to a more general theorem that would bridge the gap between the C* and the ana-
lytic case. Following another breakthrough by Tataru [Tat95], this program was finally
completed by Robbiano-Zuily, Hérmander and Tataru in the series of papers [RZ98,
Ho6197, Tat99], proving a general unique continuation result for operators having par-
tially analytic coefficients, containing as a particular case both the Holmgren-John and
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the Hormander theorems. We refer to [ILL194, LL19b, LL22, [LL23] for further discus-
sions and comments on these results.

In this article, motivated by applications to control theory (see Section [.2), we are
interested in the particular case of Schrodinger operators

d

d
(1.6) P =id + kZ 8,875 (X)3y,, + D, bI(t, )0y, +q(t, ),
Jj.k=1 j=1

where g/¥(x) is a symmetric elliptic matrix on an open set V' c R4, that is to say
g/¥(x) = g¥(x) and
d
(1.7) thereiscy > Osuchthat Y g/k(x)€;& > colé]%, forall (x,£) € V x RY.
Jj.k=1
Compared to the general situation in (L.1)-(L.3), we have here n = 1 + d, x = (¢, x),
m = 2, and the “principal symbol” of P is

(1.8) p2(x%,8) = py(t,x, &1, &) = — Z gjk(x)ng gxk-
ik

The latter does not depend on the variable &;, dual to the time-variable ¢ (and, in par-
ticular, is the same as for the heat operator ([L.f) in which id; is replaced by —9;). The
formulation of P, , in divergence form, as opposed to ([L.1)), is related to the low regu-
larity of the coefficients in our results, see the discussion in Section [.3.2. For a gen-
eral second-order operator, the classical Hormander Theorem [H6r94, Chapter 28] as-
sumes that the oriented hypersurface S = {¥ = 0} is strongly pseudoconvex for P at
X = (t9, Xo) € I X V (see [LL23, Section 2]):

P2(X05 &) = {2, ¥}(X0, §) = 0 = {py, {p2, ¥}}(X0, §) > 0,
(1.9 forall £ € T*(I x V)\{0}.

Here, {-, -} denotes the Poisson bracket, and the geometric content of this condition is
explained e.g. in [LL23, Section 2]. In the particular case of the Schrédinger opera-
tor ([L.6), due to the degeneracy of the symbol ([.§) in the time-direction, this condition
can also be rewritten as a condition on the tangent space in the x variable only as

(1.10) (X,X)g = d¥(x()(X) = 0 = Hessg ¥(x)(X,X) >0, forallX € T, V.

Here the inner product -, -), and the Hessian are taken with respect to the Riemannian
metric g = (g/%)~! on V ¢ R<. Condition (.I0) allows for X = 0 (this is reminiscent
of (L.9), which has to be checked on the whole time-space cotangent space), for which
(X,X>g = d¥(x()(X) = Hessg ¥(X()(X,X) = 0, hence is never satisfied: The classical
Hormander Theorem [H6r94, Chapter 28] does not apply to the Schrédinger opera-
tor (L.9).

Taking advantage of the anisotropic (or quasi-homogeneous) nature of the
Schrodinger operator, Lascar and Zuily proved in [LZ82] that the results of Hérman-
der [Ho6r94, Chapter 28] can be generalized to the anisotropic case with an appropri-
ate modification of the symbol classes and Poisson bracket. See also [Deh84], [[sa93]
and [[Tat97] for later results in this direction. In the context of ([[.§), this result applies
for coefficients g/ € C! and b/,q € L®. In the situation in which ¥(¢,x) = ¥(x)
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for instance, and the oriented hypersurface is S = {¥ = 0}, the geometric condition
of [LZ82] at a point X, = (ty, Xo) € I X V reads: d¥(x,) # 0 and

(1.11) d¥(xp)(X) = 0 = Hessg ¥(xp)(X,X) >0, forallX € T, V\{0}.

As opposed to (L.10), this condition excludes the zero section X = 0, and is sometimes
satisfied. The latter is however a very strong local geometric assumption on the surface
for (L.3) to hold, which necessarily leads to a very strong global geometric assumption
on the observation set w in an associated global unique continuation statement of the
form ([[.2). For example, using this local unique continuation result, one can prove the
global unique continuation statement (T.) in Q = (0, T) x R4 if w = (0, T) x {|x| > 1}
is the exterior of a cylinder: assuming the solution u vanishes outside, then it has to
vanish inside. However, the condition (.11 does not hold if one wants to propagate
uniqueness from the interior of the cylinder w = (0, T) X {|x| < 1} towards the exterior.
This stresses the fact that pseudoconvexity conditions like (.11 or (L.9) are sensitive to
the orientation of the hypersurface, hence cannot hold for the oriented surfaces {¥ = 0}
and {—¥ = 0} simultaneously. This is in sharp contrast with the noncharacteristicity
condition (.4) which is reversible.

For applications to control or inverse problems, related global Carleman estimates
for Schrodinger operators have been proved for instance in [BP02] (constant leading or-
der coefficients) and in [TX07,Laul0] (Riemannian manifolds or varying coefficients).
A weak pseudoconvexity condition has also been proved sufficient in [MORO08] for a
flat metric and in [LaulQ] with varying metrics. Yet, in all of these references, a form
of pseudoconvexity related to that of [LZ82] is required and global statements hold
under strong geometric assumptions. As proved in [LZ82, Théorémes 1.4 et 1.6], a
pseudoconvexity condition is actually essentially necessary in the following sense: if it
is “strongly violated”, then there exists q € C*(Q) such that ([[.3) does not hold for the
operator P = P, ; in ([L.) with b/ = 0 (see Section [:3.1)).

The Tataru-Robbiano-Zuily-Hormander theorem also applies to the Schrédinger op-
erator ([L.6). In that case, it implies local unique continuation ([[.3) assuming

(1) that the surface S is noncharacteristic, i.e. (L.4);
(2) that the coefficients are real-analytic with respect to the time variable t.

In the setting of the Schrodinger operator (I.8) in R1*¢, note that the noncharacteris-
ticity assumption ([[.4) rewrites equivalently

d

(1.12) 2 87%(x0)0x; (to, x0)0x, W(to, Xo) # .
Jj.k=1

From the geometric point of view, the noncharacteristicity assumption is optimal: it
excludes only surfaces tangent to {t = t,}. For such a surface, local unique continuation
indeed fails, as can be seen in the simplest setting in R? with g=1d,b=0,g=0.1In
this case, the function

o—id sgn(0) 7 xmyl?
(1.13) u(t, x) = Tp+(Ow(t, x),  w(t,x) = ———— f e 3wy (y)dy,
(4r|t))z Jrd
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with w, € C®(R%) and supp wy = ERd (0,1), satisfies with By := Bgi1+a((0, X,), 1) and
|xo]| > 2,

(id; + A)u=0in By, u € C®(By), suppunB,={t>0}nB,.

Hence, the operator i0,+A does not satisfy local unique continuation near (0, x,) across
S = {t = 0}. We refer to [FLL24, Section 5] for more on this example. This lack of
unique continuation is related to the so-called infinite speed of propagation for the
Schrédinger equation, which can be formulated (still in R¢ with g = Id,b = 0,q = 0)
as

(1.14) ((iat +A)w=0inR™*,  we COR;ZRY), w(0,-) e CP(RY)\ {o})
= suppw(t,-) =R%, forallt #0.

This property can be derived from the explicit expression of w in ([[.13), which is a
real-analytic function in x for all ¢ # 0, see [FLL24, Section 5].

Applying iteratively the local unique continuation statement ([[.3) to appropriate
families of noncharacteristic hypersurfaces (see e.g. [LL194, Section 6.2]), the Tataru-
Robbiano-Zuily-Hormander theorem leads to a global unique continuation statement
under an optimal geometric condition, still assuming analyticity in time of the coeffi-
cients. From the point of view of regularity requirements, however, analyticity in time
is of course very demanding.

Note finally that T’joén [T"j00] proved a quasi-homogeneous variant of the Tataru-
Hormander-Robbiano-Zuily theorem in a general setting and Masuda [Mas67] proved
a global uniqueness result in the case of C? principal coefficients and time indepen-
dent coefficients. A challenging problem is to understand to which extent the time-
analyticity condition can be relaxed under optimal geometric conditions. For the wave
operator, analyticity in time is in some sense optimal: we refer to Section [[.3.T and the
discussion in [LL23] of the counterexamples of Alinhac-Baouendi [AB79,/Ali83,/AB93]
and Hormander [H6r00]. In this direction, our results relax the time analyticity as-
sumption of the Tataru-Robbiano-Zuily-Hormander theorem for the Schrodinger op-
erator ([[.f) down to Gevrey regularity.

Definition 1.1. Given d € N*, U C RY an open set, (B,]| - ||5) a Banach space and
s > 0, we say that f is an s-Gevrey function valued in B, denoted f € G5(U; B), if
f € C*®(U; B) is such that for every compact set K C U, there are constants C,R > 0
such that for all « € N¢

% f (). < CRIH S .
rtnea}(XII fOll5 < a

These spaces were introduced by Gevrey [Gev18] to investigate regularity properties
for solutions of the heat equation between real-analyticity and C* regularity. Notice
that s, < s, = G(U;B) Cc 9%2(U;B) and for s = 1, GY(U;B) = C®(U;B) is

the space of real-analytic B-valued functions. However, for s > 1, G5(U; B) contains
nontrivial compactly supported functlons A paradigmatic example of such a function

is, fora > 0, t = o p(t)e = T - t)“ , which belongs to G1+ @ (R;R) and has support
the interval [0, 1]. See e.g. [Hor90] or [R0d93] for more properties of Gevrey functions.
In what follows, we mostly consider the case d = 1, t being the time variable (but also
consider d = 2 in Section B.T). Our main results may be summarized as follows.
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Theorem 1.2 (Local unique continuation for Schrodinger operators). Assume Q =
I XV whereI C R is an open interval and V C R? an open set, and let (ty, x,) € Q.
Assume gik € Wb(V) satisfies (7). that b/, q € G2(I;L®°(V;C)). Let ¥ € CY{(Q;R)
such that {¥ = 0} is noncharacteristic for P at (to, X), in the sense of ([.12). Then, there
is a neighborhood W of (ty, xo) such that, for P, , defined in ([L.6),

(Pqu=0 inQ, uel*HY(V), u=0in{¥>0}) = u=0inW.

For applications, one may need to assume less regularity on the solution u. The
latter can indeed be relaxed, if we assume additional regularity of the coefficient b.

Theorem 1.3 (Local unique continuation for I? solutions). Under the assumptions of
Theorem [L.2, and assuming in addition that Z?ﬂ O, b/ € L®(Q; C), there is a neighbor-
hood W of (ty, xy) such that

Poqu=0 inQ, uel?(Q), u=0in{¥>0}) = u=0inW.

Note that the divergence form of the principal part of P, , together with the respec-
tive regularity assumptions on g/¥, b, q and u allows to make sense of P, quin D'(Q).
With respect to the Tataru-Robbiano-Zuily-Hormander theorem for the Schrédinger
operator ([[.6), we relax the analyticity-in-time assumption for the lower-order terms
to a Gevrey 2 condition. We also relax the regularity of the main coefficients (assumed
either C* in [RZ98, H6r97, Tat99] or C! in [Tat935]), replaced here by Lipschitz regu-
larity; in the elliptic context (and therefore in our context as well) this is essentially
the minimal regularity in dimension d > 3 for local uniqueness to hold (see [Pli63]
and [Mil74] for C%* counterexamples for all « < 1, for operators in divergence form
or not).

Remark 1.4. One can further lower the regularity of the solution u by assuming addi-
tional regularity of the coefficients g/, b/, q. For instance, assuming (in addition to the
assumptions of Theorem [[.2) that g/ € C*(V), b/, q € C®(Q; C), then we have

(Pqu=0 inQ, ued(Q), u=0in{¥>0}) = u=0inW.

Successive applications of Theorem [[.7 or Theorem [[.3 through a family of well-
chosen noncharacteristic hypersurfaces yield the following global result (see [LL19a,
Proof of Theorem 6.7 p. 100] and use that a connected manifold is path-connected).

Theorem 1.5. Let T > 0 and M = Int(M) LI OM be a connected smooth manifold with
or without boundary M. Suppose that g € Wllc;z0 (Int(M)) is a Riemannian metric on
Int(M), that q € G*((0, T); L2.(Int(M); C)), that b is a one form with all components

loc

belonging to G*((0, T); Lio.(Int(M); C)), and consider the differential operator
Roq =100, +Ag +b - Vg +q(t,x),

where Ag is the Laplace-Beltrami operator on Int(M), V¢ the Riemannian gradient.
Then given w a nonempty open set of M, we have

Roqu =0in (0, T) X Int(M)
u €Ly (0, T;H (Int(M))) = u=0in(0,T)x Int(M).
u=0in0,T)Xw



UNIQUE CONTINUATION FOR SCHRODINGER OPERATORS 327
Ifin addition divg(b) € L{3.((0, T) X Int(M)), then

Ry qu =0in (0, T) X Int(M)
u € L? ((0,T) x Int(M)) = u=0in(0,T) X Int(M).

loc

u=0in(0,T) X w

Note that by g € G2((0, T); L{3.(Int(M); C)), we mean q € G2((0, T); L*(K; C)) for
all compact subsets K of Int(M). Note also that under the assumptions of Theorem [L.5,
the Cauchy problem %, ;u = 0,u(0, ) = u, is not well-posed in general.

Asin [LL23] (see Theorem 3.24 and the remark thereafter), this result (for solutions
in I*(I; H(V))) can also be translated into a global unique condition from an arbitrarily
small nonempty open subset of the boundary M (in case M # §J); we do not state
this result for the sake of concision.

We finally mention that other notions of global unique continuation have been ex-
tensively investigated for solutions of Schrédinger equations during the last years. One
such notion is the following: Assume that a solution u = u(t, x) of the Schrodinger
equation on R; X R, vanishes in |x| > R for some R > 0 at two different times ¢, and ¢;.
Can we then conclude that u vanishes everywhere? This question has been addressed
for instance in [EKPVO06, [K06, DS07], see also the references therein. All of these re-
sults hold under stronger geometric assumptions in space (flat metric, nullity outside
of a ball), weaker regularity assumptions on the lower-order terms, and use as a key
tool Carleman inequalities.

1.2. Application to controllability and observability.

1.2.1. Approximate controllability. As already alluded, unique continuation properties
for evolution equations are often equivalent to approximate controllability results for
an appropriate dual problem, see e.g. [DR77,Lio88] or [FLL24, Section 1] in the present
context. In particular, Theorem [[.3 has an “approximate controllability” counterpart.
For simplicity of the exposition, we only treat the internal control (the boundary con-
trol could be considered as well) of I? solutions (the case of C°H~! solutions could
be considered as well) with b = 0 (the case of general b could be considered as well,
with regularity assumptions depending on the space in which the control problem is
set; note that in any case, additional assumptions should be made so that to ensure
well-posedness of the Cauchy problem). Given T > 0, M = Int(M) LI M a smooth
manifold with (possibly empty) boundary, g a locally Lipschitz continuous metric on
M, and w C M an open set, we consider the control problem

i0ju+Agu+qu=T1,f, in(0,T) X Int(M),
(1.15) v=0, on (0,T) X OM  if OM +# @,
v(0, ) = vy, in Int(M).
Here, f is a control force acting on the system on the small open set w and one would

like to control the state v of the equation. Concerning well-posedness of the Cauchy
problem in ([.13), we first let H3(M) be the completion of C}(Int(M)) for the norm

2
(1.16) lullFrgary = /M (|Vgu|g + |u|2>dV01g.
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Note that C}(Int(M)) being dense in I*(M), we have a continuous embedding H}(M)
C I*(M). Second, we take the Friedrichs extension on I*(M) of —A, defined on
C(Int(M)), which we denote by —A, . It is defined by

D(=Agp) = {u € H{(M), there exists h € [2(M),
(1.17) / (Vgu, Vgo)z + up d Volg = f he dVol, forallp e H(l)(M)}.
e e

For u € D(—Ag ), there is a unique h satisfying (L.17), and we set (—=Ag g + Id)u := h.
Third, for g € L*((0, T) x M;C), the solution to ([.I5) is defined via the Duhamel
formula for the unitary group (e”Ag’F) rep ndisa solution of the first equation of ([.13)
in the sense of distributions on (0, T) X Int(M). Note that if we assume that M is
(topologically) complete and that dM is compact, then H{(M) = {u € H' (M), Tr(u) =
0}, where H'() is defined as the completion of C'(M) functions with finite H' norm
for this norm (Definition ([.16)) and Tr : H'(M) — I2(6M) is the trace operator. This
remark justifies the formal writing of the Cauchy problem in (L.15).

The (second) unique continuation result of Theorem [[.§ combined with a classical
duality argument [FLL24, Lemma 1.1] yields Corollary [L.4.

Corollary 1.6. Assume M is a complete connected manifold with or without compact
boundary, g is a locally Lipschitz continuous Riemannian metric on M, and

q € L2((0, T) X M; C) N G2((0, T); L2 (M; C)).

For any nonempty open set w C M, for all vy, v, € I*(M;C) and for all precision € > 0,
thereis f € I*((0, T) X w) such that the solution to (L.13) satisfies ||(T, -) — vy ||r2(ar) < €

Note that we actually only need to assume q € G(I; L2 .(M; C)) for some nonempty
opensetI C (0, 7).

1.2.2. Observability, exact controllability. Unique continuation also plays a key role
in proofs of exact controllability results, or equivalently, observability estimates. For
wave-type and Schrédinger equations, the proof of the latter often decomposes into a
high frequency and a low-frequency analysis. We refer to the introduction of [LL16] for
a detailed account in the case of the wave equation and to [FLL24] in the present con-
text. The low-frequency part of the analysis amounts to a unique continuation property
like Theorem [.3. The observation system is the following free Schrédinger equation:

idju+Agu+qu=0 in(0,T) X Int(M),
(1.18) u=0, on (0, T) X M  if OM + @,
u(0, ) = uy, in Int(M),

dual to the control problem ([.15) if g = q. As in the preceding section, for simplicity of
the exposition, we only discuss the internal observability/control of I? solutions with
b = 0 toillustrate some applications of our results, and provide with a single geometric
example of application.

Theorem 1.7. Assume that (M, g) = (D, Eucl) is the Euclidean (closed) unit disk and
that ¢ € C*([0,T] x D;R) n G2((0, T); L. (Int(D); R)) is real valued and w is any
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nonempty open set of D such that w N 0D # (. Then for any T > 0, thereis C > 0
such that for all uy € I*(M), the solution u to (L.I8) satisfies

T
(1.19) ||u0||iz(M) < Cf /|u(t,x)|2dxdt.
0 w

Our contribution in Theorem [[.7 is to include more general time-dependent poten-
tials g, using Theorem [[.3 for the “low frequency” part of the proof. Theorem [.7 is
a direct combination of [ALM16, Theorem 1.2] and Theorem [[.5. Note that the C*®
regularity can be relaxed, see [ALM16, Remark 1.6].

By a classical compactness-uniqueness argument [BLR92], observability estimates
like (I.19) can be deduced from the unique continuation result of Theorem [[.5 together
with a weakened (or high-frequency) observability estimate (i.e. of the form ([.19) with
an additional relatively compact remainder term on the right-hand side). The geometry
discussed in Theorem [[.7 is only an example for which the high frequency result may be
applied as a black box. One may hope to generalize Theorem [[.7 to many other geomet-
ric situations where the high frequency observability is well understood, for instance
in general geometries under the Geometric Control Condition [Leb92], on tori [AM14,
AFKM135,BBZ13], on negatively curved manifolds [[AR12,/Ana08, DJ18, DJN22], in un-
bounded geometries [Pro25] (see also the references therein). This requires additional
work and we plan to study this question elsewhere.

As a direct corollary of the observability statement of Theorem [[.7, we deduce an
exact controllability statement for System (.15) (see [DR77, Lio88] or [FLL24] in the
present context).

Corollary 1.8. Assume that the assumptions of Theorem [L] are satisfied. Then, for all
Vo, U1 € IX(M;C), thereis f € I*((0,T) X w) such that the solution to ([.13) satisfies
u(T,-) = ;.

1.3. Remarks.

1.3.1. Remarks on Gevrey regularity. Gevrey regularity already appears in the study of
strong unique continuation for elliptic operators, see e.g. [Ler81,CGT06,[K12,KNS19]
and the references therein. In these references, the authors consider elliptic operators
with complex coefficients and characterize a critical Gevrey index for strong unique
continuation to hold, in relation to the geometry of the image-cone of the principal
symbol.

Gevrey spaces also appeared recently in the related context of control of 1D evolution
equations in the so-called flatness method. For an operator of the form oY + adM, with
a € C*and1 < N < M, the idea of this method is to solve the ill-posed problem
oM = —a~16Nu, seeing x as a new evolution variable. It turns out that the correct
regularity in time to be able to solve this evolution problem and the associated control
problem is Gevrey s = M/N, see [MRR16] for the particular case of the heat operator,
[MRRR19] for the KdV operator and [LRR235] for a more general result. It corresponds
to the index s = 2 in the case of the Schrodinger equation. For an anisotropic operator
of the form P = 8N + Q with Q a differential operator in the space variable of order
M > N, it is likely that an analog of our result holds assuming that the coefficients of
the operator Q are Gevrey s in t with s = M/N.
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Also, as already alluded, it is proved in [LZ82, Théorémes 1.4 et 1.6] that a quasi-
homogeneous version of pseudoconvexity (like e.g. (L.11) in case ¥(¢, x) =¥(x)) is actu-
ally needed for unique continuation to hold for general C* lower-order terms. As an il-
lustration, [LZ82, Théoréme 1.6] proves thatif d > 2, there exist u, g € C®(Bg1+4(0, 1); C)
such that

Rqu=0, inBgiw (0,1), u=0on{x; >0}, and O € supp(u),

whence unique continuation does not hold across the noncharacteristic surface {x; =
0}. Hence the statements of Theorems [[.2 and [[.3 are false without the Gevrey-in-
time regularity assumption of q. A semiglobal version of this counterexample was con-
structed by Takase in [Tak21], who proves existence of u,q € C®(R*2) solving (for
d = 2 and the Euclidean metric) B qu = 0 in R**2 and supp(u) = R x (R* \ B(0,1)).

As a comparison, in the case of the wave equation, the classical counterexamples of
Alinhac-Bahouendi [[AB79, Ali83,/AB93], as refined by Héormander [Hor00], prove the
following statement. For any s > 1 and d > 2, there exist u,q € G¥(Bg1+4(0,1);C) so
that

(1.20) Zu—Au+qu=0, inBgi+a(0,1),
and supp(u) = {(t, x;,...,Xg) € Br1+a(0,1),x; <0}.

This shows that for the wave equation, without any further assumptions, the analyt-
icity in time of q is essentially optimal (within the class of Gevrey spaces; note that
Hormander’s statement is even stronger) in geometrical situations where the strong
pseudoconvexity of the hypersurface is not satisfied.

Concerning the Schrodinger operator R 4, given the counterexamples of [LZ82,
Théoremes 1.4 et 1.6] for q € C*, described above, it seems natural to consider Gevrey
spaces to relax the analyticity assumption of the Tataru-Robbiano-Zuily-H6rmander
theorem. The role of the Gevrey index 2 in Theorems [.2-[.3 can be heuristically
explained by an analogy with the wave equation as follows. For the wave operator
92—A+q(s, x), the Hormander counterexample [H6r00] in (T.20) shows that analyticity
(that is Gevrey 1 regularity) is essentially optimal, i.e. the assumption |9¥q| < CR¥k!
for some constants R,C > 0. The natural homogeneity/scaling of the wave opera-
tor is d; ~ Jy, whereas the natural homogeneity/scaling for the Schrodinger opera-
tor id; + A + q(t,x) is 8, ~ d2. Comparing these two different scalings heuristically
yields 8, ~ 32, where s denotes the time variable of the wave operator and ¢ that of
the Schrodinger operator. Using this relationship, the analyticity-in-time condition

k

|6kq| < CR¥k! becomes in the natural scaling of the Schrédinger operator |97 q| <
CRKk!, that is |3¥q| < CR*(2k)!. Thanks to Stirling’s formula, this corresponds pre-
cisely to Gevrey 2 regularity (see Definition [L.1]). This discussion indicates that Gevrey
2 regularity-in-time should be the critical regularity for the local unique continuation
across any non-characteristic hypersurface. This argument is purely heuristic, and it
would be interesting to know if counterexamples can be constructed for Schrodinger
type equations with Gevrey 2 + ¢ coefficients, that is to say, whether the Gevrey 2 reg-
ularity in time is indeed the critical one. We notice however that the construction of
such counterexamples is in general a highly nontrivial task.

We also refer to Section [[.4 where we explain precisely how the index 2 appears in
our proof, and why it is the best that our techniques allow to obtain.
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Theorems [.2 and [[.3 show that in the context of the Schrédinger equation, Gevrey
1 + € counterexamples do not exist.

1.3.2. Remarks on the divergence. In the local setting, we have written the elliptic
operator in ([-8) in divergence form. Since we assume that g/¥ has Lipschitz (time-
independent) regu}arity, and we have gfk(x)axjaxk = axj ng(x)axk - axj(gfk)(x)axk,
the operator axj (gfk)(x)axk has time independent L* coefficients, i.e. the same reg-
ularity as b/ 6xj in Theorem [[.2. Hence, the statement of Theorem [[.2 holds as well
for 9,,87%(x)dy, replaced by g/*(x)dy;dy,. That is to say, Theorem [[.2 does not care
about the divergence form of the operator. The same remark holds for the first part of
Theorem [.5.

In Theorem [[.3 however (and in the second part of Theorem [L.5), for the unique
continuation statement for I? solutions, it is important that the elliptic operator be in
divergence form. Nevertheless, the principal term dxj gjkdxk or Ag in these two state-
ments may be replaced by any operator of the form

Ag o i=divy Vg,
where g is a Lipschitz continuous Riemannian metric, ¢ is a Lipschitz continuous
nowhere vanishing density and div,, and V, denote respectively the associated diver-
gence (the Riemannian case corresponds to ¢ = \/F(gﬂ with g = (gji) = (g/%)~1, and
the Euclidean case to ¢ = 1) and gradient. In local coordinates, they write

d d

divy,(X) = Z éaxj (¢X;), Vou = .Z gjk(axju) ai'
Jj=1 J.k=1 Xk
The results of Theorem [[. and the second part of Theorem [[.3 (for I? solutions) ac-
tually depend on the density chosen (i.e. the result for one density cannot be deduced
from that for another density). They are however valid for any locally Lipschitz nonva-
nishing density and the proof of Theorem [[.3 is actually written in the general context
of the operator Ay .

As far as first-order terms are concerned, for the unique continuation statement for
I? solutions, it is crucial that 23.1:1 ax}. b/ € I°(Q; C) in Theorem [[.3 (and in the second
part of Theorem [.5). Note that in Theorem [[.3, the divergence (form of the operator as
well as the divergence condition for b) is taken with respect to the Euclidean density in
R9. In the global setting of Theorem [.3, the divergence (form of the operator as well
as the divergence condition for b) is taken with respect to the Riemannian density in
(M, g). However, in both settings, given any nondegenerate locally Lipschitz density
@, we see that

d Oy
divy,(X) = div;(X) + ; X;.
j=1
Hence, for any L™ vector field b, any Lipschitz metric g and any nonvanishing Lipschitz
density ¢, we have (locally near a point)
divg(b) e L* <« divg(b) €L® <« divy(b) € L™,

where div, denotes the Riemannian divergence (and is defined by div \/m).
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1.3.3. More general lower-order terms. So far, all results are stated for linear
Schrodinger operators. However, as one can check in the proof (see Section f.1 where
the perturbation argument is performed), C-antilinear lower-order terms can be in-
cluded in the unique continuation statements. For instance, the statement of Theo-
rem [[.2 remains valid for all solutions u to
d
P, qu+ Z b/(t, x)axju +q(t,x)u =0,
j=1
assuming (in addition to the assumptions of Theorem [[.7) that one has

b/,q € G2, L°(V;0)).

One may also want to lower the space regularity of the lower-order terms. In the
proof of Theorem [[.2, an application of a rough Sobolev embedding shows that only
q € G2(I; I%(V;C)) isneeded if d > 3 and q € G(I; I**¢(V; C)) for some ¢ > 0ifd = 2.
See Remark B.5. Note also that our result is of no interest in space dimension d = 1, for
unique continuation applies to L*(I X V) coefficients (without any Gevrey assumption;
the appropriate pseudoconvexity condition being satisfied in 1D), see e.g. [[sa93, Corol-
lary 6.1.].

1.3.4. Infinite speed of propagation for the Schridinger equation. As mentioned in the
introduction, infinite speed of propagation ([[.14) is related to lack of unique continua-
tion from surfaces of the form {t = ¢,}. Note that the counterpart for waves is described
e.g. in [Ler19, LL22], where finite speed of propagation is proved as a counterpart of a
unique continuation statement from surfaces of the form {t = ¢,} (or, more generally,
from timelike surfaces).

In this section, we stress that infinite speed of propagation for the Schrodinger equa-
tion is actually a consequence of Theorem [I.§ (together with well-posedness of the
Cauchy problem). We formulate this result in case b = 0 for simplicity, and use the
second unique continuation result of Theorem [L.3.

Corollary 1.9 (Infinite speed of propagation). Assume M is a complete connected man-
ifold with or without compact boundary, g is a locally Lipschitz continuous Riemann-
ian metric on M, and q € L®((0,T) x M;C) n G((0, T); Lio (M;C)). Then, for any
uy € I2(M) which does not vanish identically, the unique solution u to the Cauchy prob-
lem

idu+Agu+qu=0 in(0,T)XInt(M),
u=0, on (0, T) XM  if oM # @,
u(0, -) = uy, in Int(M),

satisfies supp(u) = [0, T] X M.

We refer to Section [[.2 for the discussion of the Cauchy problem. Corollary [.9shows
that infinite speed of propagation still holds for the Schrédinger equation with less
regular coefficients. This result can thus be seen as a geometric, limited-regularity,
generalization of the infinite speed of propagation statement ([.14) in the Euclidean
space. Indeed, if in addition to the assumptions of the corollary supp(u,) is compact,
then the associated solution of the Schrédinger equation still has full support.
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1.3.5. The plate equation. It is well known that the plate operator 97 + Aé can be factor-
ized as a product of two Schrodinger type operators, and thus shares many properties
with the latter. This has been used in the context of unique continuation and Carleman
estimates for instance by Isakov [[sa97], relying on the anisotropic Carleman estimates
developed in [[sa93]. In this section, we describe a unique continuation statement for
the plate operator, that can be obtained as a rather straightforward consequence of
our estimates on the Schrodinger operator. The result also involves lower-order terms
having Gevrey 2 regularity in time, but it seems to be new even for analytic-in-time
lower-order terms. Our result applies to operators of the form

(1.21) Toq i= 07 + A2 +b(t,x) - Vg +q(t, x).

Theorem 1.10 (Local unique continuation for plate operators). Assume Q = I XV
where I C R is an open interval and V C R? an open set, and let (ty, X,) € Q. Assume
gk e w3>(V) satisfies (7), that b/, q € G2(I;L®(V;C)). Let ¥ € C1(Q;R) such that
{¥ = 0} is noncharacteristic at (ty, x,), in the sense of (.12). Then, there is a neighbor-
hood W of (ty, xo) such that, for 7y, , defined in ([L.21)),

(Foqu=0 inQ, ueHGH V), u=0in{¥>0}) = u=0inW.

From this result, one can deduce a global unique continuation statement as Theo-
rem [[.5. We leave the details to the reader. Note that even with the analytic regularity,
the general unique continuation theorem of Tataru-Robbiano-Zuily-Hérmander does
not apply directly since the adapted pseudoconvexity condition in {§;, = 0} is never
satisfied. We refer to Remark [B.7 for precise computations.

To our knowledge, most of the references on the unique continuation for the plate
operator rely on classical Carleman estimates, and therefore require some strong geo-
metrical assumptions related to strong pseudoconvexity. The earliest result seems to
be [[sa97] which was extended to lower regularity in [ET15]. As for the Schrédinger
case, we expect that the present result might have applications to controllability and
stabilization. There are many works concerning the control of plate type equations. See
for instance [Leb92] under the Geometric Control Condition, [Kom92] on the torus.
See also the recent article [TBE24], allowing perturbations, for a more extensive state
of the art concerning the controllability question for plates. It would be interesting to
see if our unique continuation theorem for plate operators can be used to generalize
some of these controllability results, by including lower order terms that are Gevrey 2
in time.

1.4. Idea of the proof, structure of the paper. Since the pioneering work of [Car39],
Carleman inequalities are one of the main tools for proving unique continuation re-
sults. Carleman estimates are weighted inequalities of the form

(1.22)

eT¢PuH >
12

eT¢u” , T =T
LZ

which are uniform in the large parameter 7 and are applied to compactly supported
functions u. The weight e*® allows to propagate uniqueness from large to low level sets
of ¢ by letting 7 — oo. The key additional idea in [Tat95] (following the introduction
in this problem of the FBI transform in time in [Rob91l]) is to make use of the nonlocal
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€Dy |

Fourier multiplier in time e~ "2r , and replace ([.22) by

e’ —aell e _eb?
(1.23) e~ "2t e™®Pul| +e e¢uH >lle" " eul| , 7>1.
L2 12

12

A key feature of this approach is that, although ([.23) carries less information on e*%u,
it is still enough to prove unique continuation (see Lemma [A.T). And the advantage
of ([.23) with respect to ([.27) is that the operator and the function are localized in a
low frequency regime with respect to the variable ¢t. Hence ([.23) holds if we only as-
sume the classical pseudoconvexity assumption in a smaller subset of the phase space,
namely where &, = 0 (here, ; is the dual variable to t). See [[Tat93, RZ98, H6r97, Tat9Y]
for the original proofs and [LL23] for introductory lecture notes on this topics in the
case of the wave operator.

In the setting of the wave operator P = —97 + Y g/k (x)axj Iy, » the principal symbol
p, =& -3 gjk(x)é’xj &, is homogeneous of degree two in all cotangent variables
(&:,&). When proving Carleman estimates like ([.22) or ([.23), the large parameter t

plays the role of a derivative, which naturally results in D, ~ D, ~ 7. In this scaling,

E| t\

the Fourier multiplier “=t~ appearing in (1.23) is “of order one”, and large frequencies

c2
|D¢| > cot only contribute to admissible remainders of size e™* 27,

The first main idea for the proof of Theorems [[.2-.3 is to prove a Carleman estimate
adapted to the anisotropy of the Schrédinger operator ([[.f) in case b = 0,q = 0. In
this setting, we want to consider that D, is homogeneous to D ~ 72, With this new
definition of homogeneity/order/scaling, the natural “first-order” Fourier multiplier in
D t|

time (appearing in the Gaussian conjugation operator) is . Therefore, the first step
of the proof of Theorems [.2-[.3 is a Carleman estimate of the form

HDs 2

_ _ D2
(1.24) e 23 ePPul| +e 97 |efu e” 3 ey

2

12 > T 2 TO,

L2

12

for the unperturbed Schrodinger operator P = id; + Y g/%(x)d, 6 . Thisis achieved in
Section P (see Theorem P.5). Note that as compared to (L.23), frequenc1es |D;| > coT?

contribute to admissible remainders of size e g >T. In other words, ([[.24) carries in-
formation on time-frequencies |D;| < 72 of the function e??u whereas the usual es-
timate ([.23) only contains information on time-frequencies |D;| < 7. This is also
clearly seen in the proof of [LL194] of the optimal quantitative version of the Tataru-
Hormander-Robbiano-Zuily theorem. In [LL194], the Carleman estimate ([.24) allows
to propagate low frequency information of the solution in the sense |D;| < 7; whereas
the Carleman estimate ([.24) will allow to propagate low frequency information of or-
der |D;| S 72. This indicates that the new weight allows to “propagate more informa-
tion”.

The key step in the proof of the Carleman inequality ([.24) (in Theorem R.3) is a
subelliptic estimate (Proposition 2.§) for the conjugated operator Py , defined by

_ D2

uD
(1.25) e 2 P =Py e 2 e,
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where the time independence of the coefficients of P is crucial for the computation of
Py .. The latter takes the form (for appropriate norms)

(1.26) [Ps.co],, + 1Dl 2 1ol
_ HID?
That the subelliptic estimate ([:26), applied to v = e~ 23 e"®u, implies the Carle-
KDy

man inequality ([.24) follows from the fact that e 223 localizes exponentially close
to D, = 0. Hence the term ||D;v|| mostly contributes to the exponentially small re-
mainder in ([[.24) plus a small term that one can absorb in the right-hand side of (L.24).
The proof of ([[.26) relies on two steps. We first perform the computations in the case
1 = 0, that is to say, as for a traditional Carleman estimate of the form (L.22), with
the difference that all terms involving ||D;v|| can be considered as remainder terms.
This essentially reduces this step to a usual Carleman estimate for elliptic operators
with only Lipschitz regularity (plus remainder terms involving time derivatives), for
which we rely on [LL21, Appendix A]. Then the second step consists in consider-
ing the general case u > 0 as a perturbation of the previous step plus admissible re-
mainder terms. A related (although different) perturbation argument is used in the
proofs of [Tat93, Hor97, RZ98, Tat99], see e.g. [LL23, Section 3.3]. A difference is that
we prove ([.24) for all x > 0, whereas (L.23) only holds for small ¢ > 0. In the
proof of unique continuation result of Theorems and [[.3, we do not take advan-
tage of the fact that ([.24) holds for u large. We expect however that this will be a key
feature of ([.24) in view of proving optimal quantitative unique continuation for the
Schrodinger operator.

The second main step for the proof of Theorems [[.2-[.3 is to prove that ([[.24) still
holds for general b, q having Gevrey 2 time-regularity. To this aim, we perform again a
perturbation argument and essentially need to prove that

uDy?

uIDg? _ HDy¢
e 220w

(1.27) e = (qu)||
L2 L2

which becomes an admissible remainder in the sharp version of ([.24) (i.e. with the
appropriate norms and powers of the large parameter 7). The proof of (1.27) relies on
a conjugation result of the form (.23) but for the multiplication by a function, say g,
depending on t. We only consider the case 4 = 1 in the remainder of this introduc-
tion for readability. We first notice that if q(¢) = ¢, then an explicit computation with

gaussian functions (see e.g. [LL23, Lemma 3.12]) yields

+e I |wl| .

_IDg? D.\ _IDi?
e” = (tv) = (t+ir—3t)e 23 p,

and hence if q € C[X] is a polynomial, then the following exact conjugation holds:

D12

_IDy2 Dy\ D2
(1.28) ¢ 2 q= Cl(t+l'_[—3t>e 23 .

This fact has been already used in the conjugation statement ([.23) (where the coef-
ficients of the operator do not depend on ¢ and the function ¢ is assumed quadratic
in time). Even if the function q is real-analytic with respect to ¢, the right-hand side

of (L.2§) is not always well-defined and an exact conjugate operator with respect to
Dy 2
e~ 2 does not necessarily exist. One of the main difficulties in [[Tat95, RZ98, H6r97,
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Tat99] consists in defining an approximate conjugate of a multiplication by an analytic
|Dy 2
function q by e~ 7, up to an error of the form e~%7 ||u]|. The latter is an admissible re-

mainder in view of ([.27) and (.23). In the present setting and if typically q € G*(R;C)
depends only on ¢, then the conjugation result we prove reads

D2

_ D2 5 _ D¢l _
(1.29) e” 2 q=o0p¥(§.(t,€))e” 2 +0(e 5T)L(L2(R))’ T = 400,

where op¥ (§.(t, £,)) is the classical Weyl quantization of a symbol §.(t, &) constructed
from q. Here, (¢, §;) € R X R, with the second variable being the dual variable to ¢, that
is to say such that op*(&;) = D,. More precisely, in this expression, the symbol §.(t, &;)
of the approximate conjugated operator is given by

(1.30) G, &) =1 (T—§> g <t + z%) for (t,€,) € RX R,

where
(1) gisan almost analytic extension of q to C (in the sense that 0§ vanishes at any
order on the real line), well suited to the G2 regularity of q (in the sense that it
satisfies § € G%(C;C)). For q € G°(R;C) such a well-chosen almost analytic
extension §(z) satisfies

(1.31) 102a(2)|| < Cexp (—%);
Co| Im(z)[5=1

(2) n € CX(R) satisfies n = 1 in a neighborhood of zero. In particular, # cuts off
high frequencies |D;| 2 72, which, as already mentioned, is the right scale in
the present setting.

Our proof of the conjugation result ([.29) is inspired by the strategy of Tataru [Tat99],
with particular attention paid to the different scalings and to the fact that the functions
involved are not analytic. It proceeds with a deformation of contour on the support of

n <%), where the almost analytic extension § satisfies, in view of (.31) with s = 2,
3 T &
Sexp (— )5 exp (——,) on suppn(—).
‘ Col&:l Co 72
Owing to the fact that op® (§.(t, &,)) is uniformly bounded on I?(R), the conjugation

result (I[.29) provides a proof of (.27) and eventually of ([.24)) for the perturbed oper-
ator B .

(1.32) ‘ (8,4) (z + l%)

To conclude this description of the proofs, let us discuss the different scales in-

2

volved, in relation with the Gevrey 2 regularity assumption. Firstly, the scaling %
_ HiDyf?

in the Gaussian multiplier e~ 27> , together with the maximal regime |D,| < 72 in

which the estimate ([.29) is useful, is dictated by the homogeneity D, ~ D2 ~ 72 of

the Schrodinger operator, see the discussion before (.24). Secondly, in view of ([.28)

the symbol §, of the principal part of the conjugated operator in (.30) is naturally

q (t + zf—;) where § is an almost analytic extension of q. The additional cutoff (f—;)

corresponds to the maximal regime |D,| < 72 in which the estimate ([.24) is useful.
Henceforth the complex variable z = t + if_—; satisfies Im(z) = O(t~!) on the support
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of 7. Given the vanishing order of the almost analytic extension of a Gevrey s func-
tion provided by (.31)) (and which is optimal in general), the analysis leading to ([L.30)
1

would yield (L.32) with an O(e‘arﬁ ) remainder term for any function of class Gevrey
s. Finally, in Carleman estimates like ([[.24), we notice only remainders of the form
O(e‘af) are admissible (and allow to “gain & levelsets of ¢” in unique continuation).
This forces the assumption S%l > 1 whence s < 2. As a consequence, this brief discus-
sion shows that, as far as the proof is concerned, the Gevrey index s = 2 is the best we
can obtain.

The plan of this article is as follows. Section Pis devoted to the proof of the Carleman
estimate ([.24) in the unperturbed case b = 0,q = 0. We use some notation from Rie-
mannian geometry which we recall in Section .. We discuss the conjugated operator
in this setting in Section .2 and state the Carleman estimate ([.24) in Theorem R.5. We
then state the subelliptic estimate ([[.26) in Proposition 2.8, prove that the subelliptic
estimate implies the Carleman estimate in Section 2.3, and prove the subelliptic esti-
mate in Section P4. As already mentioned, this proposition proceeds in two steps: the
case u = 0 is first treated in Section and then the case 4 > 0 in Section in
a perturbation argument. The usual convexification step is performed in Section P.3,
allowing to transform the function ¥ defining the hypersurface into a weight function
¢ satisfying the assumptions of the subelliptic and the Carleman estimate.

Section f is devoted to the study of the conjugated operator and a proof of a conju-
gation statement like (L.29) (namely Proposition B.g). In Section B.1] we start with the
construction of almost analytic extensions of Gevrey functions adapted to our needs.
We then state the conjugation result in Proposition B.§ and proceed to the proof in Sec-
tion B.2.

The unique continuation Theorems [[.2-[.3 are finally proved in Section . Com-
bining the results of Section P and Section [ yields a Carleman estimate with Gevrey
lower-order terms, studied in Section [i.1. Then an appropriate weight function for the
unique continuation results is constructed in Section .2 and we conclude the proof of

Theorem [[.7. In Section .3 we explain how one can exploit the time-regularization of
_pl?
the Fourier multiplier e =3~ combined with the ellipticity of P, 4 in space, in order

to reduce the regularity of the solution in the unique continuation result. This step,
actually relying also on a refined estimate proved in Section P} and Section [§ (where
remainder terms involve only H~! regularity of the solution in time), allows to prove
Theorem [[.3.

The article concludes with Appendix [f] where we collect several technical estimates
and lemmata, and Appendix B in which we prove the unique continuation result of
Theorem [[.1(, concerning the plate operator.

2. THE CARLEMAN ESTIMATE

2.1. Toolbox of Riemannian geometry. The proof of the Carleman estimate below
(as many proofs of Carleman inequalities for operators with low-regularity coefficients)
relies on an integration by parts. Although we work here in a local setting, it is still
convenient to formulate our integration by parts formula in a Riemannian geometric
framework following [LL21, Appendix A], which we recall now (see [GHL9Q]).
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We work in a relatively compact open set V ¢ R?. We denote by g = (&ji<jk<d @
Lipschitz metric on V (that is, x — g,(-,-) is a Lipschitz family of symmetric bilinear
forms on TV that is uniformly bounded from below, which is equivalent to ([[.7)). We
denote by (-, ~)g = g(+,-) the inner product in TV = V x R%. Remark that this notation
omits to mention the point x € V at which the inner products takes place: this allows
to write (X, Y)g as a function on V (the dependence on x is omitted here as well) when

X and Y are two vector fields on V. We also denote for a vector field X, | X |§ =X, X )g.
In V, for f a smooth function and X = ), X iai, Y = 3. YiZ smooth vector fields
Xi 1 le]

Xij
on V, we write

d

<X’ Y>g = Z gl_]XlY'ly
i,j=1

d 3
Vef =) 86 N5

i,j=1

(\/thXi) ,

d
divg(X) = ),
i=1

1 5.
\/detg l

d

1 g
A, f =div, V. f = ——90;(+/detggd;f),
gf g Vef LJZ; dotg l( &8 Jf)

d [d jﬁYi d AN
DxY =3 | X XI5—+ 3 L XIYE|——,

i=1\j=1 J J.k=1 t

where (g71);; = g and the Chritoffel symbols are defined by

d
. 1 ,
Ly = 5 zzlgll (08K + 9kg1j — 9igjx)

(see for instance [[GHL9Q, p71]). Note in particular that the Lipschitz regularity of g
writes g;; € Wh*(V), and implies g/ € W (V). This entails, if f, X, Y are smooth,
that (X, Y), € Whe(V), V, f is a Lipschitz vector field, Ao f € L*(V) and DxY is an
L* vector field on V, since the definitions of Ag and Dy involve one derivative of the
coefficients of g. Note that we have chosen to use the Riemannian density ¢ = v/detg
in the definition of the divergence for simplicity. Any nonvanishing Lipschitz density
¢ would do the same. The results for one density may anyways be deduced from those
with another density, see the discussion in Section as well as Remark P.§. Let
us now collect some properties of these objects, that we shall use below. For f, g two
smooth functionson V and X = . X iaixi’ Y =3, Yiaixi two smooth vector fields on
V, we have

dive(fX) = (Vgf, X), + f dive(X),
Dx(fY) = (Xf)Y + fDxY,
Dx((Y,Z),) = (DxY,Z), +(Y,DxZ),.
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We define (see [[GHL90, Exercice 2.65] or [LL21] for more on the Hessian)
Hess(f)(X.Y) = (Dxdf)(Y) = Y, X'V [33;f ~ Tdf].
l’]

which again is in L*(V) for a Lipschitz metric g and L* vector fields X, Y. Note also
that the Hessian of f is symmetric, that is Hess(f)(X,Y) = Hess(f)(Y,X) and for
any function f and any vector field X and Y, we have (see e.g. [LL21, Lemma A.1])
Hess(f)(X,Y) = (Dx Vof, Y)g. Concerning integrals, we write in this section

/ f= [/ f(0)4/ det g(x)dx,

where /det g(x)dx is the Riemannian density. With this notation, a useful integration
by parts formula writes as follows: For all f € H(V) and h € H'(V) one of which
having compact support in V, we have

f(Agf)h = —/(vgf, vgh)g.

As we are interested in complex-valued functions, we set (f,2) = (f, @2y = S fﬁ
for the I? hermitian product. We are moreover interested in time-dependent functions,
and in the context of spacetime integration, we write

//f='/R; /Vf(t,x)\/detg(x)dxdt,

and similarly (f,g) = [ f h.

2.2. The Carleman weight. We denote by Q = I X V where [ is a bounded open
interval of R and V is a relatively compact open subset of R? equipped with a Lipschitz
metric g. In this section, we set P := id; + Ay where A, is defined in Section P.1.

For a smooth real-valued weight function ¢ (later on, we will assume that it is poly-
nomial of order 2), the Carleman estimate below will make use of the operator, as
explained in Section [[.4.

L
Qﬁ,fu i=e M e
In all the rest of the proof, 4 does not have any role and could be any constant. We

have chosen to keep it along the proof since we believe it helps to follow the perturba-
2
tion of the pseudodifferential weight. We now describe the conjugation by e ¥ e

Lemma 2.1 (Lemma 3.12 in [LL23]). Letu € S(R'*%) and ¢ > 0, then
_Ipg? D\ _IDi?
e 3 (tu) = <t + i?)e % u.
This implies the following conjugation of monomials.

Lemma 2.2 (Lemma 3.14 in [LL23]). Assume ¢ is a real polynomial of degree two in
the variable t. For all k € {0, ---, d} (with the convention t = Xy, D, = D;) we have

Qb.:Dy = (D)4, Qb .
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where (denoting ¢fx, = 0,0y, ¢)
Dy
(Didg,u = Dy + 1105, $(X) — xk_'
The goal of Section Jis to prove a Carleman estimate for the “unperturbed” operator

d
(2.1) P=id, +A;=-D;— ) ———Dp/detgg/kDy,

jik=1 v det

with all coefficients independent of t. Corollary .3 is a direct consequence of Lemmap.2.

Corollary 2.3 (The “conjugated operator”). Let ¢ be a real-valued function being qua-
dratic in t and P defined in (R.1). Then, for any u > 0,

Qf.cP =Py, Qfc,  with

Py, = (Dt + i10,¢(X) — udy, Dt)
d
J’kzzll <D +170;¢(x) — ud} ; 2)

. D
detggl* (D + itdi$(0) — iy ).
We define the anisotropic norm
2 2 2 _ 2
(2.2) [l = 2 [vllz2 + IDxvll. + 772 1Dyl »
adapted to the homogeneity of the operator P in (B.1)) (see the discussion in Section [[.4)
and its spatial part
2 2 2

(23) lollzs, = 72 Iloll7a + Dol

Before stating our main Carleman estimate we need to define the following two im-
portant quantities, see [LL21, Theorem A.5]. Given ¢ € W2®(Q;R), f € Wh*(Q;R),
X a smooth complex valued vector field on V we set

2.4 Byg.r(X) = 2Hess($)(X, X) — (Ag) [X[; + X5,
(2.5) Eg.s = 2Hess()(Vy, Vo) + (Ag®) [Vid|. — F[Vel. .

where the Hessian is with respect to the x variable only, see Section .1, and where we
have written |X |§ = <X , X >g. Note that these are two real quantities (since Hess(¢) is a

real symmetric bilinear form). Note that the only difference with [LL21, Theorem A.5]
is that the vectorfield X was assumed real-valued (in applications, X = Vgu). Note that
for a Lipschitz metric g on V, we have &g 4 » € L¥(Q;R) and Bg ¢ +(X) € L*(QR)
for any bounded vector field X on V and we stress the fact that these two quantities are
time-dependent (they are defined on Q = I X V).

Remark 2.4. In what follows we use the notation C for a constant whose value may
change from one line to another. It may depend on the norms |[¢|| ;2. and || f1l;;1,
where f € Wb is an auxiliary function, and on the metric g only via the quantities

” ] kH L) and the ellipticity constant c,, of the metric g/¥ (only Lipschitz regularity
Wleo(V

of g is assumed).
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Let us now state the main result of this section, which is a Carleman estimate in the
spirit of [Tat95, Hor97, RZ98, Tat99] but with two main differences:

) . _HDE Dy 2
(1) The Fourier multiplier isnow e 2* instead ofe™ 2z

(2) We use the anisotropic norm defined in (2.2).
In Section .1l we show that this estimate remains valid for lower-order perturbations
of the operator P in (2.1)).
Theorem 2.5 (Carleman estimate). Letx, = (to, Xo) € Q = IxV C R'*4, Assume that
¢ and f satisfy the following: ¢ is a quadratic real-valued polynomial, f € WH*(Q; R),
there exist r > 0 such that |Vg¢|z > 0 on B(xy,r), and C, > 0 such that for any vector
field X, we have almost everywhere on B(Xg, r):

2 2
(2.6) Beos(X) 2 ColXly, and Eggr>Co|Ved|, .

Then, for all u > 0 and k € N there exist d,C, 1y > 0 such that for all T > 7, and
w € CL(B(xg, g)), for P defined in (.1]), we have

2
2.7) c HQﬁ,TPw” + Ced
LZ

2
TP ¢ 2
tul, ., > Qv
In (27), Hy ¥HL = H~%(R; H'(V)), that is to say
(2.8) loll gy = [P ~*v

Theorem P.3 states a precise version of ([.24).

L2RHI(V))

Remark 2.6 (Lower-order perturbations). Note that in Theorem P.3 we have stated the
result for the operator P defined in (R.1)). As usual for Carleman estimates, the state-
ment still holds for P replaced by any lower-order time-independent perturbation with
L*(V) coefficients (using that the latter commutes with Qi,f and the corresponding
additional term in (2.7) can thus be absorbed in the right-hand side for t sufficiently
large). According to the discussion of Section [[.3.2, this proves that P can be equiva-
lently replaced by id; + A, ,, for any Lipschitz nonvanishing density ¢ in Theorem R.3.

Remark 2.7. The H;7*H} norm on the error term in the left-hand side of (2.7) is ob-
_ uIDg?
tained as a consequence of the regularization properties of the operator e 2> . The

unique continuation result of Theorem [[.3 concerning I*(I; H(V)) solutions only uses
the case k = 0 (for which the proof of Theorem P.3 is simpler). The unique continu-
ation result of Theorem [[.3 concerning I?(I x V) solutions relies on the case k = 1,
combined with an ellipticity argument (to gain derivative in space). See Section f.3.
Finally, the unique continuation statement of Remark [[.4 concerning distribution so-
lutions uses the full range of k € N (together with an ellipticity argument).

The main step for the proof of Theorem P.3 is the following subelliptic estimate.

Proposition 2.8 (Subelliptic estimate). Letx, = (tg, Xo) € Q = IxV C R'*4. Assume
that ¢ and f satisfy the assumptions of Theorem R.3. Then, for all u > 0 there exist
C, 1y > Osuch that forall T > 1y and v € CZ(B(Xy, 7)), we have

2
— 2 2
(2.9) C||Posv] , +Cr IDwIE: = <ol
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Remark 2.9 (Perturbations of (2.9) by lower-order terms). In the setting of Proposi-
tion R.§, we consider

b
(210) R=A-Dy+7a+ D+ %Dt, with  a,b,c € L°(Q;C), A € L*(Q; CY).

Recalling (R.2), we have for 7 > 1,

IDll2 | 1Dl g2
IRull2 S llvllz + IDsullyz + ——— + ——— S ol -

As a consequence, estimate (2.9) holds for the operator Py , if and only if it holds for
the operator Py , + R in place of Py ,, up to changing the values of 7, and C. Let us now
define

(2.11) P:= " g/*(x)3;0, = — ) g/¥(x)D;Dy.
j’k j’k
As in Corollary B.3, we have Qﬁ,TP = Py, HQ;’Z,T with
”n D
Pou= (Dt + 019, p(X) — udi s zt)

@1 - Z %0 (D + 120y () — 22 ) (D + 178100 — i 5.

J,k=1

Remark now that since the metric g is Lipschitz and time independent, the commutator

[(D +110;¢ — g} ; 2) \/@gﬂc] [D,’\/thgjk]

is a differential operator of order zero, with L* coefficients. It follows that

P¢:M = P¢:M - R, with

d
1
R= D,,\/detgg/¥ (D + it )
j;l detg[ g] K +iT0kd — Ul = p=

and, according to the above discussion, estimate (2.9) for Py , implies the same esti-
mate for Py , (and vice versa).

Remark P.9 allows to transfer estimates from Py , to Py , and vice versa. In Sec-
tion R.3, we first show how the subelliptic estimate of Proposition P.§ implies the Car-
leman estimate of Theorem P.5. Then in Section P.4 we prove the subelliptic estimate
of Proposition P.§.

2.3. From the subelliptic estimate to the Carleman estimate.

Proof of Theorem .5 from Proposition B.8. Suppose for simplicity that t, = 0 and let
1y := r/2 with r given by the assumptions of Theorem P.5 and Proposition P.§. Consider
w € CE(B(xg,15/4);[0,1])and y € CL((—ry,1y); [0, 1]) with y = 1 on (—714/2,1,/2). We
notice that

P 2
(2.13) r HQMw o

2
<2t “)(Qz,fw |H1 +27 ||(1 -
T
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Consider ¥ € C*((—ry/3,1y/3);[0,1]) with ¥ = 1 in a neighborhood of [—7y/4,ry/4],

so that w = yw. Recalling the norms (.2)-(R.3), the support properties of y, ¥ and w
together with Lemma [A.4 we estimate the second term in (2.13) as

-

<crfa - pefaw

2 ¢ 2
‘ +Cr! ”Dt(l - X)Qpw ’
H1 L2

T,X

2
2
X)e 21'3 Td’)(wH cr! HDt(l - X)Q,i,‘[w !
Hix v
2 2
< Cre % T¢w‘ + Ct7H||[Dy, (1 — )l ™ 2T3 €™ 2w
Ht_k 1 L2
P 2
ce |- opQteu

13 2

(2.14) <Cue F quw|| +Cr! ||DtQu,rw

s

L2

HykHL

where H ¥HL = H=¥(R; H'(V)), see (2.8). We estimate now the second term in (2.14).
To do so, we consider o > 0 a small constant to be chosen later on and we distinguish
between frequencies smaller or larger than o72. We also assume 072 > 1 and obtain

_ple?
HDth,Tw Dtk+1ﬂ|Dt\ZchZ<Dt>_ke TN

<
|L2 < ||Dt1]|Dt|SO'T2QM,Tw 12 + L

§k+1 - Ii,ﬁ.g)

<or? HQﬁ,rw

| AL
12 §t>U‘L'2 kL2

Is|?

. —p e . . kT3 .
Now the function Rt 3 s — ske "2 reaches its maximum at s = A/ o and is de-

creasing on [4 / oo) As a consequence, if 072 > 4 / > which translates to 7 >

i 2 _
one has gmaLX (§k £ ) = okr%ke 5 = o TZke"“‘ . We obtain therefore, for
+>0T2

az,u
—1/2 k+1
T2>17y>max|1l,07"%,

a2y )

k+1 2k+2—ﬁ
+ giHlpRt2emh—

e7¢w|

(2.15) HDth,Tw

<o ot

{LZ H7k12'

2
We now estimate the term 7 H )(Qﬁ,fw ‘ , appearing in (R.I3). Thanks to the support
Hz

properties of y and w we can apply the subelliptic estimate of Proposition P.§ to v :=
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)(Qﬁ,fw € C([—r/2,r/2] x B(0,r/8)). We obtain

s I s I° 1 s I
o |retew]],, < cPsuxchian], + e [Purcheul],
s I° ot ol ln.of ol
< CHP‘#’“XQ“’TwHLz +Ct HQ“’TwHLz +Ct HDtQ'u’Tw L2
¢ 2
< C||P¢’#1Qu,fw .
2 2
(2.16) + Co?73 HQi,wa Lt Co2k+274k+3g—po’t e“f’wH g’
L L

where for the last inequality, we used o> > 1 and (B.I3). Recalling Corollary 2.3,
Qﬁ,‘rp = P¢,/1Qi,‘r and thus
"
u2i

‘ Py o xle 2 e qw

[Poscic@icn], = Ppshu], + (Pose 110%

< [[okerw], +

L2

Recalling that y = x(t), together with the expression of Py , in Corollary P.3, we have
[Psu> x] =ix' +R, with
R= 1 F D Dy 1
= 5 (FO0 - De+ o) + AT+ L + 5 /00),

where F, fy, f1, f>, f3 € LI X V) satisfy supp(F, fo, fi f2, f3) C supp(x’) X V. Given
the support properties of y, ¥, Lemma [A.4 yields for all k € N the existence of C,c > 0
such that

1Dy [? IDy[? D
H[P¢> M,)(]e_”#emfw < H}(’e_”#j('eww + |[Re™H 2 2r3 yePw
| L2 L2 12
3
<Cue F e7¢w| )
H;H}

Putting the two last inequalities together we obtain

@17 [surhe]| | <clobepu] +ceF et

: ¢’MX Mm,T 12 - Mm,T 12 kH)lc *

Combining (2.13), (2.14), (2.13), (2.164) and (2.17) we find that for any u > 0,k € N,
there are constants C, ¢, o > 0 such that for any ¢ > 0 and 7 > 75 we have

¢ 2 ¢ 2 2.3 ||H® 2
T||Qu,rw||H; < C||QuPw L + Co*t’ || Qprw

12

3
+C(e_c% +o.2k+2 4k+3 ,—uo ‘r) ‘r¢w“

H7kHL

2
Choosing then o > 0 sufficiently small allows to absorb the term o273 HQﬁ,Tw“ ,in
L

the left-hand side. Then taking T > 7, with 7, sufficiently large finishes the proof of
Theorem P.3 from Proposition P.§. O
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2.4. Proof of the subelliptic estimate. This section is devoted to the proof of Propo-
sition P.§. Recall that the operator P is defined in (2.1]) and let us consider the “classical”
conjugated operator given by

Py i= e™Pe™™ = ¢™(id, + Ag)e™ ™,

where we recall that A, is defined in Section B.1. Remark that Py = Py, where Py ,,
is defined in Corollary B.3. We start by proving in Section the desired subellip-
tic estimate in the particular case Py = P4 . We then prove in Section that the

2
additional terms coming from the difference “(P¢’” — P¢)uH , can be absorbed in the
L

estimate.

2.4.1. Case u = 0. We recall the definitions of B, 4 ((X) and €4 4 ¢ in (2.4) and (R.3)
respectively. We sometimes write v; := 0,0.

Proposition 2.10. Let Q C R'*9, Assume that ¢ € W (Q;R) and f € WH(Q; R).
Then, there exists C > 0 such that for any u € C®(Q) and T > 0, we have for any § > 0

sllosul, + (et + 151e ) 5 s+ R

> 27.'3 ﬂ [Sg,qb,f - 5] |‘L£|2 + ZTﬂ Bg,¢’f(Vgu),

2
(2.18) with  |Rw)| < C22 |lull>, + C vauH .
12

The proof of Proposition is inspired by [Laul0Q] for the Schrodinger operator
and [[LL21] for elliptic operators. It relies on the Riemannian tools presented in Sec-
tion R In [Lauld], a positivity assumption on the (space) Hessian for the weight
function is made (related to the pseudoconvexity assumption in [LZ82, Deh84, [sa93]).
Here, the possibility of having % [[2e] |iz as aremainder term and the introduction of the
function f allow to relax this convexity condition and stay closer to the elliptic case as
presented in [LL21]].

Proof of Proposition B.10. We start by computing
Pyu = e (id, + Ag)(e_wu)
= iuy — itu + Agu — 27(Vg, Vgu>g —1(Agp)u + 72 |Vg¢|z u.
We then decompose the conjugated operator Py as
Py =1i0; —it; + Q; + Q;,  with

Quu = —21(Vg9, Vgu>g —tfu,

Quu = Agu + 7° |Vg¢|z u— (Mg + fu = Quu + Ryu,
where Q, is the principal part of Q,, that is

Quu = Agu + 72 |Vg¢|z u, and Ryu=1(—-Ag¢+ flu.
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Now, we write (||-|| denotes the I? norm for short and (-, -) the associated Hermitian
inner product)

(2.19)
2

>

2 2
3 HP¢uH +3 ||R2u||2 +3 ||rg{>tu||2 > HP¢u —Ru+ i‘c¢tuH = Hiut +Qu+ Qzu‘

where we estimate the remainders as

2
2 2 2 2 2
(220)  [IRull” < 7?||f = Agg|| ullzz, and lrgaull” < 7 llgellpw llullz. -
L

Hence, we are left to produce a lower bound for

2 5 2
it + Quu+ Quut|| = llQuull® + ||, + Qe
+ 2Re (iu;, Qqu) + 2Re (Quu, Qu)
(2.21) > 2Re (iu;, Qu) + 2Re (Qqu, Q,u).

The second term in the right-hand side of (2:21)) is described in Lemma P.11], and we
now estimate the first term as a remainder. Recalling the expression of Q;, we decom-
pose

(2.22) 2Re (iu;, Quu) =21 + I, with
I 1= —27Re (iu;, (Vg Vgu>g ), and I, :=—2tRe(iu,, fu).

Expanding 2 Re a = a+ a for I; and performing an integration by parts in ¢t for the first
term, we obtain

Il—T/] gqngu u n'[/ ggngu u;
=r//—i (Vg¢t,Vgu> + (Vg Vgut lf/] Vg, Vgu Uy

Concerning the last term, an integration by parts in x yields

—iff(Vggb, vga>g u, = i[/(Ag¢)ﬁut+iﬂ<Vg¢, Vgut>gﬁ

As a consequence, we deduce

L= T[/—i(Vg¢t,Vgu>gﬁ+iff (Agd)uu.

The Cauchy-Schwarz inequality yields

2lL| £ 2]t —i(ngﬁt,Vgu}gﬁ +2|t || (Agp)uu,
Jast],
2 2 Agd|| 1
@23) <[ Vepd|| eIl + |[Veu| |+ 87 Il + 5 el
‘We obtain similarly
||f||Loo 1

2
(224) 11| < 87 [lull > + =52~ lluell7-



UNIQUE CONTINUATION FOR SCHRODINGER OPERATORS 347

We now provide with a lower bound for the second term in the right-hand side of (2.21)).
The following result is a version of [LL21, Lemma A.7] for complex valued functions u
in the boundaryless case (recall the definitions of B, 4 (X) and €g ¢ ¢ in (2.4) and (2.3)).

Lemma 2.11. Given an open set Q C R4, for all functions ¢ € leo’?(Q; R), f €
Wll(;g"(Q; R) and u € Hgomp(Q; C), we have

Re (Q,u, qu):TS/ng,¢’f|u|2+f/] Bg,¢,f(Vgu)+TRe/]u<ng, Vga>g.

Lemma is a consequence of [LL21, Lemma A.7] applied to Re(u) and Im (u)
(with vanishing boundary terms), using that Q,, Q, have real coefficients, hence are
C—linear (which follows from the fact that ¢ and f are real-valued).

In the estimates of Lemma R.11], the last term is estimated as a remainder as

Rsy(u) = —Rerffu(ng, Vgﬂ>g,
[vf]

Lo 2 2 2
= <||VguHL2+T ||u||L2>.

Now, combining (B.21)) with (2.19) and (2.27) yields

(2.25) |R3(u)| <

2
2 2 ~
3P|+ 3 1RsuIP + 3 el + 2000 + 11| > 2Re (Quus, Q).

This combined with (£.23)-(2.24) and Lemma concludes the proof of the proposi-
tion with

2
2 2 2
R(u) = 3 [Roull* + 3 |[egul” + R ()] + €72 [l + € V|
with the first two terms estimated in (.20) and the third in (2.23). O

2.4.2. The case u > 0: End of the proof of Proposition B.§. The strategy of the proof of
Proposition R.§ is to follow step by step the proof of Proposition and control the
additional error terms. Therefore, we will make use of the different terms appearing in
the proof of Proposition like Q,, Q,, Q1, R,.

Thanks to Remark P.9 it suffices to prove the inequality of Proposition P.§ for the
operator Py , defined in (R.12). We start by expressing it in terms of Py. Recall that
by assumption ¢ is a quadratic polynomial and therefore ¢ i = a%,xjcﬁ are actually
constants. We have

d
i . " D i " D .
Pou=Po— D g*(D;+ lT5j¢)#¢t,kT—2t + g]kﬂ¢t,jr—2t(Dk + i70k )
Jj,.k=1

d DZ
D~
+u2 Y ¢,t,,k'¢lt,,jgjkl__4 + Ry
Jj.k=1

. D;D, o D? -
— " k-Jt ” " Kkt
—P¢—2MZ;,¢t,kgf — +MZZ;,¢t,k~¢t,,~gJ R
J J

=ﬁ¢,#+§2,
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where the operators Ry, R, belong to the class of admissible perturbations considered
in Remark P.9 and

53 " i, 0i0 " "o _j 62
P¢’H = P¢ + 2[/{ Z ¢t’kg‘]k% - Iu2 Z ¢t,k : ¢t,jg]k_t
Jjk Jjk

4

It suffices then to show the estimate of Proposition R.§ for the operator ﬁ¢,u. We de-
compose

§¢’M = iat - ifat¢ + 61"(,{ + 62"“;

where, using the notation Q,,Q,,Q1, R, from the proof of Proposition in Sec-
tion E41, @y, = Q, and

~ " a 0 52 O
Qz,u =Q,+ 2:“2 ¢[,k Jk t —H Z ¢ gjk_ = Qz,,u +R,
ik
with
5 ik 1 < ka%
(2.26) 9,4 2+2MZ¢ k8 —u Z¢> $1,8% =

As in the proof of Proposition R.10, the terms R, and i7d;¢ are admissible remainders.
As above, we need to provide a lower bound for
||16tu +Q Ut sz H2 = ||Q1u|| + ||16tu + Qzu H + 2 Re(iu;, Qu)
+ 2Re(Qqu, Qz,ﬂu)
= ||Quul® + Hiatu + éz,yuHZ + 2 Re(it;, Q1)
(2.27) + 2Re(Q;u, Q,u) + 2Re(Q;u, (52,;1 — Q)u).

It follows that in order to finish the proof of Proposition P.§ it suffices to show that the
last term in (2.27) yields an admissible error in view of the estimate (2.9). This is the
content of Lemma 2.17.

Lemma 2.12. There exist C, 7y > 0 such that for all u € CZ(Q) one has
|2Re(Qu, (9, — Qu)u)| < C ||u||§{% , forallt>1,.
Proof of Lemma R.12. Recalling that Quu = —27(V,,V gu>g —tfuand writing 9, , —
62 = Ll + L2 with
4 j a ‘at n " j 62
L= 2/«‘2 ¢t,kgjki_—2, and L, = —u? Z bix - ¢t,jg]k—i,
Jjk Jjk

T

we may develop

(228) Re(Qlu, (52,,(1 - 62)”) = Al +A2 +A3 +A4, with
Ay == —2Re(7 (Vg Vgu>g ,Liu), Ay = —2Re(r(V 9, Vgu>g ,Lyu),
Az = —Re(tfu,Liu), A,:=—Re(tfu,Lu).
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We start by estimating the terms A; and A,. Integrating by parts in ¢, we obtain
Ay = _2§ Re ( fu,8, ), ¢} 8o ju)
jk
=Ly [Re ((atf u, ¢'t',kgf'"51“> *Re (f Opt, ¢2',kgf"51“)] '
jk

Therefore, the Cauchy-Schwarz inequality implies, for a constant C > 0 depending on
f,¢pandg,

2
2 2 lIDeull7
(2.29) |4;] < C( l[ull 2 + [1Vaull + TL> 1
Similarly, integrating by parts in time yields
C 2 2
(2.30) 44l < 5 (lllzz + 1Dl 12)

‘We now turn our attention to A;. Here one needs to use the real part in order to decrease
the number of derivatives. We write (V ¢, Vgu>g =2 g/ko;¢pd uand 2Rea =a+a
to obtain

; " 9,0
—A; =2Re (rz gfkajqbaju, 2u Z ¢t,mglm%u)
Jk Im

(231 = 8/“0;90ku, ¢1 ;g 010,u) + ($1,,mg"010,u, 70 p0 ).

2_/vt
T jkim
Integrating by parts in ¢ in the first term in the right-hand side (2.31)) yields

> (g*0;¢0ku, ¢7 mg™0,0,u)
Jjklm

== (8¢} O, ¢ mg™ou) + (8/°0;¢0k8,u, 7 g™ d1u)
jkim

== (&%} O, ¢ mg™ou) + (7 mg"™3,0,u, 870 $)u) .
jklm

Together with (2.31)), this implies

2 j n "
A =E 3 (76 0k ¢7 mg ™)
jkim

and thus
C 2
(232) Al < < I1Vull7s

Finally, to estimate A, we proceed similarly by writing
k 1m 9%
Ay =2Re| 1) g/*0;¢0 1,4 Y Y - $118 mg“
jk Im

2 .
233) =55 3 (8700 lm - 118" 0Fu) + ($1.m - #1180, 870,901
jkim
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We integrate by parts in ¢ in the first term in the right-hand side of (2.33) to obtain

(2.34) > (870001t 81 - 91,8 "0F1t) = Az + Ay, with
jklm
Ay == 3 (&% 0§l - #118"™O0)
Jjklm

Ay ==, (gjkajd’atz,k“’ Prm - ¢,tl,lglmatu)‘
jklm

To facilitate the notation, we write in what follows S; for multiplication operators by
L* functions that depend only on g, D, g, on ¢ and its derivatives. We integrate by parts
in x and then in ¢ to find

Ay == 2 (i (&70j@0u). @t m - #118"Ou) + 3 (S10,14: $m - #7,18"0r)

jklm Im
= . (g7%0;80,u, ¢\ m - $1,8"™ 7 1t) + (S29,u, 8,u)
jklm
== (87%0;¢07u, ¢7 1 - #7,8"™dkut) + (S20,u,0,u) + Y, (S3,;6,u,9ju)
jkim J
(235) == (fm - $7,8"m0Fu, g7*6;¢dku) + (S28,u,0,u) + ) (S5 ;6,u,0;u).
Jjkim Jj

Now putting together (2.33), (R.34) and (R.33) implies

2
Az = l;:—?’(AZI + (Szatu, atu) + Z (Sg’jatu, a]u) )
J

‘We obtain therefore

C 2 2
(2:36) 145] < = (IIVatllza + 1Dl 2) -

Plugging (£.29), (2.30), (2.32) and (B.3€) in (R.28) finishes the proof of the lemma. [

With Lemma .12, we can now conclude the proof of the subelliptic estimate of
Proposition B.8.

End of the proof of Proposition B.8. Recall now that it suffices to obtain a lower bound
for

2
||i6tu +Quu+ 9 MuH > 2 Re(iu, Quu)
, M|

+ 2Re(Qqu, Qou) + 2Re(Qqu, (gz,u - Qu),

where we used decomposition (2.27). The first two terms on the right-hand side above
are estimated in Section P.4.1]. The first one yields an admissible error thanks to (B.22),
(B:23), (B-24) and the second one is calculated in Lemma P.13. Combining those esti-
mates with Lemma which controls the third term above we obtain the existence
of C, 7y > O such that forall § > 0,7 > 7y and u € C(Q2) one has

2 C 2 2
[Posa]| , + 52 el + € lullzyy = =° ff (0.6, — 8] lul? + szf By g (Vo).
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. . . . C .
Recalling Assumption (B.6) in Proposition P.§, we may now fix & := 5 to obtain

2 2C 2 2 Co 2
[P, + 2= i + €y > Sy

This concludes the proof of Proposition P.§ when taking t > 7, for 7, sufficiently large.
O

2.5. Choice of weight function via convexification. In this section, we explain
how to construct weight functions (¢, f) that almost satisfy the assumptions of The-
orem P.3, via the usual convexification procedure. In the present context (as opposed
to the usual situation), this also requires a smart choice of the function f, see [LL21].

The main difference with respect to the assumptions of Theorem P.j is that the func-
tion ¢ that we construct here is not a quadratic polynomial. In Section f.2 we shall see
however that since the positivity of the quantities B and € is a condition that only in-
volves derivatives up to order 2 one can replace ¢ by its Taylor expansion at order 2.
The following is [LL21, Lemma A.9].

Lemma 2.13 (Explicit convexification). Let ¥ € W>*(Q;R) and G € W**(R), and
choose

(2.37) $=GW) and f=2G"(¥) |Vgly|z.
Then we have
B, 5.7(X) = 2G'(¥) Hess(W)(X, X) + 2G"(¥) )(vglp,x>g|2
+ (6" (W) [Vg¥[} - G'(W)AY) X5,
Eadif = G’(lp)z[zc’(lp) Hess(¥)(V, ¥, V¥) + G"(¥) |Vglp|;
+ G WAY VY[ |
To state Corollary R.14, for B an L5, section of bilinear forms on TV, we define

[Blg(x) = SUPxer 110 m which yields an L* function on V.

X2

Corollary 2.14. Let ¥ € W2(Q;R), 1 > 0 and define ¢, f as in (837) with G(t) =
eM — 1. Then, for any 1 > 0 and any vector field X, we have almost everywhere on U

2 2
By g.r(X) = 2™ X[ (A|V W[ — 2/ Hess(¥)]g — AgP),
vl v |2 2
Egs 2 A [Vl (/1 | VW[, — 2/ Hess (¥ + Aglp).
See [LL21, Lemma A.10] for a proof.

3. CONJUGATION WITH A PARTIALLY GEVREY FUNCTION

In [[Tat95,RZ98, Ho6r97, Tat99] part of the difficulty consists in defining an appropri-
ate conjugated operator even in the case where the coefficients of P depend analytically
on the time variable. Here, we exploit the anisotropic nature of P to allow conjugation
with Gevrey s in time functions, for an appropriate s > 1 adapted to the scaling of the
Schrodinger operator. Our strategy is based on the proof of Proposition 4.1 in [Tat99].
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3.1. Gevrey functions and Banach valued symbols. For notations, definitions and
basic properties of Gevrey functions we essentially follow [GBJ25]. We recall Defini-
tion [[.] where the space G°(Q; B) of Gevrey s Banach valued is defined. We shall also
make use of the following notion

Definition 3.1. Givend € N*, U ¢ RY an open set, (B, || - ||z) a Banach space, s >
0,R > 0 we say that f € QE’R(U;B), if f € C°(U; B) (smooth bounded functions, as
well as all their derivatives) and there exists C > 0 such that

(3.1) 16%f(ll, < CR¥atS,  forallt € U,a € N9,
and set

19 f Ol
(3.2) I1flls,p = sup sup ———"=.

aeNd teU Rl%lqls

In what follows, we only consider the case d = 1 (¢ being the time variable) and
d = 2 for extensions to C ~ R? of such Gevrey functions. Note that, given an open
set U and s, R > 0 fixed, QZ’R(U; B) has the advantage of being a Banach space for the
norm ||-||S7R,U in (B.2). Note also that forany R > 0, QZ’R(U; B) C §5(U; B). Conversely,
if f € G5(U; B), then for any bounded open set W such that W C U, there exists R > 0
such that f € QZ’R(W;B).

Lemma .7 contains the key properties which we will need concerning Gevrey func-
tions.

Lemma 3.2. Fixs > 1. For any open set U C R and p > 0, there exist Cy, A > 0 such
that for any R > 0, there exist C > 0 and a continuous linear map

GRwiB) - GRU+iIR;B),
f =7
such that for all f € G3R(U; B),

(3.3) supp(f) c U +i[-p.pl. f(t) = f(t)fort e U, <Clifllyru-

L

Ga  |pf@ < Clfll g exp (—;1) forzeU+iR,
? Co(R|Im(2)])5=
(3.5) 3 f(2) = fO(z) foralljeNandze U+iR.

Estimate (B-4) translates the fact that f is an almost analytic extension of f well
adapted to the Gevrey regularity G5. Property (B.5) states that the operation of deriva-
tion w.r.t. the real part and taking the almost analytic extension commute.

If B = C, Lemma B.2 is essentially a consequence of Lemma 1.2 and Remark 1.7
in [[GBJ25] (in a simpler 1D context). The proof in this reference does not seem to
adapt straightforwardly to the case of Banach-valued functions, so we provide here
with a short and different proof.
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Remark 3.3. We will use several times in the proof that for all R > 0, 8 € N and for all
¢ > 0, the operator 6f maps 9Z’R(U; B) - 92’(1+E)R(U; B) continuously (with continu-
ity constant depending on €). Indeed, if |3| = 1 (the general case being consequence of
a straightforward induction) and f € 92’R(U; B), we have

Haa (6% f) (t)HB < CRIBI(q + ) < CRIU+ (|| + 1)t
< CKypo((1+OR) s,

where we have used || = 1in the penultimate inequality, with K . such that R“+!(¢ +
1 <Kspe((1+ E)R)t forallt > 0.

Our proof of Lemma B.2 relies on the following classical result which is the key step
(and essentially equivalent) for the Borel extension problem in Gevrey classes.

Lemma 3.4. Forall s>1, there are constants B, C>1 and a family (§ p) eC®(R)N1ste)
such that forallD > 1,k e N, j €N,

IO = 85, 1EIN(0)| < CITLBEDITK ks max (k, j)I* for all x € R.

An explicit construction of such functions ¢ p is given in [DZa62]. Another less ex-
plicit construction but with improved estimates on the constants is provided
in [MRR16]. In both cases, the functions are constructed as { p(t) := ay, D(t)% with an
appropriate family a; p(t) satisfying a; p(0) = 1, ai{},(o) = Oforall j > 2 together with
supp(ayp) C [—(Dk®)™!, (Dk®)™!] (for k > 1) and appropriate estimates of Gevrey s
norm. In [DZa62], aj p(t) is defined by an explicit expression on page 1 and the esti-
mates are proved on page 4.

In [MRR16], the notation is ay p(t) = @i(t),M, = p**,h = D and ¢ is defined
on page 14 and { p = { on page 15, and the estimates are performed on page 16 and
correspond to (3.17) (in that reference) which is even better, namely

GIRCOl < CIHIBKDI~kE—ks jis,
and is (essentially) equivalent to

Hgk’DH o < C(BD) kkks,

s,CD,
This result of [MRR16] is a refinement of [Pet88, Theorem 2.2] where the dependence
in the parameter D (called & in these two references) is not made explicit.

Proof of Lemma B.2. From Lemma B.4 we first define

(3.6) fee+iy) := 3, Ff0*¢p(),  (x,y) € UXR.
keN

We first check that for D large enough (fixed later on in the proof), the series converge
normally as well as all its derivatives, and prove the estimate in (B.3) at once. To this

aim, we follow essentially [BP0Y, Proof of Lemma 3.1]. From (B.2) we have Hak f (t)H3 <
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RKk1s I fllg g, forall ¢ € U and thus, uniformly for (x,y) € U X R,

> ROk p ()

keN
<,
keN

<|Ifllszu 2, Rk + j)s CE¥1B*D=kk=ks max (k, )75,
keN

a,f;a;’f(x + iy)H3 =

B
()| 1850

where we used Lemma B.4 in the last inequality. We recall the classical inequalities
(see e.g. [Rod93, p10-11]): (k + j)! < 2K+ik! ji, N' < NN and N! > (N/e)N. We deduce

aiéfjf(x + l'y)HB < ”f”s,R,U Z Rk+ipsk+sjps jts Ct+1Bkpé—kj—ks max(k, £)
keN

(3.7) <|Iflly g,y CR25Y jiS(CD)’ D" (R2°B)¥D~* max(k, £)°s.
keN

Then we split the sum as

D (R2*B)D~K max(k, €)s = ) (R2’B)*D~*¢%s + " (R2°B)kD~kk?s.
keN k< k>¢
s
In the last sum we use k% < ek (%) , which is a consequence of x > log(ex) taken for

X = e_ks > 0 (applied if k > ¢ > 0, and also true in case ¢ = 0). We obtain

> (R2°B)*D~F max(k, €) < ¢ ) (@)k + Y (R2°B)kDkek (ﬁ)“
b — D e

keN k<¢ k>¢
k és k
R25B € R25B
SNSZ( D ) +(%) Z( De)
k<t €/ e
k
R25Be
< £s X
< (¢s) kZ( 5 )
eN

We now fix D := 2 X R2°Be and, coming back to (B.7), we obtain

818} f e + i) | < 1Ly CR2Y J(CR2* 1 Be)' 2(es)’™
=2C|flls g v (R2°)/(CR25*!Bes®)f 645 jIs.
Noticing that £5 jis < eSU+9) j1 £1, we have obtained, uniformly for (x,y) € U x R,
610} f e+ iy)| | < ClIf g ARY 0,
with C = 2C, A = CR25+1Bs%es*1.

(3.8)

Now, we take 1 < o < sand let g € G9(R; R) be such that supp(g) C (—p, p) and
g = 1 in a neighborhood of 0 and we set

fe+iy)=gfx+iy), (x,y) €UXR,
so that f has the sought support properties in (B.6). That f(x) = f(x) for x € Uisa
direct consequence of the definition (B.6), the properties of g together with ¢ p(0) =

Sok- Property (B.3) is a direct consequence of the definition (B.f) and derivation under
the sum.
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To deduce (B-3) from (B-8), we write 6405 f(x + iy) = 95 (g(y)ai fox+ iy)) and ap-
ply [MRR16, Lemma 3.7] with g = g and f = % f(x + iy) (referring to the notation of
this reference) for fixed j (that the function is Banach-valued plays no role in the proof
of [MRR16, Lemma 3.7]). This reference, combined with (B.§) for fixed j, implies the
existence of a constant Cy ;¢ depending only on g (and in particular on p and o) and s
such that for all (x,y) € U X R,

8o fe+ iy = (|05 (018t Cx + )| < CouCllfll .y (AR .

Noticing that j! €! < (j + €)!, we have obtained the continuity statement in (B.3) with
continuity constant Cg ;C (and C, A given by (B.9)).

Finally, in order to prove (8.4), we notice from Remark B.3 that since f € gi’AR(U +
iR; B), then 3, f € 92’AR(U + iR; B) for any A > A, and check that d, f vanishes at
infinite order on the real axis. Indeed, we have

(3.9)

81863, +18,)f(x + 1y)
= > TG p () + O (HE)FH 85+ G p():

keN

Using that ¢ ,ﬁf’g(o) = d,, and that g = 1 in a neighborhood of 0, this implies

= > AT O@FS + A (NI 41

31650y +i8,)f (x + iy)
y keN

=0
(3.10) = 5T (N + 3 (i = 0.

Applying the “sommation au plus petit terme” in [GBJ25, Lemma 1.3] (which holds
with the same proof in the Banach-valued case), there exist constants C,Cy > 0 such

that for all F € Gy*®(U + iR; B) and all x + iy € U + iR

Fati- Y m@Re+),,

1
¢<C'(AR|y)™5-T 3

1
< CHF”S,AR,UHIR{ exp(— L)
C(ARJy|)sT

We may apply this estimate to F = 9, f € QZ’AR(U + iR; B) according to the following

consequence of (B.9)

01050y + i6))f (x + iy)HB < 2CCy [Iflls gy ARYHOHI(j + € + 1.

Recalling the infinite order of vanishing (B.10) finally yields (B.4), and concludes the
proof of the lemma. 0

Consider now XX, Y two separable Hilbert spaces and denote by £(X, Y) the space of
bounded operators from XX’ to ¥, which is a Banach space as well for || || ;). We recall
some facts of pseudodifferential calculus (with a small parameter) in dimension 1 with
values in £(X, Y). We consider a family of symbols depending on a (small) parameter
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h € (0,1). Wesay thata € S"(R X R; £L(X, Y)) ifa € C®(R X R; £L(X, Y)) depends
implicitly on h € (0,1) and satisfies: for all «, 8 € N there is Cog > 0 such that

(3.11) ”agfaﬁa(t,g,h)H < Cug(EY"F, forall (t,£,h) € Rx R x (0,1).
§ £(%,Y) A

Note that for readability, in this section, we write £ = £, for the dual variable to the
time variable ¢t. We then quantify (using the Weyl quantization) such a symbol as

(3.12) (0p“(@) () = o= /

RxR
According to [H6r94, Paragraph 18.1 Remark 2 p 117],
. foralla € S™M(RXR; £(X, Y)), op®¥(a) maps continuously S(R; X) into S(R; ¥)
uniformly in h € (0, 1);
« foralla € S%(RXR; £(X, ¥)), op(a) maps continuously I?(R; X) into I?(R; ¥)
uniformly in h € (0, 1).
If a € SR x R; £(X, Y)) has compact support in R X R (with support possibly de-
pending on the parameter h € (0, 1)), then

elt=)¢q (%q §) u(s)dsdé.

(o (@) = [ Ktsus)ds, K(s) = o [ et (42, ¢)ag,
R 27 Jo 2
where the Schwartz kernel X of the operator op®(a) satisfies X € C®(RxR; L(X, Y)).
Note that such functions a do not necessarily belong to S~¢ for some & > 0 (since the

support may depend on h).

Remark 3.5. Note that in the application we have in mind, for a domain V C R4,
we choose X = Y = [*(V)and B = L®(V) and observe the embedding L®(V) =
B < L(X,Y) = LI?(V)) (via the application that maps to a bounded function f the
multiplication operator by f) with || - || ;(x,y) < [ - || -

Another application is X = H'(V),Y = I*(V)and B = I4(V)ifd > 3 (resp.
B = I**$(V)foralle > 0if d = 2) and observe the embedding I¢(V) = B <
£(X,Y) = LHY(V),I[*(V)) (a function q acting by multiplication) according to the
Sobolev embedding: [|lqul[z2v) < llallzacllull 22 " < llallagrllullmey if d 2 3

(resp. |lqullr2qry < llallz+eony |ty foralle > 0if d = 2).

3.2. The conjugated operator. In this section we define for t{; € R and r, > 0 the
open intervals I := (ty — 21y, ty + 21p) and U := (ty — 1y, tg + 1p). Given now f €
G5(I; £L(X, Y)) there exists R > 0 such that f € gz’R(U;L(I, Y)). The intervals I, U
and the radius R, used in definition (B.2), will be fixed for the rest of this section. For
p > 0we denote by f(z) the almost analytic extension of f in U+iR given by Lemma 3.2
which is supported on U, := U + i[—p, p].

Along this section, we will need some cut-off functions satisfying the following
properties: y° € C®((—4,4);[0,1]) with y = 1 in a neighborhood of [-3,3], 6° €
C2((~1,1);[0,1]) and n° € CX((=3, 3); [0, 1]) with = 1 in a neighborhood of [-2, 2].

Take now r with 0 < r < min(%", §). We will define y(t) = x°((t — ty)/r), 6(t) =
0°((t — to)/r) and n(¢) = n°(&/r). In particular, they satisfy

o x € CP((tg—4r, ty+4r);[0,1]) with y = 1 in a neighborhood of [, —3r, ty +3r]
« 0€C((tg — 1.t +1);[0,1])
« n € CL((—3r,3r);[0,1]) with = 1 in a neighborhood of [-2r, 2r].
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The functions y, 6 and 7 depend implicitly on r and ¢, but we will not write anymore
this dependence for better readability.
With i € (0,1), we set

(3.13) f'(2) == x(Rez)p(h~"*Imz)f(z), z€ C andhence
fre+ihg) = x(On(h?3E) f(t + ih§), (1,§) e RxXR.

Observe that the function (¢, &) = f7(t+ih&) is smooth, compactly supported in Rx R,
and belongs to S°(R x R; £(X, Y)) (defined in (B.1T))). According to the above discus-
sion, we define the operator

(3.14) Fp, := op¥(f"(t + ih&)).
It maps continuously 8(R; X) into S(R; ¥) uniformly in & € (0, 1) and
(3.15) Fp € £L(IX(R; X);I2(R; Y)), uniformlyin h € (0,1).

We are now ready to state the following result, which guarantees that we have a rea-
h
sonable conjugate for the operator ez f-

Proposition 3.6. Let p,r, > 0and0 <r < mm(r" £ 3)- Then there exists ¢ > 0 such
that for all R > 0 and all k € N there exist C;, > 0 and hg > 0 such that forall f €
912,’R(U; L(X,Y)) and u € S(R; X) one has

H}(Fhe'%wﬂzeu — e'§|D‘|2f6u

L2(R;Y)

<cnt(Z,,, )

forall0 < h < hgy, where F, is defined by (B.14).

—1/3

||u”H—k(R;.’)C) )

We refer to Remark P.7 for the interest of the index k. Here again, the proof of Propo-
sition B.4 is simpler for k = 0. Note that as a consequence of Remark B.3, the result of
the lemma reformulates in a simpler (yet slightly weaker) way as follows: for all € > 0,
there is Cy . > 0 such that

— & p13

F,e—3Di?g 2D £g C v
xF e3P 6u — =3P fou| S Cee Il ™ il gk
for all h € (0, hy) where hy = hy(k, ).
Remark 3.7. Taking h = /7> one sees that
-5 DiPgpe - 51D -
e 2@ Of =Fue 2700,  Fu = )((077( §)f(t+l—§)

modulo an exponentially small error of order e~“* (in well-adapted norms), which is
an admissible error in the Carleman estimate (B.7) (in view of its application on unique
continuation in Section f). Notice that with this scaling, the cut-off 7 localizes in fre-
quencies |£;| < 2. This is consistent with the sketch of proof in Section [[4.

Remark 3.8. Proposition B.§ provides with a substitute of Lemma P.1]in the case where
f(t) =t isreplaced by an arbitrary Gevrey 2 function.
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Lemma 3.9. Setting

(316)  Ryi= xFpe 2PPo— ye 3PP o € £(I12(R, ), (R, ¥)),

we have
(3.17) (Rhu)(t)=fﬂch(t,s)u(s)ds, u € 8(R, X) with
1 1 \12
(3.18) Kyt s) = ——K1h+ChﬂC”,(t ) Cpi= ( 27m) , and

hig2

(19 Kin(ts) = 2 OOOSE) [ 05— d,
R
(W
Ko n(t,s) = x(1)0 "(—— +ih&) —n(h?3
209 = 200 [ (7r(52 o+ in) = 5)f(s>)
(3.20) x elt=w)E e~ dwd§

Proof of Lemma B.9. Recalling the definition of the Weyl quantization in (B.12) and
that of F}, in (B:14), we have

(t+w

(Fru)t) = %T f el(t-w)s fr +lh§'>u(w)dwd§

RXR

Combined with formula (A.4), this implies

1 1/2
(321 (rEye P Pon0) = 5 (50) 2O

X f el(t-—w)¢ fr (t rw, lh§> G(S)u(s)e o dwd&'ds
RXRXR

Using again formula ([A-4) as well as the formula for the Fourier transform of a Gauss-
ian (A.3) we find

(et e = (1) 20 f F©Ou(s)e T ds

3]

/2
:(Lh 1 X(t)ff(s)e(s)u(s) (E(Znh)l/zfe_i(s_t)ge__d§> ds
" R
/2
(_h 1 )((t)/f(s)e(s)u(s) <%(2ﬂh)1/2/e—i(s—t)gn(hz/g,f)e_idg) S
" R
12
* 27Th> X(t)b/l;f(s)e(s)u(s)

x(l(ZHh)l/zfe—i(s—t)§(1 77(h2/3§))e_id§)
27 .
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hg? e w2
We now use once more (JA.3) in order to replace e by (271h )2 Ja e~ W™ 2n dwin
the first term of the sum above. We find then
1/2

(2 Qe PP penn = 5 (57) x
0 —i(s=)&p(p2/3 —iwé 2h dwd )d
x f FS8(u(s) ( f e 1608 (213 f e~ % dwdt) ds

+ %X(I)Af(s)e(s)u(s) (/F;\ e~ I=DE(1 — (W23 E))e -Ldg)

We finally perform the change of variable w — w — s in the integral with respect to w
to express the first term in (B.22) in the following way:

i(i)m ) f FBEu(s) ( f eI (n2/3¢) / e—iwie‘?—fdwdf) ds
2m \27mh R R R

(3.23)
1/2

1 ( 1 ) i(t—w)E., (1,2/3
=—\(5=) x® e' n(h*>)f ()0(s)u(s)e™ 7~ dwdﬁds
2w \2mh RXRXR
The result is then a consequence of (B.21)), (B.22) and (B-23). O

The key step for the proof of Proposition B.§ consists in controlling the terms X j,
in (B.19)-(B.20). For later applications, we consider a slightly more general family of
kernels (useful when) defined for functions y;,6; € C®(R) and f € 912,’R(|R;L(DC YY)
and m € N, by

g2

T1,n(t:8) = 31 ()61 () f (5) / Tl STD8(1 —y(n?PE))e” "3 EmdE,

. Jw—s2
Lt =006 [ (24 hg—s) (llt-w =5
RXR 2
t+w

x (2 (52) nrP o f (52 + ihg) - nhP9) 1)) duwde.
Later in the proofs, we shall write 7, ,(t,5) = 7, [ x1, 61, f, m](t, 5) to stress the depen-
dence on the functions and parameters involved in the definition of 7, ;. Note that
Ion = Tonlx, 0, f,0], where y, 0 are defined (once and for all) at the beginning of
Section B.2.

Lemma 3.10. Let p,r > 0 as in Proposition B.q and y, 0 defined accordingly at the
beginning of Section B.2. Then, for any m € N, any y; € C&(R) with supp(y;) C
supp(x) and supp(x1) C supp(x’), for any 6, € C&°(R) with supp(8;) C supp(6),
there exist C,c, hy > 0 such that forall f € gi’R(U; L(X,Y)),

ch—1/3
T; e R , orallh € (0, hy).
73], ey < €M fi (0, ho)

Note that Lemma will be only used with y; = ¥ and 6; = 6% for some
k € N, which satisfy the support assumptions.

Proof of Lemma B.10. We start with the proof for j = 1i.e. study 7 ;. We remark that
in the support of 1 — n(h?*3&) one has h?3|£| > 2r which implies that h|£|? > ch ™13 in
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the support of 1 — 7(h?3&). We estimate then, for h < h,, with h, sufficiently small:

O N e e A T

Hgl’h(t’ S)Hﬁ(x;y) <

3y B
<C ||f||Loc(Supp(6);L(x;y)) A =n(h*>§))e a-gmidg

-1/3
< Ce~ch f e”
R

—ch™13 —ch~13
(324) S Ce ¢ ||f||Lw(Supp(9) [/(x y)) < Ce ¢ ||f||2,R,U >

where we used the fact that f is Gevrey (and hence continuous) and 6 is compactly
supported in U.

\EI
amgm |d§ ||f||L°°(supp(6) L(2Y))

We now turn our attention to 7, j,(¢, s). In the definition of 7, (¢, s) we change vari-

able by writing (w, £) € R? - z € C with
(3.25) z= H—Tw +ih&, whence

(3.26) w=2Re(z)—t,hf =Im(z), and dwAdé= %dz AdZ.

|lw=s® . , _ w-s? 1 .
The factor elt~Wée™ 3k rewrites as e~ 2n~ = 7 ®(H:52) with

w — §)? (2Re(z) — t — 5)?
2 2

(3.27) @(t,s,z) =it —w)h
= 2itIm(z) — 2i Re(z) Im(2)

= 2i(t — Re(z)) Im(z) —

2+ 5%

—2Re(z)? — + 2tRe(z) + 2sRe(z) — ts

2 +s?
=2tz+s(z+z—-t)—(z+2)z— +
(t—s)’

=_T+(z—s)(2t—z—2).

Then, we can write J, j, as

(328) To(t,5) = 5 22(D8E) f 7k 1m2) (x(Re 2)f(@) - £(5))

_le=s?

X (z—s)"e” 2 eh(z_s)(Zt_z_Z)dz AdZ.
Defining
X(Re Z)f (@) -f (S)

-8

(3.29) by(z) = 6(s)

we may rewrite

Tynltss) = —ixa(0) / (2 — Y™n(h="* Im 2)b(2)
C

(3.30) Xaz( _|t2;\ eR (F=5)2t-2- z)) dz A dz.

We will now check that we are in position to integrate by parts using Lemma [A.§.
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First, we prove that Bs € CY(C). It is smooth away from s, so We~only need to check
the regularity close to z = 5. We decompose by(z) = 6(s)x(Re z)% - 0(s)(1 —
x)(Re z)g. The first term is C'(C) thanks to Lemma [A.3 applied to f(- — s). For
the second term, we observe that for s € (ty — r,ty + r) in the support of 6 and for
Re(z) & (ty — 3r,ty + 3r) in the support of 1 — y, we have |z — 5| > |Re(z) — 5| > 2r.
This gives the regularity of the second term.

According to (3:26) and (2 Re(z) — t —s)* > Re(z)? — C; ; for some C; 5 > 0, we have

(3.31) e~ “2;‘ eh(z 5)(2t—z—2) <e%e_Re2(g)2
as well as
_ _‘tzz‘ h(z —s)(2t—z-2) — _ _‘tzfl\ h(z —5)(2t—z—2)
az e e |Z Sl e
& _Re(z)2
(3:32) <R (|Im(2)] + |Re(z) — s e~ "5

Since 7 localizes the imaginary part in a compact set and now (B.31) and (B.32) are
obtained, we are left to prove L* estimates on by(z) and 0;b;.
We have

5,2

HfH , for Re(z) € (t, — 3r,ty + 3r),

£(2x:Y) WL (Ugi£(X3Y))

since y(Rez) = 1 for such z. For Re(z) & (¢, — 3r,ty + 3r) and s € supp 6, we have
|z — s| > 2r, which implies

5.0

HfH , for Re(z) & (t, — 3r,ty + 3r),

£(%; y) Lo (Ui £(25))

with a constant C depending only on r. Putting the two estimates above together we
obtain that by, € Cl‘,) (C) and there is C = C(r) > 0 such that

(3.33)

<ci sec

£(6:Y) WL (Upso(25))

Secondly, we compute

X' (Rez) x(Re 2)3; f(2)

g @)+ BT,

and notice that the first term is smooth and bounded given the relative support prop-
erties of @ and y’. For the second term, using (B-4) for Gevrey 2 functions and the fact
that s € R, we obtain, for z € Uo (the value of the constant C may change from one
line to another):

H x(Re2)d,f(2)

(3.34) 3,by(z) = 6(s)

1
< -
< W e =0 (-5 27m1)

1
< e
- |Imz|C||f”2RUeXp( C0R|Imz|>

1
. < T2C.RlImzl| /)
(3.35) < C”f”z,R,UeXp( zcoRllmzl>

Combining the previous estimate and (B.34), we get

<c|| gy, EC
Lo (Up:£(2X5Y)) ”fllz’R’U

£(2x:Y)

£(X5Y)
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As announced before, the L bounds on 8,b and b, combined with the localization of
7, (B:31)) and (B.32) give the integrability of all the terms involved in the integration by
parts. All assumptions of Lemma [A.6 are therefore satisfied and we may now integrate

by parts in (B.30), yielding

Ton(tss) = iza(0) f 5, ((z = $)™n(h=" Im 2)by(2))
C

lt=s?

(3.36) Xe~ 2h eh(z Qt=z-2) 4, A dz.
Recalling (B.34), we now decompose (B.36) as

Jon =Inn+Inpn+ I3, with

(337 Tpa(tes) i= i (H6() f (z = 5ymn(h3 1 )X B2 ()

2Az—s)
)(e_‘tzlil eh(z s)(2t—z— Z)dZ/\dZ
(3.38) Top.n(t,s) :=ix1(£)6(s) f(z — s)"n(h~Y3Im Z)X(Rezzza;—f(z)
C

< e “2;' eh(z—s)(Zt—z—z’)dz/\dz,

(339)  Tyults) = —%h—”%a(t) f (z =)™y (R Im 2)by(2)
C

><e_‘t2fslI eh(z —)Qt=2-2) g, A dz.

We now estimate each term separately. We start with 7, j, and rewrite the integral in
the original variables (B.25)-(B.26) as

T10(0,5) = i (D6CS) f (HE2 v ing)

RxR
L(t+w f(H—w+ih§)
xn(hPe)y (2 )Z(HTJH%_S)

w—sz
el(t—w)é o= 57 dwdé.

Observe now that supp(y’) C (tqg—4r, to—3r)U(ty+3r, ty+4r). Therefore the integrand
above is supported in |HTw — ty| = 3r (thanks to the support of y') and |t — ty| < 4r
(thanks to the support of y). This implies that [w — t,| > 2r for otherwise one would
have

t+w t—ty]  |W—to '
} to} ’ 3 ’ + ' 3 <2r+r=3r
Since in the support of 6 we have |s — 5| < r we find finally that [w — s| > r in the
support of the integral. Notice finally that if y’ (H—w) # 0 and 6(s) # 0 one has

2 g 5 |2

|> ‘——to‘—|t0—s|22r
and thanks to the supports of y, 6 and » have for a constant C > 0 depending on m and
r that

m
‘H_—w+lh§—s‘ <C.
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‘We can then estimate as follows:

Hgﬂ’hH In(R23E)]e "5 " ot dwd§

<—u I |
£(26:Y) Lo (Up:£(5Y) Jrxr

|lw=s|®
< H il e‘Thf d§/ 4 dw.
4r Lo (Upi£(X5Y)) [—3rh=2/3 3rh=2/3]

This implies the stronger bound

(3.40) Hym,(t, s)H <c || H e < ce || flly s

£(0Y) Lo (Upi£(2:Y))

where the last inequality follows from (B.3).
We now study the integral 7,, , defined in (.3§). Recall that supp» C [—3r, 3r], so

that the domain of integration is contained in |Im z| < 3rh!/3. Using (8.33), we can
then estimate the corresponding integral as follows:

ngz,h(t, S)”L(x-y)
< C[ 77(h—l/3 Imz)we—%e%(z—sx%—bz) |dz A dz|
c 2= £(0y)
-1/3 lt—s|? ~
<C ||f||2’R’Uexp (— £C0R>f ’e— tzh‘ e;%(z—S)(Zt—z—Z) |dz A dZ|
Kp

n—1/3

(341) <Clfllgye R

In this last inequality of (B.41]), we used the fact that

fK;,

which follows from (B.26).
The last term we need to control is the integral 7,3 , in (B.39). In the original coor-
dinates(B23) , we have

_ = s\
e 2h en

(z s)(2t—z-z2)

|dz A dzZ| <f |[dz Adz| < C,
Ko

st = ) [ (S5 s ing)

7 (R3E)b, (”—wﬂhg) i-w)e~"5 qude.

We look at the integral in w and treat £ as a parameter satisfying 2rh=%/3 < |£] < 3rh=2/3
thanks to the support of #’. The change of variable w — w + s allows to rewrite the
integral as follows:

(3.42)
Jw— . w2
fbs (H-Tw+ h§> i(t-w)é = M55 dw—e"(s_t)g'/‘gh&t,s(w)e_lwge_ﬁdw,
R R
(3.43)

_ . m

> > +ié
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Using (B.42), we obtain

H-723,h(t, S)“ )

‘ffxmo (5§E—s+u@)

w—SZ
X7 (PE)by (5 + ihg ) el-wEe 5 dwdy

£(X;Y)
w2
= %Xl(t)hZB fnl(h2/3§)e—i(s—t)§ <f gh{,t,s(w)e_iwé‘e_%dU)) d§
! " £(9)
1 , By P
< 5)(1(t)h2/3/|;7 (h2/3§)| “fghi,t,s(w)e w51 dw de.
. R £(xy)

Recalling that supp y C (fy —4r, {y +4r) together with the definition of gp¢ ; ; in (B.43),
of b in (B:29) and supp y C (t, — 4r, to + 4r), Lemma now implies

xxojWW( dt
R

£(X;Y)

w|2
Bt ()86 3 dw
R

ch-13
SCfWMMMMfR
R

Combining the two estimates above and recalling the support of # yields

3rh=2/3

(3.44) H?B’h(t,s)”ux < h23 f dee”
3Y) 3rh—2/3

for h < ho.
Putting together (B.40), (B.41)) and (B.44) yields for some constants C and c depend-
ingonlyonI,p,r:

_ —-1/3
e F |Ifllyru>

1/3

o209)], ) < €T Wil
which concludes the proof of Lemma B.10. O
In the proof of Lemma B.10, we have used the following result.

Lemma 3.11. Let g, s beasin (B.43) and fixc, > ¢y > 0. Then thereexistC > 0,¢ > 0
and hy depending on I, p,r,cy,c, Such that fort € (ty — 4r,ty + 4r), s € R, h € (0, hy)
and c;h™23 < || < c,h™?3 one has:
. w2
[swrrsie Eao
R

—1/3

<C
£(x;Y)

1f1l2r,u -

Proof. First, thanks to the definition of by and the support of 6, we can assume without
loss of generality that s € (t, —r, ty + r), for otherwise the integral is zero. We start by
separating the integral in two terms:

w2
f 8hess(W)eWEe™ T dw
R

w|? . o2
- .[ ghg’t’S(w)e_iwge_%dw +/ ghrs,t,s(w)e“w%e‘%dw.
|lw|>r

|lw|<r
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Observe that since t, s, h¢ lie in a fixed compact set (which depends on r) we have that

‘t+w—s
2

For the integral in |[w| > r we can then proceed as in (B:24) to obtain the stronger bound

m
+ ihg‘ < C(lw|™ + 1).

wZ
f Ghe(w)e— e 5 duw
lw|>r

£(6:Y)
—ch™! _hiw? m
< Ce H e 7 (jw™+ dw
WhLo (U £(X5Y)) Jp
< Ce—ch_l || < Ce—ch 1 ,
B8 Ifll, k0

thanks to (B.33).

We now work in the region |[w| < r and remark that for t € (¢, — 4r,ty + 4r),s €
(to — r.to +r) and |w| < r one has for z = 5 + ih¢ that

t
|Re(z) —to] <

and | Im(z)| = h||. Therefore in this region we have y(Re z) = 1 and consequently

x(Re2)f(2) — f(s) f (Z) f O)
z

—S

bs (2) = 6(s)
This implies as in (B.33) that, for Im(z) < hy:

1
< _—— .
ey S c ||f||2,R,UeXp< 2C,R| Imz|>

To alleviate the notation we write g for g,¢ ;. We know thanks to (B.43) that g
admits a complex extension in [—r, 7] + i[—p/2, p/2] for h < h given by

=0(s)

(3.45)

. m
g(w + iv) = b (H_SJ+ ihé + )(H_L+ih§+ﬂ) ,
2 2 2
that is
t m

g(2) = by <;+HTS+ h§)( +T+zh§) ,

which implies

1.
(3.46) 6:8(2) = 305, (Z . h§> ( s lh§>
Remark that for |z| < rand t,s, ¢ as in the statement of the lemma we have
‘2 + 25 lhg) <c,

for a constant C > 0 depending on r and m.
We now write the integral we want to control as

r h&2  (z+ihE)?

22 r _
f g(z)e Ze M dz = / g(z)e 2 e 2 dz
i .,
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iR

Q

Fz —iO’l’lf

FIGURE 1. The domain Q where we apply Stokes’ theorem in case
& > 0 (the picture in case £ < 0 is the symmetric about the real axis).
Notice that 0Q = T UL, U3 U[—r, 7]. Recall as well that in this regime
we have & ~ h=2/3 and therefore hé ~ h'/3. As h goes to 0 the domain
Q collapses to the segment [—r, 7].

We consider now o € (0, %) to be chosen later on. We let Q = [—r,r] X [—ch&,0]
in case £ € [c;h™?3,c,h?3] (see Figure ), resp. Q = [—r,r] X [0,—ch&] in case
& € [—c,h™3, —c1h~?3]. Stoke’s theorem applies, see (B.9), and yields:

r

—h&2  _ (z+ih&)?
/ g(z)eT2 e” 2n dz
—-r

—hg2  _ (z+ih§)? —h&2 _ (z+ih§)?
= f g(z)e 2z e” 2n dz+ f g(z)e™z e v dz
Iy r

2

—h&2 _ (z+ihé)? P
(3.47) +f g(z)e 2z e 2n dz+faz(g(z))e_lz§e 2rdz Ad2Z,
T Q

3

where the contours (oriented counterclockwise, see Figure [ in the case £ > 0) are
defined by

I ={zeC,Rez=-r, —och<Imz<0},
Lb={zeC,-r<Rez<r, Imz=—oht}
I ={zeCRez=r, —chf<Imz<O0}

if € > 0and

I ={zeC,Rez=-r, 0<Imz<—ohf},
Lb={zeC,-r<Rez<r, Imz=—oht}
I={zeCRez=r, 0<Imz<—ché},

if £ < 0. We now estimate all terms in the right-hand side of (B.47).
We start with the last term in the right-hand side of (B.47). Using (B.46) and (B.43)
together with the fact that z € Q in particular |Im z| < ohlé| < %h|§ | (since o < %),
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we obtain

182z < €Il %0 (~ s RE i)

-
< Clifllru eXP( CoR(| Im(z/2)| + h|§|))
-

<cC
< Cl o0~ 570 )
_an-1/3
(3.48) < Cllflh .y o (~5emgas) = C Il e
where c, is given by |£] < c,h™?3 and ¢ := 2C —- Wewritez = a +ifwitha,f € R

and notice that for z € Q we have |§| < crh|§ | and B¢ < 0 (in both cases). As a
consequence, we deduce

a2 2K o2hEP o2c3
=e18§e 2 < e 2h <e 2 <e2h1/3

2
. z
e—lz§e—ﬁ

Together with (B.48) this yields

22
[ Joste@netse s
Q L(X

F1/2
after having chosen o := min(cc—z, %). With o now fixed we control the other three

terms in (B-47).
« For a + i = z € T} we have a? = r? and estimate the real part of the second
exponential, using (8 + h&)? < (h&)? (in both cases —chf < f < 0if £ > 0 and

0<B < —0chéifé <0),as
(z+ih8)?\ _ rP—(B+h&? _r’—n?¢ _rr—ch?? _p?
Re( 2h )T an 2 2 2 2 ah

for h sufficiently small. This implies

—h&2  _ (z+ih§)?

| oo
I,

3.49 <cC H H e—ch™
(3.49) / W (U (:9)

ldz Adz| < CIfll,zu o—(€-a2c3/2)n~173
y) EEAS)

<ClIfllygye ",

25l

£(2X;Y) WLe(Ug:L(2:Y))

thanks to (B.33).

« For the integral in I3 we proceed exactly as for Ij.
« Fora+if3 =z € T, we have § = —ch{ and a € [—r, r], and we obtain

Re<h|§|2 N <z+ihs)2) _he @ —(B+h)

2 2h 2 2h
hE  (B+hé) h§2 2
25—y =5 (1-1-97)
> ﬂgz > o-_c%h—l/3’
2 2

for || > c¢;h™%3. The estimate of Jr, in (B:47) then proceeds as that of /.
in (B.49).
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This concludes the proof of Lemma B.11]. d
3.3. Proof of Proposition B.§. We can now turn to the proof of Proposition B.6.
Proof of Proposition B.6. For u € S(R;X), we start by writing

XFne™ 2Py — e 3PiF fou = (XFhe_ngtlzeu - xe‘g'D“zfez)

— (1= e~ TP (fou)
(3.50) = Ry — (1= e~ 3P (fou)
where R, is defined in (B:16). The second term in (B.50) is bounded using Lemma
by
h 2
= e3P (feu)

< Ce= M| FOullr_irm.
sy = If6ull gk (g.y)

(3.51) < Ce~eh ||f||ka°°(supp(6);L(DC,y)) Hu”H—k(R;x)’
thanks to the supports of (1— y) and 8. Concerning the first term in (B.50), the kernel of
Ry, is Ky (t, s) given by (B.17) according to Lemma B.9. Since K\, (¢,s) = —%Kl,h(t, s)+
CpXK; n(t, s), Lemma applied in the particular case m = 0, y; = y yields

ch—1/3
(3.52) 158G M ey < €€ T Il g -
Combining Lemmata B.9 and and recalling supp K, C (ty — 4r,ty + 4r) X (ty —
r,to + 1), the Cauchy-Schwarz inequality yields

”RhuHLZ(R;y) = “fﬂch(, S)M(S)dS

L2(R;Y)
-13

Al r,u 1l 2= r g 4y -
This, together with (B.50) and (B.51)), implies
ch—1/3

_hip2 _hip2 _
P e3P ou — e 3PF fou| | < Cem T Il e

_C
< Ce

and concludes the proof of Proposition B.§ for k = 0.
To obtain the estimate for k € N*, and given (B.50) and (B.51)), it only remains to
prove that

ch—1/3
R

pagy S G (}Zk Hf(”Hz,R,U) 2 ey

with R, defined in (B.16). We can suppose without loss of generality thatk = 2n,n € N
and thus

(3.53) ”Rh(Dt)ku

n
(3:54) R0 | < CliRwull + € 3 ||RuDZ |
¢=1

It suffices therefore to control the terms HRthuH , for ¢ > 1. To do so we observe that
L
the kernel of Ry, D, is given by DyK), where X, is the kernel of R,. Recalling (B.I§), we
need consequently to control Ha;” K n(t, S)H o for j = 1,2 and prove that they sat-
£y

isfy the estimate of Lemma B-I0. Concerning the term 8% X j,(¢, s) we remark that the
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desired bound follows from Lemma applied to some derivatives of 6 and f instead
of 6 and f. We need consequently to study 65K, ,(t,s). According to Lemma B.12,
applied to X, , = T, u[x, 0, f, 0], and recalling that supp(J, ) C supp(x) X supp(6)
which is a compact set in (¢, s) (Whence |t — s|¥2 is bounded on this set) we have

<o 3 2l 049, 149, ksl o)
kj<e

£(X,Y) £(X,Y)

+Cht kZ;e”B 16K, ks, ke, (¢, s)H e

where we take y; = y in the definition of B. Using Lemma to estimate all terms
involving 7, j, and proceeding as in (.40) to estimate all terms involving B (where we
use the localization of supp(x’)), we obtain for all (¢,s) € R>and h < 1,

h

<C€h "( +e—C/h> ’fU)H

= 2RU

Coming back to (B.54), we have now obtained (B.53), which concludes the proof of
Proposition B.6. O

Lemma 3.12. Forall y;,6; € C¥(R)and f € QZ’R(R;L(I, Y)), m,€ € N, there are
coefficients ay, 8. € R such that

ase‘r]Z,h[Xl! 6’ f’ m](t9 S) = Z akh_kl(t - S)ksz,h[Xl’ 9(k3)9 f(k4)a m+ kS](t’ S)

kjSé’
(3.55) + Z Bih M1 B[0%2) ks, m + k,](¢, 5),
kjSé’
where
BI6, m, KI(t,5) = 11(06(s) f (L) re)f (22 +ing)
(3.56) x elt=w)§ o= th (w — )k (% +ih§ — S) dwd§.

The proof of Lemma relies on the following identities.

Lemma 3.13. We have

at:JZ,h[lee’ f’ m] = ‘72,11[)(176’ f’ m] - h_l(t - S)gZ,h[)(l’ 6’f7 m]
(3.57) +2h7 19, 4l 11,6, f,m + 1],

and

O + )T n[ 21,6, frm] = T [ x1,0, f,m] + T u[ 01, €', f, m]
(3.58) + TIonlx1,6, f',m] + B[6,m,0].

As a direct corollary of Lemma B.13, decomposing

95T,n = (0 + 05)Tp . — 0: T s
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we deduce the following key formula

0sTpnlx1, 6, fyml = Toulx1, 60", foml + Tpnl 21,6, ', m]
+h(t - )72 nlx1,6, f> m]
(3.59) —2h™19, [ x1,6, f,m + 1] + B[6,m,0].
We also notice that differentiation under the integral yields
(3.60)
d,B[0,m, k] = B[0',m, k] + h~'B[0,m,k + 1] — kB[6, m,k — 1] — mB[8, m — 1,k].
With these two formulas at hand, we are now prepared to prove Lemma B.12.
Proof of Lemma from (B:59) and (B.60). The proof proceeds by induction on ¢ €
N. For ¢ = 0, the result holds straightforwardly with a 90,00y = 1 and B(¢,0,0,0) = O-

Assume now that the result holds at range ¢ and prove it at range ¢ + 1. Differentiat-

ing (B.53), we obtain

a§+1‘72,h[)(1’ 0’ f’ m] = Z akh_kl ((t - S)kzast,h[)(l’ @(k3), f(k4)’ m+ kS]
kjS€

— Ky (t = $)k2719, [y, 6%3), fka) m 4 ks]) + > Bxh ™ 16,B[6%D), ks, m + k).
kjS€

Using (B.59), we deduce that the first term, involving 6,7, ;,, has the form (B.53) with
¢ replaced by ¢ + 1. The second term, involving (t — s)%217, 1, is directly under the
appropriate form as well. Finally, (B.60) implies that the last term, involving 6,B, is also
of the form (B.53) with ¢ replaced by ¢ + 1. O

We conclude by proving Lemma B.13.

Proof of Lemma B.13. Formula (B.57) directly follows from rewriting 7, , as in (B.2§)
and differentiating under the integral. Concerning Formula (B.5§), we rewrite 7, j, as

(3.61) Ton(t,5) = x1(6(s)d (¢, 5)  with

w—s|?
g,(t,s) ::/ F(t,w,s,é’)ei(t_w)ge_ 2 dwdé,
RXR

m

t+w t+w

F(tw,s,) = (7 (57 + ihE) = n(WPEF)) (<5 + the = s)
From (B.61]) we deduce

O + 3)T5 n(t,5) = x1(D)0()T 2(t, 5) + x1(£)6'(5)T 5(t, 5)
(3.62) + x1(0)8(s)(0; + 35)T (L, 5).

Next, we focus on J,. Using that (8, + ,,)(e!~*)¥) = 0, we have on the one hand

w—.

512
3:9,(1.5) = f 3. F(t, w,s, £)el -~ T~ dwd
RXR

w—s|?
_/ F(t,w, s, £)3,,(el~ )™ “5" dwde.
RXR
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Integrating by parts in w in the second integral, and using (d,, + 0 )(e - ) =0, we
deduce

w—s|?
9,9(t,5) =f (@ + Bu)F(t, w, s, el 5 dwd

—/ F(t,w,s, &)elt-w)¥3 (e o )dwd§
RXR
On the other hand, we have

8,d,(t,s) = A,F(t, w,s, &)elt= wie=H" dwd§
RXR

+f F(t,w,s, &)elt-w)E3 (e b )dwdé’
RxR

which, combined with the previous line, yields

w—s|2
(3.63) (3, +8)4(t,5) = f (8, + 8y + 3)F(t, w, 5, )elt=WEe= "5 qupde.

We next notice that (3 + 6, + ;) (52 + ihé —s) = 0and
(0 + 84 +0) (7 (52 + hE) = n(hPE)19))
= Sren (1) (52 + ihE) = n(HP D5
= n02P)i (“5) £S5 + ihg)
42 (5 onecanf (552 + i) - 19

Combining this together with (B.63) and (B.62) and the fact that dg ) f= ( f7) (from (@)
in Lemma B.2) finally yields (B.58) and concludes the proof of the lemma.

4. THE UNIQUE CONTINUATION THEOREMS

4.1. Adding partially Gevrey lower-order terms. With the results of Section J at
our disposal, we can now add in the Carleman estimate of Theorem .3 lower-order
terms with coefficients which are Gevrey 2 with respect to t and bounded with respect
tox. Let] C Rand V C R be open sets and define Q := I x V. The goal of this section
is to prove the following local Carleman estimate for the operator P, ; defined in ([L.4).

Theorem 4.1 (Carleman estimate with Gevrey lower-order terms). Let Xy = (ty, Xg) €
Q =IxV c R4 and assume that the metric g is Lipschitz on V, with time-independent
coefficients, and b/, q € G2(I; L°(V; C)). Assume that ¢ and f satisfy the assumptions of
Theorem R.5. Then, for allk € N and all u > 0, there exist r,d, C, 7y > 0 such that for all
T > 15 and w € CP(B(Xq, 1)), we have

2
¢ —d
4.1) C||QbePoqu]| , +ceer

#ul 2o,

Hkl

Note that this Carleman estimate is still valid for P, ; , (defined in (.6)) in place of
Py 4 according to Remark P.6.
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Proof. We define R := Z?zl b/ Ox; + qsothat P4 = id; + Agy + R. We estimate

2 2 2
”Qﬁ,TPb,qw” , 2 ||Q$,TPwH ;= ”Qﬁ,TRw” . Application of (B.7) in Theorem .3 yields
L L L

¢ 2 d ¢ g ¢ g d ¢ 2
P w” +e T fle” w‘ > ” PwH +e 9 ||e” w|
||Qu,r bat|l - Qur L -
2
- [Qfeku],
(“2) 2 tlQf <wll, ||ofku
. ~ wtWii T 2 .

We now estimate the last term using Proposition B.g, up to reducing r. In order for all
the setting of Section [§ to apply, we pick r, small enough so thatJ = (tq—2r, tg+2ry) C I
and p > 0 is arbitrary. If r is the one given by Theorem P.3, we reduce it again in order
to ensure the assumption 0 < r < min(%’, g). We select y, 6, with the additional
assumption that & = 1 on [ty — r/2,ty + r/2]. We denote by B; ;, the approximate
conjugated operator associated to b/ as defined in Section B, that is B i n = Fpasdefined
in (B.14), in the case f = b/ and h is linked to 7 via h = u/73. We will keep however the
h notation for the conjugated operator. The function b/ € G2(J; L®(V; C)) is identified
with the multiplication operator in G2(J; £(I?(V; C))), that is, we make the choice X =
Y =I*V)and B = [°(V).

We now assume w € C(B(xy,r/2)) so that 6w = w. Applying Proposition B.g with
u= ewdxjw = Ou gives

_HIDy? _ MDD
XBjpe 7@ u—e 23 blu

< Ce™ " [ull g2y -

L2(R;L2(V))

According to (B.13), B;, € L(I*(R; I*(V))) uniformly in h € (0, 1), which, combined
with the previous estimate, gives

¢ . _ D _ uD?
”Qﬂ,fbfaxjw” J=le = blu|| < ||Bjre 2@ ul| +e= ||u||Ht—kL)2C
L 12 2
< —% et
2 - _
Slle 223 u . +e ||u||H[ 3%

— ¢ —ct || ,T¢
= HQ,u,raxijLZ +e e axijH

TeL%

D12

U
Using that e“?baxjw = 0y, (e™w) — (0, ¢)e™Pw and [e” 273 ,0y;] = 0, this implies

oo, < oo

eT‘i’w!

+ ||Qz,fw} +1e™ "
L2 HL

H*HY

We proceed similarly for the potential q to find

feau]|, % Qow]], +emer[fetu]
HQ,qu S Qurw o +e e'fw .

bl
TFL%

and therefore adding these two estimates yields

4
_ET
H}c

fiokw] , s o[ Qiew] , + | “u
4.3) ||Q,MRwHL2 ST||Qprw L2+ Qprw e?w .

kg1’
¢ Hx
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Estimate (§.3) allows to absorb the last term in (B.2) up to taking 7 > 7, with 7 suffi-
ciently large. This concludes the proof of Theorem f.1] up to renaming the constants
r,C,c,d and 1. O

4.2. Using the Carleman estimate: Proof of Theorem [[.2. In this section, we
prove Theorem as a consequence of the Carleman estimate of Theorem F.1. As
usual in this procedure (see e.g. [H6r94, Chapter 28], [Ler19] or [LL23]), we need to
construct a weight function ¢ that

« satisfies the assumptions of Theorem (.1, that is the assumptions of Theo-

rem R.5;

« haslevel sets appropriately curved with respect to the level sets of ¥; this is the
geometric convexification part.

This is the content of Lemma f.2, in which we recall that I ¢ R and V ¢ R? denote
bounded open sets and we write x = (¢, x).

Lemma 4.2. Let X, = (t5, %) € Q = I XV C R4 and assume that the metric g
is Lipschitz on V, with time-independent coefficients, and b/, qe GX(I;L®(V;C)). Let
¥ e C*(Q;R) satisfy (T.12) and W(x,) = 0. Then there exists a quadratic polynomial ¢
and a function f satisfying the assumptions of Theorem P.3 together with the following
properties: $(Xo) = 0 and there exists r, such that for any 0 < r < r, there exists > 0 so
thatp(x) < —nforx e {¥ <0}n{r/2 < |[x —xo| <r}.

Proof. Given ¥ € C2(Q;R) define ¢ = G(¥) and f as in (£.37) with G(s) = e* — 1.
Note in particular that ¢ and ¥ have the same level sets. Then using Corollary B.14,
one has, for 1 large enough, almost everywhere on U and for every vector field X,

, L2
(4.4) BegrX) 2 ColXly, and Ey402>Co |vg¢|g > 0.

Now define ¢ by
10 = Y () 0x0)(x — %)
¢r(x) = ol P)(%0)(x — o).
|x|<2
Observe that both quantities B, 4 - and &, 5  involve derivatives of order at most 2 of

$. Since ¥ is C? and G is smooth, ¢ = G(¥) is of class C2 as well. Since (8%¢)(xg) =
(8%$)(x,) for a < 2 we obtain by continuity that for any ¢ > 0, there exists r; > 0 such

that H¢T s < &. Define finally ¢ by

C2(B(x0,"1))

¢ = — 8lx — X,

#1 = Ao
< 2¢. As a consequence of (£.4), together with the fact that B, 4 ¢

Then there is §, > 0 such that for all § € (0, §;), < ¢ and hence

[ERE:
C2(B(x0,r1))
and &g 4 ¢ (defined in (2.4)-(R.9)) are continuous with respect to ¢ in C? topology, we

finally deduce existence of r; > 0 and § > 0 such that for a.e. x € B(x,, ;) and for all
vector fields X,

C, 2 C 2
Begs X)) 2 X[, and  Egg,(x) 2 Vgl () >0,
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As a consequence, ¢ satisfies the assumptions of Theorem P.5. The geometric state-
ment of the lemma follows from the facts that ¢ and W have the same level sets and ¢
is the order 2 Taylor expansion of ¢ (see e.g. [LL23, Proof of Theorem 2.2]). O

We are now prepared to prove Theorem [[.2.

Proof of Theorem [L.2, Consider u a solution of P, qu = 0 such thatu = 0in QN{¥ > 0}.
Let ¢ be as in Lemma f.2. Theorem [ for k = 0 implies that there exist r,d, C, 7y > 0
such that for all 7 > 7, and w € C(B(Xg, 7)), we have

2

2
(4.5) C HQﬁ,er,quLz + Ce™97 [le™w

m@Zﬂm%w@g

We now claim that Estimate (&.3) still holds for functions w € I*(I; H'(V)) such that
P w e I? and supp w C B(Xy,r). To prove this claim, using the usual approximation
argument, we define w, = 6, * w for 6; as in Lemma [A.2. For ¢ small enough, we
have w, € C®(B(xy,r)) so that (§.3) holds for w,. Since w € I*(I; H*(V)) is compactly
supported, we have w, —w in I?(I; H(V)). Moreover, for 7 fixed, the multiplication

by €™ is continuous from I2(I; H'(V)) to I*(I; H'(V)), we get ||e™®(w — w,) L <
L2H}
2
Cllw— we|l;n — 0 and the second term in (F3) with ||e*Pw, - |lefw )
=0 L?H} L?HL

For 7, u fixed, Qﬁ,r is a continuous operator from L%omp(B(xo, r)) to I?(R"), and also
from LEHy N L2omp(B(Xg, 1)) to Hi (using regularization in time, see Lemma [A:4), so
we have

||Qﬁ,‘l’w - Qz,fwg

Hl <C(t, 1) |lw - waHL%H}( >

|QficP(w — wo)

L, €@ [Pogw—w))| -
The first term converges to zero, so it remains to consider the second one. Since by
assumption of the claim, P, qw € 12,0, % (Py,qw) converges to P, qw in I2,s0itis enough
to prove that 6, * (P, qw) — P, qw, converges to zero in I2. Since P, 4 is a differential
operator of order 2 in x and of order 1 in ¢ with main coefficients at least Lipschitz and
L* lower-order terms, Lemmata and [A.3 apply and give the sought convergence.
This concludes the proof of the claim that (#.3) still holds for functions w € I*(I; H'(V))
such that P, ;w € I? and supp w C B(Xo, 7).
In addition to the Carleman estimate (f.5) we have moreover:

(1) ¢(x¢) = 0 and there exists > 0 so that ¢(x) < —nforx € {¥ < 0}n{r >
[x —xo| >r/2},
(2) ¢p(x) < d/4for |x —xg| < 1.
Property comes from Lemma and Property is just the continuity of ¢, up
to reducing r. Let y € CP(B(xq,r)) with y = 1 in B(xy,r/2). In order to apply the
Carleman estimate (F.3) to w = yu € I?(I; H(V)), we first estimate

|QhePuan]| , <||QbexPoqu| , + | QelPrq 21| | = |[QhiclPog.xlu

12

<

e P x|, < e Ilullzrgy
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according to the fact that supp(Viy) C {r > |x — X¢| > #/2} and supp(u) C {¥ < 0},
Property [1] and the fact that [P, 4, x] is a differential operator of order one with no
derivatives in t. We have as well

e—dT

TP —3d7r/4
e wHL%H}C < e | 2

thanks to Property [2). Plugging the last two estimates in (£.3), we finally obtain that
there exists a § > 0 such that

¢ ¢ -
[Qfexn]| | < l1Qfexullyy < oo ull

which implies that HQ;&? )(uH ,<C uniformly in 7> 7,. Lemma [A.]] gives supp (yu)C
L

{¢ < —6}. Since ¢(xy) = 0 and y = 1 in B(xXy,7/2) one has that W = B(xy,7/2) N {¢ >
—6/2} is a neighborhood of %, in which yu = u = 0 and the proof of Theorem [.2 is
complete. O

4.3. Reducing the regularity of the solution: Proof of Theorem [[.3. Theorem [[.2
concerns solutions u € I*(I;H'(V)) of the Schrédinger equation P, ;u = 0. The
I*(I; H'(V)) regularity allows in particular not to care about the divergence form and
to make sense of bJ(¢, x)axj u(t, x) in the sense of distributions if b € L*(I X V) only.
In the present section, assuming divergence form of the principal part and additional
space regularity on the vectorfield b, we generalize Theorem [ to I?(I X V) solutions
to P, qu = 0 and prove Theorem [L.3. Since the statement of Theorem [L.3 is sensitive to
the form of the elliptic operator involved, we prove it in the more general setting with
P, 4 replaced by

d
—i J
(4.6) Pogop =10+ Agy + ]Zl b/ (£, X)3y; + qa(t, x),
where A, ;, is defined in Section [[.3.2. Then we have P, ; = P, 4, i.e. the statement

of Theorem [[.3 corresponds to taking ¢ = 1, and the application to the second part of
Theorem [[.3 to ¢ = 1/det(g). The idea is to use the Carleman estimate of Theorem f.1]
for k = 1 instead of k = 0. This allows to exploit the ellipticity of A, , via Lemma f.4
to gain regularity.

We first state a local regularity result for the Schrodinger operator Py o,

Lemma 4.3 (Local regularity for P, ;). LetI C RandV C R? be bounded open sets
and Q = I X V. Assume that gi* € Wll(;g’(V; R) is symmetric and satisfies (L.7), that ¢ €
Wi (V;R) satisfies > 0 on V, that q,b/ € LE.(Q;C) and Z?:l dy,b/ € Li5 (2 0).
Let xt € C2(I), x* € C2(V) and set x5(t,x) = x'(t)x*(x). Then, there is a constant
C > 0such that for any u € I*(Q) with x3P, 4 ,u € H™'(R; H-1(R?)), we have y3u €
H~YR; HY(V)) with

(4-7) HXS”“H—I(R;Hl(V)) < C H)(Z’,Pb,q,(puH +C ”uHLZ(Q) .

HALRH-1(RD))

Proof. We prove (B.7) for all u € C(V), and the lemma follows with a regularization
argument left to the reader. We define the operator R := Zjﬂ bi(t, x)axj + q(t, x) so
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that P, o , = i0; + Ag , + R where A, , is defined in Section [[.3.3. We apply Lemma f.4
forany t € R tow = (D;)~! y'u and integrate in time to obtain

sl e vy = || 2t

sc(‘

Using that Ag , = P, 4, + D; — R, this implies

L(R:H'(RY))

+ ||<Dt>_1)(tu

XDy Ag pu

L2(R;H-1(RY)) L%R:L%supp(;cx»)) )

(4-8) ”X?)MHH—I(R;HI(V))
<c([rxwotxt D

*|

)(x<Dt>_1Xth,q,(pu

L2(R;H-1(R4)) L2(R;H-1(R4))

+ |01 Ru +||o 1t

L2(R;H-1(R4)) L2(R;L2(supp (x*))) )

Now observe that ”(Dt)_1 x'D, < +00, so that for any 7' € CX(I) with
L2(R)—L2(R)

#' = 1in a neighborhood of y*, we have

(4.9) }){’%Dt)_l)(tDz“ LERH-ERD) {XX(D»_lXtDtZtu L2(R;H-1(R4))
< ‘Xxitu LA(RH-1(RA))
Next remark that
@10) [0y Pogpu RA-RE)Y) s b’q’qou”H—l(R;H_l(Rd))’ and
(4.11) ||<Dt>_1?ft” L2®L2(supp () = H)(tu L2(R;L2(supp (x*)))

To handle the last term, we argue by duality and write

} L2(R;H-1(R4))

(4.12) = sup |(X 3Ru, 6)LZ(Rl’f‘i)| ’
6€S(RI*F), (101 .2 (.11 (ry) <1

XDy~ x'Ru < ||)(3Ru”L2(R;H—1(Rd))

We calculate

d
(R, O) 12 (gvay = Z x3b780, udtdx +/ x3qué dtdx
R1+d j=1 J R1+d
= —f > 8y, (x3b/Oudtdx + / x3qué dtdx
R1+d j=1 J R1+d
= —f @, X)) x'bibudt — X3 divy(b)ub dtdx
R1+d j=1 J R1+d

d
- / > x3b/ (3, O)udtdx + f x3qué dtdx.
R1+d R

1+d
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Consequently, the Cauchy-Schwarz inequality yields
|()(3Ru, Q)LZ(Rd+1)| <C ||b||L°°(Supp()(3)) ||u||L2(Q) ||6”L2(Rd+1)
+C ||diV1(b)||Lw(supp(X3)) ”u”LZ(Q) ||6||L2(Rd+1)
+C ||b||L°°(Supp(){3)) ||u”L2(Q) “e”LZ(R;HI(Rd))
+C ||q“L°°(Supp()(3)) ||u“L2(Q) ”e”LZ(Rd+1)
<C ”uHLZ(Q) ||6”L2([R;H1([Rd))’
and we obtain thanks to (#.12) that ‘ 1Dy~ x'Ru < Cllullp2qy - Com-
L2(R;H-1(R4)

bining this together with (£.9)-(E.11)) in (B.§) yields finally (§.7) for all u € C&(V),
which concludes the proof of the lemma. ]

We now prove Theorem [.3 in the more general setting of the operator P, .

Proof of Theorem [.3. The proof of Theorem [[.3 proceeds as that of Theorem [.2. The
main differences are that now we apply the Carleman estimate of Theorem . fork = 1
and that we consider the operator P, 4 ... That Theorem #.1 still holds for P, , , in place
of P, , is a direct consequence of Remark P.6. The functions ¥ and ¢ are the same as
in the proof of Theorem [[.7, i.e. those furnished by Lemma .2,
Recall that for e,k > 0,
k/2
” Dke—elDif?

k
= max §f‘e‘5§t2 = (—)
12512 £eR+ 2ee

As a consequence, we have for 7 > 1 (and using k = 1 in the above identity),

HQ,i,TPb,q,rpw

12
—H

D, 2
- ‘(D,)e 2 (D) e P, g pw

L2
—HIDI2 L
e 2 (Dy)” eT¢Pb,q,§0w

—HID 2
< 2 Dte 273 <Dt>_1eT¢Pb,q,<pw

+2‘
12

‘Lz
< Cr3?

¢
e Pb,qa(Pw”Ht_lL)zc :

This, combined with the Carleman estimate of Theorem [ for k = 1 yields

2
3 ||, —dt
(4.13) Ct ||e Pb’q’gow”H_le + Ce
t Lx

2
T¢ > ¢ 2
AL R [T

We now apply Inequality (£.13) to w = yu with y as in the proof of Theorem [[.2 and
u € I2(Q) solution to P, 4 ,u in D'(Q). According to Lemma[3, ysu € H-'(R; HY(V))
for all y; with supp(3) C I X V. Moreover [P, 4 ,,, x] is a differential operator with L
coefficients and involving only space derivatives of order at most 1. As a consequence,
[Py,q.0» X]u € H™'(R; I2(V)) and we need to estimate

72 ||eT¢Pb’q’¢(Xu)HH,—1L§ =72 Hew[Pb,q,fp’ X]u”H;IL,% .
We argue by duality and write
(4.14)

Pyl = sup [Py g0 X111, 6 .
q,$ Ht_lLch QGS(RH-d)’”e”H}L)ZCSl ‘( 9,9 )LZ(R1+d)|
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We choose a function y; € C&(Q;R) such that y; = 1 on the support of V, y and
supp(xy) C {r > |x—%¢| > r/2—e} with e > 0small. We consider aswell y, € C®(Q; R)
with y, = 1 on {¥ < 0} and y, = 0 on {¥ > ¢}. Notice that this implies in particular
that y, = 1 on the support of u. Recall that we have the property

P(x)<—n forallx e{¥<0}n{r>|x—xy >r/2}.
By continuity, we can then choose € > 0 sufficiently small such that

¢(x) < —n/2 forall
(4.15) xe{¥ <en{r>|x—xo| 2r/2—¢e}=supp(x1) Nsupp(x2)-

We finally take y! € C®(I) and y* € C®(V) such that y;(¢, x) == x'(£)x*(x) satisfies
X3 = Lonsupp(y). The operator [P, o ,, x] is a differential operator with derivatives of
order at most 1, no time derivatives, and with L* coefficients supported in supp(Vyyx)
where y; = 1. We then obtain

|(e‘r¢ [Pb,q,gw xlu, G)LZ(RH+1)|
B U o ]uédtdx’ B } f [P a0 X](x31)e™ 1 1260t dx

= |([Pb,q,(p7 x1Cw), eT¢X1X29)L2(R1+d)|

< [Poag 0G0, [t 029
[ b,q,¢ x10Gw) HALZ X1X2 HILZ
< C-L—e—T)T/Z ||X3u”H[—1H}C ||6”Ht1L)2C < Ce—nT/4 ||X3u”H[—1H}C He”H}L,% ’
where we have used (£.13) as well as the support properties of V, y,u, x1, x,. Coming

back to (B.14) we have thus obtained the estimate
||er¢[Pb,q,§0’X]u” 172 < Ce /4 ”X?auHH—lHl .
H[ Lx ¢ *

Similarly, one has

e—dT

0 —dr/8
¢ wHHle}c =€ 25Ul -

Combining the last two estimates with (£.13) and using Lemma f.3 gives the existence
of some § > 0 with

1Qfwllze < Cem® [|xsull -1y < Ce™*F llull 2y -

From this point forward, the conclusion of the proof of Theorem [[.3 is identical to that
of Theorem [[.2. O

In the course of the proof, we have used the following elliptic regularity lemma. It
is rather classical, but we provide with a short proof for sake of completeness.

Lemma 4.4. Let V C R be an open set, assume g/* € W2 (V;R) satisfies (), that
p € Wllc;g’(V; R) satisfies o > 0on V, and let y € C®(V). Then, there exists C > 0 50
that, for any w € I*(V;C) with xAg ,(w) € H™'(R?), we have

el gy < € \}xAg,(p(w)HH_l(Rd) + Clwll 2 suppy) -
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Recall (see e.g. Section [[.3.7) that A, , = div, V, = ), ik %dxj gjkcpaxk. Note that,
for any ¢ and g as in the statement, there is a Lipschitz continuous Riemannian met-
1
ric g such that gp = gy/det(g) (namely g := det(gp)~ @2 gp) and for this g we have
A __ ydet(g)

2
op = TAg = det(ggp)d+2 A,. In this expression (and in the setting of Lemma {.4),

the prefactor is a Lipschitz nonvanishing function. Since multiplication by a W1-*®
function is bounded on H~! (for it is on H'), it suffices to prove the result of Lemma .4
for A, (defined at the beginning of Section R.1) in place of A, .

Proof. We may assume w € C&(V;R), the conclusion of the lemma will follow from
a density argument, together with application of the result to the real and imaginary
parts of the function. By integration by parts, using the notation of Section .1, we have

2
/ |Vg()(w)|g = _/Ag(xw)Xw
= / Agw)Pw — (Ag)xw? —2(Vgx, ng>g xw.
. 2
Rewriting (Vg x, ng>g xw = (Vgx, Vg()(w)>g w— |Vg)(|g w?, we deduce
2 _ 2 2 2
|Vg()(w)'g - Ag(w))( w+ (|Vg)(|g - Ag)()()w - 2<Vg)(, Vg()(w»g w.

Since g/* Wﬁ;‘:(V; R)and y € C°(V) we have Agy € L*(V). As a consequence, we
have for any ¢ > 0, the existence of C, = C.(y, g) > 0 such that

[ et < ragw],

+CHVg()(w)

C 2
1y Ml gy + C @l supp o

L2(R4) ”w”LZ(SuPP 69))

2
< C |xagw)|

-1(rd) te ”XwHHl(Rd)

2
2
(4.16) + Ce |1l 2eupp ) + € va(;(w)HLz .

Using ellipticity and boundedness of g on supp(), we further have existence of Cg =
Cy(x) > 1such that for all w € C*(V),

2
- 2 2 2
G xwlipaay < |[VeOw)|| | + awllzz < Cellxwlipgae,
Combining this with (#.16), we have now obtained
_ 2
Cg ! ”)(wHHl(Rd)

<C.

2
2
xAg<w>||H_1(Rd) + &1+ Cy) 1wl g1 ay + (Ce + DIl 2 supp () -

which concludes the proof of the lemma when choosing ¢ = Cg'(1 + C4)™'/2. O

APPENDIX A. TOOLS

In this appendix, we collect technical lemmata that are used along the article.
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A.1l. The conclusive lemma for unique continuation. The following is [Hor97,
Proposition 2.1] that we state here (without proof) for the reader’s convenience.

Lemma A.1. Letu € I*(R") and let ¢ be a smooth real valued function. Let (A;)y-q be
a family of continuous bounded functions in R", such that for any compact set K C R",
we have ||[A; — 1||ze(k) =700 0. If there exist C, 7y > 0 such that

HA,(D)er¢uHL2 <c, fordlt>1,,

then suppu C {¢ < 0}.

A.2. The regularization argument for Carleman estimates in energy spaces.
We recall here classical regularization arguments (see e.g. [Ler19, Appendix B]), that
allow to deduce Carleman estimates for functions in well-suited H* spaces from Car-
leman estimates for smooth functions. They are used in the proof of Theorem .7 in
Section .7 for the Schrédinger operator and in Appendix [B for the plate operator.

Lemma A.2 (Lemma B.18 and B.19 of [Ler19]). Let 6 € C(R"; R*) with integral 1,
set 6.(x) = €7"0(x/e) and take a € L2 (R™). Then, for any v € I*(R™) with compact
support, we have

(A1) Elil(l)l+ (a (@, xv) =0, * (av)) =0, inI?(R").

Ifin addition a € Wll(;?’(R") and v € H™Y(R"), then for |a| = m, we have
(A.2) li%1+ (ad% (6, * v) — 6, * (ad%v)) =0, inI2(R").
£—
We also use the following anisotropic variant of Lemma[A.2, which is obtained using

exactly the same proof.

Lemma A.3. Letm € N*and a = y + 8 € N" be such that |y|=1 and || = m — 1.
Assume that a € L®(R") satisfies dka € L°(R™). Then, forany v € I2(R") with compact
support and such that 65 v € I, (B2) holds.

We omit the proof since it is exactly that of [Ler19, Lemma B.19].

A.3. A technical lemma on the Gaussian multiplier. We first recall the formula

L2 1£2
4

(A3) Fle™ T)(E) = (mA) e §ER,
used several times in the article, and its consequence
hin 2 1 \? [t=s
—51D¢l Y -Sn-
(A4) <e ; f) ® ( 2ﬂh) fR f(s)e~ - ds, teR.

LemmaA.4. Let (X, ||-||x) be a normed vector space, x;, x» € C®(R)with all derivatives
bounded and such that dist(supp (x1), supp(x2)) = d > 0. Then foreveryk,m € N, there
exist C,c > 0 such that for all u € S(R; X) and all A > 0 we have

See e.g. [LLI94, Lemma 2.4] in case m = k = 0.

D¢ 2

xiew A (xou)

< Ce™ M |ull yyom gy -
HER) H-M(R;X)
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Proof. We start with k = m = 0 and recall (A.4). Using the support properties of 1, x2,
this implies

_Ipy? 1z —A(s—1)2
ne 0 =) w0 [ e pneueds
|t—s|>d

1/2 i
:<E) 20(O1 54735 ()0,

The Young inequality thus yields

D2

_IDe? A
xiew A (u)

" 262
<(35) Il Jimae ¢
2(rx)  \4T HiLe ||

||)fzu”L2(R;x)

LI(R)
1 1/2 A2
<(35) Wl ol 30020

LI(R) ”uHLZ(R;x) .

The result for k = m = 0 then follows from the fact that

o A A A o A
A2 _4A2 132 42
=/ e 8%e 85ds<e sd[ e 8%ds
L®  Jy b

Ce_/ﬁld2 ®
<
D2

Vi Jo

As a preparation for the general case, we prove a similar estimate ife™ 2
Dy |2

|
by Dfe™ 7~ for k € N. Notice that from (A.4), we have

D, 2 1/2
pke ¥ r = ;%) / D561 f(s)ds
R

1 A
3 ae 07

2
e=S"ds < Ce™°A,

is replaced

4
1/2

- (%) 2 Gk, f (s — ty2e= 36~ f(s)ds,
2<k R

Oskl,k

where ay, ., € C do notdepend on 1. As a consequence, proceeding as above with the
Young inequality, we obtain

‘ L2(R;X)

—40)2
<A S Ot 5 Ok = Gauw )|
0<ky<k L2(R;X)

—40)2
< CAM2 e el Y, [1mae™ 3O
0<ky<k LY(®)

_IDg?
Xlche 1 (pu)

Hu”LZ(R;x) .

Using now

||ﬂ|~|zd€_%(')2(')k2

o0 o0
_A2 _A2 _2q2 _A2
= 2/ e 5585 skads < 2754 f sk2e7 8% dg
LI(R) g b

ky+1

2
_ _i42 8 2 k2+1 —cp A
=e 38 (—) r > < Cy,e "
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Combining these two lines, we finally deduce that for any k € N and any i, x, €
L*(R) such that dist(supp f;,supp f,) = d > 0, there are Cy, ¢, > 0 such that for all
u € S(R; X),

(A.5) ‘

k L —cpd
xiDie” 7 (u) < Cke™ " lull 2y -
L2(R;X)

Now, we prove the following statement: for all k, ¢, m € N, for all 1, x, € C§°(R) such
that dist(supp fi, supp f>) > d > 0 there are C,c > 0 such that for all u € S(R; X),

(A6) ‘

_Ipg? _
Df)(ng"'e 1~ (x.Df"u) < Ce™ ”u“LZ(R;x)'
L2(R:X)

To this aim, given €, m € N, we consider the induction assumption
(A(¢, m)) (A.G) is satisfied for all k € N.

We notice first that (A(0, 0)) is (A.5). Then, we assume ([A(Z, m)) and prove (A(¢ +
1,m + 1)). For this, we decompose and expand
1Dy 2
D{*'xn Dz 1 DM = Df ()(1Dt + [Dh)fl )Dt (Dz)(z + )(Z’Dt )Dt

Dyl __
= Df D¢ )(th +iDf y,Df e )(th

6 o k1 ,— B L/
—iDf 1Dy e ’1 Xth +Df xiDfe™ % x,D[",

and notice that the induction assumption (JA(Z,m)) applies to all of these four terms
since supp x; C supp ¥;, j = 1,2. This concludes the proof of (A.6).

To conclude the proof of the lemma, we deduce from (A.6) (for k = 0) that for
¢,m e N, and allv € 8(R; X),

H(l + DY e A (1 + DRY™)

< Ce™4 ol L2y -
L2(R;)

Letting v := (1 + D?)™™u in this expression, we deduce that for all u € S(R;X),

This concludes the proof of the lemma (for even integers, and thus for all integers). O

\Dt\z

xie” (qu)‘

- H(l + DY e 5 (1 + DRY™)

H2¢(R;X) L2(R;X)

S Ce_CA ||U||L2(R;x) = Ce_C/l ”uHH—Zm(R;x) .

A4. Acomplex analysislemma. The following regularity lemma is used in the con-
jugation argument.

Lemma A.5. Let U C C an open set containing 0 and h € C?(U) such that |0;h(z)| =
o(|z|) as z — 0. Then, the function defined by

h(z) - h(O)

w(z) == ,forz#0, and w(0)=3,h(0)

satisfies w € CY(U).
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Proof. The only problem is close to z = 0 and may thus assume that U is a small
open ball centered at 0. We write the Taylor formula h(z) = h(0) + z fo1 d,h(sz)ds +
4 fol d;h(sz)ds and obtain

1 _ 1
(A7) w(z) = f azh(sz)ds+§ f d,h(sz)ds, z#0.
0 0

The first term in the right-hand side is of class C! by assumption and we only need to
prove that the second term u(z) := g fol 9;h(sz)ds can be extended as a C! function near
0. The assumption |0;h(z)| = o(|z|) implies that u(z) can be continuously extended by
0 at 0 so, we are left to consider the derivatives of u. Denoting by V any derivative, we
have

1 _ ol
(A.8) Vu(z) = V (5) / d,h(sz)ds + = f $Va,h(sz)ds.

zZ7Jo ZJo
By assumption, d;h € C' and we may thus write (Taylor expansion with Peano form of
the remainder) d,h(z) = d;h(0)+20,0;h(0)+232h(0)+0(|z|). Since we further assume
|0zh(2)| = o(|z]), we deduce that d;h(0) = 0, Vd;h(0) = 0, and therefore |V3,h(z)| =
o(1) as z = 0. Since |V (g)‘ < C|z|71, we deduce from (A.§) and |0;h(z)| = o(|z|) that

1 1
[Vu(z)| < C|Z|_1f o(|sz|)ds +f s?|z|ds — 0,
0 0

as z — 0 (note that in the first integral, we have used that, since h is C?, we have
o(z) = zm(z) with m continuous near zero and m(z) — 0 as z — 0, together with the
Lebesgue convergence theorem). This proves that u is of class C! near zero and hence,
coming back to (A7), so is w (with Vw(0) = V3,h(0)). O

A.5. Integration by parts formule. Given a bounded C! (or piecewise C') domain
Q c C and a C! one form w defined in a neighborhood of Q, we recall the Stokes

formula
/ W= f dw.
8Q Q

Here, Q) is given the orientation coming from the canonical orientation of C.

Now given a Banach space B and a function f, : R?> ~ C — B8, and under the
identification fy(x,y) = f(z,Z), we apply the above formula with the one Banach-
valued form w(x, y) = f(z, Z)dz to obtain

/ f(z,2)dz = / d(f(z,2)dz) = f 0,f(z,2)dzAdz+0;f(z,2)dz Adz
aQ Q Q

= f 0:f(z,2)dz A dz,
Q
that is
(A9) / f(z,2)dz = f 0;f(z,2)dz A dz.
8Q Q

Note also that if f is holomorphic, we recover the usual deformation of contour princi-
ple f5q f(z)dz = 0. Here 0Q is oriented so that Q lies to the left of dQ, see for instance
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[Hor63, Chapter 1, Section 1.2]. Applying this to f = gh with g € C}(C;C),h €
CY(C; B), we deduce

(A.10) / g0;hdz A dz = / ghdz — / hd,gdz A dz.
Q 0Q Q

If now g € C}(C) and h € C!(C; B) satisfy hg — 0 at infinity and gd;h € L[}(C;B),
hdzg € L}(C;B), then we may choose Q = B(0,R) and let R — +oo, yielding the
following statement.

Lemma A.6. Assume B is a Banach space, g € C*(C;C) and h € C(C; B) satisfy
g0;h € L'(C; B), hd,g € LN(C; B) and [yp gy l|hglls(2)dz — 0 as R — +oco. Then

(A.11) /gdzhdi Adz =— / hdzgdz Adz.
c c

Note finally that z = x + iy and Z = x — iy so that
dz Adz =d(x —iy) Ad(x + iy) = 2idx A dy,

where dx A dy is the usual Lebesgue measure on R? (oriented).

APPENDIX B. THE PLATE OPERATOR

The goal of this section is to prove Theorem concerning the plate operator 7
defined in ([.21)). We introduce the unperturbed plate operator T = 7; o, that is to say

(B.1) T =07 + A%

We follow the notation in Section P.2: we define T on an interval I in ¢ and an open
set V in x. In order to give a meaning to the bi-Laplace and to iterate our Carleman
estimates, we assume that gjk € W3*(V). In particular, under this assumption, the
operator T can be written under the form ([.1)) with order m = 4, with time indepen-
dent coefficients, with coefficients of order 4 in W3 (V), while lower-order terms are
at least in L*(V).

Theorem B.1 (Carleman estimate for the plate operator). Let Xy = (¢y,X) € Q =
IXV c R4, Assume that ¢ and f satisfy the assumptions of Theorem B.3 for some
r > 0. Then, forall u > 0 and k € N, there exist d, C, 7y > 0 such that for all T > 7, and
v € CP(B(xg, g)), for T defined in (B.1)), we have
2

2
(B.2) C||Qz,fTvH + Ce 97 ||e™Pv
L2

410% .12
1262 =T HQ,U,TUIIH%'
Proof. Recalling the definition of P in (2.1)), we define the operator P by
d

=, _ 1 jk

P=—id, + Ay =Dy j;l mpﬂ/detgg Dy.
We set w = Pv and remark that, since P is a local operator, w is still compactly sup-
ported in B(x,, g). Since g/k € W3*(V), we have w € C®(I; W>*(V)), and, in partic-
ular, w € I*(I; HY(V)) and Pw € (I X V).

We have obtained in the proof of Theorem [[.7 that Estimate ({.3) still holds for func-

tions w € I?(I; HY(V)) such that Pw € I? and supp w C B(X,, g). This is also the case
for the variant (.7) for any k € N (we only need to check that the approximation
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ePw,

converges to
Hi*H}

plying (27) to w = Pv thus yields

ef‘f’w” 1 which is clear with the assumptions). Ap-
HykHL

2
(B.3) c HQi,TPPuH + Ce
12

2
T¢_ > 4’ D 2
e PU”H["‘H}C > T||Q,,L,TPU||H%.

A crude estimate gives

e7¢1_30” < Ct?
H7kHL

ef‘l’v” . Also, we notice that since
H—k+1H3
t X

% is real valued, [|Q%Pul| = “Q;’i,fﬁu

. = ||Qﬁ,TP5| L2 THQﬁ’TPBHLz' Applying

Hz
now (B.7) to v € C&L(B(xg, g)), we obtain

(B4) c|afpa|., +ce oo

¢ =2
- > T||Q,u,rv||H%~
t x

Combining (B3) and (B-4), noticing that T = PP and that ||Qﬁ,15|| = ||Qi,fv|| 1 and

H
Ht kal
C,

eT‘?"vH fop WE have obtained, with a different constant, still denoted
HikHL

2

2
c ||in,TTv||L2 + Ce~ 9774 + Ce 9773

ef¢v|

2
TP 4% 2
Ht_kHH,% ¢ U”Ht_kH}C 2T ||Q#,TU“H_}'
Since k is arbitrary in (B.7), we finally obtain (B.2) up to changing the constants d and
Tp- (]

Remark B.2. It is worth noticing that the plate operator T does not satisfy the general
assumptions of the Tataru-Robbiano-Zuily-Hormander Theorem [RZ98, H6r97, Tat99].
Indeed, its principal symbol q(t, x, &, &) = |&|g- = p(x, &)?* is the square of the prin-
cipal symbol p = —|&, 3. of the Laplace operator. Writing q4(x, &) = q(x, £ + itd$(x)),
we have

qe = Pé,
{959} = 204 {Pg: 9}
{8594} = 2{qp. P4} Py + 2{D3. a4} Dg-

In particular, gy = 0 is equivalent to py = 0 which implies {q4, ¢} = {qg.q4} = 0. So,
the pseudoconvexity condition

1,
a9 =103 9} =0, &=0. >0 = —{gzq4}>0.

which is part of the assumptions of the Tataru-Robbiano-Zuily-Hormander theorem,
is never satisfied if there is a point (¢, x, §;, &, 7) with §; = 0, 7 > 0 and py = 0. There
is always such a point except in dimension 1 in x.

As a consequence, even for lower-order operators depending analytically on time,
the unique continuation result of Theorem does not follow directly from the
Tataru-Robbiano-Zuily-Hormander Theorem [RZ98, Hor97, Tat99].

This fact explains the loss of a power of 7 in the previous Carleman estimate, show-
ing that we are losing one full power in the subelliptic estimate instead of one half in
the usual case. This is already described e.g. by Le Rousseau-Robbiano [LRR20] for
the (related elliptic) bi-Laplace operator, where fine estimates close to the boundary
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are proved. Here, we are using in a crucial way the structure as a product of two opera-
tors. Note that the unique continuation for elliptic operators of order four is not always
true, see Pli$ [Pli61]] or [HHOr74], so a specific structure of the operator seems necessary
in general.

Remark B.3. It is likely that one can obtain improved estimates where ‘r“||Q?3,TU||§I1
T

in the right-hand side of (B.2) is replaced by ||Qﬁ,fv||§{3, i.e. with the same powers of
7, but including higher order derivatives. This would allow to consider lower-order

perturbations of higher order, but we do not pursue in this direction here.

We recall that the operator 7, , is defined in ([L.21)). We are ready to state the variant
of Theorem f.1] for plates.

Theorem B.4 (Carleman estimate for plates with Gevrey lower-order terms). Letx, =
(to»Xo) € Q = I XV C R4 and assume that the metric g satisfies g/k € W3*(V),
with time-independent coefficients, and b/,q € G*(I;L®(V;C)). Assume that ¢ and f
satisfy the assumptions of Theorem R.3. Then, for all k € N and all u > 0, there exist
r,d,C, 1y > 0 such that for all T > 7, and w € CZ(B(X, 1)), we have

(B.5) c ||Q2,Tjg,,qu; +Ceer

2
eT¢w|| > 74108 cwl2...
s = TGl

. . d i . .
Proof. Using the notation R := ), j=1 b/ dy; + q as in the proof of Theorem A1), we still
have (£.3), that is to say

C
+e7 2"
1

fekw], <ok |
6 [Qfieru] | s7||Qhw "

¢ 140 H
o + HQ,Mw e™Pw .

kg1’
¢ Hx

2 2 2
Since 4 = T + R, we have ”Qﬁ,fj;,,qw 2 HQﬁ,TTwHLZ - HQi,,RwHLZ. Combining

(B-6) with (B.2), we finally deduce

2
C||Qfequ] , +cle + e

2
¢ 2 41 0% 2
\e'f<l5w||H_kH3 + 1 Quevllgy 2 T1Qurwllz-
t X
This is the expected result after absorption of ||infv||12q1 for T > 7y, with 7, sufficiently
T
large. O

Proof of Theorem [L.10. The proof is very close to that of Theorem [[.7 in the case of the
Schrodinger operator. Consider u € H'(I; H3(V)) solution of Jp,qu = Osuch thatu = 0
in Q N {¥ > 0} and let ¢ be as in Lemma .2, Theorem B.4 for k = 0 implies that there
existr,d, C, 7y > 0 such that for all 7 > 7y and w € C(B(Xg, 1)), we have

2
®7) C HQﬁ,Tﬂg,quLz + Ce-7 |lort

2
s 2 TR ewly > T Qwl

The coefficients of 7y , of order 4 are independent of t and in W3 (V) while the coeffi-
cients of the lower-order terms are (at least) in L*(I X V). According to an approxima-
tion argument similar to that in the proof of Theorem B.1], we obtain that estimate (B.7)
still holds for functions w € I*(I; H*(V)) such that 7, ;w € I* and suppw C B(Xo, ).
With the same notation, we only verify the argument for the term including 7; ;. The
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assumptions imply that Tw € I?* and it is sufficient to prove the convergence of the
term involving T. We are led to estimate

< [[Qhie (rw = rwpp| |, + |0k (Tw). - Two)
< (e ) [ITw = (Tw)el

|ofeTw—wo)

L2

(B.8) + C ) |[(AFw), — Adw,

’
2

where we have used that Qi,r is continuous from I*(B(x,, g)) to I>(R") and that 67
commutes with the convolution. The first term in the right-hand side of (B.§) converges
to zero since Tw € I* while the second one converges to zero using Lemma [A.3. We
conclude that (B.7) holds for w.

The function ¢ is the same function as in the proof of Theorem for the
Schrodinger operator, and we still have:

(1) ¢(x¢) = 0 and there exists 7 > 0so that p(x) < —nforx € {¥ <0} n{r >
|X_X0| b I’/Z},
(2) p(x) < d/4for |x —xy| <.
Let y € CP(B(xg,r)) with y = 1 in B(xq,r/2). In order to apply the Carleman esti-
mate (B.7) tow = yu € H'(I; H3(V)), we first estimate

o], < ot

+ @bl ]|, = [ Qfielh g

L L2

<o, < il

according to the fact that supp(V,y) C {r > |x — xq| > r/2} and supp(u) C {¥ < 0},
Property [1] and the fact that [7; 4, x] is a differential operator of order three in x and
order one in t. We have as well

o—dt < o—3dT/4,3

eT¢w < ||u||L%H; s

L?H3

thanks to Property [2]. Plugging the last two estimates in (B.7), we finally obtain that
there exists a § > 0 such that

Qo] , < NQfexulizy < CeoF ull gy

which implies that HQﬁ}a )(uH LS C uniformly in 7> 17,. Lemma [A. gives supp(yu) C
L

{¢ < —8}. Since ¢(xy) = 0 and y = 1 in B(xXy,r/2) one has that W = B(xy,r/2) N {¢ >
—4/2} is a neighborhood of %, in which yu = u = 0 and the proof of Theorem is
complete. O
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