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UNIQUE CONTINUATION FOR SCHRÖDINGER OPERATORS WITH
PARTIALLY GEVREY COEFFICIENTS

SPYRIDON FILIPPAS, CAMILLE LAURENT, ANDMATTHIEU LÉAUTAUD

Abstract. We prove a local unique continuation result for Schrödinger operators
with time independent Lipschitz metrics and lower-order terms which are Gevrey 2 in
time and bounded in space. This implies global unique continuation from any open set
in a connected Riemannianmanifold. These results relax in the same geometric setting
the analyticity assumption in time of the Tataru-Robbiano-Zuily-Hörmander theorem
for these operators. The proof is based on (i) a Tataru-Robbiano-Zuily-Hörmander type
Carleman estimatewith a nonlocalweight adapted to the anisotropy of the Schrödinger
operator and (ii) the description of the conjugation of the Schrödinger operator with
Gevrey coefficients by this nonlocal weight. We also obtain similar results for the plate
operator.
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1. Introduction and main results

1.1. Background and results. In this article we are interested in the unique contin-
uation problem for a family of time-dependent Schrödinger operators. For a general
differential operator

𝑃 = ∑
|𝛼|≤𝑚

𝑎𝛼(𝐱)𝐷𝛼
𝐱 , where 𝐷𝐱𝑗 =

𝜕𝐱𝑗
𝑖 , 𝑚 ∈ ℕ,(1.1)

on an open set Ω ⊂ ℝ𝑛 the problem of unique continuation is the following question:
Given 𝜔 ⊂ Ω a small subset ofΩ and 𝑢 a solution of 𝑃𝑢 = 0 inΩ, does the observation
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of 𝑢 in 𝜔 determine 𝑢 everywhere? By linearity, this property reformulates as
(1.2) (𝑃𝑢 = 0 in Ω, 𝑢 = 0 in 𝜔)⟹ 𝑢 = 0 in Ω.
If 𝑃 is a conservative time-dependent Schrödinger operator and 𝑢 solves 𝑃𝑢 = 0 with
‖𝑢(𝑡, ⋅)‖𝐿2(Ω) = 1 for all 𝑡, then |𝑢(𝑡, 𝑥)|2𝑑𝑥 is a probability density expressing the like-
lihood of finding at time 𝑡 the quantum particle 𝑢 at position 𝑥. In this case, the unique
continuation property gives information about the localization (or delocalization) of
the quantum particle 𝑢. Also, if 𝑃 is an evolution operator, the unique continuation
property (1.2) is intimately related to the question of finite or infinite speed of propa-
gation, and has key applications to control theory. In that setting, it is related to the
possibility of driving the state of the system, with the action of a localized external
force (located on 𝜔), from some initial state to a chosen target state. We refer to the
discussion on control theory in Section 1.2.
In order to prove a unique continuation property like (1.2), which is global in nature,

the most efficient strategy is often to study first the question of local unique continua-
tion: given 𝐱0 ∈ Ω ⊂ ℝ𝑛 and 𝑆 ∋ 𝐱0 a smooth oriented hypersurface, do we have:
(1.3) (𝑃𝑢 = 0 in Ω, 𝑢 = 0 in 𝑆− ∩ Ω)⟹ 𝐱0 ∉ supp(𝑢),
where we denote by 𝑆− one side of the oriented hypersurface 𝑆? In this case, one is
interested in propagating uniqueness/nullity from one side of the hypersurface 𝑆 to
(a small neighborhood of) the other side. If the property (1.3) holds for a sufficiently
large family of hypersurfaces, then one can hope to iterate the local result to deduce
a global unique continuation statement like (1.2). The local geometric conditions on
the oriented surface 𝑆 for which (1.3) holds naturally translate into global geometric
constraints for the global unique continuation property (1.2). In addition to geometric
conditions, it turns out that the regularity of the coefficients of 𝑃 plays a decisive role
in the proof of the local (and hence global) unique continuation property. On the one
hand, theHolmgren-John theorem [Hör63, Theorem 5.3.1] yields unique continuation
assuming all coefficients of 𝑃 (i.e. all 𝑎𝛼’s for all |𝛼| ≤ 𝑚 in (1.1)) are real-analytic and
the hypersurface 𝑆 is noncharacteristic, that is to say

𝑝𝑚(𝐱0, 𝑑Ψ(𝐱0)) ≠ 0, where 𝑆 = {Ψ = 0},(1.4)

and

𝑝𝑚(𝐱, 𝜉) ≔ ∑
|𝛼|=𝑚

𝑎𝛼(𝐱)𝜉𝛼(1.5)

is the so-called principal symbol of the operator 𝑃. On the other hand, if one is inter-
ested in 𝐶∞ (or 𝐶𝑘) regularity, Hörmander’s theorem [Hör94, Theorem 28.3.4] yields
unique continuation under a (rather strong, unless if 𝑃 is elliptic, a case which is not
considered in the present article) so-called pseudoconvexity condition (that is to be
checked on the whole cotangent space over 𝐱0, see (1.9)). The seminal result of Rob-
biano [Rob91] for hyperbolic operators, subsequently improved in [Hör92], paved the
way to amore general theorem that would bridge the gap between the 𝐶∞ and the ana-
lytic case. Following another breakthrough by Tataru [Tat95], this programwas finally
completed by Robbiano-Zuily, Hörmander and Tataru in the series of papers [RZ98,
Hör97, Tat99], proving a general unique continuation result for operators having par-
tially analytic coefficients, containing as a particular case both theHolmgren-John and
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the Hörmander theorems. We refer to [LL19a, LL19b, LL22, LL23] for further discus-
sions and comments on these results.

In this article, motivated by applications to control theory (see Section 1.2), we are
interested in the particular case of Schrödinger operators

𝑃𝖻,𝗊 = 𝑖𝜕𝑡 +
𝑑
∑
𝑗,𝑘=1

𝜕𝑥𝑗𝑔𝑗𝑘(𝑥)𝜕𝑥𝑘 +
𝑑
∑
𝑗=1

𝖻𝑗(𝑡, 𝑥)𝜕𝑥𝑗 + 𝗊(𝑡, 𝑥),(1.6)

where 𝑔𝑗𝑘(𝑥) is a symmetric elliptic matrix on an open set 𝑉 ⊂ ℝ𝑑, that is to say
𝑔𝑗𝑘(𝑥) = 𝑔𝑘𝑗(𝑥) and

there is 𝑐0 > 0 such that
𝑑
∑
𝑗,𝑘=1

𝑔𝑗𝑘(𝑥)𝜉𝑗𝜉𝑘 ≥ 𝑐0|𝜉|2, for all (𝑥, 𝜉) ∈ 𝑉 × ℝ𝑑.(1.7)

Compared to the general situation in (1.1)–(1.5), we have here 𝑛 = 1 + 𝑑, 𝐱 = (𝑡, 𝑥),
𝑚 = 2, and the “principal symbol” of 𝑃 is

𝑝2(𝐱, 𝜉) = 𝑝2(𝑡, 𝑥, 𝜉𝑡, 𝜉𝑥) = −∑
𝑗,𝑘

𝑔𝑗𝑘(𝑥)𝜉𝑥𝑗𝜉𝑥𝑘 .(1.8)

The latter does not depend on the variable 𝜉𝑡, dual to the time-variable 𝑡 (and, in par-
ticular, is the same as for the heat operator (1.6) in which 𝑖𝜕𝑡 is replaced by −𝜕𝑡). The
formulation of 𝑃𝖻,𝗊 in divergence form, as opposed to (1.1), is related to the low regu-
larity of the coefficients in our results, see the discussion in Section 1.3.2. For a gen-
eral second-order operator, the classical Hörmander Theorem [Hör94, Chapter 28] as-
sumes that the oriented hypersurface 𝑆 = {Ψ = 0} is strongly pseudoconvex for 𝑃 at
𝐱0 = (𝑡0, 𝑥0) ∈ 𝐼 × 𝑉 (see [LL23, Section 2]):

𝑝2(𝐱0, 𝜉) = {𝑝2, Ψ}(𝐱0, 𝜉) = 0⟹ {𝑝2, {𝑝2, Ψ}}(𝐱0, 𝜉) > 0,
for all 𝜉 ∈ 𝑇∗(𝐼 × 𝑉)\{0}.(1.9)

Here, {⋅, ⋅} denotes the Poisson bracket, and the geometric content of this condition is
explained e.g. in [LL23, Section 2]. In the particular case of the Schrödinger opera-
tor (1.6), due to the degeneracy of the symbol (1.8) in the time-direction, this condition
can also be rewritten as a condition on the tangent space in the 𝑥 variable only as

⟨𝑋, 𝑋⟩𝑔 = 𝑑Ψ(𝐱0)(𝑋) = 0⟹ Hess𝑔 Ψ(𝐱0)(𝑋, 𝑋) > 0, for all 𝑋 ∈ 𝑇𝑥0𝑉.(1.10)

Here the inner product ⟨⋅, ⋅⟩𝑔 and theHessian are takenwith respect to the Riemannian
metric 𝑔 = (𝑔𝑗𝑘)−1 on 𝑉 ⊂ ℝ𝑑. Condition (1.10) allows for 𝑋 = 0 (this is reminiscent
of (1.9), which has to be checked on the whole time-space cotangent space), for which
⟨𝑋, 𝑋⟩𝑔 = 𝑑Ψ(𝐱0)(𝑋) = Hess𝑔 Ψ(𝐱0)(𝑋, 𝑋) = 0, hence is never satisfied: The classical
Hörmander Theorem [Hör94, Chapter 28] does not apply to the Schrödinger opera-
tor (1.6).
Taking advantage of the anisotropic (or quasi-homogeneous) nature of the

Schrödinger operator, Lascar and Zuily proved in [LZ82] that the results of Hörman-
der [Hör94, Chapter 28] can be generalized to the anisotropic case with an appropri-
ate modification of the symbol classes and Poisson bracket. See also [Deh84], [Isa93]
and [Tat97] for later results in this direction. In the context of (1.6), this result applies
for coefficients 𝑔𝑗𝑘 ∈ 𝐶1 and 𝖻𝑗 , 𝗊 ∈ 𝐿∞. In the situation in which Ψ(𝑡, 𝑥) = Ψ(𝑥)
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for instance, and the oriented hypersurface is 𝑆 = {Ψ = 0}, the geometric condition
of [LZ82] at a point 𝐱0 = (𝑡0, 𝑥0) ∈ 𝐼 × 𝑉 reads: 𝑑Ψ(𝑥0) ≠ 0 and

𝑑Ψ(𝑥0)(𝑋) = 0⟹ Hess𝑔 Ψ(𝑥0)(𝑋, 𝑋) > 0, for all 𝑋 ∈ 𝑇𝑥0𝑉\{0}.(1.11)

As opposed to (1.10), this condition excludes the zero section 𝑋 = 0, and is sometimes
satisfied. The latter is however a very strong local geometric assumption on the surface
for (1.3) to hold, which necessarily leads to a very strong global geometric assumption
on the observation set 𝜔 in an associated global unique continuation statement of the
form (1.2). For example, using this local unique continuation result, one can prove the
global unique continuation statement (1.2) in Ω = (0, 𝑇) × ℝ𝑑 if 𝜔 = (0, 𝑇) × {|𝑥| > 1}
is the exterior of a cylinder: assuming the solution 𝑢 vanishes outside, then it has to
vanish inside. However, the condition (1.11) does not hold if one wants to propagate
uniqueness from the interior of the cylinder 𝜔 = (0, 𝑇)× {|𝑥| < 1} towards the exterior.
This stresses the fact that pseudoconvexity conditions like (1.11) or (1.9) are sensitive to
the orientation of the hypersurface, hence cannot hold for the oriented surfaces {Ψ = 0}
and {−Ψ = 0} simultaneously. This is in sharp contrast with the noncharacteristicity
condition (1.4) which is reversible.
For applications to control or inverse problems, related global Carleman estimates

for Schrödinger operators have been proved for instance in [BP02] (constant leading or-
der coefficients) and in [TX07,Lau10] (Riemannianmanifolds or varying coefficients).
A weak pseudoconvexity condition has also been proved sufficient in [MOR08] for a
flat metric and in [Lau10] with varying metrics. Yet, in all of these references, a form
of pseudoconvexity related to that of [LZ82] is required and global statements hold
under strong geometric assumptions. As proved in [LZ82, Théorèmes 1.4 et 1.6], a
pseudoconvexity condition is actually essentially necessary in the following sense: if it
is “strongly violated”, then there exists 𝗊 ∈ 𝐶∞(Ω) such that (1.3) does not hold for the
operator 𝑃 = 𝑃𝖻,𝗊 in (1.6) with 𝖻𝑗 = 0 (see Section 1.3.1).

The Tataru-Robbiano-Zuily-Hörmander theoremalso applies to the Schrödinger op-
erator (1.6). In that case, it implies local unique continuation (1.3) assuming

(1) that the surface 𝑆 is noncharacteristic, i.e. (1.4);
(2) that the coefficients are real-analytic with respect to the time variable 𝑡.

In the setting of the Schrödinger operator (1.6) in ℝ1+𝑑, note that the noncharacteris-
ticity assumption (1.4) rewrites equivalently

(1.12)
𝑑
∑
𝑗,𝑘=1

𝑔𝑗𝑘(𝑥0)𝜕𝑥𝑗Ψ(𝑡0, 𝑥0)𝜕𝑥𝑘Ψ(𝑡0, 𝑥0) ≠ 0.

From the geometric point of view, the noncharacteristicity assumption is optimal: it
excludes only surfaces tangent to {𝑡 = 𝑡0}. For such a surface, localunique continuation
indeed fails, as can be seen in the simplest setting in ℝ𝑑 with 𝑔 = Id, 𝑏 = 0, 𝗊 = 0. In
this case, the function

𝑢(𝑡, 𝑥) ≔ 𝟙ℝ+(𝑡)𝑤(𝑡, 𝑥), 𝑤(𝑡, 𝑥) ≔ 𝑒−𝑖𝑑 sgn(𝑡)𝜋4

(4𝜋|𝑡|)
𝑑
2

∫
ℝ𝑑
𝑒𝑖

|𝑥−𝑦|2
4𝑡 𝑤0(𝑦)𝑑𝑦,(1.13)
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with 𝑤0 ∈ 𝐶∞
𝑐 (ℝ𝑑) and supp𝑤0 = 𝐵ℝ𝑑 (0, 1), satisfies with 𝐵0 ≔ 𝐵ℝ1+𝑑 ((0, 𝑥0), 1) and

|𝑥0| > 2,

(𝑖𝜕𝑡 + Δ)𝑢 = 0 in 𝐵0, 𝑢 ∈ 𝐶∞(𝐵0), supp 𝑢 ∩ 𝐵0 = {𝑡 ≥ 0} ∩ 𝐵0.

Hence, the operator 𝑖𝜕𝑡+Δ does not satisfy local unique continuation near (0, 𝑥0) across
𝑆 = {𝑡 = 0}. We refer to [FLL24, Section 5] for more on this example. This lack of
unique continuation is related to the so-called infinite speed of propagation for the
Schrödinger equation, which can be formulated (still in ℝ𝑑 with 𝑔 = Id, 𝑏 = 0, 𝗊 = 0)
as

((𝑖𝜕𝑡 + Δ)𝑤 = 0 in ℝ1+𝑑, 𝑤 ∈ 𝐶0(ℝ; 𝐿2(ℝ𝑑)), 𝑤(0, ⋅) ∈ 𝐶∞
𝑐 (ℝ𝑑) ⧵ {0})(1.14)

⟹ supp𝑤(𝑡, ⋅) = ℝ𝑑, for all 𝑡 ≠ 0.

This property can be derived from the explicit expression of 𝑤 in (1.13), which is a
real-analytic function in 𝑥 for all 𝑡 ≠ 0, see [FLL24, Section 5].
Applying iteratively the local unique continuation statement (1.3) to appropriate

families of noncharacteristic hypersurfaces (see e.g. [LL19a, Section 6.2]), the Tataru-
Robbiano-Zuily-Hörmander theorem leads to a global unique continuation statement
under an optimal geometric condition, still assuming analyticity in time of the coeffi-
cients. From the point of view of regularity requirements, however, analyticity in time
is of course very demanding.
Note finally that T’joën [T’j00] proved a quasi-homogeneous variant of the Tataru-

Hörmander-Robbiano-Zuily theorem in a general setting and Masuda [Mas67] proved
a global uniqueness result in the case of 𝐶2 principal coefficients and time indepen-
dent coefficients. A challenging problem is to understand to which extent the time-
analyticity condition can be relaxed under optimal geometric conditions. For the wave
operator, analyticity in time is in some sense optimal: we refer to Section 1.3.1 and the
discussion in [LL23] of the counterexamples of Alinhac-Baouendi [AB79,Ali83,AB95]
and Hörmander [Hör00]. In this direction, our results relax the time analyticity as-
sumption of the Tataru-Robbiano-Zuily-Hörmander theorem for the Schrödinger op-
erator (1.6) down to Gevrey regularity.

Definition 1.1. Given 𝖽 ∈ ℕ∗, 𝑈 ⊂ ℝ𝖽 an open set, (ℬ, ‖ ⋅ ‖ℬ) a Banach space and
𝑠 > 0, we say that 𝑓 is an 𝑠-Gevrey function valued in ℬ, denoted 𝑓 ∈ 𝒢𝑠(𝑈;ℬ), if
𝑓 ∈ 𝐶∞(𝑈;ℬ) is such that for every compact set 𝐾 ⊂ 𝑈, there are constants 𝐶, 𝑅 > 0
such that for all 𝛼 ∈ ℕ𝖽

max
𝑡∈𝐾

‖𝜕𝛼𝑓(𝑡)‖ℬ ≤ 𝐶𝑅|𝛼|𝛼!𝑠 .

These spaces were introduced by Gevrey [Gev18] to investigate regularity properties
for solutions of the heat equation between real-analyticity and 𝐶∞ regularity. Notice
that 𝑠1 ≤ 𝑠2 ⟹ 𝒢𝑠1(𝑈;ℬ) ⊂ 𝒢𝑠2(𝑈;ℬ) and for 𝑠 = 1, 𝒢1(𝑈;ℬ) = 𝐶𝜔(𝑈;ℬ) is
the space of real-analytic ℬ-valued functions. However, for 𝑠 > 1, 𝒢𝑠(𝑈;ℬ) contains
nontrivial compactly supported functions. A paradigmatic example of such a function
is, for 𝛼 > 0, 𝑡 ↦ 𝟙(0,1)(𝑡)𝑒

− 1
𝑡𝛼−

1
(1−𝑡)𝛼 , which belongs to 𝐺1+ 1

𝛼 (ℝ;ℝ) and has support
the interval [0, 1]. See e.g. [Hör90] or [Rod93] for more properties of Gevrey functions.
In what follows, we mostly consider the case 𝖽 = 1, 𝑡 being the time variable (but also
consider 𝖽 = 2 in Section 3.1). Our main results may be summarized as follows.
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Theorem 1.2 (Local unique continuation for Schrödinger operators). Assume Ω =
𝐼 × 𝑉 where 𝐼 ⊂ ℝ is an open interval and 𝑉 ⊂ ℝ𝑑 an open set, and let (𝑡0, 𝑥0) ∈ Ω.
Assume 𝑔𝑗𝑘 ∈ 𝑊 1,∞(𝑉) satisfies (1.7), that 𝖻𝑗 , 𝗊 ∈ 𝒢2(𝐼; 𝐿∞(𝑉; ℂ)). Let Ψ ∈ 𝐶1(Ω;ℝ)
such that {Ψ = 0} is noncharacteristic for 𝑃 at (𝑡0, 𝑥0), in the sense of (1.12). Then, there
is a neighborhood𝑊 of (𝑡0, 𝑥0) such that, for 𝑃𝖻,𝗊 defined in (1.6),

(𝑃𝖻,𝗊𝑢 = 0 inΩ, 𝑢 ∈ 𝐿2(𝐼; 𝐻1(𝑉)), 𝑢 = 0 in {Ψ > 0}) ⟹ 𝑢 = 0 in𝑊.

For applications, one may need to assume less regularity on the solution 𝑢. The
latter can indeed be relaxed, if we assume additional regularity of the coefficient 𝖻.

Theorem 1.3 (Local unique continuation for 𝐿2 solutions). Under the assumptions of
Theorem 1.2, and assuming in addition that∑𝑑

𝑗=1 𝜕𝑥𝑗𝖻𝑗 ∈ 𝐿∞(Ω; ℂ), there is a neighbor-
hood𝑊 of (𝑡0, 𝑥0) such that

(𝑃𝖻,𝗊𝑢 = 0 inΩ, 𝑢 ∈ 𝐿2(Ω), 𝑢 = 0 in {Ψ > 0}) ⟹ 𝑢 = 0 in𝑊.

Note that the divergence form of the principal part of 𝑃𝖻,𝗊 together with the respec-
tive regularity assumptions on 𝑔𝑗𝑘, 𝖻, 𝗊 and 𝑢 allows to make sense of 𝑃𝖻,𝗊𝑢 in 𝒟′(Ω).
With respect to the Tataru-Robbiano-Zuily-Hörmander theorem for the Schrödinger
operator (1.6), we relax the analyticity-in-time assumption for the lower-order terms
to a Gevrey 2 condition. We also relax the regularity of the main coefficients (assumed
either 𝐶∞ in [RZ98, Hör97, Tat99] or 𝐶1 in [Tat95]), replaced here by Lipschitz regu-
larity; in the elliptic context (and therefore in our context as well) this is essentially
the minimal regularity in dimension 𝑑 ≥ 3 for local uniqueness to hold (see [Pli63]
and [Mil74] for 𝐶0,𝛼 counterexamples for all 𝛼 < 1, for operators in divergence form
or not).

Remark 1.4. One can further lower the regularity of the solution 𝑢 by assuming addi-
tional regularity of the coefficients 𝑔𝑖𝑗 , 𝖻𝑗 , 𝗊. For instance, assuming (in addition to the
assumptions of Theorem 1.2) that 𝑔𝑖𝑗 ∈ 𝐶∞(𝑉), 𝖻𝑗 , 𝗊 ∈ 𝐶∞(Ω; ℂ), then we have

(𝑃𝖻,𝗊𝑢 = 0 in Ω, 𝑢 ∈ 𝒟′(Ω), 𝑢 = 0 in {Ψ > 0}) ⟹ 𝑢 = 0 in𝑊.

Successive applications of Theorem 1.2 or Theorem 1.3 through a family of well-
chosen noncharacteristic hypersurfaces yield the following global result (see [LL19a,
Proof of Theorem 6.7 p. 100] and use that a connected manifold is path-connected).

Theorem 1.5. Let 𝑇 > 0 andℳ = Int(ℳ) ⊔ 𝜕ℳ be a connected smooth manifold with
or without boundary 𝜕ℳ. Suppose that 𝑔 ∈ 𝑊1,∞

loc (Int(ℳ)) is a Riemannian metric on
Int(ℳ), that 𝗊 ∈ 𝒢2((0, 𝑇); 𝐿∞loc(Int(ℳ); ℂ)), that 𝖻 is a one form with all components
belonging to 𝒢2((0, 𝑇); 𝐿∞loc(Int(ℳ); ℂ)), and consider the differential operator

𝒫𝖻,𝗊 ∶= 𝑖𝜕𝑡 + Δ𝑔 + 𝖻 ⋅ ∇𝑔 + 𝗊(𝑡, 𝑥),

where Δ𝑔 is the Laplace-Beltrami operator on Int(ℳ), ∇𝑔 the Riemannian gradient.
Then given 𝜔 a nonempty open set ofℳ, we have

⎧
⎨
⎩

𝒫𝖻,𝗊𝑢 = 0 in (0, 𝑇) × Int(ℳ)
𝑢 ∈ 𝐿2loc(0, 𝑇;𝐻1

loc(Int(ℳ)))
𝑢 = 0 in (0, 𝑇) × 𝜔

⟹ 𝑢 = 0 in (0, 𝑇) × Int(ℳ).
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If in addition div𝑔(𝖻) ∈ 𝐿∞loc((0, 𝑇) × Int(ℳ)), then

⎧
⎨
⎩

𝒫𝖻,𝗊𝑢 = 0 in (0, 𝑇) × Int(ℳ)
𝑢 ∈ 𝐿2loc((0, 𝑇) × Int(ℳ))
𝑢 = 0 in (0, 𝑇) × 𝜔

⟹ 𝑢 = 0 in (0, 𝑇) × Int(ℳ).

Note that by 𝗊 ∈ 𝒢2((0, 𝑇); 𝐿∞loc(Int(ℳ); ℂ)), we mean 𝗊 ∈ 𝒢2((0, 𝑇); 𝐿∞(𝐾; ℂ)) for
all compact subsets𝐾 of Int(ℳ). Note also that under the assumptions of Theorem 1.5,
the Cauchy problem 𝒫𝖻,𝗊𝑢 = 0, 𝑢(0, ⋅) = 𝑢0 is not well-posed in general.
As in [LL23] (see Theorem 3.24 and the remark thereafter), this result (for solutions

in 𝐿2(𝐼; 𝐻1(𝑉))) can also be translated into a global unique condition from an arbitrarily
small nonempty open subset of the boundary 𝜕ℳ (in case 𝜕ℳ ≠ ∅); we do not state
this result for the sake of concision.
We finally mention that other notions of global unique continuation have been ex-

tensively investigated for solutions of Schrödinger equations during the last years. One
such notion is the following: Assume that a solution 𝑢 = 𝑢(𝑡, 𝑥) of the Schrödinger
equation onℝ𝑡×ℝ𝑥 vanishes in |𝑥| > 𝑅 for some 𝑅 > 0 at two different times 𝑡0 and 𝑡1.
Can we then conclude that 𝑢 vanishes everywhere? This question has been addressed
for instance in [EKPV06, IK06,DS07], see also the references therein. All of these re-
sults hold under stronger geometric assumptions in space (flat metric, nullity outside
of a ball), weaker regularity assumptions on the lower-order terms, and use as a key
tool Carleman inequalities.

1.2. Application to controllability and observability.

1.2.1. Approximate controllability. As already alluded, unique continuation properties
for evolution equations are often equivalent to approximate controllability results for
an appropriate dual problem, see e.g. [DR77,Lio88] or [FLL24, Section 1] in the present
context. In particular, Theorem 1.5 has an “approximate controllability” counterpart.
For simplicity of the exposition, we only treat the internal control (the boundary con-
trol could be considered as well) of 𝐿2 solutions (the case of 𝐶0𝐻−1 solutions could
be considered as well) with 𝖻 = 0 (the case of general 𝖻 could be considered as well,
with regularity assumptions depending on the space in which the control problem is
set; note that in any case, additional assumptions should be made so that to ensure
well-posedness of the Cauchy problem). Given 𝑇 > 0,ℳ = Int(ℳ) ⊔ 𝜕ℳ a smooth
manifold with (possibly empty) boundary, 𝑔 a locally Lipschitz continuous metric on
ℳ, and 𝜔 ⊂ ℳ an open set, we consider the control problem

(1.15)
⎧
⎨
⎩

𝑖𝜕𝑡𝑣 + Δ𝑔𝑣 + 𝗊𝑣 = 𝟙𝜔𝑓, in (0, 𝑇) × Int(ℳ),
𝑣 = 0, on (0, 𝑇) × 𝜕ℳ if 𝜕ℳ ≠ ∅,
𝑣(0, ⋅) = 𝑣0, in Int(ℳ).

Here, 𝑓 is a control force acting on the system on the small open set 𝜔 and one would
like to control the state 𝑣 of the equation. Concerning well-posedness of the Cauchy
problem in (1.15), we first let 𝐻1

0(ℳ) be the completion of 𝐶1
𝑐 (Int(ℳ)) for the norm

(1.16) ‖𝑢‖2𝐻1(ℳ) ≔∫
ℳ
(||∇𝑔𝑢||

2
𝑔 + |𝑢|2) 𝑑 Vol𝑔 .
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Note that 𝐶1
𝑐 (Int(ℳ)) being dense in 𝐿2(ℳ), we have a continuous embedding𝐻1

0(ℳ)
⊂ 𝐿2(ℳ). Second, we take the Friedrichs extension on 𝐿2(ℳ) of −Δ𝑔 defined on
𝐶∞
𝑐 (Int(ℳ)), which we denote by −Δ𝑔,F. It is defined by

𝐷(−Δ𝑔,F) ≔ {𝑢 ∈ 𝐻1
0(ℳ), there exists ℎ ∈ 𝐿2(ℳ),

∫
ℳ
⟨∇𝑔𝑢,∇𝑔𝜑⟩2𝑔 + 𝑢𝜑 𝑑Vol𝑔 = ∫

ℳ
ℎ𝜑 𝑑Vol𝑔 for all 𝜑 ∈ 𝐻1

0(ℳ)}.(1.17)

For 𝑢 ∈ 𝐷(−Δ𝑔,F), there is a unique ℎ satisfying (1.17), and we set (−Δ𝑔,F + Id)𝑢 ≔ ℎ.
Third, for 𝗊 ∈ 𝐿∞((0, 𝑇) × ℳ;ℂ), the solution to (1.15) is defined via the Duhamel
formula for the unitary group (𝑒𝑖𝑡∆𝑔,F)𝑡∈ℝ and is a solution of the first equation of (1.15)
in the sense of distributions on (0, 𝑇) × Int(ℳ). Note that if we assume that ℳ is
(topologically) complete and that 𝜕ℳ is compact, then𝐻1

0(ℳ) = {𝑢 ∈ 𝐻1(ℳ), Tr(𝑢) =
0},where𝐻1(ℳ) is defined as the completion of 𝐶1(ℳ) functions with finite𝐻1 norm
for this norm (Definition (1.16)) and Tr ∶ 𝐻1(ℳ) → 𝐿2(𝜕ℳ) is the trace operator. This
remark justifies the formal writing of the Cauchy problem in (1.15).
The (second) unique continuation result of Theorem 1.5 combined with a classical

duality argument [FLL24, Lemma 1.1] yields Corollary 1.6.

Corollary 1.6. Assumeℳ is a complete connected manifold with or without compact
boundary, 𝑔 is a locally Lipschitz continuous Riemannian metric onℳ, and

𝗊 ∈ 𝐿∞((0, 𝑇) ×ℳ;ℂ) ∩ 𝒢2((0, 𝑇); 𝐿∞loc(ℳ;ℂ)).

For any nonempty open set 𝜔 ⊂ ℳ, for all 𝑣0, 𝑣1 ∈ 𝐿2(ℳ;ℂ) and for all precision 𝜀 > 0,
there is 𝑓 ∈ 𝐿2((0, 𝑇)×𝜔) such that the solution to (1.15) satisfies ‖𝑣(𝑇, ⋅)−𝑣1‖𝐿2(ℳ) ≤ 𝜀.

Note that we actually only need to assume 𝗊 ∈ 𝒢2(𝐼; 𝐿∞loc(ℳ;ℂ)) for some nonempty
open set 𝐼 ⊂ (0, 𝑇).

1.2.2. Observability, exact controllability. Unique continuation also plays a key role
in proofs of exact controllability results, or equivalently, observability estimates. For
wave-type and Schrödinger equations, the proof of the latter often decomposes into a
high frequency and a low-frequency analysis. We refer to the introduction of [LL16] for
a detailed account in the case of the wave equation and to [FLL24] in the present con-
text. The low-frequency part of the analysis amounts to a unique continuation property
like Theorem 1.5. The observation system is the following free Schrödinger equation:

(1.18)
⎧
⎨
⎩

𝑖𝜕𝑡𝑢 + Δ𝑔𝑢 + 𝑞𝑢 = 0 in (0, 𝑇) × Int(ℳ),
𝑢 = 0, on (0, 𝑇) × 𝜕ℳ if 𝜕ℳ ≠ ∅,
𝑢(0, ⋅) = 𝑢0, in Int(ℳ),

dual to the control problem (1.15) if 𝗊 = 𝑞. As in the preceding section, for simplicity of
the exposition, we only discuss the internal observability/control of 𝐿2 solutions with
𝖻 = 0 to illustrate some applications of our results, and provide with a single geometric
example of application.

Theorem 1.7. Assume that (ℳ, 𝑔) = (𝔻, Eucl) is the Euclidean (closed) unit disk and
that 𝑞 ∈ 𝐶∞([0, 𝑇] × 𝔻;ℝ) ∩ 𝒢2((0, 𝑇); 𝐿∞loc(Int(𝔻); ℝ)) is real valued and 𝜔 is any
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nonempty open set of 𝔻 such that 𝜔 ∩ 𝜕𝔻 ≠ ∅. Then for any 𝑇 > 0, there is 𝐶 > 0
such that for all 𝑢0 ∈ 𝐿2(ℳ), the solution 𝑢 to (1.18) satisfies

‖𝑢0‖2𝐿2(ℳ) ≤ 𝐶∫
𝑇

0
∫
𝜔
|𝑢(𝑡, 𝑥)|2𝑑𝑥𝑑𝑡.(1.19)

Our contribution in Theorem 1.7 is to include more general time-dependent poten-
tials 𝑞, using Theorem 1.5 for the “low frequency” part of the proof. Theorem 1.7 is
a direct combination of [ALM16, Theorem 1.2] and Theorem 1.5. Note that the 𝐶∞

regularity can be relaxed, see [ALM16, Remark 1.6].
By a classical compactness-uniqueness argument [BLR92], observability estimates

like (1.19) can be deduced from the unique continuation result of Theorem 1.5 together
with aweakened (or high-frequency) observability estimate (i.e. of the form (1.19) with
an additional relatively compact remainder termon the right-hand side). The geometry
discussed inTheorem1.7 is only an example forwhich the high frequency resultmay be
applied as a black box. Onemay hope to generalize Theorem 1.7 tomany other geomet-
ric situations where the high frequency observability is well understood, for instance
in general geometries under the Geometric Control Condition [Leb92], on tori [AM14,
AFKM15,BBZ13], on negatively curvedmanifolds [AR12,Ana08,DJ18,DJN22], in un-
bounded geometries [Pro25] (see also the references therein). This requires additional
work and we plan to study this question elsewhere.

As a direct corollary of the observability statement of Theorem 1.7, we deduce an
exact controllability statement for System (1.15) (see [DR77, Lio88] or [FLL24] in the
present context).

Corollary 1.8. Assume that the assumptions of Theorem 1.7 are satisfied. Then, for all
𝑣0, 𝑣1 ∈ 𝐿2(ℳ;ℂ), there is 𝑓 ∈ 𝐿2((0, 𝑇) × 𝜔) such that the solution to (1.15) satisfies
𝑣(𝑇, ⋅) = 𝑣1.

1.3. Remarks.

1.3.1. Remarks on Gevrey regularity. Gevrey regularity already appears in the study of
strong unique continuation for elliptic operators, see e.g. [Ler81,CGT06, IK12,KNS19]
and the references therein. In these references, the authors consider elliptic operators
with complex coefficients and characterize a critical Gevrey index for strong unique
continuation to hold, in relation to the geometry of the image-cone of the principal
symbol.
Gevrey spaces also appeared recently in the related context of control of 1𝐷 evolution

equations in the so-called flatness method. For an operator of the form 𝜕𝑁𝑡 +𝑎𝜕𝑀𝑥 , with
𝑎 ∈ ℂ∗ and 1 ≤ 𝑁 < 𝑀, the idea of this method is to solve the ill-posed problem
𝜕𝑀𝑥 = −𝑎−1𝜕𝑁𝑡 𝑢, seeing 𝑥 as a new evolution variable. It turns out that the correct
regularity in time to be able to solve this evolution problem and the associated control
problem is Gevrey 𝑠 = 𝑀/𝑁, see [MRR16] for the particular case of the heat operator,
[MRRR19] for the KdV operator and [LRR25] for a more general result. It corresponds
to the index 𝑠 = 2 in the case of the Schrödinger equation. For an anisotropic operator
of the form 𝑃 = 𝜕𝑁𝑡 + 𝑄 with 𝑄 a differential operator in the space variable of order
𝑀 > 𝑁, it is likely that an analog of our result holds assuming that the coefficients of
the operator 𝑄 are Gevrey 𝑠 in 𝑡 with 𝑠 = 𝑀/𝑁.
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Also, as already alluded, it is proved in [LZ82, Théorèmes 1.4 et 1.6] that a quasi-
homogeneous version of pseudoconvexity (like e.g. (1.11) in caseΨ(𝑡, 𝑥)=Ψ(𝑥)) is actu-
ally needed for unique continuation to hold for general𝐶∞ lower-order terms. As an il-
lustration, [LZ82, Théorème1.6] proves that if𝑑≥2, there exist𝑢, 𝗊∈𝐶∞(𝐵ℝ1+𝑑 (0, 1); ℂ)
such that

𝑃0,𝗊𝑢 = 0, in 𝐵ℝ1+𝑑 (0, 1), 𝑢 = 0 on {𝑥1 > 0}, and 0 ∈ supp(𝑢),
whence unique continuation does not hold across the noncharacteristic surface {𝑥1 =
0}. Hence the statements of Theorems 1.2 and 1.3 are false without the Gevrey-in-
time regularity assumption of 𝗊. A semiglobal version of this counterexample was con-
structed by Takase in [Tak21], who proves existence of 𝑢, 𝗊 ∈ 𝐶∞(ℝ1+2) solving (for
𝑑 = 2 and the Euclidean metric) 𝑃0,𝗊𝑢 = 0 in ℝ1+2 and supp(𝑢) = ℝ × (ℝ2 ⧵ 𝐵(0, 1)).
As a comparison, in the case of the wave equation, the classical counterexamples of

Alinhac-Bahouendi [AB79,Ali83,AB95], as refined by Hörmander [Hör00], prove the
following statement. For any 𝑠 > 1 and 𝑑 ≥ 2, there exist 𝑢, 𝗊 ∈ 𝒢𝑠(𝐵ℝ1+𝑑 (0, 1); ℂ) so
that

𝜕2𝑡𝑢 − Δ𝑢 + 𝗊𝑢 = 0, in 𝐵ℝ1+𝑑 (0, 1),(1.20)
and supp(𝑢) = {(𝑡, 𝑥1, . . . , 𝑥𝑑) ∈ 𝐵ℝ1+𝑑 (0, 1), 𝑥1 ≤ 0} .

This shows that for the wave equation, without any further assumptions, the analyt-
icity in time of 𝗊 is essentially optimal (within the class of Gevrey spaces; note that
Hörmander’s statement is even stronger) in geometrical situations where the strong
pseudoconvexity of the hypersurface is not satisfied.

Concerning the Schrödinger operator 𝑃0,𝗊, given the counterexamples of [LZ82,
Théorèmes 1.4 et 1.6] for 𝗊 ∈ 𝐶∞, described above, it seems natural to consider Gevrey
spaces to relax the analyticity assumption of the Tataru-Robbiano-Zuily-Hörmander
theorem. The role of the Gevrey index 2 in Theorems 1.2–1.3 can be heuristically
explained by an analogy with the wave equation as follows. For the wave operator
𝜕2𝑠−Δ+𝗊(𝑠, 𝑥), theHörmander counterexample [Hör00] in (1.20) shows that analyticity
(that is Gevrey 1 regularity) is essentially optimal, i.e. the assumption |𝜕𝑘𝑠 𝗊| ≤ 𝐶𝑅𝑘𝑘!
for some constants 𝑅, 𝐶 > 0. The natural homogeneity/scaling of the wave opera-
tor is 𝜕𝑠 ∼ 𝜕𝑥, whereas the natural homogeneity/scaling for the Schrödinger opera-
tor 𝑖𝜕𝑡 + Δ + 𝗊(𝑡, 𝑥) is 𝜕𝑡 ∼ 𝜕2𝑥. Comparing these two different scalings heuristically
yields 𝜕𝑡 ∼ 𝜕2𝑠 , where 𝑠 denotes the time variable of the wave operator and 𝑡 that of
the Schrödinger operator. Using this relationship, the analyticity-in-time condition

|𝜕𝑘𝑠 𝗊| ≤ 𝐶𝑅𝑘𝑘! becomes in the natural scaling of the Schrödinger operator |𝜕
𝑘
2
𝑡 𝗊| ≤

𝐶𝑅𝑘𝑘!, that is |𝜕𝑘𝑡 𝗊| ≤ 𝐶𝑅2𝑘(2𝑘)!. Thanks to Stirling’s formula, this corresponds pre-
cisely to Gevrey 2 regularity (see Definition 1.1). This discussion indicates that Gevrey
2 regularity-in-time should be the critical regularity for the local unique continuation
across any non-characteristic hypersurface. This argument is purely heuristic, and it
would be interesting to know if counterexamples can be constructed for Schrödinger
type equations with Gevrey 2 + 𝜀 coefficients, that is to say, whether the Gevrey 2 reg-
ularity in time is indeed the critical one. We notice however that the construction of
such counterexamples is in general a highly nontrivial task.
We also refer to Section 1.4 where we explain precisely how the index 2 appears in

our proof, and why it is the best that our techniques allow to obtain.
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Theorems 1.2 and 1.3 show that in the context of the Schrödinger equation, Gevrey
1 + 𝜀 counterexamples do not exist.

1.3.2. Remarks on the divergence. In the local setting, we have written the elliptic
operator in (1.6) in divergence form. Since we assume that 𝑔𝑗𝑘 has Lipschitz (time-
independent) regularity, and we have 𝑔𝑗𝑘(𝑥)𝜕𝑥𝑗𝜕𝑥𝑘 = 𝜕𝑥𝑗𝑔𝑗𝑘(𝑥)𝜕𝑥𝑘 − 𝜕𝑥𝑗 (𝑔𝑗𝑘)(𝑥)𝜕𝑥𝑘 ,
the operator 𝜕𝑥𝑗 (𝑔𝑗𝑘)(𝑥)𝜕𝑥𝑘 has time independent 𝐿∞ coefficients, i.e. the same reg-
ularity as 𝖻𝑗𝜕𝑥𝑗 in Theorem 1.2. Hence, the statement of Theorem 1.2 holds as well
for 𝜕𝑥𝑗𝑔𝑗𝑘(𝑥)𝜕𝑥𝑘 replaced by 𝑔𝑗𝑘(𝑥)𝜕𝑥𝑗𝜕𝑥𝑘 . That is to say, Theorem 1.2 does not care
about the divergence form of the operator. The same remark holds for the first part of
Theorem 1.5.

In Theorem 1.3 however (and in the second part of Theorem 1.5), for the unique
continuation statement for 𝐿2 solutions, it is important that the elliptic operator be in
divergence form. Nevertheless, the principal term 𝜕𝑥𝑗𝑔𝑗𝑘𝜕𝑥𝑘 or Δ𝑔 in these two state-
ments may be replaced by any operator of the form

Δ𝑔,𝜑 ≔ div𝜑∇𝑔,
where 𝑔 is a Lipschitz continuous Riemannian metric, 𝜑 is a Lipschitz continuous
nowhere vanishing density and div𝜑 and ∇𝑔 denote respectively the associated diver-
gence (the Riemannian case corresponds to 𝜑 = √det(𝑔)with 𝑔 = (𝑔𝑗𝑘) = (𝑔𝑗𝑘)−1, and
the Euclidean case to 𝜑 = 1) and gradient. In local coordinates, they write

div𝜑(𝑋) =
𝑑
∑
𝑗=1

1
𝜑𝜕𝑥𝑗 (𝜑𝑋𝑗) , ∇𝑔𝑢 =

𝑑
∑
𝑗,𝑘=1

𝑔𝑗𝑘(𝜕𝑥𝑗𝑢)
𝜕
𝜕𝑥𝑘

.

The results of Theorem 1.3 and the second part of Theorem 1.5 (for 𝐿2 solutions) ac-
tually depend on the density chosen (i.e. the result for one density cannot be deduced
from that for another density). They are however valid for any locally Lipschitz nonva-
nishing density and the proof of Theorem 1.3 is actually written in the general context
of the operator Δ𝑔,𝜑.
As far as first-order terms are concerned, for the unique continuation statement for

𝐿2 solutions, it is crucial that∑𝑑
𝑗=1 𝜕𝑥𝑗𝖻𝑗 ∈ 𝐿∞(Ω; ℂ) in Theorem 1.3 (and in the second

part of Theorem 1.5). Note that in Theorem 1.3, the divergence (form of the operator as
well as the divergence condition for 𝖻) is taken with respect to the Euclidean density in
ℝ𝑑. In the global setting of Theorem 1.5, the divergence (form of the operator as well
as the divergence condition for 𝖻) is taken with respect to the Riemannian density in
(ℳ, 𝑔). However, in both settings, given any nondegenerate locally Lipschitz density
𝜑, we see that

div𝜑(𝑋) = div1(𝑋) +
𝑑
∑
𝑗=1

𝜕𝑥𝑗𝜑
𝜑 𝑋𝑗 .

Hence, for any 𝐿∞ vector field 𝖻, any Lipschitzmetric 𝑔 and any nonvanishing Lipschitz
density 𝜑, we have (locally near a point)

div𝑔(𝖻) ∈ 𝐿∞ ⟺ div𝜑(𝖻) ∈ 𝐿∞ ⟺ div1(𝖻) ∈ 𝐿∞,
where div𝑔 denotes the Riemannian divergence (and is defined by div√det(𝑔)).
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1.3.3. More general lower-order terms. So far, all results are stated for linear
Schrödinger operators. However, as one can check in the proof (see Section 4.1 where
the perturbation argument is performed), ℂ–antilinear lower-order terms can be in-
cluded in the unique continuation statements. For instance, the statement of Theo-
rem 1.2 remains valid for all solutions 𝑢 to

𝑃𝖻,𝗊𝑢 +
𝑑
∑
𝑗=1

𝖻̃𝑗(𝑡, 𝑥)𝜕𝑥𝑗𝑢 + 𝗊̃(𝑡, 𝑥)𝑢 = 0,

assuming (in addition to the assumptions of Theorem 1.2) that one has

𝖻̃𝑗 , 𝗊̃ ∈ 𝒢2(𝐼; 𝐿∞(𝑉; ℂ)).

One may also want to lower the space regularity of the lower-order terms. In the
proof of Theorem 1.2, an application of a rough Sobolev embedding shows that only
𝗊 ∈ 𝒢2(𝐼; 𝐿𝑑(𝑉; ℂ)) is needed if 𝑑 ≥ 3 and 𝗊 ∈ 𝒢2(𝐼; 𝐿2+𝜀(𝑉; ℂ)) for some 𝜀 > 0 if 𝑑 = 2.
See Remark 3.5. Note also that our result is of no interest in space dimension 𝑑 = 1, for
unique continuation applies to 𝐿∞(𝐼×𝑉) coefficients (without any Gevrey assumption;
the appropriate pseudoconvexity condition being satisfied in 1𝐷), see e.g. [Isa93, Corol-
lary 6.1.].

1.3.4. Infinite speed of propagation for the Schrödinger equation. As mentioned in the
introduction, infinite speed of propagation (1.14) is related to lack of unique continua-
tion from surfaces of the form {𝑡 = 𝑡0}. Note that the counterpart for waves is described
e.g. in [Ler19,LL22], where finite speed of propagation is proved as a counterpart of a
unique continuation statement from surfaces of the form {𝑡 = 𝑡0} (or, more generally,
from timelike surfaces).
In this section, we stress that infinite speed of propagation for the Schrödinger equa-

tion is actually a consequence of Theorem 1.5 (together with well-posedness of the
Cauchy problem). We formulate this result in case 𝑏 = 0 for simplicity, and use the
second unique continuation result of Theorem 1.5.

Corollary 1.9 (Infinite speed of propagation). Assumeℳ is a complete connectedman-
ifold with or without compact boundary, 𝑔 is a locally Lipschitz continuous Riemann-
ian metric onℳ, and 𝗊 ∈ 𝐿∞((0, 𝑇) × ℳ;ℂ) ∩ 𝒢2((0, 𝑇); 𝐿∞loc(ℳ;ℂ)). Then, for any
𝑢0 ∈ 𝐿2(ℳ) which does not vanish identically, the unique solution 𝑢 to the Cauchy prob-
lem

⎧
⎨
⎩

𝑖𝜕𝑡𝑢 + Δ𝑔𝑢 + 𝗊𝑢 = 0 in (0, 𝑇) × Int(ℳ),
𝑢 = 0, on (0, 𝑇) × 𝜕ℳ if 𝜕ℳ ≠ ∅,
𝑢(0, ⋅) = 𝑢0, in Int(ℳ),

satisfies supp(𝑢) = [0, 𝑇] ×ℳ.

Werefer to Section 1.2 for the discussion of theCauchyproblem. Corollary 1.9 shows
that infinite speed of propagation still holds for the Schrödinger equation with less
regular coefficients. This result can thus be seen as a geometric, limited–regularity,
generalization of the infinite speed of propagation statement (1.14) in the Euclidean
space. Indeed, if in addition to the assumptions of the corollary supp(𝑢0) is compact,
then the associated solution of the Schrödinger equation still has full support.
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1.3.5. The plate equation. It is well known that the plate operator 𝜕2𝑡 +Δ2𝑔 can be factor-
ized as a product of two Schrödinger type operators, and thus shares many properties
with the latter. This has been used in the context of unique continuation and Carleman
estimates for instance by Isakov [Isa97], relying on the anisotropic Carleman estimates
developed in [Isa93]. In this section, we describe a unique continuation statement for
the plate operator, that can be obtained as a rather straightforward consequence of
our estimates on the Schrödinger operator. The result also involves lower-order terms
having Gevrey 2 regularity in time, but it seems to be new even for analytic-in-time
lower-order terms. Our result applies to operators of the form

𝒯𝖻,𝗊 ∶= 𝜕2𝑡 + Δ2𝑔 + 𝖻(𝑡, 𝑥) ⋅ ∇𝑔 + 𝗊(𝑡, 𝑥).(1.21)

Theorem 1.10 (Local unique continuation for plate operators). Assume Ω = 𝐼 × 𝑉
where 𝐼 ⊂ ℝ is an open interval and 𝑉 ⊂ ℝ𝑑 an open set, and let (𝑡0, 𝑥0) ∈ Ω. Assume
𝑔𝑗𝑘 ∈ 𝑊 3,∞(𝑉) satisfies (1.7), that 𝖻𝑗 , 𝗊 ∈ 𝒢2(𝐼; 𝐿∞(𝑉; ℂ)). Let Ψ ∈ 𝐶1(Ω;ℝ) such that
{Ψ = 0} is noncharacteristic at (𝑡0, 𝑥0), in the sense of (1.12). Then, there is a neighbor-
hood𝑊 of (𝑡0, 𝑥0) such that, for𝒯𝖻,𝗊 defined in (1.21),

(𝒯𝖻,𝗊𝑢 = 0 inΩ, 𝑢 ∈ 𝐻1(𝐼; 𝐻3(𝑉)), 𝑢 = 0 in {Ψ > 0}) ⟹ 𝑢 = 0 in𝑊.

From this result, one can deduce a global unique continuation statement as Theo-
rem 1.5. We leave the details to the reader. Note that even with the analytic regularity,
the general unique continuation theorem of Tataru-Robbiano-Zuily-Hörmander does
not apply directly since the adapted pseudoconvexity condition in {𝜉𝑡 = 0} is never
satisfied. We refer to Remark B.2 for precise computations.
To our knowledge, most of the references on the unique continuation for the plate

operator rely on classical Carleman estimates, and therefore require some strong geo-
metrical assumptions related to strong pseudoconvexity. The earliest result seems to
be [Isa97] which was extended to lower regularity in [ET15]. As for the Schrödinger
case, we expect that the present result might have applications to controllability and
stabilization. There aremanyworks concerning the control of plate type equations. See
for instance [Leb92] under the Geometric Control Condition, [Kom92] on the torus.
See also the recent article [TBE24], allowing perturbations, for a more extensive state
of the art concerning the controllability question for plates. It would be interesting to
see if our unique continuation theorem for plate operators can be used to generalize
some of these controllability results, by including lower order terms that are Gevrey 2
in time.

1.4. Ideaof theproof, structure of thepaper. Since the pioneeringwork of [Car39],
Carleman inequalities are one of the main tools for proving unique continuation re-
sults. Carleman estimates are weighted inequalities of the form

(1.22) ‖
‖𝑒𝜏𝜙𝑃𝑢

‖
‖𝐿2 ≳

‖
‖𝑒𝜏𝜙𝑢

‖
‖𝐿2 , 𝜏 ≥ 𝜏0,

which are uniform in the large parameter 𝜏 and are applied to compactly supported
functions 𝑢. The weight 𝑒𝜏𝜙 allows to propagate uniqueness from large to low level sets
of 𝜙 by letting 𝜏 → ∞. The key additional idea in [Tat95] (following the introduction
in this problem of the FBI transform in time in [Rob91]) is to make use of the nonlocal
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Fourier multiplier in time 𝑒−
𝜀|𝐷𝑡|2
2𝜏 , and replace (1.22) by

(1.23) ‖
‖‖𝑒

− 𝜀|𝐷𝑡|2
2𝜏 𝑒𝜏𝜙𝑃𝑢‖‖‖𝐿2

+ 𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑢
‖
‖𝐿2 ≳

‖
‖‖𝑒

− 𝜀|𝐷𝑡|2
2𝜏 𝑒𝜏𝜙𝑢‖‖‖𝐿2

, 𝜏 ≥ 𝜏0.

A key feature of this approach is that, although (1.23) carries less information on 𝑒𝜏𝜙𝑢,
it is still enough to prove unique continuation (see Lemma A.1). And the advantage
of (1.23) with respect to (1.22) is that the operator and the function are localized in a
low frequency regime with respect to the variable 𝑡. Hence (1.23) holds if we only as-
sume the classical pseudoconvexity assumption in a smaller subset of the phase space,
namely where 𝜉𝑡 = 0 (here, 𝜉𝑡 is the dual variable to 𝑡). See [Tat95,RZ98,Hör97,Tat99]
for the original proofs and [LL23] for introductory lecture notes on this topics in the
case of the wave operator.
In the setting of the wave operator 𝑃 = −𝜕2𝑡 +∑𝑔𝑗𝑘(𝑥)𝜕𝑥𝑗𝜕𝑥𝑘 , the principal symbol

𝑝2 = 𝜉2𝑡 − ∑𝑔𝑗𝑘(𝑥)𝜉𝑥𝑗𝜉𝑥𝑘 is homogeneous of degree two in all cotangent variables
(𝜉𝑡, 𝜉𝑥). When proving Carleman estimates like (1.22) or (1.23), the large parameter 𝜏
plays the role of a derivative, which naturally results in 𝐷𝑡 ∼ 𝐷𝑥 ∼ 𝜏. In this scaling,
the Fourier multiplier 𝜀|𝐷𝑡|2

2𝜏 appearing in (1.23) is “of order one”, and large frequencies

|𝐷𝑡| ≥ 𝑐0𝜏 only contribute to admissible remainders of size 𝑒−𝜀
𝑐20
2 𝜏.

The firstmain idea for the proof of Theorems 1.2–1.3 is to prove a Carleman estimate
adapted to the anisotropy of the Schrödinger operator (1.6) in case 𝖻 = 0, 𝗊 = 0. In
this setting, we want to consider that 𝐷𝑡 is homogeneous to 𝐷2

𝑥 ∼ 𝜏2. With this new
definition of homogeneity/order/scaling, the natural “first-order” Fouriermultiplier in
time (appearing in the Gaussian conjugation operator) is |𝐷𝑡|2

𝜏3 . Therefore, the first step
of the proof of Theorems 1.2–1.3 is a Carleman estimate of the form

(1.24) ‖
‖‖𝑒

−𝜇|𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙𝑃𝑢‖‖‖𝐿2

+ 𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑢
‖
‖𝐿2 ≳

‖
‖‖𝑒

−𝜇|𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙𝑢‖‖‖𝐿2

, 𝜏 ≥ 𝜏0,

for the unperturbed Schrödinger operator 𝑃 = 𝑖𝜕𝑡+∑𝑔𝑗𝑘(𝑥)𝜕𝑥𝑗𝜕𝑥𝑘 . This is achieved in
Section 2 (see Theorem 2.5). Note that as compared to (1.23), frequencies |𝐷𝑡| ≥ 𝑐0𝜏2

contribute to admissible remainders of size 𝑒−𝜇
𝑐20
2 𝜏. In other words, (1.24) carries in-

formation on time-frequencies |𝐷𝑡| ≲ 𝜏2 of the function 𝑒𝜏𝜙𝑢 whereas the usual es-
timate (1.23) only contains information on time-frequencies |𝐷𝑡| ≲ 𝜏. This is also
clearly seen in the proof of [LL19a] of the optimal quantitative version of the Tataru-
Hörmander-Robbiano-Zuily theorem. In [LL19a], the Carleman estimate (1.24) allows
to propagate low frequency information of the solution in the sense |𝐷𝑡| ≲ 𝜏; whereas
the Carleman estimate (1.24) will allow to propagate low frequency information of or-
der |𝐷𝑡| ≲ 𝜏2. This indicates that the new weight allows to “propagate more informa-
tion”.
The key step in the proof of the Carleman inequality (1.24) (in Theorem 2.5) is a

subelliptic estimate (Proposition 2.8) for the conjugated operator 𝑃𝜙,𝜇 defined by

(1.25) 𝑒−
𝜇|𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙𝑃 = 𝑃𝜙,𝜇𝑒−

𝜇|𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙,
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where the time independence of the coefficients of 𝑃 is crucial for the computation of
𝑃𝜙,𝜇. The latter takes the form (for appropriate norms)

‖
‖𝑃𝜙,𝜇𝑣

‖
‖𝐿2 +

‖𝐷𝑡𝑣‖ ≳ ‖𝑣‖ .(1.26)

That the subelliptic estimate (1.26), applied to 𝑣 = 𝑒−
𝜇|𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙𝑢, implies the Carle-

man inequality (1.24) follows from the fact that 𝑒−
𝜇|𝐷𝑡|2
2𝜏3 localizes exponentially close

to 𝐷𝑡 = 0. Hence the term ‖𝐷𝑡𝑣‖ mostly contributes to the exponentially small re-
mainder in (1.24) plus a small term that one can absorb in the right-hand side of (1.24).
The proof of (1.26) relies on two steps. We first perform the computations in the case
𝜇 = 0, that is to say, as for a traditional Carleman estimate of the form (1.22), with
the difference that all terms involving ‖𝐷𝑡𝑣‖ can be considered as remainder terms.
This essentially reduces this step to a usual Carleman estimate for elliptic operators
with only Lipschitz regularity (plus remainder terms involving time derivatives), for
which we rely on [LL21, Appendix A]. Then the second step consists in consider-
ing the general case 𝜇 > 0 as a perturbation of the previous step plus admissible re-
mainder terms. A related (although different) perturbation argument is used in the
proofs of [Tat95,Hör97, RZ98, Tat99], see e.g. [LL23, Section 3.3]. A difference is that
we prove (1.24) for all 𝜇 > 0, whereas (1.23) only holds for small 𝜀 > 0. In the
proof of unique continuation result of Theorems 1.2 and 1.3, we do not take advan-
tage of the fact that (1.24) holds for 𝜇 large. We expect however that this will be a key
feature of (1.24) in view of proving optimal quantitative unique continuation for the
Schrödinger operator.
The second main step for the proof of Theorems 1.2–1.3 is to prove that (1.24) still

holds for general 𝖻, 𝗊 having Gevrey 2 time-regularity. To this aim, we perform again a
perturbation argument and essentially need to prove that

‖
‖‖𝑒

−𝜇|𝐷𝑡|2
2𝜏3 (𝗊𝑤)‖‖‖𝐿2

≲ ‖
‖‖𝑒

− 𝜇|𝐷𝑡|2
2𝜏3 𝑤‖‖‖𝐿2

+ 𝑒−𝖽𝜏 ‖𝑤‖𝐿2 ,(1.27)

which becomes an admissible remainder in the sharp version of (1.24) (i.e. with the
appropriate norms and powers of the large parameter 𝜏). The proof of (1.27) relies on
a conjugation result of the form (1.25) but for the multiplication by a function, say 𝗊,
depending on 𝑡. We only consider the case 𝜇 = 1 in the remainder of this introduc-
tion for readability. We first notice that if 𝗊(𝑡) = 𝑡, then an explicit computation with
gaussian functions (see e.g. [LL23, Lemma 3.12]) yields

𝑒−
|𝐷𝑡|2
2𝜏3 (𝑡𝑣) = (𝑡 + 𝑖𝐷𝑡𝜏3 ) 𝑒

− |𝐷𝑡|2
2𝜏3 𝑣,

and hence if 𝗊 ∈ ℂ[𝑋] is a polynomial, then the following exact conjugation holds:

𝑒−
|𝐷𝑡|2
2𝜏3 𝗊 = 𝗊 (𝑡 + 𝑖𝐷𝑡𝜏3 ) 𝑒

− |𝐷𝑡|2
2𝜏3 .(1.28)

This fact has been already used in the conjugation statement (1.25) (where the coef-
ficients of the operator do not depend on 𝑡 and the function 𝜙 is assumed quadratic
in time). Even if the function 𝗊 is real-analytic with respect to 𝑡, the right-hand side
of (1.28) is not always well-defined and an exact conjugate operator with respect to
𝑒−

|𝐷𝑡|2
2𝜏 does not necessarily exist. One of the main difficulties in [Tat95, RZ98,Hör97,
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Tat99] consists in defining an approximate conjugate of a multiplication by an analytic
function 𝗊 by 𝑒−

𝜀|𝐷𝑡|2
2𝜏 , up to an error of the form 𝑒−𝑑𝜏 ‖𝑢‖. The latter is an admissible re-

mainder in view of (1.27) and (1.23). In the present setting and if typically 𝗊 ∈ 𝒢2(ℝ; ℂ)
depends only on 𝑡, then the conjugation result we prove reads

𝑒−
|𝐷𝑡|2
2𝜏3 𝗊 = op𝑤 (𝗊̃𝜏(𝑡, 𝜉𝑡))𝑒−

|𝐷𝑡|2
2𝜏3 + 𝑂 (𝑒−𝛿𝜏)ℒ(𝐿2(ℝ)) , 𝜏 → +∞,(1.29)

where op𝑤 (𝗊̃𝜏(𝑡, 𝜉𝑡)) is the classicalWeyl quantization of a symbol 𝗊̃𝜏(𝑡, 𝜉𝑡) constructed
from 𝗊. Here, (𝑡, 𝜉𝑡) ∈ ℝ×ℝ, with the second variable being the dual variable to 𝑡, that
is to say such that op𝑤(𝜉𝑡) = 𝐷𝑡. More precisely, in this expression, the symbol 𝗊̃𝜏(𝑡, 𝜉𝑡)
of the approximate conjugated operator is given by

𝗊̃𝜏(𝑡, 𝜉𝑡) = 𝜂 ( 𝜉𝑡𝜏2 ) 𝗊̃ (𝑡 + 𝑖 𝜉𝑡𝜏3 ) , for (𝑡, 𝜉𝑡) ∈ ℝ × ℝ,(1.30)

where
(1) 𝗊̃ is an almost analytic extension of 𝗊 toℂ (in the sense that 𝜕 ̄𝑧𝗊̃ vanishes at any

order on the real line), well suited to the 𝒢2 regularity of 𝗊 (in the sense that it
satisfies 𝗊̃ ∈ 𝒢2(ℂ; ℂ)). For 𝗊 ∈ 𝒢𝑠(ℝ; ℂ) such a well-chosen almost analytic
extension 𝗊̃(𝑧) satisfies

‖𝜕 ̄𝑧𝗊̃(𝑧)‖ ≤ 𝐶 exp (− 1
𝐶0| Im(𝑧)|

1
𝑠−1

);(1.31)

(2) 𝜂 ∈ 𝐶∞
𝑐 (ℝ) satisfies 𝜂 = 1 in a neighborhood of zero. In particular, 𝜂 cuts off

high frequencies |𝐷𝑡| ≳ 𝜏2, which, as already mentioned, is the right scale in
the present setting.

Our proof of the conjugation result (1.29) is inspired by the strategy of Tataru [Tat99],
with particular attention paid to the different scalings and to the fact that the functions
involved are not analytic. It proceeds with a deformation of contour on the support of
𝜂 ( 𝜉𝑡𝜏2 ), where the almost analytic extension 𝗊̃ satisfies, in view of (1.31) with 𝑠 = 2,

‖
‖‖(𝜕 ̄𝑧𝗊̃) (𝑡 + 𝑖 𝜉𝑡𝜏3 )

‖
‖‖ ≲ exp (− 𝜏3

𝐶0|𝜉𝑡|
) ≲ exp (− 𝜏

𝐶′
0
), on supp 𝜂 ( 𝜉𝑡𝜏2 ) .(1.32)

Owing to the fact that op𝑤 (𝗊̃𝜏(𝑡, 𝜉𝑡)) is uniformly bounded on 𝐿2(ℝ), the conjugation
result (1.29) provides a proof of (1.27) and eventually of (1.24) for the perturbed oper-
ator 𝑃0,𝗊.
To conclude this description of the proofs, let us discuss the different scales in-

volved, in relation with the Gevrey 2 regularity assumption. Firstly, the scaling 𝐷2
𝑡

𝜏3

in the Gaussian multiplier 𝑒−
𝜇|𝐷𝑡|2
2𝜏3 , together with the maximal regime |𝐷𝑡| ≲ 𝜏2 in

which the estimate (1.24) is useful, is dictated by the homogeneity 𝐷𝑡 ∼ 𝐷2
𝑥 ∼ 𝜏2 of

the Schrödinger operator, see the discussion before (1.24). Secondly, in view of (1.28)
the symbol 𝗊̃𝜏 of the principal part of the conjugated operator in (1.30) is naturally
𝗊̃ (𝑡 + 𝑖 𝜉𝑡𝜏3 ) where 𝗊̃ is an almost analytic extension of 𝗊. The additional cutoff 𝜂 (

𝜉𝑡
𝜏2 )

corresponds to the maximal regime |𝐷𝑡| ≲ 𝜏2 in which the estimate (1.24) is useful.
Henceforth the complex variable 𝑧 = 𝑡 + 𝑖 𝜉𝑡𝜏3 satisfies Im(𝑧) = 𝑂(𝜏−1) on the support
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of 𝜂. Given the vanishing order of the almost analytic extension of a Gevrey 𝑠 func-
tion provided by (1.31) (and which is optimal in general), the analysis leading to (1.30)
would yield (1.32) with an𝑂(𝑒−𝛿𝜏

1
𝑠−1 ) remainder term for any function of class Gevrey

𝑠. Finally, in Carleman estimates like (1.24), we notice only remainders of the form
𝑂(𝑒−𝛿𝜏) are admissible (and allow to “gain 𝛿 levelsets of 𝜙” in unique continuation).
This forces the assumption 1

𝑠−1 ≥ 1whence 𝑠 ≤ 2. As a consequence, this brief discus-
sion shows that, as far as the proof is concerned, the Gevrey index 𝑠 = 2 is the best we
can obtain.

The plan of this article is as follows. Section 2 is devoted to the proof of theCarleman
estimate (1.24) in the unperturbed case 𝖻 = 0, 𝗊 = 0. We use some notation from Rie-
mannian geometry which we recall in Section 2.1. We discuss the conjugated operator
in this setting in Section 2.2 and state the Carleman estimate (1.24) in Theorem 2.5. We
then state the subelliptic estimate (1.26) in Proposition 2.8, prove that the subelliptic
estimate implies the Carleman estimate in Section 2.3, and prove the subelliptic esti-
mate in Section 2.4. As already mentioned, this proposition proceeds in two steps: the
case 𝜇 = 0 is first treated in Section 2.4.1 and then the case 𝜇 > 0 in Section 2.4.2 in
a perturbation argument. The usual convexification step is performed in Section 2.5,
allowing to transform the function Ψ defining the hypersurface into a weight function
𝜙 satisfying the assumptions of the subelliptic and the Carleman estimate.
Section 3 is devoted to the study of the conjugated operator and a proof of a conju-

gation statement like (1.29) (namely Proposition 3.6). In Section 3.1 we start with the
construction of almost analytic extensions of Gevrey functions adapted to our needs.
We then state the conjugation result in Proposition 3.6 and proceed to the proof in Sec-
tion 3.2.
The unique continuation Theorems 1.2–1.3 are finally proved in Section 4. Com-

bining the results of Section 2 and Section 3 yields a Carleman estimate with Gevrey
lower-order terms, studied in Section 4.1. Then an appropriate weight function for the
unique continuation results is constructed in Section 4.2 and we conclude the proof of
Theorem 1.2. In Section 4.3 we explain how one can exploit the time-regularization of

the Fourier multiplier 𝑒−𝜇
|𝐷𝑡|2
𝜏3 combined with the ellipticity of 𝑃𝖻,𝗊 in space, in order

to reduce the regularity of the solution in the unique continuation result. This step,
actually relying also on a refined estimate proved in Section 2 and Section 3 (where
remainder terms involve only 𝐻−1 regularity of the solution in time), allows to prove
Theorem 1.3.
The article concludes with Appendix Awhere we collect several technical estimates

and lemmata, and Appendix B in which we prove the unique continuation result of
Theorem 1.10, concerning the plate operator.

2. The Carleman estimate

2.1. Toolbox of Riemannian geometry. The proof of the Carleman estimate below
(asmany proofs of Carleman inequalities for operatorswith low-regularity coefficients)
relies on an integration by parts. Although we work here in a local setting, it is still
convenient to formulate our integration by parts formula in a Riemannian geometric
framework following [LL21, Appendix A], which we recall now (see [GHL90]).



338 S. FILIPPAS, C. LAURENT, ANDM. LÉAUTAUD

We work in a relatively compact open set 𝑉 ⊂ ℝ𝑑. We denote by 𝑔 = (𝑔𝑗𝑘)1≤𝑗,𝑘≤𝑑 a
Lipschitz metric on 𝑉 (that is, 𝑥 ↦ 𝑔𝑥(⋅, ⋅) is a Lipschitz family of symmetric bilinear
forms on 𝑇𝑉 that is uniformly bounded from below, which is equivalent to (1.7)). We
denote by ⟨⋅, ⋅⟩𝑔 = 𝑔(⋅, ⋅) the inner product in 𝑇𝑉 = 𝑉 ×ℝ𝑑. Remark that this notation
omits to mention the point 𝑥 ∈ 𝑉 at which the inner products takes place: this allows
to write ⟨𝑋, 𝑌⟩𝑔 as a function on 𝑉 (the dependence on 𝑥 is omitted here as well) when
𝑋 and 𝑌 are two vector fields on 𝑉 . We also denote for a vector field 𝑋 , |𝑋|2𝑔 = ⟨𝑋, 𝑋⟩𝑔.
In 𝑉 , for 𝑓 a smooth function and 𝑋 = ∑𝑖 𝑋 𝑖 𝜕

𝜕𝑥𝑖
, 𝑌 = ∑𝑖 𝑌 𝑖 𝜕

𝜕𝑥𝑖
smooth vector fields

on 𝑉 , we write

⟨𝑋, 𝑌⟩𝑔 =
𝑑
∑
𝑖,𝑗=1

𝑔𝑖𝑗𝑋 𝑖𝑌 𝑗 ,

∇𝑔𝑓 =
𝑑
∑
𝑖,𝑗=1

𝑔𝑖𝑗(𝜕𝑗𝑓)
𝜕
𝜕𝑥𝑖

,

div𝑔(𝑋) =
𝑑
∑
𝑖=1

1
√det 𝑔

𝜕𝑖 (√det 𝑔𝑋𝑖) ,

Δ𝑔𝑓 = div𝑔∇𝑔𝑓 =
𝑑
∑
𝑖,𝑗=1

1
√det 𝑔

𝜕𝑖 (√det 𝑔𝑔𝑖𝑗𝜕𝑗𝑓) ,

𝐷𝑋𝑌 =
𝑑
∑
𝑖=1

(
𝑑
∑
𝑗=1

𝑋𝑗 𝜕𝑌 𝑖

𝜕𝑥𝑗
+

𝑑
∑
𝑗,𝑘=1

Γ𝑖𝑗,𝑘𝑋𝑗𝑌𝑘) 𝜕
𝜕𝑥𝑖

,

where (𝑔−1)𝑖𝑗 = 𝑔𝑖𝑗 and the Chritoffel symbols are defined by

Γ𝑖𝑗,𝑘 =
1
2

𝑑
∑
𝑙=1

𝑔𝑖𝑙 (𝜕𝑗𝑔𝑘𝑙 + 𝜕𝑘𝑔𝑙𝑗 − 𝜕𝑙𝑔𝑗𝑘)

(see for instance [GHL90, p71]). Note in particular that the Lipschitz regularity of 𝑔
writes 𝑔𝑖𝑗 ∈ 𝑊 1,∞(𝑉), and implies 𝑔𝑖𝑗 ∈ 𝑊 1,∞(𝑉). This entails, if 𝑓, 𝑋, 𝑌 are smooth,
that ⟨𝑋, 𝑌⟩𝑔 ∈ 𝑊 1,∞(𝑉), ∇𝑔𝑓 is a Lipschitz vector field, Δ𝑔𝑓 ∈ 𝐿∞(𝑉) and 𝐷𝑋𝑌 is an
𝐿∞ vector field on 𝑉 , since the definitions of Δ𝑔 and 𝐷𝑋 involve one derivative of the
coefficients of 𝑔. Note that we have chosen to use the Riemannian density 𝜑 = √det 𝑔
in the definition of the divergence for simplicity. Any nonvanishing Lipschitz density
𝜑would do the same. The results for one density may anyways be deduced from those
with another density, see the discussion in Section 1.3.2 as well as Remark 2.6. Let
us now collect some properties of these objects, that we shall use below. For 𝑓, 𝑔 two
smooth functions on 𝑉 and 𝑋 = ∑𝑖 𝑋 𝑖 𝜕

𝜕𝑥𝑖
, 𝑌 = ∑𝑖 𝑌 𝑖 𝜕

𝜕𝑥𝑖
two smooth vector fields on

𝑉 , we have

div𝑔(𝑓𝑋) = ⟨∇𝑔𝑓, 𝑋⟩𝑔 + 𝑓 div𝑔(𝑋),
𝐷𝑋(𝑓𝑌) = (𝑋𝑓)𝑌 + 𝑓𝐷𝑋𝑌,

𝐷𝑋(⟨𝑌, 𝑍⟩𝑔) = ⟨𝐷𝑋𝑌, 𝑍⟩𝑔 + ⟨𝑌,𝐷𝑋𝑍⟩𝑔 .
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We define (see [GHL90, Exercice 2.65] or [LL21] for more on the Hessian)

Hess(𝑓)(𝑋, 𝑌) = (𝐷𝑋𝑑𝑓)(𝑌) = ∑
𝑖,𝑗
𝑋 𝑖𝑌 𝑗 [𝜕2𝑖𝑗𝑓 − Γ𝑘𝑖𝑗𝜕𝑘𝑓] ,

which again is in 𝐿∞(𝑉) for a Lipschitz metric 𝑔 and 𝐿∞ vector fields 𝑋, 𝑌 . Note also
that the Hessian of 𝑓 is symmetric, that is Hess(𝑓)(𝑋, 𝑌) = Hess(𝑓)(𝑌, 𝑋) and for
any function 𝑓 and any vector field 𝑋 and 𝑌 , we have (see e.g. [LL21, Lemma A.1])
Hess(𝑓)(𝑋, 𝑌) = ⟨𝐷𝑋∇𝑔𝑓, 𝑌⟩𝑔. Concerning integrals, we write in this section

∫𝑓 = ∫
𝑉
𝑓(𝑥)√det 𝑔(𝑥)𝑑𝑥,

where√det 𝑔(𝑥)𝑑𝑥 is the Riemannian density. With this notation, a useful integration
by parts formula writes as follows: For all 𝑓 ∈ 𝐻2(𝑉) and ℎ ∈ 𝐻1(𝑉) one of which
having compact support in 𝑉 , we have

∫(Δ𝑔𝑓)ℎ = −∫⟨∇𝑔𝑓,∇𝑔ℎ⟩𝑔 .

As we are interested in complex-valued functions, we set (𝑓, 𝑔) = (𝑓, 𝑔)𝐿2(𝑉) = ∫𝑓ℎ
for the 𝐿2 hermitian product. We aremoreover interested in time-dependent functions,
and in the context of spacetime integration, we write

∬𝑓 =∫
ℝ𝑡
∫
𝑉
𝑓(𝑡, 𝑥)√det 𝑔(𝑥)𝑑𝑥𝑑𝑡,

and similarly (𝑓, 𝑔) = ∬𝑓ℎ.

2.2. The Carleman weight. We denote by Ω = 𝐼 × 𝑉 where 𝐼 is a bounded open
interval ofℝ and 𝑉 is a relatively compact open subset ofℝ𝑑 equipped with a Lipschitz
metric 𝑔. In this section, we set 𝑃 ≔ 𝑖𝜕𝑡 + Δ𝑔 where Δ𝑔 is defined in Section 2.1.
For a smooth real-valued weight function 𝜙 (later on, we will assume that it is poly-

nomial of order 2), the Carleman estimate below will make use of the operator, as
explained in Section 1.4.

𝑄𝜙
𝜇,𝜏𝑢 ∶= 𝑒−𝜇

|𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙𝑢.

In all the rest of the proof, 𝜇 does not have any role and could be any constant. We
have chosen to keep it along the proof since we believe it helps to follow the perturba-

tion of the pseudodifferential weight. We now describe the conjugation by 𝑒−𝜇
|𝐷𝑡|2
2𝜏3 .

Lemma 2.1 (Lemma 3.12 in [LL23]). Let 𝑢 ∈ 𝒮(ℝ1+𝑑) and 𝜍 > 0, then

𝑒−
|𝐷𝑡|2
2𝜎 (𝑡𝑢) = (𝑡 + 𝑖𝐷𝑡𝜍 ) 𝑒

− |𝐷𝑡|2
2𝜎 𝑢.

This implies the following conjugation of monomials.

Lemma 2.2 (Lemma 3.14 in [LL23]). Assume 𝜙 is a real polynomial of degree two in
the variable 𝑡. For all 𝑘 ∈ {0,⋯ , 𝑑} (with the convention 𝑡 = 𝐱0, 𝐷0 = 𝐷𝑡) we have

𝑄𝜙
𝜇,𝜏𝐷𝑘 = (𝐷𝑘)𝜙,𝜇𝑄𝜙

𝜇,𝜏,
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where (denoting 𝜙″𝑡,𝐱𝑘 = 𝜕𝑡𝜕𝐱𝑘𝜙)

(𝐷𝑘)𝜙,𝜇 = 𝐷𝑘 + 𝑖𝜏𝜕𝐱𝑘𝜙(𝐱) − 𝜇𝜙″𝑡,𝐱𝑘
𝐷𝑡
𝜏2 .

The goal of Section 2 is to prove a Carleman estimate for the “unperturbed” operator

(2.1) 𝑃 = 𝑖𝜕𝑡 + Δ𝑔 = −𝐷𝑡 −
𝑑
∑
𝑗,𝑘=1

1
√det 𝑔

𝐷𝑗√det 𝑔𝑔𝑗𝑘𝐷𝑘,

withall coefficients independent of 𝑡. Corollary 2.3 is a direct consequence of Lemma2.2.
Corollary 2.3 (The “conjugated operator”). Let 𝜙 be a real-valued function being qua-
dratic in 𝑡 and 𝑃 defined in (2.1). Then, for any 𝜇 > 0,

𝑄𝜙
𝜇,𝜏𝑃 = 𝑃𝜙,𝜇𝑄𝜙

𝜇,𝜏, with

𝑃𝜙,𝜇 = − (𝐷𝑡 + 𝑖𝜏𝜕𝑡𝜙(𝐱) − 𝜇𝜙″𝑡,𝑡
𝐷𝑡
𝜏2 )

−
𝑑
∑
𝑗,𝑘=1

1
√det 𝑔

(𝐷𝑗 + 𝑖𝜏𝜕𝑗𝜙(𝐱) − 𝜇𝜙″𝑡,𝑗
𝐷𝑡
𝜏2 )

⋅ √det 𝑔𝑔𝑗𝑘 (𝐷𝑘 + 𝑖𝜏𝜕𝑘𝜙(𝐱) − 𝜇𝜙″𝑡,𝑘
𝐷𝑡
𝜏2 ) .

We define the anisotropic norm

(2.2) ‖𝑣‖2𝐻1𝜏
≔ 𝜏2 ‖𝑣‖2𝐿2 + ‖𝐷𝑥𝑣‖

2
𝐿2 + 𝜏−2 ‖𝐷𝑡𝑣‖

2
𝐿2 ,

adapted to the homogeneity of the operator 𝑃 in (2.1) (see the discussion in Section 1.4)
and its spatial part

(2.3) ‖𝑣‖2𝐻1𝜏,𝑥
≔ 𝜏2 ‖𝑣‖2𝐿2 + ‖𝐷𝑥𝑣‖

2
𝐿2 .

Before stating our main Carleman estimate we need to define the following two im-
portant quantities, see [LL21, Theorem A.5]. Given 𝜙 ∈ 𝑊 2,∞(Ω;ℝ), 𝑓 ∈ 𝑊 1,∞(Ω;ℝ),
𝑋 a smooth complex valued vector field on 𝑉 we set

ℬ𝑔,𝜙,𝑓(𝑋) ≔ 2Hess(𝜙)(𝑋, 𝑋) − (Δ𝑔𝜙) |𝑋|
2
𝑔 + 𝑓 |𝑋|2𝑔 ,(2.4)

E𝑔,𝜙,𝑓 ≔ 2Hess(𝜙)(∇𝑔𝜙,∇𝑔𝜙) + (Δ𝑔𝜙) ||∇𝑔𝜙||
2
𝑔 − 𝑓 ||∇𝑔𝜙||

2
𝑔 ,(2.5)

where the Hessian is with respect to the 𝑥 variable only, see Section 2.1, and where we
have written |𝑋|2𝑔 = ⟨𝑋, 𝑋⟩

𝑔
. Note that these are two real quantities (sinceHess(𝜙) is a

real symmetric bilinear form). Note that the only difference with [LL21, TheoremA.5]
is that the vectorfield 𝑋 was assumed real-valued (in applications, 𝑋 = ∇𝑔𝑢). Note that
for a Lipschitz metric 𝑔 on 𝑉 , we have E𝑔,𝜙,𝑓 ∈ 𝐿∞(Ω;ℝ) and ℬ𝑔,𝜙,𝑓(𝑋) ∈ 𝐿∞(Ω;ℝ)
for any bounded vector field 𝑋 on 𝑉 and we stress the fact that these two quantities are
time-dependent (they are defined on Ω = 𝐼 × 𝑉).
Remark 2.4. In what follows we use the notation 𝐶 for a constant whose value may
change from one line to another. It may depend on the norms ‖𝜙‖𝑊2,∞ and ‖𝑓‖𝑊1,∞

where 𝑓 ∈ 𝑊 1,∞ is an auxiliary function, and on the metric 𝑔 only via the quantities
‖
‖𝑔𝑗𝑘

‖
‖𝑊1,∞(𝑉)

and the ellipticity constant 𝑐0 of the metric 𝑔𝑗𝑘 (only Lipschitz regularity
of 𝑔 is assumed).
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Let us now state the main result of this section, which is a Carleman estimate in the
spirit of [Tat95,Hör97,RZ98,Tat99] but with two main differences:

(1) The Fourier multiplier is now 𝑒−
𝜇|𝐷𝑡|2
2𝜏3 instead of 𝑒−

𝜇|𝐷𝑡|2
2𝜏

(2) We use the anisotropic norm defined in (2.2).
In Section 4.1 we show that this estimate remains valid for lower-order perturbations
of the operator 𝑃 in (2.1).
Theorem2.5 (Carleman estimate). Let𝐱0 = (𝑡0, 𝑥0) ∈ Ω = 𝐼×𝑉 ⊂ ℝ1+𝑑. Assume that
𝜙 and 𝑓 satisfy the following: 𝜙 is a quadratic real-valued polynomial, 𝑓 ∈ 𝑊 1,∞(Ω;ℝ),
there exist 𝑟 > 0 such that ||∇𝑔𝜙||

2
𝑔 > 0 on 𝐵(𝐱0, 𝑟), and 𝐶0 > 0 such that for any vector

field 𝑋 , we have almost everywhere on 𝐵(𝐱0, 𝑟):

ℬ𝑔,𝜙,𝑓(𝑋) ≥ 𝐶0 |𝑋|
2
𝑔 , and E𝑔,𝜙,𝑓 ≥ 𝐶0 ||∇𝑔𝜙||

2
𝑔 .(2.6)

Then, for all 𝜇 > 0 and 𝑘 ∈ ℕ there exist 𝖽, 𝐶, 𝜏0 > 0 such that for all 𝜏 ≥ 𝜏0 and
𝑤 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟8 )), for 𝑃 defined in (2.1), we have

𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝑃𝑤‖‖

2

𝐿2
+ 𝐶𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐻−𝑘
𝑡 𝐻1𝑥

≥ 𝜏‖𝑄𝜙
𝜇,𝜏𝑤‖2𝐻1𝜏

.(2.7)

In (2.7), 𝐻−𝑘
𝑡 𝐻1

𝑥 = 𝐻−𝑘(ℝ;𝐻1(𝑉)), that is to say

‖𝑣‖𝐻−𝑘
𝑡 𝐻1𝑥

= ‖
‖⟨𝐷𝑡⟩−𝑘𝑣

‖
‖𝐿2(ℝ;𝐻1(𝑉))

.(2.8)

Theorem 2.5 states a precise version of (1.24).

Remark 2.6 (Lower-order perturbations). Note that in Theorem 2.5 we have stated the
result for the operator 𝑃 defined in (2.1). As usual for Carleman estimates, the state-
ment still holds for 𝑃 replaced by any lower-order time-independent perturbation with
𝐿∞(𝑉) coefficients (using that the latter commutes with 𝑄𝜙

𝜇,𝜏 and the corresponding
additional term in (2.7) can thus be absorbed in the right-hand side for 𝜏 sufficiently
large). According to the discussion of Section 1.3.2, this proves that 𝑃 can be equiva-
lently replaced by 𝑖𝜕𝑡 +Δ𝑔,𝜑 for any Lipschitz nonvanishing density 𝜑 in Theorem 2.5.

Remark 2.7. The 𝐻−𝑘
𝑡 𝐻1

𝑥 norm on the error term in the left-hand side of (2.7) is ob-

tained as a consequence of the regularization properties of the operator 𝑒−
𝜇|𝐷𝑡|2
2𝜏3 . The

unique continuation result of Theorem 1.2 concerning 𝐿2(𝐼; 𝐻1(𝑉)) solutions only uses
the case 𝑘 = 0 (for which the proof of Theorem 2.5 is simpler). The unique continu-
ation result of Theorem 1.3 concerning 𝐿2(𝐼 × 𝑉) solutions relies on the case 𝑘 = 1,
combined with an ellipticity argument (to gain derivative in space). See Section 4.3.
Finally, the unique continuation statement of Remark 1.4 concerning distribution so-
lutions uses the full range of 𝑘 ∈ ℕ (together with an ellipticity argument).

The main step for the proof of Theorem 2.5 is the following subelliptic estimate.

Proposition 2.8 (Subelliptic estimate). Let 𝐱0 = (𝑡0, 𝑥0) ∈ Ω = 𝐼 ×𝑉 ⊂ ℝ1+𝑑. Assume
that 𝜙 and 𝑓 satisfy the assumptions of Theorem 2.5. Then, for all 𝜇 > 0 there exist
𝐶, 𝜏0 > 0 such that for all 𝜏 ≥ 𝜏0 and 𝑣 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟)), we have

𝐶 ‖‖𝑃𝜙,𝜇𝑣
‖
‖
2

𝐿2
+ 𝐶𝜏−1 ‖𝐷𝑡𝑣‖

2
𝐿2 ≥ 𝜏 ‖𝑣‖2𝐻1𝜏

.(2.9)
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Remark 2.9 (Perturbations of (2.9) by lower-order terms). In the setting of Proposi-
tion 2.8, we consider

𝑅 = 𝐴 ⋅ 𝐷𝑥 + 𝜏𝑎 + 𝑏
𝜏2𝐷𝑡 +

𝑐
𝜏𝐷𝑡, with 𝑎, 𝑏, 𝑐 ∈ 𝐿∞(Ω; ℂ), 𝐴 ∈ 𝐿∞(Ω; ℂ𝑑).(2.10)

Recalling (2.2), we have for 𝜏 ≥ 1,

‖𝑅𝑣‖𝐿2 ≲ 𝜏 ‖𝑣‖𝐿2 + ‖𝐷𝑥𝑢‖𝐿2 +
‖𝐷𝑡𝑣‖𝐿2

𝜏2 +
‖𝐷𝑡𝑣‖𝐿2

𝜏 ≲ ‖𝑣‖𝐻1𝜏
.

As a consequence, estimate (2.9) holds for the operator 𝑃𝜙,𝜇 if and only if it holds for
the operator 𝑃𝜙,𝜇+𝑅 in place of 𝑃𝜙,𝜇, up to changing the values of 𝜏0 and 𝐶. Let us now
define

(2.11) 𝖯 ≔ ∑
𝑗,𝑘

𝑔𝑗𝑘(𝑥)𝜕𝑗𝜕𝑘 = −∑
𝑗,𝑘

𝑔𝑗𝑘(𝑥)𝐷𝑗𝐷𝑘.

As in Corollary 2.3, we have 𝑄𝜙
𝜇,𝜏𝖯 = 𝖯𝜙,𝜇𝑄𝜙

𝜇,𝜏 with

𝖯𝜙,𝜇 = − (𝐷𝑡 + 𝑖𝜏𝜕𝑡𝜙(𝐱) − 𝜇𝜙″𝑡,𝑡
𝐷𝑡
𝜏2 )

−
𝑑
∑
𝑗,𝑘=1

𝑔𝑗𝑘(𝑥) (𝐷𝑗 + 𝑖𝜏𝜕𝑗𝜙(𝐱) − 𝜇𝜙″𝑡,𝑗
𝐷𝑡
𝜏2 ) (𝐷𝑘 + 𝑖𝜏𝜕𝑘𝜙(𝐱) − 𝜇𝜙″𝑡,𝑘

𝐷𝑡
𝜏2 ) .(2.12)

Remarknow that since themetric 𝑔 is Lipschitz and time independent, the commutator

[(𝐷𝑗 + 𝑖𝜏𝜕𝑗𝜙 − 𝜇𝜙″𝑡,𝑗
𝐷𝑡
𝜏2 ) ,√det 𝑔𝑔

𝑗𝑘] = [𝐷𝑗 , √det 𝑔𝑔𝑗𝑘]

is a differential operator of order zero, with 𝐿∞ coefficients. It follows that

𝑃𝜙,𝜇 = 𝖯𝜙,𝜇 − 𝑅, with

𝑅 =
𝑑
∑
𝑗,𝑘=1

1
√det 𝑔

[𝐷𝑗 , √det 𝑔𝑔𝑗𝑘] (𝐷𝑘 + 𝑖𝜏𝜕𝑘𝜙 − 𝜇𝜙″𝑡,𝑘
𝐷𝑡
𝜏2 ) ,

and, according to the above discussion, estimate (2.9) for 𝖯𝜙,𝜇 implies the same esti-
mate for 𝑃𝜙,𝜇 (and vice versa).

Remark 2.9 allows to transfer estimates from 𝑃𝜙,𝜇 to 𝖯𝜙,𝜇 and vice versa. In Sec-
tion 2.3, we first show how the subelliptic estimate of Proposition 2.8 implies the Car-
leman estimate of Theorem 2.5. Then in Section 2.4 we prove the subelliptic estimate
of Proposition 2.8.

2.3. From the subelliptic estimate to the Carleman estimate.

Proof of Theorem 2.5 from Proposition 2.8. Suppose for simplicity that 𝑡0 = 0 and let
𝑟0 ≔ 𝑟/2with 𝑟 given by the assumptions of Theorem 2.5 and Proposition 2.8. Consider
𝑤 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟0/4); [0, 1]) and𝜒 ∈ 𝐶∞
𝑐 ((−𝑟0, 𝑟0); [0, 1])with𝜒 = 1 on (−𝑟0/2, 𝑟0/2). We

notice that

𝜏 ‖‖𝑄
𝜙
𝜇,𝜏𝑤‖‖

2

𝐻1𝜏
≤ 2𝜏 ‖‖𝜒𝑄

𝜙
𝜇,𝜏𝑤‖‖

2

𝐻1𝜏
+ 2𝜏 ‖‖(1 − 𝜒)𝑄𝜙

𝜇,𝜏𝑤‖‖
2

𝐻1𝜏
.(2.13)
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Consider 𝜒 ∈ 𝐶∞
𝑐 ((−𝑟0/3, 𝑟0/3); [0, 1]) with 𝜒 = 1 in a neighborhood of [−𝑟0/4, 𝑟0/4],

so that 𝑤 = 𝜒𝑤. Recalling the norms (2.2)–(2.3), the support properties of 𝜒, 𝜒 and 𝑤
together with Lemma A.4 we estimate the second term in (2.13) as

𝜏 ‖‖(1 − 𝜒)𝑄𝜙
𝜇,𝜏𝑤‖‖

2

𝐻1𝜏

≤ 𝐶𝜏 ‖‖(1 − 𝜒)𝑄𝜙
𝜇,𝜏𝑤‖‖

2

𝐻1𝜏,𝑥
+ 𝐶𝜏−1 ‖‖𝐷𝑡(1 − 𝜒)𝑄𝜙

𝜇,𝜏𝑤‖‖
2

𝐿2

= 𝐶𝜏 ‖‖‖(1 − 𝜒)𝑒−𝜇
|𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙𝜒𝑤‖‖‖

2

𝐻1𝜏,𝑥

+ 𝐶𝜏−1 ‖‖𝐷𝑡(1 − 𝜒)𝑄𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2

≤ 𝐶𝜏𝑒−2𝑐
𝜏3
𝜇 ‖
‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐻−𝑘
𝑡 𝐻1𝑥

+ 𝐶𝜏−1 ‖‖‖[𝐷𝑡, (1 − 𝜒)]𝑒−𝜇
|𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙𝜒𝑤‖‖‖

2

𝐿2

+ 𝐶𝜏−1 ‖‖(1 − 𝜒)𝐷𝑡𝑄𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2

≤ 𝐶𝜇𝑒−𝑐
𝜏3
𝜇 ‖
‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐻−𝑘
𝑡 𝐻1𝑥

+ 𝐶𝜏−1 ‖‖𝐷𝑡𝑄
𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2
,(2.14)

where𝐻−𝑘
𝑡 𝐻1

𝑥 = 𝐻−𝑘(ℝ;𝐻1(𝑉)), see (2.8). We estimate now the second term in (2.14).
To do so, we consider 𝜎 > 0 a small constant to be chosen later on and we distinguish
between frequencies smaller or larger than 𝜎𝜏2. We also assume 𝜎𝜏2 ≥ 1 and obtain

‖
‖𝐷𝑡𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 ≤

‖
‖𝐷𝑡𝟙|𝐷𝑡|≤𝜍𝜏2𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 +

‖
‖‖𝐷

𝑘+1
𝑡 𝟙|𝐷𝑡|≥𝜍𝜏2⟨𝐷𝑡⟩−𝑘𝑒

−𝜇 |𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙𝑤‖‖‖𝐿2

≤ 𝜎𝜏2 ‖‖𝑄
𝜙
𝜇,𝜏𝑤‖‖𝐿2 + max

𝜉𝑡≥𝜍𝜏2
(𝜉𝑘+1𝑡 𝑒−𝜇

|𝜉𝑡|2
2𝜏3 ) ‖‖𝑒𝜏𝜙𝑤

‖
‖𝐻−𝑘

𝑡 𝐿2𝑥
.

Now the function ℝ+ ∋ 𝑠 ↦ 𝑠𝗄𝑒−𝜇
|𝑠|2
2𝜏3 reaches its maximum at 𝑠 = √

𝗄𝜏3
𝜇 and is de-

creasing on [√
𝗄𝜏3
𝜇 ,∞). As a consequence, if 𝜎𝜏2 ≥ √

𝗄𝜏3
𝜇 which translates to 𝜏 ≥ 𝗄

𝜍2𝜇 ,

one has max
𝜉𝑡≥𝜍𝜏2

(𝜉𝗄𝑡 𝑒−𝜇
|𝜉𝑡|2
2𝜏3 ) = 𝜎𝗄𝜏2𝗄𝑒−𝜇

𝜍2𝜏4
2𝜏3 = 𝜎𝗄𝜏2𝗄𝑒−𝜇

𝜍2𝜏
2 . We obtain therefore, for

𝜏 ≥ 𝜏0 ≥ max(1, 𝜎−1/2, 𝑘+1𝜍2𝜇 ),

‖
‖𝐷𝑡𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 ≤ 𝜎𝜏2 ‖‖𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 + 𝜎𝑘+1𝜏2𝑘+2𝑒−𝜇

𝜍2𝜏
2 ‖
‖𝑒𝜏𝜙𝑤

‖
‖𝐻−𝑘

𝑡 𝐿2𝑥
.(2.15)

We now estimate the term 𝜏 ‖‖𝜒𝑄
𝜙
𝜇,𝜏𝑤‖‖

2

𝐻1𝜏
appearing in (2.13). Thanks to the support

properties of 𝜒 and 𝑤 we can apply the subelliptic estimate of Proposition 2.8 to 𝑣 ≔



344 S. FILIPPAS, C. LAURENT, ANDM. LÉAUTAUD

𝜒𝑄𝜙
𝜇,𝜏𝑤 ∈ 𝐶∞

𝑐 ([−𝑟/2, 𝑟/2] × 𝐵(0, 𝑟/8)). We obtain

𝜏 ‖‖𝜒𝑄
𝜙
𝜇,𝜏𝑤‖‖

2

𝐻1𝜏
≤ 𝐶 ‖‖𝑃𝜙,𝜇𝜒𝑄

𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2
+ 𝐶𝜏−1 ‖‖𝐷𝑡𝜒𝑄

𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2

≤ 𝐶 ‖‖𝑃𝜙,𝜇𝜒𝑄
𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2
+ 𝐶𝜏−1 ‖‖𝑄

𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2
+ 𝐶𝜏−1 ‖‖𝐷𝑡𝑄

𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2

≤ 𝐶 ‖‖𝑃𝜙,𝜇𝜒𝑄
𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2

+ 𝐶𝜎2𝜏3 ‖‖𝑄
𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2
+ 𝐶𝜎2𝑘+2𝜏4𝑘+3𝑒−𝜇𝜍2𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐻−𝑘
𝑡 𝐿2𝑥

,(2.16)

where for the last inequality, we used 𝜎𝜏2 ≥ 1 and (2.15). Recalling Corollary 2.3,
𝑄𝜙
𝜇,𝜏𝑃 = 𝑃𝜙,𝜇𝑄𝜙

𝜇,𝜏 and thus

‖
‖𝑃𝜙,𝜇𝜒𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 ≤

‖
‖𝜒𝑃𝜙,𝜇𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 +

‖
‖[𝑃𝜙,𝜇, 𝜒]𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2

≤ ‖
‖𝑄

𝜙
𝜇,𝜏𝑃𝑤‖‖𝐿2 +

‖
‖‖[𝑃𝜙,𝜇, 𝜒]𝑒

−𝜇 |𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙𝜒𝑤‖‖‖𝐿2

.

Recalling that 𝜒 = 𝜒(𝑡), together with the expression of 𝑃𝜙,𝜇 in Corollary 2.3, we have

[𝑃𝜙,𝜇, 𝜒] = 𝑖𝜒′ + 𝑅, with

𝑅 = 1
𝜏2 (𝐹(𝐱) ⋅ 𝐷𝑥 + 𝑓0(𝐱)

𝐷𝑡
𝜏2 + 𝑓1(𝐱)𝜏 + 𝑓2(𝐱) +

1
𝜏2𝑓3(𝐱)) ,

where 𝐹, 𝑓0, 𝑓1, 𝑓2, 𝑓3 ∈ 𝐿∞(𝐼 × 𝑉) satisfy supp(𝐹, 𝑓0, 𝑓1, 𝑓2, 𝑓3) ⊂ supp(𝜒′) × 𝑉 . Given
the support properties of 𝜒, 𝜒, Lemma A.4 yields for all 𝑘 ∈ ℕ the existence of 𝐶, 𝑐 > 0
such that

‖
‖‖[𝑃𝜙,𝜇, 𝜒]𝑒

−𝜇 |𝐷𝑡|2
2𝜏3 𝑒𝜏𝜙𝜒𝑤‖‖‖𝐿2

≤ ‖
‖‖𝜒

′𝑒−𝜇
|𝐷𝑡|2
2𝜏3 𝜒𝑒𝜏𝜙𝑤‖‖‖𝐿2

+ ‖
‖‖𝑅𝑒

−𝜇 |𝐷𝑡|2
2𝜏3 𝜒𝑒𝜏𝜙𝑤‖‖‖𝐿2

≤ 𝐶𝜇𝑒−𝑐
𝜏3
𝜇 ‖
‖𝑒𝜏𝜙𝑤

‖
‖𝐻−𝑘

𝑡 𝐻1𝑥
.

Putting the two last inequalities together we obtain

‖
‖𝑃𝜙,𝜇𝜒𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 ≤ 𝐶 ‖‖𝑄

𝜙
𝜇,𝜏𝑃𝑤‖‖𝐿2 + 𝐶𝑒−𝑐

𝜏3
𝜇 ‖
‖𝑒𝜏𝜙𝑤

‖
‖𝐻−𝑘

𝑡 𝐻1𝑥
.(2.17)

Combining (2.13), (2.14), (2.15), (2.16) and (2.17) we find that for any 𝜇 > 0, 𝑘 ∈ ℕ,
there are constants 𝐶, 𝑐, 𝜏0 > 0 such that for any 𝜎 > 0 and 𝜏 ≥ 𝜏0 we have

𝜏‖𝑄𝜙
𝜇,𝜏𝑤‖2𝐻1𝜏

≤ 𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝑃𝑤‖‖

2

𝐿2
+ 𝐶𝜎2𝜏3 ‖‖𝑄

𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2

+ 𝐶 (𝑒−𝑐
𝜏3
𝜇 + 𝜎2𝑘+2𝜏4𝑘+3𝑒−𝜇𝜍2𝜏) ‖‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐻−𝑘
𝑡 𝐻1𝑥

.

Choosing then 𝜎 > 0 sufficiently small allows to absorb the term 𝜎2𝜏3 ‖‖𝑄
𝜙
𝜇,𝜏𝑤‖‖

2

𝐿2
in

the left-hand side. Then taking 𝜏 ≥ 𝜏0 with 𝜏0 sufficiently large finishes the proof of
Theorem 2.5 from Proposition 2.8. □



UNIQUE CONTINUATION FOR SCHRÖDINGER OPERATORS 345

2.4. Proof of the subelliptic estimate. This section is devoted to the proof of Propo-
sition 2.8. Recall that the operator𝑃 is defined in (2.1) and let us consider the “classical”
conjugated operator given by

𝑃𝜙 ≔ 𝑒𝜏𝜙𝑃𝑒−𝜏𝜙 = 𝑒𝜏𝜙(𝑖𝜕𝑡 + Δ𝑔)𝑒−𝜏𝜙,

where we recall that Δ𝑔 is defined in Section 2.1. Remark that 𝑃𝜙 = 𝑃𝜙,0 where 𝑃𝜙,𝜇
is defined in Corollary 2.3. We start by proving in Section 2.4.1 the desired subellip-
tic estimate in the particular case 𝑃𝜙 = 𝑃𝜙,0. We then prove in Section 2.4.2 that the

additional terms coming from the difference ‖‖(𝑃𝜙,𝜇 − 𝑃𝜙)𝑢‖‖
2

𝐿2
can be absorbed in the

estimate.

2.4.1. Case 𝜇 = 0. We recall the definitions of ℬ𝑔,𝜙,𝑓(𝑋) and E𝑔,𝜙,𝑓 in (2.4) and (2.5)
respectively. We sometimes write 𝑣𝑡 ≔ 𝜕𝑡𝑣.

Proposition 2.10. LetΩ ⊂ ℝ1+𝑑. Assume that 𝜙 ∈ 𝑊 2,∞(Ω;ℝ) and 𝑓 ∈ 𝑊 1,∞(Ω;ℝ).
Then, there exists 𝐶 > 0 such that for any 𝑢 ∈ 𝐶∞

𝑐 (Ω) and 𝜏 ≥ 0, we have for any 𝛿 > 0

3 ‖‖𝑃𝜙𝑢
‖
‖
2

𝐿2
+ (‖‖Δ𝑔𝜙

‖
‖
2

𝐿∞
+ ‖𝑓‖𝐿∞)

1
𝛿𝜏 ‖𝑢𝑡‖

2
𝐿2 + 𝑅(𝑢)

≥ 2𝜏3∬[E𝑔,𝜙,𝑓 − 𝛿] |𝑢|2 + 2𝜏∬ℬ𝑔,𝜙,𝑓(∇𝑔𝑢),

with |𝑅(𝑢)| ≤ 𝐶𝜏2 ‖𝑢‖2𝐿2 + 𝐶 ‖‖∇𝑔𝑢‖‖
2

𝐿2
.(2.18)

The proof of Proposition 2.10 is inspired by [Lau10] for the Schrödinger operator
and [LL21] for elliptic operators. It relies on the Riemannian tools presented in Sec-
tion 2.1. In [Lau10], a positivity assumption on the (space) Hessian for the weight
function is made (related to the pseudoconvexity assumption in [LZ82,Deh84, Isa93]).
Here, the possibility of having 1

𝜏 ‖𝑢𝑡‖
2
𝐿2 as a remainder term and the introduction of the

function 𝑓 allow to relax this convexity condition and stay closer to the elliptic case as
presented in [LL21].

Proof of Proposition 2.10. We start by computing

𝑃𝜙𝑢 = 𝑒𝜏𝜙(𝑖𝜕𝑡 + Δ𝑔)(𝑒−𝜏𝜙𝑢)

= 𝑖𝑢𝑡 − 𝑖𝜏𝜙𝑡𝑢 + Δ𝑔𝑢 − 2𝜏 ⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔 − 𝜏(Δ𝑔𝜙)𝑢 + 𝜏2 ||∇𝑔𝜙||
2
𝑔 𝑢.

We then decompose the conjugated operator 𝑃𝜙 as

𝑃𝜙 = 𝑖𝜕𝑡 − 𝑖𝜏𝜙𝑡 + 𝑄2 + 𝑄1, with
𝑄1𝑢 ≔ −2𝜏 ⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔 − 𝜏𝑓𝑢,

𝑄2𝑢 ≔ Δ𝑔𝑢 + 𝜏2 ||∇𝑔𝜙||
2
𝑔 𝑢 − 𝜏(Δ𝑔𝜙)𝑢 + 𝜏𝑓𝑢 = 𝑄2𝑢 + 𝑅2𝑢,

where 𝑄2 is the principal part of 𝑄2, that is

𝑄2𝑢 = Δ𝑔𝑢 + 𝜏2 ||∇𝑔𝜙||
2
𝑔 𝑢, and 𝑅2𝑢 = 𝜏(−Δ𝑔𝜙 + 𝑓)𝑢.
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Now, we write (‖⋅‖ denotes the 𝐿2 norm for short and (⋅, ⋅) the associated Hermitian
inner product)

3 ‖‖𝑃𝜙𝑢
‖
‖
2
+ 3 ‖𝑅2𝑢‖

2 + 3 ‖𝜏𝜙𝑡𝑢‖
2 ≥ ‖

‖𝑃𝜙𝑢 − 𝑅2𝑢 + 𝑖𝜏𝜙𝑡𝑢‖‖
2
= ‖
‖𝑖𝑢𝑡 + 𝑄1𝑢 + 𝑄2𝑢‖‖

2
,

(2.19)

where we estimate the remainders as

‖𝑅2𝑢‖
2 ≤ 𝜏2 ‖‖𝑓 − Δ𝑔𝜙‖‖

2

𝐿∞
‖𝑢‖2𝐿2 , and ‖𝜏𝜙𝑡𝑢‖

2 ≤ 𝜏2 ‖𝜙𝑡‖
2
𝐿∞ ‖𝑢‖

2
𝐿2 .(2.20)

Hence, we are left to produce a lower bound for

‖
‖𝑖𝑢𝑡 + 𝑄1𝑢 + 𝑄2𝑢‖‖

2
= ‖𝑄1𝑢‖

2 + ‖
‖𝑖𝑢𝑡 + 𝑄2𝑢‖‖

2

+ 2Re (𝑖𝑢𝑡, 𝑄1𝑢) + 2Re (𝑄1𝑢,𝑄2𝑢)
≥ 2Re (𝑖𝑢𝑡, 𝑄1𝑢) + 2Re (𝑄1𝑢,𝑄2𝑢).(2.21)

The second term in the right-hand side of (2.21) is described in Lemma 2.11, and we
now estimate the first term as a remainder. Recalling the expression of 𝑄1, we decom-
pose

2Re (𝑖𝑢𝑡, 𝑄1𝑢) = 2𝐼1 + 𝐼2, with(2.22)
𝐼1 ∶= −2𝜏Re (𝑖𝑢𝑡, ⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔 ), and 𝐼2 ≔ −2𝜏Re (𝑖𝑢𝑡, 𝑓𝑢).

Expanding 2Re 𝑎 = 𝑎+𝑎 for 𝐼1 and performing an integration by parts in 𝑡 for the first
term, we obtain

𝐼1 = 𝜏∬𝑖 ⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔 𝑢𝑡 − 𝑖𝜏∬⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔 𝑢𝑡

= 𝜏∬−𝑖 [⟨∇𝑔𝜙𝑡, ∇𝑔𝑢⟩𝑔 + ⟨∇𝑔𝜙,∇𝑔𝑢𝑡⟩𝑔] 𝑢 − 𝑖𝜏∬⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔 𝑢𝑡.

Concerning the last term, an integration by parts in 𝑥 yields

−𝑖∬⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔 𝑢𝑡 = 𝑖∬(Δ𝑔𝜙)𝑢𝑢𝑡 + 𝑖∬⟨∇𝑔𝜙,∇𝑔𝑢𝑡⟩𝑔 𝑢.

As a consequence, we deduce

𝐼1 = 𝜏∬−𝑖 ⟨∇𝑔𝜙𝑡, ∇𝑔𝑢⟩𝑔 𝑢 + 𝑖𝜏∬(Δ𝑔𝜙)𝑢𝑢𝑡.

The Cauchy-Schwarz inequality yields

2|𝐼1| ≤ 2 |||𝜏∬−𝑖 ⟨∇𝑔𝜙𝑡, ∇𝑔𝑢⟩𝑔 𝑢
||| + 2 |||𝜏∬(Δ𝑔𝜙)𝑢𝑢𝑡

|||

≤ ‖
‖∇𝑔𝜙𝑡‖‖

2

𝐿∞
𝜏2 ‖𝑢‖2𝐿2 +

‖
‖∇𝑔𝑢‖‖

2

𝐿2
+ 𝛿𝜏3 ‖𝑢‖2𝐿2 +

‖
‖Δ𝑔𝜙

‖
‖
2

𝐿∞
𝛿

1
𝜏 ‖𝑢𝑡‖

2
𝐿2 .(2.23)

We obtain similarly

|𝐼2| ≤ 𝛿𝜏3 ‖𝑢‖2𝐿2 +
‖𝑓‖2𝐿∞
𝛿

1
𝜏 ‖𝑢𝑡‖

2
𝐿2 .(2.24)
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Wenowprovidewith a lower bound for the second term in the right-hand side of (2.21).
The following result is a version of [LL21, Lemma A.7] for complex valued functions 𝑢
in the boundaryless case (recall the definitions ofℬ𝑔,𝜙,𝑓(𝑋) andE𝑔,𝜙,𝑓 in (2.4) and (2.5)).

Lemma 2.11. Given an open set Ω ⊂ ℝ1+𝑑, for all functions 𝜙 ∈ 𝑊2,∞
loc (Ω;ℝ), 𝑓 ∈

𝑊1,∞
loc (Ω;ℝ) and 𝑢 ∈ 𝐻2

comp(Ω; ℂ), we have

Re (𝑄1𝑢,𝑄2𝑢) = 𝜏3∬E𝑔,𝜙,𝑓|𝑢|2 + 𝜏∬ℬ𝑔,𝜙,𝑓(∇𝑔𝑢) + 𝜏Re∬𝑢⟨∇𝑔𝑓,∇𝑔𝑢̄⟩𝑔 .

Lemma 2.11 is a consequence of [LL21, Lemma A.7] applied to Re(𝑢) and Im(𝑢)
(with vanishing boundary terms), using that 𝑄1, 𝑄2 have real coefficients, hence are
ℂ−linear (which follows from the fact that 𝜙 and 𝑓 are real-valued).
In the estimates of Lemma 2.11, the last term is estimated as a remainder as

𝑅3(𝑢) = −Re 𝜏∬𝑢⟨∇𝑔𝑓,∇𝑔𝑢̄⟩𝑔 ,

|𝑅3(𝑢)| ≤
‖
‖∇𝑔𝑓‖‖𝐿∞

2 (‖‖∇𝑔𝑢‖‖
2

𝐿2
+ 𝜏2 ‖𝑢‖2𝐿2) .(2.25)

Now, combining (2.21) with (2.19) and (2.22) yields

3 ‖‖𝑃𝜙𝑢
‖
‖
2
+ 3 ‖𝑅2𝑢‖

2 + 3 ‖𝜏𝜙𝑡𝑢‖
2 + 2|𝐼1| + |𝐼2| ≥ 2Re (𝑄1𝑢,𝑄2𝑢).

This combined with (2.23)–(2.24) and Lemma 2.11 concludes the proof of the proposi-
tion with

𝑅(𝑢) = 3 ‖𝑅2𝑢‖
2 + 3 ‖𝜏𝜙𝑡𝑢‖

2 + |𝑅3(𝑢)| + 𝐶𝜏2 ‖𝑢‖2𝐿2 + 𝐶 ‖‖∇𝑔𝑢‖‖
2

𝐿2
,

with the first two terms estimated in (2.20) and the third in (2.25). □

2.4.2. The case 𝜇 > 0: End of the proof of Proposition 2.8. The strategy of the proof of
Proposition 2.8 is to follow step by step the proof of Proposition 2.10 and control the
additional error terms. Therefore, we will make use of the different terms appearing in
the proof of Proposition 2.10 like 𝑄2, 𝑄2, 𝑄1, 𝑅2.
Thanks to Remark 2.9 it suffices to prove the inequality of Proposition 2.8 for the

operator 𝖯𝜙,𝜇 defined in (2.12). We start by expressing it in terms of 𝑃𝜙. Recall that
by assumption 𝜙 is a quadratic polynomial and therefore 𝜙″𝑡,𝑗 = 𝜕2𝑡,𝑥𝑗𝜙 are actually
constants. We have

𝖯𝜙,𝜇 = 𝑃𝜙 −
𝑑
∑
𝑗,𝑘=1

𝑔𝑗𝑘(𝐷𝑗 + 𝑖𝜏𝜕𝑗𝜙)𝜇𝜙″𝑡,𝑘
𝐷𝑡
𝜏2 + 𝑔𝑗𝑘𝜇𝜙″𝑡,𝑗

𝐷𝑡
𝜏2 (𝐷𝑘 + 𝑖𝜏𝜕𝑘𝜙)

+ 𝜇2
𝑑
∑
𝑗,𝑘=1

𝜙″𝑡,𝑘 ⋅ 𝜙″𝑡,𝑗𝑔𝑗𝑘
𝐷2
𝑡
𝜏4 + 𝑅1

= 𝑃𝜙 − 2𝜇∑
𝑗𝑘
𝜙″𝑡,𝑘𝑔𝑗𝑘

𝐷𝑗𝐷𝑡
𝜏2 + 𝜇2∑

𝑗𝑘
𝜙″𝑡,𝑘 ⋅ 𝜙″𝑡,𝑗𝑔𝑗𝑘

𝐷2
𝑡
𝜏4 + 𝑅2

= 𝑃𝜙,𝜇 + 𝑅2,
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where the operators 𝑅̃1, 𝑅̃2 belong to the class of admissible perturbations considered
in Remark 2.9 and

𝑃𝜙,𝜇 ≔ 𝑃𝜙 + 2𝜇∑
𝑗𝑘
𝜙″𝑡,𝑘𝑔𝑗𝑘

𝜕𝑖𝜕𝑡
𝜏2 − 𝜇2∑

𝑗𝑘
𝜙″𝑡,𝑘 ⋅ 𝜙″𝑡,𝑗𝑔𝑗𝑘

𝜕2𝑡
𝜏4 .

It suffices then to show the estimate of Proposition 2.8 for the operator 𝑃𝜙,𝜇. We de-
compose

𝑃𝜙,𝜇 = 𝑖𝜕𝑡 − 𝑖𝜏𝜕𝑡𝜙 + 𝑄1,𝜇 + 𝑄2,𝜇,
where, using the notation 𝑄2, 𝑄2, 𝑄1, 𝑅2 from the proof of Proposition 2.10 in Sec-
tion 2.4.1, 𝑄1,𝜇 = 𝑄1 and

𝑄2,𝜇 = 𝑄2 + 2𝜇∑
𝑗𝑘
𝜙″𝑡,𝑘𝑔𝑗𝑘

𝜕𝑖𝜕𝑡
𝜏2 − 𝜇2∑

𝑗𝑘
𝜙″𝑡,𝑘 ⋅ 𝜙″𝑡,𝑗𝑔𝑗𝑘

𝜕2𝑡
𝜏4 = 𝒬2,𝜇 + 𝑅2

with

(2.26) 𝒬2,𝜇 ≔ 𝑄2 + 2𝜇∑
𝑗𝑘
𝜙″𝑡,𝑘𝑔𝑗𝑘

𝜕𝑖𝜕𝑡
𝜏2 − 𝜇2∑

𝑖𝑗
𝜙″𝑡,𝑘 ⋅ 𝜙″𝑡,𝑗𝑔𝑗𝑘

𝜕2𝑡
𝜏4 .

As in the proof of Proposition 2.10, the terms 𝑅2 and 𝑖𝜏𝜕𝑡𝜙 are admissible remainders.
As above, we need to provide a lower bound for

‖
‖𝑖𝜕𝑡𝑢 + 𝑄1,𝜇𝑢 + 𝒬2,𝜇𝑢‖‖

2

𝐿2
= ‖𝑄1𝑢‖

2 + ‖
‖𝑖𝜕𝑡𝑢 + 𝒬2,𝜇𝑢‖‖

2
+ 2Re(𝑖𝑢𝑡, 𝑄1𝑢)

+ 2Re(𝑄1𝑢, 𝒬2,𝜇𝑢)

= ‖𝑄1𝑢‖
2 + ‖

‖𝑖𝜕𝑡𝑢 + 𝒬2,𝜇𝑢‖‖
2
+ 2Re(𝑖𝑢𝑡, 𝑄1𝑢)

+ 2Re(𝑄1𝑢,𝑄2𝑢) + 2Re(𝑄1𝑢, (𝒬2,𝜇 − 𝑄2)𝑢).(2.27)

It follows that in order to finish the proof of Proposition 2.8 it suffices to show that the
last term in (2.27) yields an admissible error in view of the estimate (2.9). This is the
content of Lemma 2.12.

Lemma 2.12. There exist 𝐶, 𝜏0 > 0 such that for all 𝑢 ∈ 𝐶∞
𝑐 (Ω) one has

||2 Re(𝑄1𝑢, (𝒬2,𝜇 − 𝑄2)𝑢)|| ≤ 𝐶 ‖𝑢‖2𝐻1𝜏
, for all 𝜏 ≥ 𝜏0.

Proof of Lemma 2.12. Recalling that 𝑄1𝑢 = −2𝜏 ⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔−𝜏𝑓𝑢 and writing 𝒬2,𝜇−
𝑄2 = 𝐿1 + 𝐿2 with

𝐿1 ≔ 2𝜇∑
𝑗𝑘
𝜙″𝑡,𝑘𝑔𝑗𝑘

𝜕𝑗𝜕𝑡
𝜏2 , and 𝐿2 ≔ −𝜇2∑

𝑗𝑘
𝜙″𝑡,𝑘 ⋅ 𝜙″𝑡,𝑗𝑔𝑗𝑘

𝜕2𝑡
𝜏4 ,

we may develop

Re(𝑄1𝑢, (𝒬2,𝜇 − 𝑄2)𝑢) = 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4, with(2.28)
𝐴1 ≔ −2Re(𝜏 ⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔 , 𝐿1𝑢), 𝐴2 ≔ −2Re(𝜏 ⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔 , 𝐿2𝑢),
𝐴3 ≔ −Re(𝜏𝑓𝑢, 𝐿1𝑢), 𝐴4 ≔ −Re(𝜏𝑓𝑢, 𝐿2𝑢).
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We start by estimating the terms 𝐴3 and 𝐴4. Integrating by parts in 𝑡, we obtain

𝐴3 = −2𝜇𝜏 Re (𝑓𝑢, 𝜕𝑡∑𝑗𝑘
𝜙″𝑡,𝑘𝑔𝑗𝑘𝜕𝑗𝑢)

= 2𝜇𝜏 ∑𝑗𝑘
[Re ((𝜕𝑡𝑓)𝑢, 𝜙″𝑡,𝑘𝑔𝑗𝑘𝜕𝑗𝑢) + Re (𝑓𝜕𝑡𝑢, 𝜙″𝑡,𝑘𝑔𝑗𝑘𝜕𝑗𝑢)] .

Therefore, the Cauchy-Schwarz inequality implies, for a constant 𝐶 > 0 depending on
𝑓, 𝜙 and 𝑔,

|𝐴3| ≤ 𝐶( ‖𝑢‖2𝐿2 + ‖∇𝑥𝑢‖
2
𝐿2 +

‖𝐷𝑡𝑢‖
2
𝐿2

𝜏2 ), 𝜏 ≥ 1.(2.29)

Similarly, integrating by parts in time yields

|𝐴4| ≤
𝐶
𝜏3 (‖𝑢‖

2
𝐿2 + ‖𝐷𝑡𝑢‖

2
𝐿2) .(2.30)

Wenow turn our attention to𝐴1. Here oneneeds to use the real part in order to decrease
the number of derivatives. We write ⟨∇𝑔𝜙,∇𝑔𝑢⟩𝑔 = ∑𝑗𝑘 𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝑢 and 2Re 𝑎 = 𝑎+ ̄𝑎
to obtain

−𝐴1 = 2Re (𝜏∑
𝑗𝑘
𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑗𝑢, 2𝜇∑

𝑙𝑚
𝜙″𝑡,𝑚𝑔𝑙𝑚

𝜕𝑙𝜕𝑡
𝜏2 𝑢)

= 2𝜇
𝜏 ∑

𝑗𝑘𝑙𝑚
(𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝑢, 𝜙″𝑡,𝑚𝑔𝑙𝑚𝜕𝑙𝜕𝑡𝑢) + (𝜙″𝑡,𝑚𝑔𝑙𝑚𝜕𝑙𝜕𝑡𝑢, 𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝑢) .(2.31)

Integrating by parts in 𝑡 in the first term in the right-hand side (2.31) yields

∑
𝑗𝑘𝑙𝑚

(𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝑢, 𝜙″𝑡,𝑚𝑔𝑙𝑚𝜕𝑙𝜕𝑡𝑢)

= − ∑
𝑗𝑘𝑙𝑚

(𝑔𝑗𝑘𝜙″𝑗,𝑡𝜕𝑘𝑢, 𝜙″𝑡,𝑚𝑔𝑙𝑚𝜕𝑙𝑢) + (𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝜕𝑡𝑢, 𝜙″𝑡,𝑚𝑔𝑙𝑚𝜕𝑙𝑢)

= − ∑
𝑗𝑘𝑙𝑚

(𝑔𝑗𝑘𝜙″𝑗,𝑡𝜕𝑘𝑢, 𝜙″𝑡,𝑚𝑔𝑙𝑚𝜕𝑙𝑢) + (𝜙″𝑡,𝑚𝑔𝑙𝑚𝜕𝑙𝜕𝑡𝑢, 𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝑢) .

Together with (2.31), this implies

𝐴1 =
2𝜇
𝜏 ∑

𝑗𝑘𝑙𝑚
(𝑔𝑗𝑘𝜙″𝑗,𝑡𝜕𝑘𝑢, 𝜙″𝑡,𝑚𝑔𝑙𝑚𝜕𝑙𝑢) ,

and thus

(2.32) |𝐴1| ≤
𝐶
𝜏 ‖∇𝑥𝑢‖

2
𝐿2 .

Finally, to estimate 𝐴2 we proceed similarly by writing

𝐴2 = 2Re(𝜏∑
𝑗𝑘
𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝑢, 𝜇2∑

𝑙𝑚
𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚

𝜕2𝑡
𝜏4 𝑢)

= 𝜇2
𝜏3 ∑

𝑗𝑘𝑙𝑚
(𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝑢, 𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚𝜕2𝑡𝑢) + (𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚𝜕2𝑡𝑢, 𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝑢) .(2.33)
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We integrate by parts in 𝑡 in the first term in the right-hand side of (2.33) to obtain

∑
𝑗𝑘𝑙𝑚

(𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝑢, 𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚𝜕2𝑡𝑢) = 𝐴21 + 𝐴22, with(2.34)

𝐴21 ≔ − ∑
𝑗𝑘𝑙𝑚

(𝑔𝑗𝑘𝜙″𝑗,𝑡𝜕𝑘𝑢, 𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚𝜕𝑡𝑢) ,

𝐴22 ≔ − ∑
𝑗𝑘𝑙𝑚

(𝑔𝑗𝑘𝜕𝑗𝜙𝜕2𝑡,𝑘𝑢, 𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚𝜕𝑡𝑢) .

To facilitate the notation, we write in what follows 𝑆𝑗 for multiplication operators by
𝐿∞ functions that depend only on 𝑔, 𝐷𝑥𝑔, on 𝜙 and its derivatives. We integrate by parts
in 𝑥 and then in 𝑡 to find

𝐴22 = − ∑
𝑗𝑘𝑙𝑚

(𝜕𝑘 (𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑡𝑢) , 𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚𝜕𝑡𝑢) +∑
𝑙𝑚
(𝑆1𝜕𝑡𝑢, 𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚𝜕𝑡𝑢)

= ∑
𝑗𝑘𝑙𝑚

(𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑡𝑢, 𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚𝜕2𝑡,𝑘𝑢) + (𝑆2𝜕𝑡𝑢, 𝜕𝑡𝑢)

= − ∑
𝑗𝑘𝑙𝑚

(𝑔𝑗𝑘𝜕𝑗𝜙𝜕2𝑡𝑢, 𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚𝜕𝑘𝑢) + (𝑆2𝜕𝑡𝑢, 𝜕𝑡𝑢) +∑
𝑗
(𝑆3,𝑗𝜕𝑡𝑢, 𝜕𝑗𝑢)

= − ∑
𝑗𝑘𝑙𝑚

(𝜙″𝑡,𝑚 ⋅ 𝜙″𝑡,𝑙𝑔𝑙𝑚𝜕2𝑡𝑢, 𝑔𝑗𝑘𝜕𝑗𝜙𝜕𝑘𝑢) + (𝑆2𝜕𝑡𝑢, 𝜕𝑡𝑢) +∑
𝑗
(𝑆3,𝑗𝜕𝑡𝑢, 𝜕𝑗𝑢) .(2.35)

Now putting together (2.33), (2.34) and (2.35) implies

𝐴2 =
𝜇2
𝜏3 (𝐴21 + (𝑆2𝜕𝑡𝑢, 𝜕𝑡𝑢) +∑

𝑗
(𝑆3,𝑗𝜕𝑡𝑢, 𝜕𝑗𝑢) ).

We obtain therefore

(2.36) |𝐴2| ≤
𝐶
𝜏3 (‖∇𝑥𝑢‖

2
𝐿2 + ‖𝐷𝑡𝑢‖

2
𝐿2) .

Plugging (2.29), (2.30), (2.32) and (2.36) in (2.28) finishes the proof of the lemma. □

With Lemma 2.12, we can now conclude the proof of the subelliptic estimate of
Proposition 2.8.

End of the proof of Proposition 2.8. Recall now that it suffices to obtain a lower bound
for

‖
‖𝑖𝜕𝑡𝑢 + 𝑄1,𝜇𝑢 + 𝒬2,𝜇𝑢‖‖

2

𝐿2
≥ 2Re(𝑖𝑢𝑡, 𝑄1𝑢)

+ 2Re(𝑄1𝑢,𝑄2𝑢) + 2Re(𝑄1𝑢, (𝒬2,𝜇 − 𝑄2)𝑢),

where we used decomposition (2.27). The first two terms on the right-hand side above
are estimated in Section 2.4.1. The first one yields an admissible error thanks to (2.22),
(2.23), (2.24) and the second one is calculated in Lemma 2.11. Combining those esti-
mates with Lemma 2.12 which controls the third term above we obtain the existence
of 𝐶, 𝜏0 > 0 such that for all 𝛿 > 0, 𝜏 ≥ 𝜏0 and 𝑢 ∈ 𝐶∞

𝑐 (Ω) one has

‖
‖𝖯𝜙,𝜇𝑢

‖
‖
2

𝐿2
+ 𝐶
𝛿𝜏 ‖𝑢𝑡‖

2
𝐿2 + 𝐶 ‖𝑢‖2𝐻1𝜏

≥ 𝜏3∬[E𝑔,𝜙,𝑓 − 𝛿] |𝑢|2 + 2𝜏∬ℬ𝑔,𝜙,𝑓(∇𝑔𝑢).
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Recalling Assumption (2.6) in Proposition 2.8, we may now fix 𝛿 ≔ 𝐶0
2 to obtain

‖
‖𝖯𝜙,𝜇𝑢

‖
‖
2

𝐿2
+ 2𝐶
𝐶0𝜏

‖𝑢𝑡‖
2
𝐿2 + 𝐶 ‖𝑢‖2𝐻1𝜏

≥ 𝐶0
2 𝜏 ‖𝑢‖2𝐻1𝜏

.

This concludes the proof of Proposition 2.8 when taking 𝜏 ≥ 𝜏0 for 𝜏0 sufficiently large.
□

2.5. Choice of weight function via convexification. In this section, we explain
how to construct weight functions ( ̌𝜙, 𝑓) that almost satisfy the assumptions of The-
orem 2.5, via the usual convexification procedure. In the present context (as opposed
to the usual situation), this also requires a smart choice of the function 𝑓, see [LL21].
Themain differencewith respect to the assumptions of Theorem 2.5 is that the func-

tion ̌𝜙 that we construct here is not a quadratic polynomial. In Section 4.2 we shall see
however that since the positivity of the quantities ℬ and E is a condition that only in-
volves derivatives up to order 2 one can replace ̌𝜙 by its Taylor expansion at order 2.
The following is [LL21, Lemma A.9].

Lemma 2.13 (Explicit convexification). Let Ψ ∈ 𝑊 2,∞(Ω;ℝ) and 𝐺 ∈ 𝑊 2,∞(ℝ), and
choose

̌𝜙 = 𝐺(Ψ) and 𝑓 = 2𝐺″(Ψ) ||∇𝑔Ψ||
2
𝑔 .(2.37)

Then we have

ℬ𝑔, ̌𝜙,𝑓(𝑋) = 2𝐺′(Ψ)Hess(Ψ)(𝑋, 𝑋) + 2𝐺″(Ψ) ||⟨∇𝑔Ψ,𝑋⟩𝑔
||
2

+ (𝐺″(Ψ) ||∇𝑔Ψ||
2
𝑔 − 𝐺′(Ψ)Δ𝑔Ψ) |𝑋|

2
𝑔 ,

E𝑔, ̌𝜙,𝑓 = 𝐺′(Ψ)2[2𝐺′(Ψ)Hess(Ψ)(∇𝑔Ψ,∇𝑔Ψ) + 𝐺″(Ψ) ||∇𝑔Ψ||
4
𝑔

+ 𝐺′(Ψ)Δ𝑔Ψ ||∇𝑔Ψ||
2
𝑔 ].

To state Corollary 2.14, for 𝐵 an 𝐿∞loc section of bilinear forms on 𝑇𝑉 , we define
|𝐵|𝑔(𝑥) = sup𝑋∈𝑇𝑥𝑉⧵0

|𝐵(𝑥,𝑋,𝑋)|
|𝑋|2𝑔

which yields an 𝐿∞ function on 𝑉 .

Corollary 2.14. Let Ψ ∈ 𝑊 2,∞(Ω;ℝ), 𝜆 > 0 and define ̌𝜙, 𝑓 as in (2.37) with 𝐺(𝑡) =
𝑒𝜆𝑡 − 1. Then, for any 𝜆 > 0 and any vector field 𝑋 , we have almost everywhere on 𝑈

ℬ𝑔, ̌𝜙,𝑓(𝑋) ≥ 𝜆𝑒𝜆Ψ |𝑋|2𝑔 (𝜆 ||∇𝑔Ψ||
2
𝑔 − 2|Hess(Ψ)|𝑔 − Δ𝑔Ψ) ,

E𝑔, ̌𝜙,𝑓 ≥ 𝜆𝑒𝜆Ψ ||∇𝑔 ̌𝜙||
2
𝑔 (𝜆 ||∇𝑔Ψ||

2
𝑔 − 2|Hess(Ψ)|𝑔 + Δ𝑔Ψ) .

See [LL21, Lemma A.10] for a proof.

3. Conjugation with a partially Gevrey function

In [Tat95,RZ98,Hör97,Tat99] part of the difficulty consists in defining an appropri-
ate conjugated operator even in the case where the coefficients of 𝑃 depend analytically
on the time variable. Here, we exploit the anisotropic nature of 𝑃 to allow conjugation
with Gevrey 𝑠 in time functions, for an appropriate 𝑠 > 1 adapted to the scaling of the
Schrödinger operator. Our strategy is based on the proof of Proposition 4.1 in [Tat99].
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3.1. Gevrey functions and Banach valued symbols. For notations, definitions and
basic properties of Gevrey functions we essentially follow [GBJ25]. We recall Defini-
tion 1.1 where the space 𝒢𝑠(Ω;ℬ) of Gevrey 𝑠 Banach valued is defined. We shall also
make use of the following notion

Definition 3.1. Given 𝖽 ∈ ℕ∗, 𝑈 ⊂ ℝ𝖽 an open set, (ℬ, ‖ ⋅ ‖ℬ) a Banach space, 𝑠 >
0, 𝑅 > 0 we say that 𝑓 ∈ 𝒢𝑠,𝑅𝑏 (𝑈;ℬ), if 𝑓 ∈ 𝐶∞

𝑏 (𝑈;ℬ) (smooth bounded functions, as
well as all their derivatives) and there exists 𝐶 > 0 such that

(3.1) ‖𝜕𝛼𝑓(𝑡)‖ℬ ≤ 𝐶𝑅|𝛼|𝛼!𝑠 , for all 𝑡 ∈ 𝑈, 𝛼 ∈ ℕ𝖽,

and set

(3.2) ‖𝑓‖𝑠,𝑅,𝑈 ∶= sup
𝛼∈ℕ𝖽

sup
𝑡∈𝑈

‖𝜕𝛼𝑓(𝑡)‖ℬ
𝑅|𝛼|𝛼!𝑠 .

In what follows, we only consider the case 𝖽 = 1 (𝑡 being the time variable) and
𝖽 = 2 for extensions to ℂ ≃ ℝ2 of such Gevrey functions. Note that, given an open
set 𝑈 and 𝑠, 𝑅 > 0 fixed, 𝒢𝑠,𝑅𝑏 (𝑈;ℬ) has the advantage of being a Banach space for the
norm ‖⋅‖𝑠,𝑅,𝑈 in (3.2). Note also that for any𝑅 > 0, 𝒢𝑠,𝑅𝑏 (𝑈;ℬ) ⊂ 𝒢𝑠(𝑈;ℬ). Conversely,
if 𝑓 ∈ 𝒢𝑠(𝑈;ℬ), then for any bounded open set𝑊 such that𝑊 ⊂ 𝑈, there exists 𝑅 > 0
such that 𝑓 ∈ 𝒢𝑠,𝑅𝑏 (𝑊;ℬ).

Lemma 3.2 contains the key properties whichwewill need concerning Gevrey func-
tions.

Lemma 3.2. Fix 𝑠 > 1. For any open set 𝑈 ⊂ ℝ and 𝜌 > 0, there exist 𝐶0, 𝐴 > 0 such
that for any 𝑅 > 0, there exist 𝐶 > 0 and a continuous linear map

𝒢𝑠,𝑅𝑏 (𝑈;ℬ) → 𝒢𝑠,𝐴𝑅𝑏 (𝑈 + 𝑖ℝ;ℬ),
𝑓 ↦ ̃𝑓,

such that for all 𝑓 ∈ 𝒢𝑠,𝑅𝑏 (𝑈;ℬ),

supp( ̃𝑓) ⊂ 𝑈 + 𝑖[−𝜌, 𝜌], ̃𝑓(𝑡) = 𝑓(𝑡) for 𝑡 ∈ 𝑈, ‖
‖ ̃𝑓‖‖𝑠,𝐴𝑅,𝑈+𝑖ℝ

≤ 𝐶 ‖𝑓‖𝑠,𝑅,𝑈 ,(3.3)

‖
‖𝜕 ̄𝑧 ̃𝑓(𝑧)‖‖ℬ ≤ 𝐶 ‖𝑓‖𝑠,𝑅,𝑈 exp (− 1

𝐶0(𝑅| Im(𝑧)|)
1

𝑠−1
), for 𝑧 ∈ 𝑈 + 𝑖ℝ,(3.4)

𝜕𝑗Re𝑧 ̃𝑓(𝑧) = 𝑓(𝑗)(𝑧) for all 𝑗 ∈ ℕ and 𝑧 ∈ 𝑈 + 𝑖ℝ.(3.5)

Estimate (3.4) translates the fact that ̃𝑓 is an almost analytic extension of 𝑓 well
adapted to the Gevrey regularity 𝒢𝑠. Property (3.5) states that the operation of deriva-
tion w.r.t. the real part and taking the almost analytic extension commute.
If ℬ = ℂ, Lemma 3.2 is essentially a consequence of Lemma 1.2 and Remark 1.7

in [GBJ25] (in a simpler 1𝐷 context). The proof in this reference does not seem to
adapt straightforwardly to the case of Banach-valued functions, so we provide here
with a short and different proof.
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Remark 3.3. Wewill use several times in the proof that for all 𝑅 > 0, 𝛽 ∈ ℕ𝖽 and for all
𝜀 > 0, the operator 𝜕𝛽 maps 𝒢𝑠,𝑅𝑏 (𝑈;ℬ) → 𝒢𝑠,(1+𝜀)𝑅𝑏 (𝑈;ℬ) continuously (with continu-
ity constant depending on 𝜀). Indeed, if |𝛽| = 1 (the general case being consequence of
a straightforward induction) and 𝑓 ∈ 𝒢𝑠,𝑅𝑏 (𝑈;ℬ), we have

‖
‖𝜕𝛼 (𝜕𝛽𝑓) (𝑡)

‖
‖ℬ ≤ 𝐶𝑅|𝛼+𝛽|(𝛼 + 𝛽)!𝑠 ≤ 𝐶𝑅|𝛼|+1(|𝛼| + 1)𝑠𝛼!𝑠

≤ 𝐶𝐾𝑠,𝑅,𝜀((1 + 𝜀)𝑅)|𝛼|𝛼!𝑠 ,

wherewe have used |𝛽| = 1 in the penultimate inequality, with𝐾𝑠,𝑅,𝜀 such that𝑅𝑡+1(𝑡+
1)𝑠 ≤ 𝐾𝑠,𝑅,𝜀((1 + 𝜀)𝑅)𝑡 for all 𝑡 ≥ 0.

Our proof of Lemma 3.2 relies on the following classical result which is the key step
(and essentially equivalent) for the Borel extension problem in Gevrey classes.

Lemma 3.4. For all 𝑠>1, there are constants 𝐵, 𝐶>1 and a family (𝜁𝑘,𝐷)∈𝐶∞(ℝ)ℕ×[1,+∞)

such that for all 𝐷 ≥ 1, 𝑘 ∈ ℕ, 𝑗 ∈ ℕ,

𝜁(𝑗)𝑘,𝐷(0) = 𝛿𝑗𝑘, |𝜁(𝑗)𝑘,𝐷(𝑥)| ≤ 𝐶𝑗+1𝐵𝑘𝐷𝑗−𝑘𝑘−𝑘𝑠max(𝑘, 𝑗)𝑗𝑠 for all 𝑥 ∈ ℝ.

An explicit construction of such functions 𝜁𝑘,𝐷 is given in [Dža62]. Another less ex-
plicit construction but with improved estimates on the constants is provided
in [MRR16]. In both cases, the functions are constructed as 𝜁𝑘,𝐷(𝑡) ≔ 𝑎𝑘,𝐷(𝑡) 𝑡

𝑘

𝑘! with an
appropriate family 𝑎𝑘,𝐷(𝑡) satisfying 𝑎𝑘,𝐷(0) = 1, 𝑎(𝑗)𝑘,𝐷(0) = 0 for all 𝑗 ≥ 2 togetherwith
supp(𝑎𝑘,𝐷) ⊂ [−(𝐷𝑘𝑠)−1, (𝐷𝑘𝑠)−1] (for 𝑘 ≥ 1) and appropriate estimates of Gevrey 𝑠
norm. In [Dža62], 𝑎𝑘,𝐷(𝑡) is defined by an explicit expression on page 1 and the esti-
mates are proved on page 4.
In [MRR16], the notation is 𝑎𝑘,𝐷(𝑡) = 𝜑𝑘(𝑡),𝑀𝑝 = 𝑝𝑝𝑠, ℎ = 𝐷 and 𝜑𝑘 is defined

on page 14 and 𝜁𝑘,𝐷 = 𝜁𝑘 on page 15, and the estimates are performed on page 16 and
correspond to (3.17) (in that reference) which is even better, namely

|𝜁(𝑗)𝑘,𝐷(𝑥)| ≤ 𝐶𝑗+1𝐵−𝑘𝐷𝑗−𝑘𝑘−𝑘𝑠𝑗𝑗𝑠,

and is (essentially) equivalent to

‖
‖𝜁𝑘,𝐷

‖
‖𝑠,𝐶𝐷,ℝ ≤ 𝐶(𝐵𝐷)−𝑘𝑘−𝑘𝑠.

This result of [MRR16] is a refinement of [Pet88, Theorem 2.2] where the dependence
in the parameter 𝐷 (called ℎ in these two references) is not made explicit.

Proof of Lemma 3.2. From Lemma 3.4 we first define

̌𝑓(𝑥 + 𝑖𝑦) ∶= ∑
𝑘∈ℕ

𝜕𝑘𝑓(𝑥)𝑖𝑘𝜁𝑘,𝐷(𝑦), (𝑥, 𝑦) ∈ 𝑈 × ℝ.(3.6)

We first check that for 𝐷 large enough (fixed later on in the proof), the series converge
normally as well as all its derivatives, and prove the estimate in (3.3) at once. To this
aim, we follow essentially [BP09, Proof of Lemma3.1]. From (3.2)we have ‖‖𝜕𝑘𝑓(𝑡)

‖
‖ℬ ≤



354 S. FILIPPAS, C. LAURENT, ANDM. LÉAUTAUD

𝑅𝑘𝑘!𝑠 ‖𝑓‖𝑠,𝑅,𝑈 for all 𝑡 ∈ 𝑈 and thus, uniformly for (𝑥, 𝑦) ∈ 𝑈 × ℝ,

‖
‖𝜕

𝑗
𝑥𝜕ℓ𝑦 ̌𝑓(𝑥 + 𝑖𝑦)‖‖ℬ =

‖
‖‖‖
∑
𝑘∈ℕ

𝜕𝑘+𝑗𝑥 (𝑓)(𝑥)𝑖𝑘𝜕ℓ𝑦𝜁𝑘,𝐷(𝑦)
‖
‖‖‖ℬ

≤ ∑
𝑘∈ℕ

‖
‖𝜕

𝑘+𝑗
𝑥 (𝑓)(𝑥)‖‖ℬ |𝜕

ℓ
𝑦𝜁𝑘,𝐷(𝑦)|

≤ ‖𝑓‖𝑠,𝑅,𝑈 ∑
𝑘∈ℕ

𝑅𝑘+𝑗(𝑘 + 𝑗)!𝑠 𝐶ℓ+1𝐵𝑘𝐷ℓ−𝑘𝑘−𝑘𝑠max(𝑘, ℓ)ℓ𝑠,

where we used Lemma 3.4 in the last inequality. We recall the classical inequalities
(see e.g. [Rod93, p10-11]): (𝑘 + 𝑗)! ≤ 2𝑘+𝑗𝑘! 𝑗!, 𝑁!≤ 𝑁𝑁 and 𝑁!≥ (𝑁/𝑒)𝑁 . We deduce

‖
‖𝜕

𝑗
𝑥𝜕ℓ𝑦 ̌𝑓(𝑥 + 𝑖𝑦)‖‖ℬ ≤ ‖𝑓‖𝑠,𝑅,𝑈 ∑

𝑘∈ℕ
𝑅𝑘+𝑗2𝑠𝑘+𝑠𝑗𝑘!𝑠 𝑗!𝑠 𝐶ℓ+1𝐵𝑘𝐷ℓ−𝑘𝑘−𝑘𝑠max(𝑘, ℓ)ℓ𝑠

≤ ‖𝑓‖𝑠,𝑅,𝑈 𝐶(𝑅2𝑠)𝑗𝑗𝑗𝑠(𝐶𝐷)ℓ ∑
𝑘∈ℕ

(𝑅2𝑠𝐵)𝑘𝐷−𝑘max(𝑘, ℓ)ℓ𝑠.(3.7)

Then we split the sum as
∑
𝑘∈ℕ

(𝑅2𝑠𝐵)𝑘𝐷−𝑘max(𝑘, ℓ)ℓ𝑠 = ∑
𝑘≤ℓ

(𝑅2𝑠𝐵)𝑘𝐷−𝑘ℓℓ𝑠 + ∑
𝑘>ℓ

(𝑅2𝑠𝐵)𝑘𝐷−𝑘𝑘ℓ𝑠.

In the last sumwe use 𝑘ℓ𝑠 ≤ 𝑒𝑘 ( ℓ𝑠𝑒 )
ℓ𝑠
, which is a consequence of 𝑥 ≥ log(𝑒𝑥) taken for

𝑥 = 𝑘
ℓ𝑠 > 0 (applied if 𝑘 > ℓ > 0, and also true in case ℓ = 0). We obtain

∑
𝑘∈ℕ

(𝑅2𝑠𝐵)𝑘𝐷−𝑘max(𝑘, ℓ)ℓ𝑠 ≤ ℓℓ𝑠 ∑
𝑘≤ℓ

(𝑅2
𝑠𝐵
𝐷 )

𝑘
+ ∑

𝑘>ℓ
(𝑅2𝑠𝐵)𝑘𝐷−𝑘𝑒𝑘 (ℓ𝑠𝑒 )

ℓ𝑠

≤ ℓℓ𝑠 ∑
𝑘≤ℓ

(𝑅2
𝑠𝐵
𝐷 )

𝑘
+ (ℓ𝑠𝑒 )

ℓ𝑠
∑
𝑘>ℓ

(𝑅2
𝑠𝐵𝑒
𝐷 )

𝑘

≤ (ℓ𝑠)ℓ𝑠 ∑
𝑘∈ℕ

(𝑅2
𝑠𝐵𝑒
𝐷 )

𝑘
.

We now fix 𝐷 ≔ 2 × 𝑅2𝑠𝐵𝑒 and, coming back to (3.7), we obtain
‖
‖𝜕

𝑗
𝑥𝜕ℓ𝑦 ̌𝑓(𝑥 + 𝑖𝑦)‖‖ℬ ≤ ‖𝑓‖𝑠,𝑅,𝑈 𝐶(𝑅2𝑠)𝑗𝑗𝑗𝑠(𝐶𝑅2𝑠+1𝐵𝑒)ℓ2(ℓ𝑠)ℓ𝑠

= 2𝐶 ‖𝑓‖𝑠,𝑅,𝑈 (𝑅2𝑠)𝑗(𝐶𝑅2𝑠+1𝐵𝑒𝑠𝑠)ℓℓℓ𝑠𝑗𝑗𝑠.

Noticing that ℓℓ𝑠𝑗𝑗𝑠 ≤ 𝑒𝑠(𝑗+ℓ)𝑗! ℓ!, we have obtained, uniformly for (𝑥, 𝑦) ∈ 𝑈 × ℝ,
‖
‖𝜕

𝑗
𝑥𝜕ℓ𝑦 ̌𝑓(𝑥 + 𝑖𝑦)‖‖ℬ ≤ 𝖢‖𝑓‖𝑠,𝑅,𝑈 ( ̃𝐴𝑅)𝑗+ℓℓ!𝑠 𝑗!𝑠 ,(3.8)

with 𝖢 = 2𝐶, ̃𝐴 = 𝐶𝑅2𝑠+1𝐵𝑠𝑠𝑒𝑠+1.
Now, we take 1 < 𝜎 < 𝑠 and let 𝑔 ∈ 𝒢𝜍(ℝ;ℝ) be such that supp(𝑔) ⊂ (−𝜌, 𝜌) and

𝑔 = 1 in a neighborhood of 0 and we set
̃𝑓(𝑥 + 𝑖𝑦) ≔ 𝑔(𝑦) ̌𝑓(𝑥 + 𝑖𝑦), (𝑥, 𝑦) ∈ 𝑈 × ℝ,

so that ̃𝑓 has the sought support properties in (3.6). That ̃𝑓(𝑥) = 𝑓(𝑥) for 𝑥 ∈ 𝑈 is a
direct consequence of the definition (3.6), the properties of 𝑔 together with 𝜁𝑘,𝐷(0) =
𝛿0𝑘. Property (3.5) is a direct consequence of the definition (3.6) and derivation under
the sum.
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To deduce (3.3) from (3.8), we write 𝜕𝑗𝑥𝜕ℓ𝑦 ̃𝑓(𝑥 + 𝑖𝑦) = 𝜕ℓ𝑦 (𝑔(𝑦)𝜕𝑗𝑥 ̌𝑓(𝑥 + 𝑖𝑦)) and ap-
ply [MRR16, Lemma 3.7] with 𝑔 = 𝑔 and 𝑓 = 𝜕𝑗𝑥 ̌𝑓(𝑥 + 𝑖𝑦) (referring to the notation of
this reference) for fixed 𝑗 (that the function is Banach-valued plays no role in the proof
of [MRR16, Lemma 3.7]). This reference, combined with (3.8) for fixed 𝑗, implies the
existence of a constant 𝐶𝑔,𝑠 depending only on 𝑔 (and in particular on 𝜌 and 𝜎) and 𝑠
such that for all (𝑥, 𝑦) ∈ 𝑈 × ℝ,

‖
‖𝜕

𝑗
𝑥𝜕ℓ𝑦 ̃𝑓(𝑥 + 𝑖𝑦)‖‖ℬ = ‖

‖𝜕ℓ𝑦 (𝑔(𝑦)𝜕
𝑗
𝑥 ̌𝑓(𝑥 + 𝑖𝑦))‖‖ℬ ≤ 𝐶𝑔,𝑠𝖢 ‖𝑓‖𝑠,𝑅,𝑈 (𝐴𝑅)𝑗+ℓℓ!𝑠 𝑗!𝑠 .(3.9)

Noticing that 𝑗! ℓ! ≤ (𝑗 + ℓ)!, we have obtained the continuity statement in (3.3) with
continuity constant 𝐶𝑔,𝑠𝖢 (and 𝖢, 𝐴 given by (3.8)).
Finally, in order to prove (3.4), we notice from Remark 3.3 that since ̃𝑓 ∈ 𝒢𝑠,𝐴̃𝑅𝑏 (𝑈 +

𝑖ℝ;ℬ), then 𝜕 ̄𝑧 ̃𝑓 ∈ 𝒢𝑠,𝐴𝑅𝑏 (𝑈 + 𝑖ℝ;ℬ) for any 𝐴 > ̃𝐴, and check that 𝜕 ̄𝑧 ̃𝑓 vanishes at
infinite order on the real axis. Indeed, we have

𝜕𝑗𝑥𝜕ℓ𝑦(𝜕𝑥 + 𝑖𝜕𝑦) ̌𝑓(𝑥 + 𝑖𝑦)
= ∑

𝑘∈ℕ
𝜕𝑘+𝑗+1𝑥 (𝑓)(𝑥)𝑖𝑘𝜕ℓ𝑦𝜁𝑘,𝐷(𝑦) + 𝜕𝑘+𝑗𝑥 (𝑓)(𝑥)𝑖𝑘+1𝜕ℓ+1𝑦 𝜁𝑘,𝐷(𝑦).

Using that 𝜁(ℓ)𝑘,𝐷(0) = 𝛿ℓ𝑘 and that 𝑔 = 1 in a neighborhood of 0, this implies

𝜕𝑗𝑥𝜕ℓ𝑦(𝜕𝑥 + 𝑖𝜕𝑦) ̃𝑓(𝑥 + 𝑖𝑦)||𝑦=0 = ∑
𝑘∈ℕ

𝜕𝑘+𝑗+1𝑥 (𝑓)(𝑥)𝑖𝑘𝛿ℓ𝑘 + 𝜕𝑘+𝑗𝑥 (𝑓)(𝑥)𝑖𝑘+1𝛿ℓ+1,𝑘

= 𝜕ℓ+𝑗+1𝑥 (𝑓)(𝑥)𝑖ℓ + 𝜕ℓ+1+𝑗𝑥 (𝑓)(𝑥)𝑖ℓ+1+1 = 0.(3.10)

Applying the “sommation au plus petit terme” in [GBJ25, Lemma 1.3] (which holds
with the same proof in the Banach-valued case), there exist constants 𝐶, 𝐶0 > 0 such
that for all 𝐹 ∈ 𝒢𝑠,𝐴𝑅𝑏 (𝑈 + 𝑖ℝ;ℬ) and all 𝑥 + 𝑖𝑦 ∈ 𝑈 + 𝑖ℝ

‖
‖‖‖‖
𝐹(𝑥 + 𝑖𝑦) − ∑

ℓ≤𝐶−1
0 (𝐴𝑅|𝑦|)−

1
𝑠−1

1
ℓ! (𝜕

ℓ
𝑦𝐹)(𝑥 + 𝑖𝑦)||𝑦=0

‖
‖‖‖‖
ℬ

≤ 𝐶 ‖𝐹‖𝑠,𝐴𝑅,𝑈+𝑖ℝ exp(−
1

𝐶(𝐴𝑅|𝑦|)
1

𝑠−1
) .

Wemay apply this estimate to 𝐹 = 𝜕 ̄𝑧 ̃𝑓 ∈ 𝒢𝑠,𝐴𝑅𝑏 (𝑈 + 𝑖ℝ;ℬ) according to the following
consequence of (3.9)

‖
‖𝜕

𝑗
𝑥𝜕ℓ𝑦(𝜕𝑥 + 𝑖𝜕𝑦) ̃𝑓(𝑥 + 𝑖𝑦)‖‖ℬ ≤ 2𝖢𝐶𝑔,𝑠 ‖𝑓‖𝑠,𝑅,𝑈 (𝐴𝑅)𝑗+ℓ+1(𝑗 + ℓ + 1)!𝑠 .

Recalling the infinite order of vanishing (3.10) finally yields (3.4), and concludes the
proof of the lemma. □

Consider now𝒳,𝒴 two separable Hilbert spaces and denote byℒ(𝒳, 𝒴) the space of
bounded operators from𝒳 to𝒴, which is a Banach space aswell for ‖⋅‖ℒ(𝒳,𝒴). We recall
some facts of pseudodifferential calculus (with a small parameter) in dimension 1with
values in ℒ(𝒳, 𝒴). We consider a family of symbols depending on a (small) parameter
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ℎ ∈ (0, 1). We say that 𝑎 ∈ 𝑆𝑚(ℝ × ℝ;ℒ(𝒳, 𝒴)) if 𝑎 ∈ 𝐶∞(ℝ × ℝ;ℒ(𝒳, 𝒴)) depends
implicitly on ℎ ∈ (0, 1) and satisfies: for all 𝛼, 𝛽 ∈ ℕ there is 𝐶𝛼𝛽 > 0 such that

‖
‖𝜕

𝛼
𝑡 𝜕𝛽𝜉𝑎(𝑡, 𝜉, ℎ)

‖
‖ℒ(𝒳,𝒴) ≤ 𝐶𝛼𝛽⟨𝜉⟩𝑚−𝛽, for all (𝑡, 𝜉, ℎ) ∈ ℝ × ℝ × (0, 1).(3.11)

Note that for readability, in this section, we write 𝜉 = 𝜉𝑡 for the dual variable to the
time variable 𝑡. We then quantify (using the Weyl quantization) such a symbol as

(op𝑤(𝑎)𝑢) (𝑡) ∶= 1
2𝜋 ∫

ℝ×ℝ
𝑒𝑖(𝑡−𝑠)𝜉𝑎 (𝑡 + 𝑠

2 , 𝜉) 𝑢(𝑠)𝑑𝑠𝑑𝜉.(3.12)

According to [Hör94, Paragraph 18.1 Remark 2 p 117],
• for all 𝑎 ∈ 𝑆𝑚(ℝ×ℝ;ℒ(𝒳, 𝒴)), op𝑤(𝑎)maps continuously 𝒮(ℝ;𝒳) into 𝒮(ℝ; 𝒴)
uniformly in ℎ ∈ (0, 1);

• for all𝑎 ∈ 𝑆0(ℝ×ℝ;ℒ(𝒳, 𝒴)), op𝑤(𝑎)maps continuously𝐿2(ℝ;𝒳) into𝐿2(ℝ; 𝒴)
uniformly in ℎ ∈ (0, 1).

If 𝑎 ∈ 𝑆0(ℝ × ℝ;ℒ(𝒳, 𝒴)) has compact support in ℝ × ℝ (with support possibly de-
pending on the parameter ℎ ∈ (0, 1)), then

(op𝑤(𝑎)𝑢)(𝑡) = ∫
ℝ
𝒦(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠, 𝒦(𝑡, 𝑠) = 1

2𝜋 ∫
ℝ
𝑒𝑖(𝑡−𝑠)𝜉𝑎 (𝑡 + 𝑠

2 , 𝜉) 𝑑𝜉,

where the Schwartz kernel𝒦 of the operator op𝑤(𝑎) satisfies𝒦 ∈ 𝐶∞(ℝ×ℝ;ℒ(𝒳, 𝒴)).
Note that such functions 𝑎 do not necessarily belong to 𝑆−𝛿 for some 𝛿 > 0 (since the
support may depend on ℎ).
Remark 3.5. Note that in the application we have in mind, for a domain 𝑉 ⊂ ℝ𝑑,
we choose 𝒳 = 𝒴 = 𝐿2(𝑉) and ℬ = 𝐿∞(𝑉) and observe the embedding 𝐿∞(𝑉) =
ℬ ↪ ℒ(𝒳, 𝒴) = ℒ(𝐿2(𝑉)) (via the application that maps to a bounded function 𝑓 the
multiplication operator by 𝑓) with ‖ ⋅ ‖ℒ(𝒳,𝒴) ≤ ‖ ⋅ ‖ℬ.
Another application is 𝒳 = 𝐻1(𝑉), 𝒴 = 𝐿2(𝑉) and ℬ = 𝐿𝑑(𝑉) if 𝑑 ≥ 3 (resp.

ℬ = 𝐿2+𝜀(𝑉) for all 𝜀 > 0 if 𝑑 = 2) and observe the embedding 𝐿𝑑(𝑉) = ℬ ↪
ℒ(𝒳, 𝒴) = ℒ(𝐻1(𝑉), 𝐿2(𝑉)) (a function 𝗊 acting by multiplication) according to the
Sobolev embedding: ‖𝗊𝑢‖𝐿2(𝑉) ≤ ‖𝗊‖𝐿𝑑(𝑉)‖𝑢‖

𝐿
2𝑑
𝑑−2 (𝑉)

≤ ‖𝗊‖𝐿𝑑(𝑉)‖𝑢‖𝐻1(𝑉) if 𝑑 ≥ 3
(resp. ‖𝗊𝑢‖𝐿2(𝑉) ≤ ‖𝗊‖𝐿2+𝜀(𝑉)‖𝑢‖𝐻1(𝑉) for all 𝜀 > 0 if 𝑑 = 2).
3.2. The conjugated operator. In this section we define for 𝑡0 ∈ ℝ and 𝑟0 > 0 the
open intervals 𝐼 ≔ (𝑡0 − 2𝑟0, 𝑡0 + 2𝑟0) and 𝑈 ≔ (𝑡0 − 𝑟0, 𝑡0 + 𝑟0). Given now 𝑓 ∈
𝒢𝑠(𝐼; ℒ(𝒳, 𝒴)) there exists 𝑅 > 0 such that 𝑓 ∈ 𝒢𝑠,𝑅𝑏 (𝑈;ℒ(𝒳, 𝒴)). The intervals 𝐼, 𝑈
and the radius 𝑅, used in definition (3.2), will be fixed for the rest of this section. For
𝜌 > 0wedenote by ̃𝑓(𝑧) the almost analytic extension of𝑓 in𝑈+𝑖ℝ given by Lemma3.2
which is supported on 𝑈𝜌 ≔ 𝑈 + 𝑖[−𝜌, 𝜌].
Along this section, we will need some cut-off functions satisfying the following

properties: 𝜒0 ∈ 𝐶∞
𝑐 ((−4, 4); [0, 1]) with 𝜒 = 1 in a neighborhood of [−3, 3], 𝜃0 ∈

𝐶∞
𝑐 ((−1, 1); [0, 1]) and 𝜂0 ∈ 𝐶∞

𝑐 ((−3, 3); [0, 1])with 𝜂 = 1 in a neighborhood of [−2, 2].
Take now 𝑟 with 0 < 𝑟 < min( 𝑟04 ,

𝜌
3 ). We will define 𝜒(𝑡) = 𝜒0((𝑡 − 𝑡0)/𝑟), 𝜃(𝑡) =

𝜃0((𝑡 − 𝑡0)/𝑟) and 𝜂(𝜉) = 𝜂0(𝜉/𝑟). In particular, they satisfy
• 𝜒 ∈ 𝐶∞

𝑐 ((𝑡0−4𝑟, 𝑡0+4𝑟); [0, 1])with𝜒 = 1 in a neighborhood of [𝑡0−3𝑟, 𝑡0+3𝑟]
• 𝜃 ∈ 𝐶∞

𝑐 ((𝑡0 − 𝑟, 𝑡0 + 𝑟); [0, 1])
• 𝜂 ∈ 𝐶∞

𝑐 ((−3𝑟, 3𝑟); [0, 1]) with 𝜂 = 1 in a neighborhood of [−2𝑟, 2𝑟].
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The functions 𝜒, 𝜃 and 𝜂 depend implicitly on 𝑟 and 𝑡0, but we will not write anymore
this dependence for better readability.
With ℎ ∈ (0, 1), we set

̃𝑓𝑟(𝑧) ≔ 𝜒(Re 𝑧)𝜂(ℎ−1/3 Im 𝑧) ̃𝑓(𝑧), 𝑧 ∈ ℂ and hence(3.13)
̃𝑓𝑟(𝑡 + 𝑖ℎ𝜉) = 𝜒(𝑡)𝜂(ℎ2/3𝜉) ̃𝑓(𝑡 + 𝑖ℎ𝜉), (𝑡, 𝜉) ∈ ℝ × ℝ.

Observe that the function (𝑡, 𝜉) ↦ ̃𝑓𝑟(𝑡+𝑖ℎ𝜉) is smooth, compactly supported inℝ×ℝ,
and belongs to 𝑆0(ℝ × ℝ;ℒ(𝒳, 𝒴)) (defined in (3.11)). According to the above discus-
sion, we define the operator

(3.14) 𝐹ℎ ≔ op𝑤( ̃𝑓𝑟(𝑡 + 𝑖ℎ𝜉)).

It maps continuously 𝒮(ℝ;𝒳) into 𝒮(ℝ; 𝒴) uniformly in ℎ ∈ (0, 1) and

(3.15) 𝐹ℎ ∈ ℒ (𝐿2(ℝ;𝒳); 𝐿2(ℝ; 𝒴)) , uniformly in ℎ ∈ (0, 1).

We are now ready to state the following result, which guarantees that we have a rea-
sonable conjugate for the operator 𝑒−

ℎ
2 |𝐷𝑡|2𝑓.

Proposition 3.6. Let 𝜌, 𝑟0 > 0 and 0 < 𝑟 < min( 𝑟04 ,
𝜌
3 ). Then there exists 𝑐 > 0 such

that for all 𝑅 > 0 and all 𝑘 ∈ ℕ there exist 𝐶𝑘 > 0 and ℎ0 > 0 such that for all 𝑓 ∈
𝒢2,𝑅𝑏 (𝑈;ℒ(𝒳, 𝒴)) and 𝑢 ∈ 𝒮(ℝ;𝒳) one has

‖
‖𝜒𝐹ℎ𝑒−

ℎ
2 |𝐷𝑡|2𝜃𝑢 − 𝑒−

ℎ
2 |𝐷𝑡|2𝑓𝜃𝑢‖‖𝐿2(ℝ;𝒴)

≤ 𝐶𝑘ℎ−𝑘 (∑
𝑗≤𝑘

‖
‖𝑓(𝑗)

‖
‖2,𝑅,𝑈) 𝑒

− 𝑐ℎ−1/3
𝑅 ‖𝑢‖𝐻−𝑘(ℝ;𝒳) ,

for all 0 < ℎ ≤ ℎ0, where 𝐹ℎ is defined by (3.14).

We refer to Remark 2.7 for the interest of the index 𝑘. Here again, the proof of Propo-
sition 3.6 is simpler for 𝑘 = 0. Note that as a consequence of Remark 3.3, the result of
the lemma reformulates in a simpler (yet slightly weaker) way as follows: for all 𝜀 > 0,
there is 𝐶𝑘,𝜀 > 0 such that

‖
‖𝜒𝐹ℎ𝑒−

ℎ
2 |𝐷𝑡|2𝜃𝑢 − 𝑒−

ℎ
2 |𝐷𝑡|2𝑓𝜃𝑢‖‖𝐿2(ℝ;𝒴) ≤ 𝐶𝑘,𝜀 ‖𝑓‖2,𝑅,𝑈 𝑒−

𝑐
𝑅−𝜀ℎ

−1/3 ‖𝑢‖𝐻−𝑘(ℝ;𝒳) ,

for all ℎ ∈ (0, ℎ0) where ℎ0 = ℎ0(𝑘, 𝜀).

Remark 3.7. Taking ℎ = 𝜇/𝜏3 one sees that

𝑒−
𝜇
2𝜏3 |𝐷𝑡|2𝜃𝑓 = 𝐹 𝜇

𝜏3
𝑒−

𝜇
2𝜏3 |𝐷𝑡|2𝜃, 𝐹 𝜇

𝜏3
= op𝑤 (𝜒(𝑡)𝜂(𝜇

2/3

𝜏2 𝜉) ̃𝑓(𝑡 + 𝑖 𝜇𝜏3 𝜉)) ,

modulo an exponentially small error of order 𝑒−𝑐𝜏 (in well-adapted norms), which is
an admissible error in the Carleman estimate (2.7) (in view of its application on unique
continuation in Section 4). Notice that with this scaling, the cut-off 𝜂 localizes in fre-
quencies |𝜉𝑡| ≲ 𝜏2. This is consistent with the sketch of proof in Section 1.4.

Remark 3.8. Proposition 3.6 provides with a substitute of Lemma 2.1 in the case where
𝑓(𝑡) = 𝑡 is replaced by an arbitrary Gevrey 2 function.
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Lemma 3.9. Setting

𝑅ℎ ≔ 𝜒𝐹ℎ𝑒−
ℎ
2 |𝐷𝑡|2𝜃 − 𝜒𝑒−

ℎ
2 |𝐷𝑡|2𝑓𝜃 ∈ ℒ(𝐿2(ℝ,𝒳), 𝐿2(ℝ, 𝒴)),(3.16)

we have

(𝑅ℎ𝑢)(𝑡) = ∫
ℝ
𝒦ℎ(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠, 𝑢 ∈ 𝒮(ℝ,𝒳) with(3.17)

𝒦ℎ(𝑡, 𝑠) = − 1
2𝜋𝒦1,ℎ + 𝐶ℎ𝒦2,ℎ(𝑡, 𝑠) 𝐶ℎ ≔

1
2𝜋 ( 1

2𝜋ℎ)
1/2

, and(3.18)

𝒦1,ℎ(𝑡, 𝑠) ≔ 𝜒(𝑡)𝜃(𝑠)𝑓(𝑠)∫
ℝ
𝑒−𝑖(𝑠−𝑡)𝜉(1 − 𝜂(ℎ2/3𝜉))𝑒−

ℎ|𝜉|2
2 𝑑𝜉,(3.19)

𝒦2,ℎ(𝑡, 𝑠) ≔ 𝜒(𝑡)𝜃(𝑠)∫
ℝ×ℝ

( ̃𝑓𝑟 ( 𝑡 + 𝑤
2 + 𝑖ℎ𝜉) − 𝜂(ℎ2/3𝜉)𝑓(𝑠))

× 𝑒𝑖(𝑡−𝑤)𝜉𝑒−
|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉.(3.20)

Proof of Lemma 3.9. Recalling the definition of the Weyl quantization in (3.12) and
that of 𝐹ℎ in (3.14), we have

(𝐹ℎ𝑢)(𝑡) =
1
2𝜋 ∫

ℝ×ℝ
𝑒𝑖(𝑡−𝑤)𝜉 ̃𝑓𝑟 ( 𝑡 + 𝑤

2 + 𝑖ℎ𝜉) 𝑢(𝑤)𝑑𝑤𝑑𝜉.

Combined with formula (A.4), this implies

(3.21) (𝜒𝐹ℎ𝑒−
ℎ
2 |𝐷𝑡|2𝜃𝑢)(𝑡) = 1

2𝜋 ( 1
2𝜋ℎ)

1/2
𝜒(𝑡)

×∫
ℝ×ℝ×ℝ

𝑒𝑖(𝑡−𝑤)𝜉 ̃𝑓𝑟 ( 𝑡 + 𝑤
2 + 𝑖ℎ𝜉) 𝜃(𝑠)𝑢(𝑠)𝑒−

|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉𝑑𝑠.

Using again formula (A.4) as well as the formula for the Fourier transform of a Gauss-
ian (A.3) we find

(𝜒𝑒−
ℎ
2 |𝐷𝑡|2𝑓𝜃𝑢)(𝑡) = ( 1

2𝜋ℎ)
1/2

𝜒(𝑡)∫
ℝ
𝑓(𝑠)𝜃(𝑠)𝑢(𝑠)𝑒−

|𝑡−𝑠|2
2ℎ 𝑑𝑠

= ( 1
2𝜋ℎ)

1/2
𝜒(𝑡)∫

ℝ
𝑓(𝑠)𝜃(𝑠)𝑢(𝑠) ( 1

2𝜋(2𝜋ℎ)
1/2∫

ℝ
𝑒−𝑖(𝑠−𝑡)𝜉𝑒−

ℎ|𝜉|2
2 𝑑𝜉) 𝑑𝑠

= ( 1
2𝜋ℎ)

1/2
𝜒(𝑡)∫

ℝ
𝑓(𝑠)𝜃(𝑠)𝑢(𝑠) ( 1

2𝜋(2𝜋ℎ)
1/2∫

ℝ
𝑒−𝑖(𝑠−𝑡)𝜉𝜂(ℎ2/3𝜉)𝑒−

ℎ|𝜉|2
2 𝑑𝜉) 𝑑𝑠

+ ( 1
2𝜋ℎ)

1/2
𝜒(𝑡)∫

ℝ
𝑓(𝑠)𝜃(𝑠)𝑢(𝑠)

× ( 1
2𝜋(2𝜋ℎ)

1/2∫
ℝ
𝑒−𝑖(𝑠−𝑡)𝜉(1 − 𝜂(ℎ2/3𝜉))𝑒−

ℎ|𝜉|2
2 𝑑𝜉) 𝑑𝑠.
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We now use once more (A.3) in order to replace 𝑒−
ℎ|𝜉|2
2 by ( 1

2𝜋ℎ )
1/2 ∫ℝ 𝑒−𝑖𝑤𝜉𝑒

− |𝑤|2
2ℎ 𝑑𝑤 in

the first term of the sum above. We find then

(𝜒𝑒−
ℎ
2 |𝐷𝑡|2𝑓𝜃𝑢)(𝑡) = 1

2𝜋 ( 1
2𝜋ℎ)

1/2
𝜒(𝑡)(3.22)

×∫
ℝ
𝑓(𝑠)𝜃(𝑠)𝑢(𝑠) (∫

ℝ
𝑒−𝑖(𝑠−𝑡)𝜉𝜂(ℎ2/3𝜉)∫

ℝ
𝑒−𝑖𝑤𝜉𝑒−

|𝑤|2
2ℎ 𝑑𝑤𝑑𝜉) 𝑑𝑠

+ 1
2𝜋𝜒(𝑡)∫ℝ

𝑓(𝑠)𝜃(𝑠)𝑢(𝑠) (∫
ℝ
𝑒−𝑖(𝑠−𝑡)𝜉(1 − 𝜂(ℎ2/3𝜉))𝑒−

ℎ|𝜉|2
2 𝑑𝜉) 𝑑𝑠.

We finally perform the change of variable 𝑤 → 𝑤 − 𝑠 in the integral with respect to 𝑤
to express the first term in (3.22) in the following way:

1
2𝜋 ( 1

2𝜋ℎ)
1/2

𝜒(𝑡)∫
ℝ
𝑓(𝑠)𝜃(𝑠)𝑢(𝑠) (∫

ℝ
𝑒−𝑖(𝑠−𝑡)𝜉𝜂(ℎ2/3𝜉)∫

ℝ
𝑒−𝑖𝑤𝜉𝑒−

|𝑤|2
2ℎ 𝑑𝑤𝑑𝜉) 𝑑𝑠

= 1
2𝜋 ( 1

2𝜋ℎ)
1/2

𝜒(𝑡)∫
ℝ×ℝ×ℝ

𝑒𝑖(𝑡−𝑤)𝜉𝜂(ℎ2/3𝜉)𝑓(𝑠)𝜃(𝑠)𝑢(𝑠)𝑒−
|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉𝑑𝑠.

(3.23)

The result is then a consequence of (3.21), (3.22) and (3.23). □

The key step for the proof of Proposition 3.6 consists in controlling the terms 𝒦𝑗,ℎ
in (3.19)–(3.20). For later applications, we consider a slightly more general family of
kernels (useful when) defined for functions 𝜒1, 𝜃1 ∈ 𝐶∞

𝑐 (ℝ) and 𝑓 ∈ 𝒢2,𝑅𝑏 (ℝ;ℒ(𝒳, 𝒴))
and𝑚 ∈ ℕ, by

ℐ1,ℎ(𝑡, 𝑠) ≔ 𝜒1(𝑡)𝜃1(𝑠)𝑓(𝑠)∫
ℝ
𝑒−𝑖(𝑠−𝑡)𝜉(1 − 𝜂(ℎ2/3𝜉))𝑒−

ℎ|𝜉|2
2 𝜉𝑚𝑑𝜉,

ℐ2,ℎ(𝑡, 𝑠) ≔ 𝜒1(𝑡)𝜃1(𝑠)∫
ℝ×ℝ

( 𝑡 + 𝑤
2 + 𝑖ℎ𝜉 − 𝑠)

𝑚
𝑒𝑖(𝑡−𝑤)𝜉𝑒−

|𝑤−𝑠|2
2ℎ

× (𝜒 (𝑡 + 𝑤
2 ) 𝜂(ℎ2/3𝜉) ̃𝑓 ( 𝑡 + 𝑤

2 + 𝑖ℎ𝜉) − 𝜂(ℎ2/3𝜉)𝑓(𝑠)) 𝑑𝑤𝑑𝜉.

Later in the proofs, we shall write ℐ2,ℎ(𝑡, 𝑠) = ℐ2,ℎ[𝜒1, 𝜃1, 𝑓,𝑚](𝑡, 𝑠) to stress the depen-
dence on the functions and parameters involved in the definition of ℐ2,ℎ. Note that
𝒦2,ℎ = ℐ2,ℎ[𝜒, 𝜃, 𝑓, 0], where 𝜒, 𝜃 are defined (once and for all) at the beginning of
Section 3.2.

Lemma 3.10. Let 𝜌, 𝑟 > 0 as in Proposition 3.6 and 𝜒, 𝜃 defined accordingly at the
beginning of Section 3.2. Then, for any 𝑚 ∈ ℕ, any 𝜒1 ∈ 𝐶∞

𝑐 (ℝ) with supp(𝜒1) ⊂
supp(𝜒) and supp(𝜒′1) ⊂ supp(𝜒′), for any 𝜃1 ∈ 𝐶∞

𝑐 (ℝ) with supp(𝜃1) ⊂ supp(𝜃),
there exist 𝐶, 𝑐, ℎ0 > 0 such that for all 𝑓 ∈ 𝒢2,𝑅𝑏 (𝑈;ℒ(𝒳, 𝒴)),

‖
‖ℐ𝑗,ℎ

‖
‖𝐿∞(ℝ×ℝ;ℒ(𝒳;𝒴)) ≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 𝑒−

𝑐ℎ−1/3
𝑅 , for all ℎ ∈ (0, ℎ0).

Note that Lemma 3.10 will be only used with 𝜒1 = 𝜒(𝑘) and 𝜃1 = 𝜃(𝑘) for some
𝑘 ∈ ℕ, which satisfy the support assumptions.

Proof of Lemma 3.10. We start with the proof for 𝑗 = 1 i.e. study ℐ1,ℎ. We remark that
in the support of 1− 𝜂(ℎ2/3𝜉) one has ℎ2/3|𝜉| ≥ 2𝑟which implies that ℎ|𝜉|2 ≥ 𝑐ℎ−1/3 in
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the support of 1 − 𝜂(ℎ2/3𝜉). We estimate then, for ℎ ≤ ℎ0 with ℎ0 sufficiently small:

‖
‖ℐ1,ℎ(𝑡, 𝑠)

‖
‖ℒ(𝒳;𝒴) ≤

‖
‖𝟙supp𝜃𝑓(𝑠)

‖
‖ℒ(𝒳;𝒴)∫ℝ

|||(1 − 𝜂(ℎ2/3𝜉))𝑒−
ℎ|𝜉|2
2 𝜉𝑚||| 𝑑𝜉

≤ 𝐶 ‖𝑓‖𝐿∞(supp(𝜃);ℒ(𝒳;𝒴))∫
ℝ

|||(1 − 𝜂(ℎ2/3𝜉))𝑒−
ℎ|𝜉|2
4 𝑒−

ℎ|𝜉|2
4 𝜉𝑚||| 𝑑𝜉

≤ 𝐶𝑒−𝑐ℎ−1/3 ∫
ℝ

|||𝑒
− ℎ|𝜉|2

4 𝜉𝑚||| 𝑑𝜉 ‖𝑓‖𝐿∞(supp(𝜃);ℒ(𝒳;𝒴))

≤ 𝐶𝑒−𝑐ℎ−1/3 ‖𝑓‖𝐿∞(supp(𝜃);ℒ(𝒳;𝒴)) ≤ 𝐶𝑒−𝑐ℎ−1/3 ‖𝑓‖2,𝑅,𝑈 ,(3.24)

where we used the fact that 𝑓 is Gevrey (and hence continuous) and 𝜃 is compactly
supported in 𝑈.

We now turn our attention to ℐ2,ℎ(𝑡, 𝑠). In the definition of ℐ2,ℎ(𝑡, 𝑠)we change vari-
able by writing (𝑤, 𝜉) ∈ ℝ2 → 𝑧 ∈ ℂ with

𝑧 = 𝑡 + 𝑤
2 + 𝑖ℎ𝜉, whence(3.25)

𝑤 = 2Re(𝑧) − 𝑡, ℎ𝜉 = Im(𝑧), and 𝑑𝑤 ∧ 𝑑𝜉 = 𝑖
ℎ𝑑𝑧 ∧ 𝑑 ̄𝑧.(3.26)

The factor 𝑒𝑖(𝑡−𝑤)𝜉𝑒−
|𝑤−𝑠|2
2ℎ rewrites as 𝑒𝑖(𝑡−𝑤)𝜉𝑒−

|𝑤−𝑠|2
2ℎ = 𝑒

1
ℎΦ(𝑡,𝑠,𝑧), with

Φ(𝑡, 𝑠, 𝑧) = 𝑖(𝑡 − 𝑤)ℎ𝜉 − (𝑤 − 𝑠)2
2 = 2𝑖(𝑡 − Re(𝑧)) Im(𝑧) − (2Re(𝑧) − 𝑡 − 𝑠)2

2(3.27)

= 2𝑖𝑡 Im(𝑧) − 2𝑖 Re(𝑧) Im(𝑧)

− 2Re(𝑧)2 − 𝑡2 + 𝑠2
2 + 2𝑡 Re(𝑧) + 2𝑠Re(𝑧) − 𝑡𝑠

= 2𝑡𝑧 + 𝑠(𝑧 + ̄𝑧 − 𝑡) − (𝑧 + ̄𝑧)𝑧 − 𝑡2 + 𝑠2
2

= −(𝑡 − 𝑠)2
2 + (𝑧 − 𝑠)(2𝑡 − 𝑧 − ̄𝑧).

Then, we can write ℐ2,ℎ as

(3.28) ℐ2,ℎ(𝑡, 𝑠) =
𝑖
ℎ𝜒1(𝑡)𝜃(𝑠)∫𝜂(ℎ−1/3 Im 𝑧) (𝜒(Re 𝑧) ̃𝑓(𝑧) − 𝑓(𝑠))

× (𝑧 − 𝑠)𝑚𝑒−
|𝑡−𝑠|2
2ℎ 𝑒

1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)𝑑𝑧 ∧ 𝑑 ̄𝑧.

Defining

(3.29) ̌𝑏𝑠(𝑧) = 𝜃(𝑠)𝜒(Re 𝑧)
̃𝑓(𝑧) − 𝑓(𝑠)

𝑧 − 𝑠 ,

we may rewrite

ℐ2,ℎ(𝑡, 𝑠) = −𝑖𝜒1(𝑡)∫
ℂ
(𝑧 − 𝑠)𝑚𝜂(ℎ−1/3 Im 𝑧) ̌𝑏𝑠(𝑧)

× 𝜕 ̄𝑧 (𝑒−
|𝑡−𝑠|2
2ℎ 𝑒

1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)) 𝑑𝑧 ∧ 𝑑 ̄𝑧.(3.30)

We will now check that we are in position to integrate by parts using Lemma A.6.
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First, we prove that ̌𝑏𝑠 ∈ 𝐶1(ℂ). It is smooth away from 𝑠, so we only need to check
the regularity close to 𝑧 = 𝑠. We decompose ̌𝑏𝑠(𝑧) = 𝜃(𝑠)𝜒(Re 𝑧) ̃𝑓(𝑧)−𝑓(𝑠)

𝑧−𝑠 − 𝜃(𝑠)(1 −
𝜒)(Re 𝑧)𝑓(𝑠)𝑧−𝑠 . The first term is 𝐶1(ℂ) thanks to Lemma A.5 applied to ̃𝑓(⋅ − 𝑠). For
the second term, we observe that for 𝑠 ∈ (𝑡0 − 𝑟, 𝑡0 + 𝑟) in the support of 𝜃 and for
Re(𝑧) ∉ (𝑡0 − 3𝑟, 𝑡0 + 3𝑟) in the support of 1 − 𝜒, we have |𝑧 − 𝑠| ≥ | Re(𝑧) − 𝑠| ≥ 2𝑟.
This gives the regularity of the second term.
According to (3.26) and (2 Re(𝑧)− 𝑡− 𝑠)2 ≥ Re(𝑧)2−𝐶𝑡,𝑠 for some 𝐶𝑡,𝑠 > 0, we have

|||𝑒
− |𝑡−𝑠|2

2ℎ 𝑒
1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)||| ≤ 𝑒

𝐶𝑡,𝑠
ℎ 𝑒−

Re(𝑧)2
2ℎ ,(3.31)

as well as
|||𝜕 ̄𝑧 (𝑒−

|𝑡−𝑠|2
2ℎ 𝑒

1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧))||| = |𝑧 − 𝑠| |||𝑒

− |𝑡−𝑠|2
2ℎ 𝑒

1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)|||

≤ 𝑒
𝐶𝑡,𝑠
ℎ (| Im(𝑧)| + | Re(𝑧) − 𝑠|) 𝑒−

Re(𝑧)2
2ℎ .(3.32)

Since 𝜂 localizes the imaginary part in a compact set and now (3.31) and (3.32) are
obtained, we are left to prove 𝐿∞ estimates on ̌𝑏𝑠(𝑧) and 𝜕 ̄𝑧 ̌𝑏𝑠.
We have

‖
‖ ̌𝑏𝑠(𝑧)‖‖ℒ(𝒳;𝒴) ≤

‖
‖ ̃𝑓‖‖𝑊1,∞(𝑈𝜌;ℒ(𝒳;𝒴))

, for Re(𝑧) ∈ (𝑡0 − 3𝑟, 𝑡0 + 3𝑟),

since 𝜒(Re 𝑧) = 1 for such 𝑧. For Re(𝑧) ∉ (𝑡0 − 3𝑟, 𝑡0 + 3𝑟) and 𝑠 ∈ supp 𝜃, we have
|𝑧 − 𝑠| ≥ 2𝑟, which implies

‖
‖ ̌𝑏𝑠(𝑧)‖‖ℒ(𝒳;𝒴) ≤ 𝐶 ‖‖ ̃𝑓‖‖𝐿∞(𝑈𝜌;ℒ(𝒳;𝒴))

, for Re(𝑧) ∉ (𝑡0 − 3𝑟, 𝑡0 + 3𝑟),

with a constant 𝐶 depending only on 𝑟. Putting the two estimates above together we
obtain that ̌𝑏𝑠 ∈ 𝐶0

𝑏 (ℂ) and there is 𝐶 = 𝐶(𝑟) > 0 such that

(3.33) ‖
‖ ̌𝑏𝑠(𝑧)‖‖ℒ(𝒳;𝒴) ≤ 𝐶 ‖‖ ̃𝑓‖‖𝑊1,∞(𝑈𝜌;ℒ(𝒳;𝒴))

, 𝑧 ∈ ℂ.

Secondly, we compute

𝜕 ̄𝑧 ̌𝑏𝑠(𝑧) = 𝜃(𝑠)𝜒
′(Re 𝑧)
2(𝑧 − 𝑠)

̃𝑓(𝑧) + 𝜃(𝑠)𝜒(Re 𝑧)𝜕 ̄𝑧 ̃𝑓(𝑧)
𝑧 − 𝑠 ,(3.34)

and notice that the first term is smooth and bounded given the relative support prop-
erties of 𝜃 and 𝜒′. For the second term, using (3.4) for Gevrey 2 functions and the fact
that 𝑠 ∈ ℝ, we obtain, for 𝑧 ∈ 𝑈𝜌 (the value of the constant 𝐶 may change from one
line to another):

‖
‖‖
𝜒(Re 𝑧)𝜕 ̄𝑧 ̃𝑓(𝑧)

𝑧 − 𝑠
‖
‖‖ℒ(𝒳;𝒴)

≤ 1
|𝑧 − 𝑠|𝐶 ‖𝑓‖2,𝑅,𝑈 exp (− 1

𝐶0𝑅| Im𝑧|)

≤ 1
| Im 𝑧|𝐶 ‖𝑓‖2,𝑅,𝑈 exp (− 1

𝐶0𝑅| Im𝑧|)

≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 exp (− 1
2𝐶0𝑅| Im𝑧|).(3.35)

Combining the previous estimate and (3.34), we get
‖
‖𝜕 ̄𝑧 ̌𝑏𝑠(𝑧)‖‖ℒ(𝒳;𝒴) ≤ 𝐶 ‖‖ ̃𝑓‖‖𝐿∞(𝑈𝜌;ℒ(𝒳;𝒴))

+ 𝐶 ‖𝑓‖2,𝑅,𝑈 , 𝑧 ∈ ℂ.
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As announced before, the 𝐿∞ bounds on 𝜕 ̄𝑧 ̌𝑏𝑠 and ̌𝑏𝑠, combined with the localization of
𝜂, (3.31) and (3.32) give the integrability of all the terms involved in the integration by
parts. All assumptions of Lemma A.6 are therefore satisfied and wemay now integrate
by parts in (3.30), yielding

ℐ2,ℎ(𝑡, 𝑠) = 𝑖𝜒1(𝑡)∫
ℂ
𝜕 ̄𝑧 ((𝑧 − 𝑠)𝑚𝜂(ℎ−1/3 Im 𝑧) ̌𝑏𝑠(𝑧))

× 𝑒−
|𝑡−𝑠|2
2ℎ 𝑒

1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)𝑑𝑧 ∧ 𝑑 ̄𝑧.(3.36)

Recalling (3.34), we now decompose (3.36) as

ℐ2,ℎ = ℐ21,ℎ + ℐ22,ℎ + ℐ23,ℎ, with

ℐ21,ℎ(𝑡, 𝑠) ∶= 𝑖𝜒1(𝑡)𝜃(𝑠)∫
ℂ
(𝑧 − 𝑠)𝑚𝜂(ℎ−1/3 Im 𝑧)𝜒

′(Re 𝑧)
2(𝑧 − 𝑠)

̃𝑓(𝑧)(3.37)

× 𝑒−
|𝑡−𝑠|2
2ℎ 𝑒

1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)𝑑𝑧 ∧ 𝑑 ̄𝑧,

ℐ22,ℎ(𝑡, 𝑠) ∶= 𝑖𝜒1(𝑡)𝜃(𝑠)∫
ℂ
(𝑧 − 𝑠)𝑚𝜂(ℎ−1/3 Im 𝑧)𝜒(Re 𝑧)𝜕 ̄𝑧 ̃𝑓(𝑧)

𝑧 − 𝑠(3.38)

× 𝑒−
|𝑡−𝑠|2
2ℎ 𝑒

1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)𝑑𝑧 ∧ 𝑑 ̄𝑧,

ℐ23,ℎ(𝑡, 𝑠) ∶= −12ℎ
−1/3𝜒1(𝑡)∫

ℂ
(𝑧 − 𝑠)𝑚𝜂′(ℎ−1/3 Im 𝑧) ̌𝑏𝑠(𝑧)(3.39)

× 𝑒−
|𝑡−𝑠|2
2ℎ 𝑒

1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)𝑑𝑧 ∧ 𝑑 ̄𝑧.

We now estimate each term separately. We start with ℐ21,ℎ and rewrite the integral in
the original variables (3.25)–(3.26) as

ℐ21,ℎ(𝑡, 𝑠) = 𝑖ℎ𝜒1(𝑡)𝜃(𝑠)∫
ℝ×ℝ

( 𝑡 + 𝑤
2 − 𝑠 + 𝑖ℎ𝜉)

𝑚

× 𝜂(ℎ2/3𝜉)𝜒′ ( 𝑡 + 𝑤
2 )

̃𝑓( 𝑡+𝑤2 + 𝑖ℎ𝜉)
2( 𝑡+𝑤2 + 𝑖ℎ𝜉 − 𝑠)

𝑒𝑖(𝑡−𝑤)𝜉𝑒−
|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉.

Observe now that supp(𝜒′) ⊂ (𝑡0−4𝑟, 𝑡0−3𝑟)∪(𝑡0+3𝑟, 𝑡0+4𝑟). Therefore the integrand
above is supported in | 𝑡+𝑤2 − 𝑡0| ≥ 3𝑟 (thanks to the support of 𝜒′) and |𝑡 − 𝑡0| < 4𝑟
(thanks to the support of 𝜒). This implies that |𝑤 − 𝑡0| ≥ 2𝑟 for otherwise one would
have

|
|
𝑡 + 𝑤
2 − 𝑡0|| ≤

|||
𝑡 − 𝑡0
2

||| +
|||
𝑤 − 𝑡0
2

||| < 2𝑟 + 𝑟 = 3𝑟.

Since in the support of 𝜃 we have |𝑠 − 𝑡0| < 𝑟 we find finally that |𝑤 − 𝑠| ≥ 𝑟 in the
support of the integral. Notice finally that if 𝜒′ ( 𝑡+𝑤2 ) ≠ 0 and 𝜃(𝑠) ≠ 0 one has

|
|
𝑡 + 𝑤
2 + 𝑖ℎ𝜉 − 𝑠|| ≥

|
|
𝑡 + 𝑤
2 − 𝑠|| ≥

|
|
𝑡 + 𝑤
2 − 𝑡0|| − |𝑡0 − 𝑠| ≥ 2𝑟

and thanks to the supports of 𝜒, 𝜃 and 𝜂 have for a constant 𝐶 > 0 depending on𝑚 and
𝑟 that

|
|
𝑡 + 𝑤
2 + 𝑖ℎ𝜉 − 𝑠||

𝑚
≤ 𝐶.
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We can then estimate as follows:

‖
‖ℐ21,ℎ

‖
‖ℒ(𝒳;𝒴) ≤

𝐶ℎ
4𝑟

‖
‖ ̃𝑓‖‖𝐿∞(𝑈𝜌;ℒ(𝒳;𝒴))

∫
ℝ×ℝ

|𝜂(ℎ2/3𝜉)|𝑒−
|𝑤−𝑠|2
4ℎ 𝑒

𝑟2
4ℎ 𝑑𝑤𝑑𝜉

≤ 𝐶ℎ
4𝑟

‖
‖ ̃𝑓‖‖𝐿∞(𝑈𝜌;ℒ(𝒳;𝒴))

𝑒−
𝑟2
4 ℎ∫

[−3𝑟ℎ−2/3,3𝑟ℎ−2/3]
𝑑𝜉∫

ℝ
𝑒−

|𝑤−𝑠|2
4ℎ 𝑑𝑤.

This implies the stronger bound

(3.40) ‖
‖ℐ21,ℎ(𝑡, 𝑠)

‖
‖ℒ(𝒳;𝒴) ≤ 𝐶 ‖‖ ̃𝑓‖‖𝐿∞(𝑈𝜌;ℒ(𝒳;𝒴))

𝑒−𝑐ℎ−1 ≤ 𝐶𝑒−𝑐ℎ−1 ‖𝑓‖2,𝑅,𝑈 ,

where the last inequality follows from (3.3).

We now study the integral ℐ22,ℎ defined in (3.38). Recall that supp 𝜂 ⊂ [−3𝑟, 3𝑟], so
that the domain of integration is contained in | Im 𝑧| ≤ 3𝑟ℎ1/3. Using (3.35), we can
then estimate the corresponding integral as follows:

‖
‖ℐ22,ℎ(𝑡, 𝑠)

‖
‖ℒ(𝒳;𝒴)

≤ 𝐶∫
ℂ

‖
‖‖𝜂(ℎ

−1/3 Im 𝑧)𝜒(Re 𝑧)𝜕 ̄𝑧 ̃𝑓(𝑧)
𝑧 − 𝑠 𝑒−

|𝑡−𝑠|2
2ℎ 𝑒

1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)‖‖‖ℒ(𝒳;𝒴)

|𝑑𝑧 ∧ 𝑑 ̄𝑧|

≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 exp (− ℎ−1/3
6𝑟𝐶0𝑅

)∫
𝐾′𝜌

|||𝑒
− |𝑡−𝑠|2

2ℎ 𝑒
1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)||| |𝑑𝑧 ∧ 𝑑 ̄𝑧|

≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 𝑒−
𝑐ℎ−1/3

𝑅 .(3.41)

In this last inequality of (3.41), we used the fact that

∫
𝐾′𝜌

|||𝑒
− |𝑡−𝑠|2

2ℎ 𝑒
1
ℎ (𝑧−𝑠)(2𝑡−𝑧− ̄𝑧)||| |𝑑𝑧 ∧ 𝑑 ̄𝑧| ≤ ∫

𝐾′𝜌

|𝑑𝑧 ∧ 𝑑 ̄𝑧| ≤ 𝐶,

which follows from (3.26).
The last term we need to control is the integral ℐ23,ℎ in (3.39). In the original coor-

dinates(3.25) , we have

ℐ23,ℎ(𝑡, 𝑠) = 𝑖ℎ
2/3

2 𝜒1(𝑡)∫
ℝ×ℝ

( 𝑡 + 𝑤
2 − 𝑠 + 𝑖ℎ𝜉)

𝑚

𝜂′(ℎ2/3𝜉) ̌𝑏𝑠 (
𝑡 + 𝑤
2 + 𝑖ℎ𝜉) 𝑒𝑖(𝑡−𝑤)𝜉𝑒−

|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉.

We look at the integral in𝑤 and treat 𝜉 as a parameter satisfying 2𝑟ℎ−2/3 ≤ |𝜉| ≤ 3𝑟ℎ−2/3
thanks to the support of 𝜂′. The change of variable 𝑤 → 𝑤 + 𝑠 allows to rewrite the
integral as follows:

∫
ℝ

̌𝑏𝑠 (
𝑡 + 𝑤
2 + 𝑖ℎ𝜉) 𝑒𝑖(𝑡−𝑤)𝜉𝑒−

|𝑤−𝑠|2
2ℎ 𝑑𝑤 = 𝑒−𝑖(𝑠−𝑡)𝜉∫

ℝ
𝑔ℎ𝜉,𝑡,𝑠(𝑤)𝑒−𝑖𝑤𝜉𝑒−

|𝑤|2
2ℎ 𝑑𝑤,

(3.42)

with 𝑔𝜉,𝑡,𝑠(𝑤) ≔ ̌𝑏𝑠 (
𝑡 + 𝑠 + 𝑤

2 + 𝑖 ̃𝜉) ( 𝑡 + 𝑤 − 𝑠
2 + 𝑖 ̃𝜉)

𝑚
.

(3.43)



364 S. FILIPPAS, C. LAURENT, ANDM. LÉAUTAUD

Using (3.42), we obtain
‖
‖ℐ23,ℎ(𝑡, 𝑠)

‖
‖ℒ(𝒳;𝒴)

= ‖
‖‖
ℎ2/3
2 𝜒1(𝑡)∫

ℝ×ℝ
( 𝑡 + 𝑤

2 − 𝑠 + 𝑖ℎ𝜉)
𝑚

× 𝜂′(ℎ2/3𝜉) ̌𝑏𝑠 (
𝑡 + 𝑤
2 + 𝑖ℎ𝜉) 𝑒𝑖(𝑡−𝑤)𝜉𝑒−

|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉‖‖‖ℒ(𝒳;𝒴)

= 1
2𝜒1(𝑡)ℎ

2/3 ‖‖‖∫ℝ
𝜂′(ℎ2/3𝜉)𝑒−𝑖(𝑠−𝑡)𝜉 (∫

ℝ
𝑔ℎ𝜉,𝑡,𝑠(𝑤)𝑒−𝑖𝑤𝜉𝑒−

|𝑤|2
2ℎ 𝑑𝑤)𝑑𝜉‖‖‖ℒ(𝒳;𝒴)

≤ 1
2𝜒1(𝑡)ℎ

2/3∫
ℝ
||𝜂′(ℎ2/3𝜉)|| ‖‖‖∫ℝ

𝑔ℎ𝜉,𝑡,𝑠(𝑤)𝑒−𝑖𝑤𝜉𝑒−
|𝑤|2
2ℎ 𝑑𝑤‖‖‖ℒ(𝒳;𝒴)

𝑑𝜉.

Recalling that supp𝜒 ⊂ (𝑡0−4𝑟, 𝑡0+4𝑟) together with the definition of 𝑔ℎ𝜉,𝑡,𝑠 in (3.43),
of ̌𝑏𝑠 in (3.29) and supp𝜒 ⊂ (𝑡0 − 4𝑟, 𝑡0 + 4𝑟), Lemma 3.11 now implies

𝜒1(𝑡)∫
ℝ
|𝜂′(ℎ2/3𝜉)| ‖‖‖∫ℝ

𝑔ℎ𝜉,𝑡,𝑠(𝑤)𝑒−𝑖𝑤𝜉𝑒−
|𝑤|2
2ℎ 𝑑𝑤‖‖‖ℒ(𝒳;𝒴)

𝑑𝜉

≤ 𝐶∫
ℝ
|𝜂′(ℎ2/3𝜉)|𝑑𝜉𝑒−

𝑐ℎ−1/3
𝑅 ‖𝑓‖2,𝑅,𝑈 .

Combining the two estimates above and recalling the support of 𝜂 yields

‖
‖ℐ23,ℎ(𝑡, 𝑠)

‖
‖ℒ(𝒳;𝒴) ≤ ℎ2/3∫

3𝑟ℎ−2/3

−3𝑟ℎ−2/3
𝑑𝜉𝑒−

𝑐ℎ−1/3
𝑅 ‖𝑓‖2,𝑅,𝑈 ≤ 𝐶𝑒−

𝑐ℎ−1/3
𝑅 ‖𝑓‖2,𝑅,𝑈 ,(3.44)

for ℎ ≤ ℎ0.
Putting together (3.40), (3.41) and (3.44) yields for some constants 𝐶 and 𝑐 depend-

ing only on 𝐼, 𝜌, 𝑟:
‖
‖ℐ2,ℎ(𝑡, 𝑠)

‖
‖ℒ(𝒳;𝒴) ≤ 𝐶𝑒−

𝑐ℎ−1/3
𝑅 ‖𝑓‖2,𝑅,𝑈 ,

which concludes the proof of Lemma 3.10. □

In the proof of Lemma 3.10, we have used the following result.

Lemma 3.11. Let 𝑔ℎ𝜉,𝑡,𝑠 be as in (3.43) and fix 𝑐2 > 𝑐1 > 0. Then there exist𝐶 > 0, 𝑐 > 0
and ℎ0 depending on 𝐼, 𝜌, 𝑟, 𝑐1, 𝑐2 such that for 𝑡 ∈ (𝑡0 − 4𝑟, 𝑡0 + 4𝑟), 𝑠 ∈ ℝ, ℎ ∈ (0, ℎ0)
and 𝑐1ℎ−2/3 ≤ |𝜉| ≤ 𝑐2ℎ−2/3 one has:

‖
‖‖∫ℝ

𝑔ℎ𝜉,𝑡,𝑠(𝑤)𝑒−𝑖𝑤𝜉𝑒−
|𝑤|2
2ℎ 𝑑𝑤‖‖‖ℒ(𝒳;𝒴)

≤ 𝐶𝑒−
𝑐ℎ−1/3

𝑅 ‖𝑓‖2,𝑅,𝑈 .

Proof. First, thanks to the definition of ̌𝑏𝑠 and the support of 𝜃, we can assumewithout
loss of generality that 𝑠 ∈ (𝑡0 − 𝑟, 𝑡0 + 𝑟), for otherwise the integral is zero. We start by
separating the integral in two terms:

∫
ℝ
𝑔ℎ𝜉,𝑡,𝑠(𝑤)𝑒−𝑖𝑤𝜉𝑒−

|𝑤|2
2ℎ 𝑑𝑤

= ∫
|𝑤|≥𝑟

𝑔ℎ𝜉,𝑡,𝑠(𝑤)𝑒−𝑖𝑤𝜉𝑒−
|𝑤|2
2ℎ 𝑑𝑤 +∫

|𝑤|≤𝑟
𝑔ℎ𝜉,𝑡,𝑠(𝑤)𝑒−𝑖𝑤𝜉𝑒−

|𝑤|2
2ℎ 𝑑𝑤.
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Observe that since 𝑡, 𝑠, ℎ𝜉 lie in a fixed compact set (which depends on 𝑟) we have that

|
|
𝑡 + 𝑤 − 𝑠

2 + 𝑖ℎ𝜉||
𝑚
≤ 𝐶(|𝑤|𝑚 + 1).

For the integral in |𝑤| ≥ 𝑟we can then proceed as in (3.24) to obtain the stronger bound
‖
‖
‖
∫
|𝑤|≥𝑟

𝑔ℎ𝜉,𝑡,𝑠(𝑤)𝑒−𝑖𝑤𝜉𝑒−
|𝑤|2
2ℎ 𝑑𝑤

‖
‖
‖ℒ(𝒳;𝒴)

≤ 𝐶𝑒−𝑐ℎ−1 ‖‖ ̃𝑓‖‖𝑊1,∞(𝑈𝜌;ℒ(𝒳;𝒴))
∫
ℝ
𝑒−

ℎ|𝑤|2
4 (|𝑤|𝑚 + 1)𝑑𝑤

≤ 𝐶𝑒−𝑐ℎ−1 ‖‖ ̃𝑓‖‖𝑊1,∞(𝑈𝜌;ℒ(𝒳;𝒴))
≤ 𝐶𝑒−𝑐ℎ−1 ‖𝑓‖2,𝑅,𝑈 ,

thanks to (3.33).
We now work in the region |𝑤| ≤ 𝑟 and remark that for 𝑡 ∈ (𝑡0 − 4𝑟, 𝑡0 + 4𝑟), 𝑠 ∈

(𝑡0 − 𝑟, 𝑡0 + 𝑟) and |𝑤| ≤ 𝑟 one has for 𝑧 = 𝑡+𝑠+𝑤
2 + 𝑖ℎ𝜉 that

|Re(𝑧) − 𝑡0| ≤ |||
𝑡 − 𝑡0
2

||| +
|||
𝑠 − 𝑡0
2

||| +
||
𝑤
2
|| ≤ 3𝑟,

and | Im(𝑧)| = ℎ|𝜉|. Therefore in this region we have 𝜒(Re 𝑧) = 1 and consequently

̌𝑏𝑠 (𝑧) = 𝜃(𝑠)𝜒(Re 𝑧)
̃𝑓(𝑧) − 𝑓(𝑠)

𝑧 − 𝑠 = 𝜃(𝑠)
̃𝑓(𝑧) − 𝑓(𝑠)
𝑧 − 𝑠 .

This implies as in (3.35) that, for Im(𝑧) ≤ ℎ0:

(3.45) ‖
‖𝜕 ̄𝑧 ̌𝑏𝑠(𝑧)‖‖ℒ(𝒳;𝒴) ≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 exp (− 1

2𝐶0𝑅| Im𝑧|).

To alleviate the notation we write 𝑔 for 𝑔ℎ𝜉,𝑡,𝑠. We know thanks to (3.43) that 𝑔
admits a complex extension in [−𝑟, 𝑟] + 𝑖[−𝜌/2, 𝜌/2] for ℎ ≤ ℎ0 given by

𝑔(𝑤 + 𝑖𝑣) ≔ ̌𝑏𝑠 (
𝑡 + 𝑠 + 𝑤

2 + 𝑖ℎ𝜉 + 𝑖𝑣
2 ) (

𝑡 + 𝑤 − 𝑠
2 + 𝑖ℎ𝜉 + 𝑖𝑣

2 )
𝑚
,

that is

𝑔(𝑧) = ̌𝑏𝑠 (
𝑧
2 +

𝑡 + 𝑠
2 + 𝑖ℎ𝜉) (𝑧2 +

𝑡 − 𝑠
2 + 𝑖ℎ𝜉)

𝑚
,

which implies

(3.46) 𝜕 ̄𝑧𝑔(𝑧) =
1
2𝜕 ̄𝑧 ̌𝑏𝑠 (

𝑧
2 +

𝑡 + 𝑠
2 + 𝑖ℎ𝜉) ⋅ (𝑧2 +

𝑡 − 𝑠
2 + 𝑖ℎ𝜉)

𝑚
.

Remark that for |𝑧| ≤ 𝑟 and 𝑡, 𝑠, 𝜉 as in the statement of the lemma we have

|
|
𝑧
2 +

𝑡 − 𝑠
2 + 𝑖ℎ𝜉||

𝑚
≤ 𝐶,

for a constant 𝐶 > 0 depending on 𝑟 and𝑚.
We now write the integral we want to control as

∫
𝑟

−𝑟
𝑔(𝑧)𝑒−𝑖𝑧𝜉𝑒−

𝑧2
2ℎ 𝑑𝑧 = ∫

𝑟

−𝑟
𝑔(𝑧)𝑒

−ℎ𝜉2
2 𝑒−

(𝑧+𝑖ℎ𝜉)2
2ℎ 𝑑𝑧.
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ℝ

𝑖ℝ

−𝑟 𝑟

−𝑖𝜎ℎ𝜉

Γ1

Γ2

Γ3Ω

Figure 1. The domain Ω where we apply Stokes’ theorem in case
𝜉 > 0 (the picture in case 𝜉 < 0 is the symmetric about the real axis).
Notice that 𝜕Ω = Γ1∪Γ2∪Γ3∪[−𝑟, 𝑟]. Recall as well that in this regime
we have 𝜉 ∼ ℎ−2/3 and therefore ℎ𝜉 ∼ ℎ1/3. As ℎ goes to 0 the domain
Ω collapses to the segment [−𝑟, 𝑟].

We consider now 𝜎 ∈ (0, 12 ) to be chosen later on. We let Ω = [−𝑟, 𝑟] × [−𝜎ℎ𝜉, 0]
in case 𝜉 ∈ [𝑐1ℎ−2/3, 𝑐2ℎ−2/3] (see Figure 1), resp. Ω = [−𝑟, 𝑟] × [0, −𝜎ℎ𝜉] in case
𝜉 ∈ [−𝑐2ℎ−2/3, −𝑐1ℎ−2/3]. Stoke’s theorem applies, see (A.9), and yields:

∫
𝑟

−𝑟
𝑔(𝑧)𝑒

−ℎ𝜉2
2 𝑒−

(𝑧+𝑖ℎ𝜉)2
2ℎ 𝑑𝑧

= ∫
Γ1
𝑔(𝑧)𝑒

−ℎ𝜉2
2 𝑒−

(𝑧+𝑖ℎ𝜉)2
2ℎ 𝑑𝑧 +∫

Γ2
𝑔(𝑧)𝑒

−ℎ𝜉2
2 𝑒−

(𝑧+𝑖ℎ𝜉)2
2ℎ 𝑑𝑧

+∫
Γ3
𝑔(𝑧)𝑒

−ℎ𝜉2
2 𝑒−

(𝑧+𝑖ℎ𝜉)2
2ℎ 𝑑𝑧 +∫

Ω
𝜕 ̄𝑧(𝑔(𝑧))𝑒−𝑖𝑧𝜉𝑒−

𝑧2
2ℎ 𝑑𝑧 ∧ 𝑑 ̄𝑧,(3.47)

where the contours (oriented counterclockwise, see Figure 1 in the case 𝜉 > 0) are
defined by

Γ1 = {𝑧 ∈ ℂ, Re 𝑧 = −𝑟, −𝜎ℎ𝜉 ≤ Im𝑧 ≤ 0},
Γ2 = {𝑧 ∈ ℂ,−𝑟 ≤ Re 𝑧 ≤ 𝑟, Im 𝑧 = −𝜎ℎ𝜉},
Γ3 = {𝑧 ∈ ℂ, Re 𝑧 = 𝑟, −𝜎ℎ𝜉 ≤ Im𝑧 ≤ 0},

if 𝜉 > 0 and

Γ1 = {𝑧 ∈ ℂ, Re 𝑧 = −𝑟, 0 ≤ Im𝑧 ≤ −𝜎ℎ𝜉},
Γ2 = {𝑧 ∈ ℂ,−𝑟 ≤ Re 𝑧 ≤ 𝑟, Im 𝑧 = −𝜎ℎ𝜉},
Γ3 = {𝑧 ∈ ℂ, Re 𝑧 = 𝑟, 0 ≤ Im𝑧 ≤ −𝜎ℎ𝜉},

if 𝜉 < 0. We now estimate all terms in the right-hand side of (3.47).
We start with the last term in the right-hand side of (3.47). Using (3.46) and (3.45)

together with the fact that 𝑧 ∈ Ω in particular | Im 𝑧| ≤ 𝜎ℎ|𝜉| ≤ 1
2ℎ|𝜉| (since 𝜎 ≤ 1

2 ),
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we obtain

‖𝜕 ̄𝑧(𝑔(𝑧))‖ℒ(𝒳;𝒴) ≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 exp (− 1
𝐶0𝑅| Im(𝑧/2) + ℎ𝜉|)

≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 exp (− 1
𝐶0𝑅(| Im(𝑧/2)| + ℎ|𝜉|))

≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 exp (− 1
2𝐶0𝑅|ℎ𝜉|

)

≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 exp (− 1
2𝐶0𝑐2𝑅ℎ1/3

) = 𝐶 ‖𝑓‖2,𝑅,𝑈 𝑒− ̃𝑐ℎ−1/3 ,(3.48)

where 𝑐2 is given by |𝜉| ≤ 𝑐2ℎ−2/3 and ̃𝑐 ≔ 1
2𝐶0𝑐2𝑅

. We write 𝑧 = 𝛼 + 𝑖𝛽 with 𝛼, 𝛽 ∈ ℝ
and notice that for 𝑧 ∈ Ω we have |𝛽| ≤ 𝜎ℎ|𝜉| and 𝛽𝜉 < 0 (in both cases). As a
consequence, we deduce

|||𝑒
−𝑖𝑧𝜉𝑒−

𝑧2
2ℎ
||| = 𝑒𝛽𝜉𝑒−

𝛼2−𝛽2
2ℎ ≤ 𝑒

𝜍2ℎ2|𝜉|2
2ℎ ≤ 𝑒

𝜍2ℎ|𝜉|2
2 ≤ 𝑒

𝜍2𝑐22
2ℎ1/3 .

Together with (3.48) this yields

∫
Ω

‖
‖‖𝜕 ̄𝑧(𝑔(𝑧))𝑒−𝑖𝑧𝜉𝑒−

𝑧2
2ℎ
‖
‖‖ℒ(𝒳;𝒴)

|𝑑𝑧 ∧ 𝑑 ̄𝑧| ≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 𝑒−( ̃𝑐−𝜍2𝑐22/2)ℎ−1/3

≤ 𝐶 ‖𝑓‖2,𝑅,𝑈 𝑒− ̃𝑐/2ℎ−1/3 ,

after having chosen 𝜎 ≔ min( ̃𝑐1/2
𝑐2
, 12 ). With 𝜎 now fixed we control the other three

terms in (3.47).
• For 𝛼 + 𝑖𝛽 = 𝑧 ∈ Γ1 we have 𝛼2 = 𝑟2 and estimate the real part of the second
exponential, using (𝛽 + ℎ𝜉)2 ≤ (ℎ𝜉)2 (in both cases −𝜎ℎ𝜉 ≤ 𝛽 ≤ 0 if 𝜉 ≥ 0 and
0 ≤ 𝛽 ≤ −𝜎ℎ𝜉 if 𝜉 < 0), as

Re((𝑧 + 𝑖ℎ𝜉)2
2ℎ ) = 𝑟2 − (𝛽 + ℎ𝜉)2

2ℎ ≥ 𝑟2 − ℎ2𝜉2
2ℎ ≥ 𝑟2 − 𝑐22ℎ2/3

2ℎ ≥ 𝑟2
4ℎ ≥ 0,

for ℎ sufficiently small. This implies

∫
Γ1

‖
‖‖𝑔(𝑧)𝑒

−ℎ𝜉2
2 𝑒−

(𝑧+𝑖ℎ𝜉)2
2ℎ

‖
‖‖ℒ(𝒳;𝒴)

𝑑𝑧 ≤ 𝐶 ‖‖ ̃𝑓‖‖𝑊1,∞(𝑈𝜌;ℒ(𝒳;𝒴))
𝑒
−ℎ𝜉2
2

≤ 𝐶 ‖‖ ̃𝑓‖‖𝑊1,∞(𝑈𝜌;ℒ(𝒳;𝒴))
𝑒−𝑐ℎ−1/3 ,(3.49)

thanks to (3.33).
• For the integral in Γ3 we proceed exactly as for Γ1.
• For 𝛼 + 𝑖𝛽 = 𝑧 ∈ Γ2 we have 𝛽 = −𝜎ℎ𝜉 and 𝛼 ∈ [−𝑟, 𝑟], and we obtain

Re(ℎ|𝜉|
2

2 + (𝑧 + 𝑖ℎ𝜉)2
2ℎ ) = ℎ𝜉2

2 + 𝛼2 − (𝛽 + ℎ𝜉)2
2ℎ

≥ ℎ𝜉2
2 − (𝛽 + ℎ𝜉)2

2ℎ = ℎ𝜉2
2 (1 − (1 − 𝜎)2)

≥ 𝜎ℎ𝜉2
2 ≥ 𝜎𝑐21

2 ℎ−1/3,

for |𝜉| ≥ 𝑐1ℎ−2/3. The estimate of ∫Γ3 in (3.47) then proceeds as that of ∫Γ1
in (3.49).
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This concludes the proof of Lemma 3.11. □

3.3. Proof of Proposition 3.6. We can now turn to the proof of Proposition 3.6.

Proof of Proposition 3.6. For 𝑢 ∈ 𝒮(ℝ;𝒳), we start by writing

𝜒𝐹ℎ𝑒−
ℎ
2 |𝐷𝑡|2𝜃𝑢 − 𝑒−

ℎ
2 |𝐷𝑡|2𝑓𝜃𝑢 = (𝜒𝐹ℎ𝑒−

ℎ
2 |𝐷𝑡|2𝜃𝑢 − 𝜒𝑒−

ℎ
2 |𝐷𝑡|2𝑓𝜃𝑢)

− (1 − 𝜒)𝑒−
ℎ
2 |𝐷𝑡|2(𝑓𝜃𝑢)

= 𝑅ℎ𝑢 − (1 − 𝜒)𝑒−
ℎ
2 |𝐷𝑡|2(𝑓𝜃𝑢),(3.50)

where 𝑅ℎ is defined in (3.16). The second term in (3.50) is bounded using Lemma A.4
by

‖
‖(1 − 𝜒)𝑒−

ℎ
2 |𝐷𝑡|2(𝑓𝜃𝑢)‖‖𝐿2(ℝ;𝒴) ≤ 𝐶𝑒−𝑐/ℎ ‖𝑓𝜃𝑢‖𝐻−𝑘(ℝ;𝒴)

≤ 𝐶𝑒−𝑐/ℎ ‖𝑓‖𝑊𝑘,∞(supp(𝜃);ℒ(𝒳,𝒴)) ‖𝑢‖𝐻−𝑘(ℝ;𝒳) ,(3.51)

thanks to the supports of (1−𝜒) and 𝜃. Concerning the first term in (3.50), the kernel of
𝑅ℎ is𝒦ℎ(𝑡, 𝑠) given by (3.17) according to Lemma 3.9. Since𝒦ℎ(𝑡, 𝑠) = − 1

2𝜋𝒦1,ℎ(𝑡, 𝑠)+
𝐶ℎ𝒦2,ℎ(𝑡, 𝑠), Lemma 3.10 applied in the particular case𝑚 = 0, 𝜒1 = 𝜒 yields

(3.52) ‖𝒦ℎ(⋅, ⋅)‖𝐿∞(ℝ×ℝ;ℒ(𝒳;𝒴)) ≤ 𝐶𝑒−
𝑐ℎ−1/3

𝑅 ‖𝑓‖2,𝑅,𝑈 .
Combining Lemmata 3.9 and 3.10 and recalling supp𝒦ℎ ⊂ (𝑡0 − 4𝑟, 𝑡0 + 4𝑟) × (𝑡0 −
𝑟, 𝑡0 + 𝑟), the Cauchy-Schwarz inequality yields

‖𝑅ℎ𝑢‖𝐿2(ℝ;𝒴) =
‖
‖‖∫𝒦ℎ(⋅, 𝑠)𝑢(𝑠)𝑑𝑠

‖
‖‖𝐿2(ℝ;𝒴)

≤ 𝐶𝑒−
𝑐ℎ−1/3

𝑅 ‖𝑓‖2,𝑅,𝑈 ‖𝑢‖𝐿2((𝑡0−𝑟,𝑡0+𝑟);𝒳) .
This, together with (3.50) and (3.51), implies

‖
‖𝜒𝐹ℎ𝑒−

ℎ
2 |𝐷𝑡|2𝜃𝑢 − 𝑒−

ℎ
2 |𝐷𝑡|2𝑓𝜃𝑢‖‖𝐿2 ≤ 𝐶𝑒−

𝑐ℎ−1/3
𝑅 ‖𝑓‖2,𝑅,𝑈 ‖𝑢‖𝐿2 ,

and concludes the proof of Proposition 3.6 for 𝑘 = 0.
To obtain the estimate for 𝑘 ∈ ℕ∗, and given (3.50) and (3.51), it only remains to

prove that

‖
‖𝑅ℎ⟨𝐷𝑡⟩𝑘𝑢

‖
‖𝐿2(ℝ;𝒴) ≤ 𝐶𝑘ℎ−𝑘𝑒−

𝑐ℎ−1/3
𝑅 (∑

𝑗≤𝑘

‖
‖𝑓(𝑗)

‖
‖2,𝑅,𝑈)

‖𝑢‖𝐿2(ℝ;𝒳) ,(3.53)

with𝑅ℎ defined in (3.16). We can suppose without loss of generality that 𝑘 = 2𝑛, 𝑛 ∈ ℕ
and thus

‖
‖𝑅ℎ⟨𝐷𝑡⟩𝑘𝑢

‖
‖𝐿2 ≤ 𝐶 ‖𝑅ℎ𝑢‖𝐿2 + 𝐶

𝑛
∑
ℓ=1

‖
‖𝑅ℎ𝐷

2ℓ
𝑡 𝑢‖‖𝐿2 .(3.54)

It suffices therefore to control the terms ‖‖𝑅ℎ𝐷
ℓ
𝑡 𝑢‖‖𝐿2 for ℓ ≥ 1. To do so we observe that

the kernel of 𝑅ℎ𝐷𝑡 is given by 𝐷𝑠𝒦ℎ where𝒦ℎ is the kernel of 𝑅ℎ. Recalling (3.18), we
need consequently to control ‖‖𝜕ℓ𝑠𝒦𝑗,ℎ(𝑡, 𝑠)‖‖ℒ(𝒳;𝒴) for 𝑗 = 1, 2 and prove that they sat-
isfy the estimate of Lemma 3.10. Concerning the term 𝜕ℓ𝑠𝒦1,ℎ(𝑡, 𝑠) we remark that the



UNIQUE CONTINUATION FOR SCHRÖDINGER OPERATORS 369

desired bound follows from Lemma 3.10 applied to some derivatives of 𝜃 and 𝑓 instead
of 𝜃 and 𝑓. We need consequently to study 𝜕ℓ𝑠𝒦2,ℎ(𝑡, 𝑠). According to Lemma 3.12,
applied to 𝒦2,ℎ = ℐ2,ℎ[𝜒, 𝜃, 𝑓, 0], and recalling that supp(ℐ2,ℎ) ⊂ supp(𝜒) × supp(𝜃)
which is a compact set in (𝑡, 𝑠) (whence |𝑡 − 𝑠|𝑘2 is bounded on this set) we have

‖
‖𝜕ℓ𝑠𝒦2,ℎ(𝑡, 𝑠)‖‖ℒ(𝒳,𝒴) ≤ 𝐶ℓℎ−ℓ ∑

𝑘𝑗≤ℓ

‖
‖ℐ2,ℎ[𝜒, 𝜃(𝑘3), 𝑓(𝑘4), 𝑘5](𝑡, 𝑠)

‖
‖ℒ(𝒳,𝒴)

+ 𝐶ℓℎ−ℓ ∑
𝑘𝑗≤ℓ

‖
‖𝐵[𝜃(𝑘2), 𝑘3, 𝑘4](𝑡, 𝑠)

‖
‖ℒ(𝒳,𝒴) ,

where we take 𝜒1 = 𝜒 in the definition of 𝐵. Using Lemma 3.10 to estimate all terms
involving ℐ2,ℎ and proceeding as in (3.40) to estimate all terms involving 𝐵 (where we
use the localization of supp(𝜒′)), we obtain for all (𝑡, 𝑠) ∈ ℝ2 and ℎ ≤ 1,

‖
‖𝜕ℓ𝑠𝒦2,ℎ(𝑡, 𝑠)‖‖ℒ(𝒳,𝒴) ≤ 𝐶ℓℎ−ℓ (𝑒−

𝑐ℎ−1/3
𝑅 + 𝑒−𝑐/ℎ)∑

𝑗≤ℓ

‖
‖𝑓(𝑗)

‖
‖2,𝑅,𝑈 .

Coming back to (3.54), we have now obtained (3.53), which concludes the proof of
Proposition 3.6. □

Lemma 3.12. For all 𝜒1, 𝜃1 ∈ 𝐶∞
𝑐 (ℝ) and 𝑓 ∈ 𝒢2,𝑅𝑏 (ℝ;ℒ(𝒳, 𝒴)), 𝑚, ℓ ∈ ℕ, there are

coefficients 𝛼𝑘, 𝛽𝑘 ∈ ℝ such that

𝜕ℓ𝑠 ℐ2,ℎ[𝜒1, 𝜃, 𝑓,𝑚](𝑡, 𝑠) = ∑
𝑘𝑗≤ℓ

𝛼𝑘ℎ−𝑘1(𝑡 − 𝑠)𝑘2ℐ2,ℎ[𝜒1, 𝜃(𝑘3), 𝑓(𝑘4), 𝑚 + 𝑘5](𝑡, 𝑠)

+ ∑
𝑘𝑗≤ℓ

𝛽𝑘ℎ−𝑘1𝐵[𝜃(𝑘2), 𝑘3, 𝑚 + 𝑘4](𝑡, 𝑠),(3.55)

where

𝐵[𝜃,𝑚, 𝑘](𝑡, 𝑠) ≔ 𝜒1(𝑡)𝜃(𝑠)∫
ℝ×ℝ

𝜒′ ( 𝑡 + 𝑤
2 ) 𝜂(ℎ2/3𝜉) ̃𝑓 ( 𝑡 + 𝑤

2 + 𝑖ℎ𝜉)

× 𝑒𝑖(𝑡−𝑤)𝜉𝑒−
|𝑤−𝑠|2
2ℎ (𝑤 − 𝑠)𝑘 ( 𝑡 + 𝑤

2 + 𝑖ℎ𝜉 − 𝑠)
𝑚
𝑑𝑤𝑑𝜉.(3.56)

The proof of Lemma 3.12 relies on the following identities.

Lemma 3.13. We have

𝜕𝑡ℐ2,ℎ[𝜒1, 𝜃, 𝑓,𝑚] = ℐ2,ℎ[𝜒′1, 𝜃, 𝑓,𝑚] − ℎ−1(𝑡 − 𝑠)ℐ2,ℎ[𝜒1, 𝜃, 𝑓,𝑚]
+ 2ℎ−1ℐ2,ℎ[𝜒1, 𝜃, 𝑓,𝑚 + 1],(3.57)

and

(𝜕𝑡 + 𝜕𝑠)ℐ2,ℎ[𝜒1, 𝜃, 𝑓,𝑚] = ℐ2,ℎ[𝜒′1, 𝜃, 𝑓,𝑚] + ℐ2,ℎ[𝜒1, 𝜃′, 𝑓,𝑚]
+ ℐ2,ℎ[𝜒1, 𝜃, 𝑓′, 𝑚] + 𝐵[𝜃,𝑚, 0].(3.58)

As a direct corollary of Lemma 3.13, decomposing

𝜕𝑠ℐ2,ℎ = (𝜕𝑡 + 𝜕𝑠)ℐ2,ℎ − 𝜕𝑡ℐ2,ℎ,
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we deduce the following key formula

𝜕𝑠ℐ2,ℎ[𝜒1, 𝜃, 𝑓,𝑚] = ℐ2,ℎ[𝜒1, 𝜃′, 𝑓,𝑚] + ℐ2,ℎ[𝜒1, 𝜃, 𝑓′, 𝑚]
+ ℎ−1(𝑡 − 𝑠)ℐ2,ℎ[𝜒1, 𝜃, 𝑓,𝑚]
− 2ℎ−1ℐ2,ℎ[𝜒1, 𝜃, 𝑓,𝑚 + 1] + 𝐵[𝜃,𝑚, 0].(3.59)

We also notice that differentiation under the integral yields

𝜕𝑠𝐵[𝜃,𝑚, 𝑘] = 𝐵[𝜃′, 𝑚, 𝑘] + ℎ−1𝐵[𝜃,𝑚, 𝑘 + 1] − 𝑘𝐵[𝜃,𝑚, 𝑘 − 1] − 𝑚𝐵[𝜃,𝑚 − 1, 𝑘].
(3.60)

With these two formulas at hand, we are now prepared to prove Lemma 3.12.

Proof of Lemma 3.12 from (3.59) and (3.60). The proof proceeds by induction on ℓ ∈
ℕ. For ℓ = 0, the result holds straightforwardly with 𝛼(0,0,0,0,0) = 1 and 𝛽(0,0,0,0) = 0.
Assume now that the result holds at range ℓ and prove it at range ℓ + 1. Differentiat-
ing (3.55), we obtain

𝜕ℓ+1𝑠 ℐ2,ℎ[𝜒1, 𝜃, 𝑓,𝑚] = ∑
𝑘𝑗≤ℓ

𝛼𝑘ℎ−𝑘1((𝑡 − 𝑠)𝑘2𝜕𝑠ℐ2,ℎ[𝜒1, 𝜃(𝑘3), 𝑓(𝑘4), 𝑚 + 𝑘5]

− 𝑘2(𝑡 − 𝑠)𝑘2−1ℐ2,ℎ[𝜒1, 𝜃(𝑘3), 𝑓(𝑘4), 𝑚 + 𝑘5]) + ∑
𝑘𝑗≤ℓ

𝛽𝑘ℎ−𝑘1𝜕𝑠𝐵[𝜃(𝑘2), 𝑘3, 𝑚 + 𝑘4].

Using (3.59), we deduce that the first term, involving 𝜕𝑠ℐ2,ℎ, has the form (3.55) with
ℓ replaced by ℓ + 1. The second term, involving (𝑡 − 𝑠)𝑘2−1ℐ2,ℎ, is directly under the
appropriate form as well. Finally, (3.60) implies that the last term, involving 𝜕𝑠𝐵, is also
of the form (3.55) with ℓ replaced by ℓ + 1. □

We conclude by proving Lemma 3.13.

Proof of Lemma 3.13. Formula (3.57) directly follows from rewriting ℐ2,ℎ as in (3.28)
and differentiating under the integral. Concerning Formula (3.58), we rewrite ℐ2,ℎ as

ℐ2,ℎ(𝑡, 𝑠) = 𝜒1(𝑡)𝜃(𝑠)𝒥2(𝑡, 𝑠) with(3.61)

𝒥2(𝑡, 𝑠) ≔ ∫
ℝ×ℝ

𝐹(𝑡, 𝑤, 𝑠, 𝜉)𝑒𝑖(𝑡−𝑤)𝜉𝑒−
|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉,

𝐹(𝑡, 𝑤, 𝑠, 𝜉) ≔ ( ̃𝑓𝑟 ( 𝑡 + 𝑤
2 + 𝑖ℎ𝜉) − 𝜂(ℎ2/3𝜉)𝑓(𝑠)) ( 𝑡 + 𝑤

2 + 𝑖ℎ𝜉 − 𝑠)
𝑚
.

From (3.61) we deduce

(𝜕𝑡 + 𝜕𝑠)ℐ2,ℎ(𝑡, 𝑠) = 𝜒′1(𝑡)𝜃(𝑠)𝒥2(𝑡, 𝑠) + 𝜒1(𝑡)𝜃′(𝑠)𝒥2(𝑡, 𝑠)
+ 𝜒1(𝑡)𝜃(𝑠)(𝜕𝑡 + 𝜕𝑠)𝒥2(𝑡, 𝑠).(3.62)

Next, we focus on 𝒥2. Using that (𝜕𝑡 + 𝜕𝑤)(𝑒𝑖(𝑡−𝑤)𝜉) = 0, we have on the one hand

𝜕𝑡𝒥2(𝑡, 𝑠) =∫
ℝ×ℝ

𝜕𝑡𝐹(𝑡, 𝑤, 𝑠, 𝜉)𝑒𝑖(𝑡−𝑤)𝜉𝑒−
|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉

−∫
ℝ×ℝ

𝐹(𝑡, 𝑤, 𝑠, 𝜉)𝜕𝑤(𝑒𝑖(𝑡−𝑤)𝜉)𝑒−
|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉.
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Integrating by parts in 𝑤 in the second integral, and using (𝜕𝑤 + 𝜕𝑠)(𝑒−
|𝑤−𝑠|2
2ℎ ) = 0, we

deduce

𝜕𝑡𝒥2(𝑡, 𝑠) =∫
ℝ×ℝ

(𝜕𝑡 + 𝜕𝑤)𝐹(𝑡, 𝑤, 𝑠, 𝜉)𝑒𝑖(𝑡−𝑤)𝜉𝑒−
|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉

−∫
ℝ×ℝ

𝐹(𝑡, 𝑤, 𝑠, 𝜉)𝑒𝑖(𝑡−𝑤)𝜉𝜕𝑠(𝑒−
|𝑤−𝑠|2
2ℎ )𝑑𝑤𝑑𝜉.

On the other hand, we have

𝜕𝑠𝒥2(𝑡, 𝑠) =∫
ℝ×ℝ

𝜕𝑠𝐹(𝑡, 𝑤, 𝑠, 𝜉)𝑒𝑖(𝑡−𝑤)𝜉𝑒−
|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉

+∫
ℝ×ℝ

𝐹(𝑡, 𝑤, 𝑠, 𝜉)𝑒𝑖(𝑡−𝑤)𝜉𝜕𝑠(𝑒−
|𝑤−𝑠|2
2ℎ )𝑑𝑤𝑑𝜉,

which, combined with the previous line, yields

(𝜕𝑡 + 𝜕𝑠)𝒥2(𝑡, 𝑠) = ∫
ℝ×ℝ

(𝜕𝑡 + 𝜕𝑤 + 𝜕𝑠)𝐹(𝑡, 𝑤, 𝑠, 𝜉)𝑒𝑖(𝑡−𝑤)𝜉𝑒−
|𝑤−𝑠|2
2ℎ 𝑑𝑤𝑑𝜉.(3.63)

We next notice that (𝜕𝑡 + 𝜕𝑤 + 𝜕𝑠) ( 𝑡+𝑤2 + 𝑖ℎ𝜉 − 𝑠)
𝑚
= 0 and

(𝜕𝑡 + 𝜕𝑤 + 𝜕𝑠) ( ̃𝑓𝑟 ( 𝑡 + 𝑤
2 + 𝑖ℎ𝜉) − 𝜂(ℎ2/3𝜉)𝑓(𝑠))

= 𝜕Re(𝑧) ( ̃𝑓𝑟) ( 𝑡 + 𝑤
2 + 𝑖ℎ𝜉) − 𝜂(ℎ2/3𝜉)𝑓′(𝑠)

= 𝜂(ℎ2/3𝜉)(𝜒′ ( 𝑡 + 𝑤
2 ) ̃𝑓 ( 𝑡 + 𝑤

2 + 𝑖ℎ𝜉)

+ 𝜒 (𝑡 + 𝑤
2 ) 𝜕Re(𝑧) ̃𝑓 ( 𝑡 + 𝑤

2 + 𝑖ℎ𝜉) − 𝑓′(𝑠)).

Combining this togetherwith (3.63) and (3.62) and the fact that 𝜕Re(𝑧) ̃𝑓= (̃𝑓′) (from (3.5)
in Lemma 3.2) finally yields (3.58) and concludes the proof of the lemma. □

4. The unique continuation theorems

4.1. Adding partially Gevrey lower-order terms. With the results of Section 3 at
our disposal, we can now add in the Carleman estimate of Theorem 2.5 lower-order
terms with coefficients which are Gevrey 2with respect to 𝑡 and bounded with respect
to 𝑥. Let 𝐼 ⊂ ℝ and 𝑉 ⊂ ℝ𝑑 be open sets and defineΩ ≔ 𝐼 ×𝑉 . The goal of this section
is to prove the following local Carleman estimate for the operator 𝑃𝖻,𝗊 defined in (1.6).

Theorem 4.1 (Carleman estimate with Gevrey lower-order terms). Let 𝐱0 = (𝑡0, 𝑥0) ∈
Ω = 𝐼×𝑉 ⊂ ℝ1+𝑑 and assume that the metric 𝑔 is Lipschitz on 𝑉 , with time-independent
coefficients, and 𝖻𝑗 , 𝗊 ∈ 𝒢2(𝐼; 𝐿∞(𝑉; ℂ)). Assume that 𝜙 and 𝑓 satisfy the assumptions of
Theorem 2.5. Then, for all 𝑘 ∈ ℕ and all 𝜇 > 0, there exist 𝑟, 𝖽, 𝐶, 𝜏0 > 0 such that for all
𝜏 ≥ 𝜏0 and 𝑤 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟)), we have

𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝑃𝖻,𝗊𝑤‖‖

2

𝐿2
+ 𝐶𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐻−𝑘
𝑡 𝐻1𝑥

≥ 𝜏‖𝑄𝜙
𝜇,𝜏𝑤‖2𝐻1𝜏

.(4.1)

Note that this Carleman estimate is still valid for 𝑃𝖻,𝗊,𝜑 (defined in (4.6)) in place of
𝑃𝖻,𝗊 according to Remark 2.6.
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Proof. We define 𝑅 ≔ ∑𝑑
𝑗=1 𝖻𝑗𝜕𝑥𝑗 + 𝗊 so that 𝑃𝖻,𝗊 = 𝑖𝜕𝑡 + Δ𝑔,1 + 𝑅. We estimate

‖
‖𝑄

𝜙
𝜇,𝜏𝑃𝖻,𝗊𝑤‖‖

2

𝐿2
≳ ‖
‖𝑄

𝜙
𝜇,𝜏𝑃𝑤‖‖

2

𝐿2
−‖‖𝑄

𝜙
𝜇,𝜏𝑅𝑤‖‖

2

𝐿2
. Application of (2.7) in Theorem 2.5 yields

‖
‖𝑄

𝜙
𝜇,𝜏𝑃𝖻,𝗊𝑤‖‖

2

𝐿2
+ 𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐻−𝑘
𝑡 𝐻1𝑥

≳ ‖
‖𝑄

𝜙
𝜇,𝜏𝑃𝑤‖‖

2

𝐿2
+ 𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐻−𝑘
𝑡 𝐻1𝑥

− ‖
‖𝑄

𝜙
𝜇,𝜏𝑅𝑤‖‖

2

𝐿2

≳ 𝜏‖𝑄𝜙
𝜇,𝜏𝑤‖2𝐻1𝜏

− ‖
‖𝑄

𝜙
𝜇,𝜏𝑅𝑤‖‖

2

𝐿2
.(4.2)

We now estimate the last term using Proposition 3.6, up to reducing 𝑟. In order for all
the setting of Section 3 to apply, wepick 𝑟0 small enough so that 𝐽 = (𝑡0−2𝑟0, 𝑡0+2𝑟0) ⊂ 𝐼
and 𝜌 > 0 is arbitrary. If 𝑟 is the one given by Theorem 2.5, we reduce it again in order
to ensure the assumption 0 < 𝑟 < min( 𝑟04 ,

𝜌
3 ). We select 𝜒, 𝜃, 𝜂 with the additional

assumption that 𝜃 = 1 on [𝑡0 − 𝑟/2, 𝑡0 + 𝑟/2]. We denote by 𝐵𝑗,ℎ the approximate
conjugated operator associated to 𝖻𝑗 as defined in Section 3, that is𝐵𝑗,ℎ = 𝐹ℎ as defined
in (3.14), in the case 𝑓 = 𝖻𝑗 and ℎ is linked to 𝜏 via ℎ = 𝜇/𝜏3. We will keep however the
ℎ notation for the conjugated operator. The function 𝖻𝑗 ∈ 𝒢2(𝐽; 𝐿∞(𝑉; ℂ)) is identified
with the multiplication operator in 𝒢2(𝐽; ℒ(𝐿2(𝑉; ℂ))), that is, wemake the choice𝒳 =
𝒴 = 𝐿2(𝑉) and ℬ = 𝐿∞(𝑉).
We now assume𝑤 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟/2)) so that 𝜃𝑤 = 𝑤. Applying Proposition 3.6 with
𝑢 = 𝑒𝜏𝜙𝜕𝑥𝑗𝑤 = 𝜃𝑢 gives

‖
‖‖𝜒𝐵𝑗,ℎ𝑒

−𝜇|𝐷𝑡|2
2𝜏3 𝑢 − 𝑒−

𝜇|𝐷𝑡|2
2𝜏3 𝖻𝑗𝑢‖‖‖𝐿2(ℝ;𝐿2(𝑉))

≤ 𝐶𝑒−𝑐𝜏 ‖𝑢‖𝐻−𝑘(ℝ;𝐿2(𝑉)) .

According to (3.15), 𝐵𝑗,ℎ ∈ ℒ(𝐿2(ℝ; 𝐿2(𝑉))) uniformly in ℎ ∈ (0, 1), which, combined
with the previous estimate, gives

‖
‖𝑄

𝜙
𝜇,𝜏𝖻𝑗𝜕𝑥𝑗𝑤

‖
‖𝐿2 =

‖
‖‖𝑒

−𝜇|𝐷𝑡|2
2𝜏3 𝖻𝑗𝑢‖‖‖𝐿2

≲ ‖
‖‖𝐵𝑗,ℎ𝑒

− 𝜇|𝐷𝑡|2
2𝜏3 𝑢‖‖‖𝐿2

+ 𝑒−𝑐𝜏 ‖𝑢‖𝐻−𝑘
𝑡 𝐿2𝑥

≲ ‖
‖‖𝑒

−𝜇|𝐷𝑡|2
2𝜏3 𝑢‖‖‖𝐿2

+ 𝑒−𝑐𝜏 ‖𝑢‖𝐻−𝑘
𝑡 𝐿2𝑥

= ‖
‖𝑄

𝜙
𝜇,𝜏𝜕𝑥𝑗𝑤

‖
‖𝐿2 + 𝑒−𝑐𝜏 ‖‖𝑒𝜏𝜙𝜕𝑥𝑗𝑤

‖
‖𝐻−𝑘

𝑡 𝐿2𝑥
.

Using that 𝑒𝜏𝜙𝜕𝑥𝑗𝑤 = 𝜕𝑥𝑗 (𝑒𝜏𝜙𝑤) − 𝜏(𝜕𝑥𝑗𝜙)𝑒𝜏𝜙𝑤 and [𝑒−
𝜇|𝐷𝑡|2
2𝜏3 , 𝜕𝑥𝑗 ] = 0, this implies

‖
‖𝑄

𝜙
𝜇,𝜏𝖻𝑗𝜕𝑥𝑗𝑤

‖
‖𝐿2 ≲ 𝜏 ‖‖𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 +

‖
‖𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐻1𝑥

+ 𝜏𝑒−𝑐𝜏 ‖‖𝑒𝜏𝜙𝑤
‖
‖𝐻−𝑘

𝑡 𝐻1𝑥
.

We proceed similarly for the potential 𝗊 to find
‖
‖𝑄

𝜙
𝜇,𝜏𝗊𝑤‖‖𝐿2 ≲

‖
‖𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 + 𝑒−𝑐𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖𝐻−𝑘

𝑡 𝐿2𝑥
,

and therefore adding these two estimates yields

(4.3) ‖
‖𝑄

𝜙
𝜇,𝜏𝑅𝑤‖‖𝐿2 ≲ 𝜏 ‖‖𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 +

‖
‖𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐻1𝑥

+ 𝑒−
𝑐
2 𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖𝐻−𝑘

𝑡 𝐻1𝑥
.
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Estimate (4.3) allows to absorb the last term in (4.2) up to taking 𝜏 ≥ 𝜏0 with 𝜏 suffi-
ciently large. This concludes the proof of Theorem 4.1 up to renaming the constants
𝑟, 𝐶, 𝑐, 𝖽 and 𝜏0. □

4.2. Using the Carleman estimate: Proof of Theorem 1.2. In this section, we
prove Theorem 1.2 as a consequence of the Carleman estimate of Theorem 4.1. As
usual in this procedure (see e.g. [Hör94, Chapter 28], [Ler19] or [LL23]), we need to
construct a weight function 𝜙 that

• satisfies the assumptions of Theorem 4.1, that is the assumptions of Theo-
rem 2.5;

• has level sets appropriately curved with respect to the level sets ofΨ; this is the
geometric convexification part.

This is the content of Lemma 4.2, in which we recall that 𝐼 ⊂ ℝ and 𝑉 ⊂ ℝ𝑑 denote
bounded open sets and we write 𝐱 = (𝑡, 𝑥).

Lemma 4.2. Let 𝐱0 = (𝑡0, 𝑥0) ∈ Ω = 𝐼 × 𝑉 ⊂ ℝ1+𝑑 and assume that the metric 𝑔
is Lipschitz on 𝑉 , with time-independent coefficients, and 𝖻𝑗 , 𝗊 ∈ 𝒢2(𝐼; 𝐿∞(𝑉; ℂ)). Let
Ψ ∈ 𝐶2(Ω;ℝ) satisfy (1.12) and Ψ(𝐱0) = 0. Then there exists a quadratic polynomial 𝜙
and a function 𝑓 satisfying the assumptions of Theorem 2.5 together with the following
properties: 𝜙(𝐱0) = 0 and there exists 𝑟0 such that for any 0 < 𝑟 < 𝑟0 there exists 𝜂 > 0 so
that 𝜙(𝐱) ≤ −𝜂 for 𝐱 ∈ {Ψ ≤ 0} ∩ {𝑟/2 ≤ |𝐱 − 𝐱0| ≤ 𝑟}.

Proof. Given Ψ ∈ 𝐶2(Ω;ℝ) define ̌𝜙 = 𝐺(Ψ) and 𝑓 as in (2.37) with 𝐺(𝑠) = 𝑒𝜆𝑠 − 1.
Note in particular that ̌𝜙 and Ψ have the same level sets. Then using Corollary 2.14,
one has, for 𝜆 large enough, almost everywhere on 𝑈 and for every vector field 𝑋 ,

ℬ𝑔, ̌𝜙,𝑓(𝑋) ≥ 𝐶0 |𝑋|
2
𝑔 , and E𝑔, ̌𝜙,𝑓 ≥ 𝐶0 ||∇𝑔 ̌𝜙||

2
𝑔 > 0.(4.4)

Now define ̌𝜙𝑇 by
̌𝜙𝑇(𝐱) ≔ ∑

|𝛼|≤2

1
𝛼! (𝜕

𝛼 ̌𝜙)(𝐱0)(𝐱 − 𝐱0)𝛼.

Observe that both quantities ℬ𝑔, ̌𝜙,𝑓 and E𝑔, ̌𝜙,𝑓 involve derivatives of order at most 2 of
̌𝜙. Since Ψ is 𝐶2 and 𝐺 is smooth, ̌𝜙 = 𝐺(Ψ) is of class 𝐶2 as well. Since (𝜕𝛼 ̌𝜙𝑇)(𝐱0) =

(𝜕𝛼 ̌𝜙)(𝐱0) for 𝛼 ≤ 2 we obtain by continuity that for any 𝜀 > 0, there exists 𝑟1 > 0 such
that ‖‖ ̌𝜙𝑇 − ̌𝜙‖‖𝐶2(𝐵(𝐱0,𝑟1))

< 𝜀. Define finally 𝜙 by

𝜙 ≔ ̌𝜙𝑇 − 𝛿|𝐱 − 𝐱0|2.

Then there is 𝛿0 > 0 such that for all 𝛿 ∈ (0, 𝛿0), ‖‖ ̌𝜙𝑇 − 𝜙‖‖𝐶2(𝐵(𝐱0,𝑟1))
< 𝜀 and hence

‖
‖𝜙 − ̌𝜙‖‖𝐶2(𝐵(𝐱0,𝑟1))

< 2𝜀. As a consequence of (4.4), together with the fact that ℬ𝑔,𝜙,𝑓

and E𝑔,𝜙,𝑓 (defined in (2.4)–(2.5)) are continuous with respect to 𝜙 in 𝐶2 topology, we
finally deduce existence of 𝑟1 > 0 and 𝛿 > 0 such that for a.e. 𝐱 ∈ 𝐵(𝐱0, 𝑟1) and for all
vector fields 𝑋 ,

ℬ𝑔,𝜙,𝑓(𝐱)(𝑋) ≥
𝐶0
2 |𝑋|2𝑔 , and E𝑔,𝜙,𝑓(𝐱) ≥

𝐶0
2 ||∇𝑔𝜙||

2
𝑔 (𝐱) > 0,
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As a consequence, 𝜙 satisfies the assumptions of Theorem 2.5. The geometric state-
ment of the lemma follows from the facts that ̌𝜙 andΨ have the same level sets and ̌𝜙𝑇
is the order 2 Taylor expansion of ̌𝜙 (see e.g. [LL23, Proof of Theorem 2.2]). □

We are now prepared to prove Theorem 1.2.

Proof of Theorem 1.2. Consider 𝑢 a solution of 𝑃𝖻,𝗊𝑢 = 0 such that 𝑢 = 0 inΩ∩{Ψ > 0}.
Let 𝜙 be as in Lemma 4.2. Theorem 4.1 for 𝑘 = 0 implies that there exist 𝑟, 𝖽, 𝐶, 𝜏0 > 0
such that for all 𝜏 ≥ 𝜏0 and 𝑤 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟)), we have

(4.5) 𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝑃𝖻,𝗊𝑤‖‖

2

𝐿2
+ 𝐶𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐿2𝑡𝐻1𝑥
≥ 𝜏‖𝑄𝜙

𝜇,𝜏𝑤‖2𝐻1𝜏
.

We now claim that Estimate (4.5) still holds for functions 𝑤 ∈ 𝐿2(𝐼; 𝐻1(𝑉)) such that
𝑃𝖻,𝗊𝑤 ∈ 𝐿2 and supp𝑤 ⊂ 𝐵(𝐱0, 𝑟). To prove this claim, using the usual approximation
argument, we define 𝑤𝜀 ≔ 𝜃𝜀 ∗ 𝑤 for 𝜃𝜀 as in Lemma A.2. For 𝜀 small enough, we
have 𝑤𝜀 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟)) so that (4.5) holds for 𝑤𝜀. Since 𝑤 ∈ 𝐿2(𝐼; 𝐻1(𝑉)) is compactly
supported, we have 𝑤𝜀 ⟶𝜀→0

𝑤 in 𝐿2(𝐼; 𝐻1(𝑉)). Moreover, for 𝜏 fixed, the multiplication

by 𝑒𝜏𝜙 is continuous from 𝐿2(𝐼; 𝐻1(𝑉)) to 𝐿2(𝐼; 𝐻1(𝑉)), we get ‖‖𝑒𝜏𝜙(𝑤 − 𝑤𝜀)‖‖𝐿2𝑡𝐻1𝑥
≤

𝐶 ‖𝑤 − 𝑤𝜀‖𝐻1 ⟶𝜀→0
0 and the second term in (4.5) with ‖‖𝑒𝜏𝜙𝑤𝜀

‖
‖
2

𝐿2𝑡𝐻1𝑥
→ ‖

‖𝑒𝜏𝜙𝑤
‖
‖
2

𝐿2𝑡𝐻1𝑥
.

For 𝜏, 𝜇 fixed, 𝑄𝜙
𝜇,𝜏 is a continuous operator from 𝐿2comp(𝐵(𝐱0, 𝑟)) to 𝐿2(ℝ𝑛), and also

from 𝐿2𝑡𝐻1
𝑥 ∩ 𝐿2comp(𝐵(𝐱0, 𝑟)) to 𝐻1

𝜏 (using regularization in time, see Lemma A.4), so
we have

‖
‖𝑄

𝜙
𝜇,𝜏𝑤 − 𝑄𝜙

𝜇,𝜏𝑤𝜀
‖
‖𝐻1𝜏

≤ 𝐶(𝜏, 𝜇, 𝑟) ‖𝑤 − 𝑤𝜀‖𝐿2𝑡𝐻1𝑥
,

‖
‖𝑄

𝜙
𝜇,𝜏𝑃𝖻,𝗊(𝑤 − 𝑤𝜀)‖‖𝐿2 ≤ 𝐶(𝜏, 𝜇, 𝑟) ‖‖𝑃𝖻,𝗊(𝑤 − 𝑤𝜀)‖‖𝐿2 .

The first term converges to zero, so it remains to consider the second one. Since by
assumption of the claim, 𝑃𝖻,𝗊𝑤 ∈ 𝐿2, 𝜃𝜀∗(𝑃𝖻,𝗊𝑤) converges to 𝑃𝖻,𝗊𝑤 in 𝐿2, so it is enough
to prove that 𝜃𝜀 ∗ (𝑃𝖻,𝗊𝑤) − 𝑃𝖻,𝗊𝑤𝜀 converges to zero in 𝐿2. Since 𝑃𝖻,𝗊 is a differential
operator of order 2 in 𝑥 and of order 1 in 𝑡 with main coefficients at least Lipschitz and
𝐿∞ lower-order terms, Lemmata A.2 and A.3 apply and give the sought convergence.
This concludes the proof of the claim that (4.5) still holds for functions𝑤 ∈ 𝐿2(𝐼; 𝐻1(𝑉))
such that 𝑃𝖻,𝗊𝑤 ∈ 𝐿2 and supp𝑤 ⊂ 𝐵(𝐱0, 𝑟).
In addition to the Carleman estimate (4.5) we have moreover:
(1) 𝜙(𝐱0) = 0 and there exists 𝜂 > 0 so that 𝜙(𝐱) ≤ −𝜂 for 𝐱 ∈ {Ψ ≤ 0} ∩ {𝑟 ≥

|𝐱 − 𝐱0| ≥ 𝑟/2},
(2) 𝜙(𝐱) ≤ 𝖽/4 for |𝐱 − 𝐱0| ≤ 𝑟.

Property (1) comes from Lemma 4.2 and Property (2) is just the continuity of 𝜙, up
to reducing 𝑟. Let 𝜒 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟)) with 𝜒 = 1 in 𝐵(𝐱0, 𝑟/2). In order to apply the
Carleman estimate (4.5) to 𝑤 = 𝜒𝑢 ∈ 𝐿2(𝐼; 𝐻1(𝑉)), we first estimate

‖
‖𝑄

𝜙
𝜇,𝜏𝑃𝖻,𝗊𝜒𝑢‖‖𝐿2 ≤

‖
‖𝑄

𝜙
𝜇,𝜏𝜒𝑃𝖻,𝗊𝑢‖‖𝐿2 +

‖
‖𝑄

𝜙
𝜇,𝜏[𝑃𝖻,𝗊, 𝜒]𝑢‖‖𝐿2 =

‖
‖𝑄

𝜙
𝜇,𝜏[𝑃𝖻,𝗊, 𝜒]𝑢‖‖𝐿2

≤ ‖
‖𝑒𝜏𝜙[𝑃𝖻,𝗊, 𝜒]𝑢

‖
‖𝐿2 ≤ 𝑒−𝜂𝜏 ‖𝑢‖𝐿2𝑡𝐻1𝑥

,
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according to the fact that supp(∇𝐱𝜒) ⊂ {𝑟 ≥ |𝐱 − 𝐱0| ≥ 𝑟/2} and supp(𝑢) ⊂ {Ψ ≤ 0},
Property (1) and the fact that [𝑃𝖻,𝗊, 𝜒] is a differential operator of order one with no
derivatives in 𝑡. We have as well

𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤
‖
‖𝐿2𝑡𝐻1𝑥

≤ 𝑒−3𝖽𝜏/4 ‖𝑢‖𝐿2𝑡𝐻1𝑥
,

thanks to Property (2). Plugging the last two estimates in (4.5), we finally obtain that
there exists a 𝛿 > 0 such that

‖
‖𝑄

𝜙
𝜇,𝜏𝜒𝑢‖‖𝐿2 ≤ ‖𝑄𝜙

𝜇,𝜏𝜒𝑢‖2𝐻1𝜏
≤ 𝐶𝑒−𝛿𝜏 ‖𝑢‖𝐿2𝑡𝐻1𝑥

,

which implies that ‖‖𝑄
𝜙+𝛿
𝜇,𝜏 𝜒𝑢‖‖𝐿2 ≤𝐶 uniformly in 𝜏≥𝜏0. Lemma A.1 gives supp(𝜒𝑢)⊂

{𝜙 ≤ −𝛿}. Since 𝜙(𝐱0) = 0 and 𝜒 = 1 in 𝐵(𝐱0, 𝑟/2) one has that𝑊 = 𝐵(𝐱0, 𝑟/2) ∩ {𝜙 >
−𝛿/2} is a neighborhood of 𝐱0 in which 𝜒𝑢 = 𝑢 = 0 and the proof of Theorem 1.2 is
complete. □

4.3. Reducing the regularity of the solution: Proof of Theorem 1.3. Theorem 1.2
concerns solutions 𝑢 ∈ 𝐿2(𝐼; 𝐻1(𝑉)) of the Schrödinger equation 𝑃𝖻,𝗊𝑢 = 0. The
𝐿2(𝐼; 𝐻1(𝑉)) regularity allows in particular not to care about the divergence form and
to make sense of 𝖻𝑗(𝑡, 𝑥)𝜕𝑥𝑗𝑢(𝑡, 𝑥) in the sense of distributions if 𝑏 ∈ 𝐿∞(𝐼 × 𝑉) only.
In the present section, assuming divergence form of the principal part and additional
space regularity on the vectorfield 𝖻, we generalize Theorem 1.2 to 𝐿2(𝐼 × 𝑉) solutions
to 𝑃𝖻,𝗊𝑢 = 0 and prove Theorem 1.3. Since the statement of Theorem 1.3 is sensitive to
the form of the elliptic operator involved, we prove it in the more general setting with
𝑃𝖻,𝗊 replaced by

𝑃𝖻,𝗊,𝜑 = 𝑖𝜕𝑡 + Δ𝑔,𝜑 +
𝑑
∑
𝑗=1

𝖻𝑗(𝑡, 𝑥)𝜕𝑥𝑗 + 𝗊(𝑡, 𝑥),(4.6)

where Δ𝑔,𝜑 is defined in Section 1.3.2. Then we have 𝑃𝖻,𝗊 = 𝑃𝖻,𝗊,1, i.e. the statement
of Theorem 1.3 corresponds to taking 𝜑 = 1, and the application to the second part of
Theorem 1.5 to 𝜑 = √det(𝑔). The idea is to use the Carleman estimate of Theorem 4.1
for 𝑘 = 1 instead of 𝑘 = 0. This allows to exploit the ellipticity of Δ𝑔,𝜑 via Lemma 4.4
to gain regularity.
We first state a local regularity result for the Schrödinger operator 𝑃𝖻,𝗊,𝜑.

Lemma 4.3 (Local regularity for 𝑃𝖻,𝗊). Let 𝐼 ⊂ ℝ and 𝑉 ⊂ ℝ𝑑 be bounded open sets
andΩ = 𝐼 ×𝑉 . Assume that 𝑔𝑗𝑘 ∈ 𝑊1,∞

loc (𝑉; ℝ) is symmetric and satisfies (1.7), that 𝜑 ∈
𝑊1,∞

loc (𝑉; ℝ) satisfies 𝜑 > 0 on 𝑉 , that 𝗊, 𝖻𝑗 ∈ 𝐿∞loc(Ω; ℂ) and∑
𝑑
𝑗=1 𝜕𝑥𝑗𝖻𝑗 ∈ 𝐿∞loc(Ω; ℂ).

Let 𝜒𝑡 ∈ 𝐶∞
𝑐 (𝐼), 𝜒𝑥 ∈ 𝐶∞

𝑐 (𝑉) and set 𝜒3(𝑡, 𝑥) = 𝜒𝑡(𝑡)𝜒𝑥(𝑥). Then, there is a constant
𝐶 > 0 such that for any 𝑢 ∈ 𝐿2(Ω) with 𝜒3𝑃𝖻,𝗊,𝜑𝑢 ∈ 𝐻−1(ℝ;𝐻−1(ℝ𝑑)), we have 𝜒3𝑢 ∈
𝐻−1(ℝ;𝐻1(𝑉)) with

‖𝜒3𝑢‖𝐻−1(ℝ;𝐻1(𝑉)) ≤ 𝐶 ‖‖𝜒3𝑃𝖻,𝗊,𝜑𝑢
‖
‖𝐻−1(ℝ;𝐻−1(ℝ𝑑))

+ 𝐶 ‖𝑢‖𝐿2(Ω) .(4.7)

Proof. We prove (4.7) for all 𝑢 ∈ 𝐶∞
𝑐 (𝑉), and the lemma follows with a regularization

argument left to the reader. We define the operator 𝑅 ≔ ∑𝑑
𝑗=1 𝖻𝑗(𝑡, 𝑥)𝜕𝑥𝑗 + 𝗊(𝑡, 𝑥) so
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that 𝑃𝖻,𝗊,𝜑 = 𝑖𝜕𝑡+Δ𝑔,𝜑+𝑅 where Δ𝑔,𝜑 is defined in Section 1.3.2. We apply Lemma 4.4
for any 𝑡 ∈ ℝ to 𝑤 = ⟨𝐷𝑡⟩−1𝜒𝑡𝑢 and integrate in time to obtain

‖𝜒3𝑢‖𝐻−1(ℝ;𝐻1(𝑉)) =
‖
‖𝜒𝑥⟨𝐷𝑡⟩−1𝜒𝑡𝑢

‖
‖𝐿2(ℝ;𝐻1(ℝ𝑑))

≤ 𝐶 (‖‖𝜒𝑥⟨𝐷𝑡⟩−1𝜒𝑡Δ𝑔,𝜑𝑢
‖
‖𝐿2(ℝ;𝐻−1(ℝ𝑑))

+ ‖
‖⟨𝐷𝑡⟩−1𝜒𝑡𝑢

‖
‖𝐿2(ℝ;𝐿2(supp(𝜒𝑥)))

) .

Using that Δ𝑔,𝜑 = 𝑃𝖻,𝗊,𝜑 + 𝐷𝑡 − 𝑅, this implies

‖𝜒3𝑢‖𝐻−1(ℝ;𝐻1(𝑉))(4.8)

≤ 𝐶( ‖‖𝜒𝑥⟨𝐷𝑡⟩−1𝜒𝑡𝐷𝑡𝑢
‖
‖𝐿2(ℝ;𝐻−1(ℝ𝑑))

+ ‖
‖𝜒𝑥⟨𝐷𝑡⟩−1𝜒𝑡𝑃𝖻,𝗊,𝜑𝑢

‖
‖𝐿2(ℝ;𝐻−1(ℝ𝑑))

+ ‖
‖𝜒𝑥⟨𝐷𝑡⟩−1𝜒𝑡𝑅𝑢

‖
‖𝐿2(ℝ;𝐻−1(ℝ𝑑))

+ ‖
‖⟨𝐷𝑡⟩−1𝜒𝑡𝑢

‖
‖𝐿2(ℝ;𝐿2(supp(𝜒𝑥)))

).

Now observe that ‖‖⟨𝐷𝑡⟩−1𝜒𝑡𝐷𝑡
‖
‖𝐿2(ℝ)→𝐿2(ℝ)

< +∞, so that for any ̃𝜒𝑡 ∈ 𝐶∞
𝑐 (𝐼) with

̃𝜒𝑡 = 1 in a neighborhood of 𝜒𝑡, we have
‖
‖𝜒𝑥⟨𝐷𝑡⟩−1𝜒𝑡𝐷𝑡𝑢

‖
‖𝐿2(ℝ;𝐻−1(ℝ𝑑))

= ‖
‖𝜒𝑥⟨𝐷𝑡⟩−1𝜒𝑡𝐷𝑡 ̃𝜒𝑡𝑢‖‖𝐿2(ℝ;𝐻−1(ℝ𝑑))

(4.9)

≤ ‖
‖𝜒𝑥 ̃𝜒𝑡𝑢‖‖𝐿2(ℝ;𝐻−1(ℝ𝑑))

.

Next remark that
‖
‖𝜒𝑥⟨𝐷𝑡⟩−1𝜒𝑡𝑃𝖻,𝗊,𝜑𝑢

‖
‖𝐿2(ℝ;𝐻−1(ℝ𝑑))

= ‖
‖𝜒3𝑃𝖻,𝗊,𝜑𝑢

‖
‖𝐻−1(ℝ;𝐻−1(ℝ𝑑))

, and(4.10)

‖
‖⟨𝐷𝑡⟩−1𝜒𝑡𝑢

‖
‖𝐿2(ℝ;𝐿2(supp(𝜒𝑥)))

≤ ‖
‖𝜒𝑡𝑢

‖
‖𝐿2(ℝ;𝐿2(supp(𝜒𝑥)))

.(4.11)

To handle the last term, we argue by duality and write

‖
‖𝜒𝑥⟨𝐷𝑡⟩−1𝜒𝑡𝑅𝑢

‖
‖𝐿2(ℝ;𝐻−1(ℝ𝑑))

≤ ‖𝜒3𝑅𝑢‖𝐿2(ℝ;𝐻−1(ℝ𝑑))

= sup
𝜃∈𝒮(ℝ1+𝑑),‖𝜃‖𝐿2(ℝ;𝐻1(ℝ𝑑))≤1

||(𝜒3𝑅𝑢, 𝜃)𝐿2(ℝ1+𝑑)|| .(4.12)

We calculate

(𝜒3𝑅𝑢, 𝜃)𝐿2(ℝ1+𝑑) = ∫
ℝ1+𝑑

𝑑
∑
𝑗=1

𝜒3𝖻𝑗 ̄𝜃𝜕𝑥𝑗𝑢𝑑𝑡𝑑𝑥 +∫
ℝ1+𝑑

𝜒3𝗊𝑢 ̄𝜃 𝑑𝑡𝑑𝑥

= −∫
ℝ1+𝑑

𝑑
∑
𝑗=1

𝜕𝑥𝑗 (𝜒3𝖻𝑗 ̄𝜃)𝑢 𝑑𝑡𝑑𝑥 +∫
ℝ1+𝑑

𝜒3𝗊𝑢 ̄𝜃 𝑑𝑡𝑑𝑥

= −∫
ℝ1+𝑑

𝑑
∑
𝑗=1

(𝜕𝑥𝑗𝜒𝑥)𝜒𝑡𝖻𝑗 ̄𝜃𝑢𝑑𝑡 −∫
ℝ1+𝑑

𝜒3 div1(𝖻)𝑢 ̄𝜃 𝑑𝑡𝑑𝑥

−∫
ℝ1+𝑑

𝑑
∑
𝑗=1

𝜒3𝖻𝑗(𝜕𝑥𝑗 ̄𝜃)𝑢 𝑑𝑡𝑑𝑥 +∫
ℝ1+𝑑

𝜒3𝗊𝑢 ̄𝜃 𝑑𝑡𝑑𝑥.
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Consequently, the Cauchy–Schwarz inequality yields
||(𝜒3𝑅𝑢, 𝜃)𝐿2(ℝ𝑑+1)|| ≤ 𝐶 ‖𝖻‖𝐿∞(supp(𝜒3)) ‖𝑢‖𝐿2(Ω) ‖𝜃‖𝐿2(ℝ𝑑+1)

+ 𝐶 ‖div1(𝖻)‖𝐿∞(supp(𝜒3)) ‖𝑢‖𝐿2(Ω) ‖𝜃‖𝐿2(ℝ𝑑+1)
+ 𝐶 ‖𝖻‖𝐿∞(supp(𝜒3)) ‖𝑢‖𝐿2(Ω) ‖𝜃‖𝐿2(ℝ;𝐻1(ℝ𝑑))
+ 𝐶 ‖𝗊‖𝐿∞(supp(𝜒3)) ‖𝑢‖𝐿2(Ω) ‖𝜃‖𝐿2(ℝ𝑑+1)

≤ 𝐶 ‖𝑢‖𝐿2(Ω) ‖𝜃‖𝐿2(ℝ;𝐻1(ℝ𝑑)) ,

and we obtain thanks to (4.12) that ‖‖𝜒𝑥⟨𝐷𝑡⟩−1𝜒𝑡𝑅𝑢
‖
‖𝐿2(ℝ;𝐻−1(ℝ𝑑)

≤ 𝐶 ‖𝑢‖𝐿2(Ω) . Com-
bining this together with (4.9)–(4.11) in (4.8) yields finally (4.7) for all 𝑢 ∈ 𝐶∞

𝑐 (𝑉),
which concludes the proof of the lemma. □

We now prove Theorem 1.3 in the more general setting of the operator 𝑃𝖻,𝗊,𝜑.
Proof of Theorem 1.3. The proof of Theorem 1.3 proceeds as that of Theorem 1.2. The
main differences are that nowwe apply theCarleman estimate of Theorem4.1 for 𝑘 = 1
and that we consider the operator 𝑃𝖻,𝗊,𝜑. That Theorem 4.1 still holds for 𝑃𝖻,𝗊,𝜑 in place
of 𝑃𝖻,𝗊 is a direct consequence of Remark 2.6. The functions Ψ and 𝜙 are the same as
in the proof of Theorem 1.2, i.e. those furnished by Lemma 4.2.
Recall that for 𝜀, 𝑘 > 0,

‖
‖𝐷

𝑘
𝑡 𝑒−𝜀|𝐷𝑡|2‖‖𝐿2→𝐿2

= max
𝜉𝑡∈ℝ+

𝜉𝑘𝑡 𝑒−𝜀𝜉
2
𝑡 = ( 𝑘

2𝑒𝜀)
𝑘/2

.

As a consequence, we have for 𝜏 ≥ 1 (and using 𝑘 = 1 in the above identity),
‖
‖𝑄

𝜙
𝜇,𝜏𝑃𝖻,𝗊,𝜑𝑤‖‖𝐿2

= ‖
‖‖⟨𝐷𝑡⟩𝑒

−𝜇|𝐷𝑡|2
2𝜏3 ⟨𝐷𝑡⟩−1𝑒𝜏𝜙𝑃𝖻,𝗊,𝜑𝑤

‖
‖‖𝐿2

≤ 2 ‖‖‖𝑒
−𝜇|𝐷𝑡|2
2𝜏3 ⟨𝐷𝑡⟩−1𝑒𝜏𝜙𝑃𝖻,𝗊,𝜑𝑤

‖
‖‖𝐿2

+ 2 ‖‖‖𝐷𝑡𝑒
−𝜇|𝐷𝑡|2
2𝜏3 ⟨𝐷𝑡⟩−1𝑒𝜏𝜙𝑃𝖻,𝗊,𝜑𝑤

‖
‖‖𝐿2

≤ 𝐶𝜏3/2 ‖‖𝑒𝜏𝜙𝑃𝖻,𝗊,𝜑𝑤
‖
‖𝐻−1

𝑡 𝐿2𝑥
.

This, combined with the Carleman estimate of Theorem 4.1 for 𝑘 = 1 yields

(4.13) 𝐶𝜏3 ‖‖𝑒𝜏𝜙𝑃𝖻,𝗊,𝜑𝑤
‖
‖
2

𝐻−1
𝑡 𝐿2𝑥

+ 𝐶𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤
‖
‖
2

𝐻−1
𝑡 𝐻1𝑥

≥ 𝜏‖𝑄𝜙
𝜇,𝜏𝑤‖2𝐻1𝜏

.

We now apply Inequality (4.13) to 𝑤 = 𝜒𝑢 with 𝜒 as in the proof of Theorem 1.2 and
𝑢 ∈ 𝐿2(Ω) solution to 𝑃𝖻,𝗊,𝜑𝑢 in𝒟′(Ω). According to Lemma 4.3,𝜒3𝑢 ∈ 𝐻−1(ℝ;𝐻1(𝑉))
for all 𝜒3 with supp(𝜒3) ⊂ 𝐼 × 𝑉 . Moreover [𝑃𝖻,𝗊,𝜑, 𝜒] is a differential operator with 𝐿∞
coefficients and involving only space derivatives of order at most 1. As a consequence,
[𝑃𝖻,𝗊,𝜑, 𝜒]𝑢 ∈ 𝐻−1(ℝ; 𝐿2(𝑉)) and we need to estimate

𝜏2 ‖‖𝑒𝜏𝜙𝑃𝖻,𝗊,𝜑(𝜒𝑢)
‖
‖𝐻−1

𝑡 𝐿2𝑥
= 𝜏2 ‖‖𝑒𝜏𝜙[𝑃𝖻,𝗊,𝜑, 𝜒]𝑢

‖
‖𝐻−1

𝑡 𝐿2𝑥
.

We argue by duality and write

(4.14) ‖
‖𝑒𝜏𝜙[𝑃𝖻,𝗊,𝜑, 𝜒]𝑢

‖
‖𝐻−1

𝑡 𝐿2𝑥
= sup

𝜃∈𝒮(ℝ1+𝑑),‖𝜃‖𝐻1
𝑡 𝐿

2𝑥
≤1
||(𝑒𝜏𝜙[𝑃𝖻,𝗊,𝜑, 𝜒]𝑢, 𝜃)𝐿2(ℝ1+𝑑)

|| .
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We choose a function 𝜒1 ∈ 𝐶∞
𝑐 (Ω;ℝ) such that 𝜒1 = 1 on the support of ∇𝐱𝜒 and

supp(𝜒1) ⊂ {𝑟 ≥ |𝐱−𝐱0| ≥ 𝑟/2−𝜀}with 𝜀 > 0 small. We consider aswell𝜒2 ∈ 𝐶∞(Ω;ℝ)
with 𝜒2 = 1 on {Ψ < 0} and 𝜒2 = 0 on {Ψ > 𝜀}. Notice that this implies in particular
that 𝜒2 = 1 on the support of 𝑢. Recall that we have the property

𝜙(𝐱) ≤ −𝜂 for all 𝐱 ∈ {Ψ ≤ 0} ∩ {𝑟 ≥ |𝐱 − 𝐱0| ≥ 𝑟/2}.

By continuity, we can then choose 𝜀 > 0 sufficiently small such that

𝜙(𝐱) ≤ −𝜂/2 for all
𝐱 ∈ {Ψ ≤ 𝜀} ∩ {𝑟 ≥ |𝐱 − 𝐱0| ≥ 𝑟/2 − 𝜀} = supp(𝜒1) ∩ supp(𝜒2).(4.15)

We finally take 𝜒𝑡 ∈ 𝐶∞
𝑐 (𝐼) and 𝜒𝑥 ∈ 𝐶∞

𝑐 (𝑉) such that 𝜒3(𝑡, 𝑥) ≔ 𝜒𝑡(𝑡)𝜒𝑥(𝑥) satisfies
𝜒3 = 1 on supp(𝜒). The operator [𝑃𝖻,𝗊,𝜑, 𝜒] is a differential operator with derivatives of
order at most 1, no time derivatives, and with 𝐿∞ coefficients supported in supp(∇𝐱𝜒)
where 𝜒1 = 1. We then obtain

|(𝑒𝜏𝜙[𝑃𝖻,𝗊,𝜑, 𝜒]𝑢, 𝜃)𝐿2(ℝ𝑛+1)|

= |||∫ 𝑒𝜏𝜙[𝑃𝖻,𝗊,𝜑, 𝜒]𝑢𝜃𝑑𝑡𝑑𝑥
||| =

|||∫[𝑃𝖻,𝗊,𝜑, 𝜒](𝜒3𝑢)𝑒𝜏𝜙𝜒1𝜒2𝜃𝑑𝑡𝑑𝑥
|||

= |([𝑃𝖻,𝗊,𝜑, 𝜒](𝜒3𝑢), 𝑒𝜏𝜙𝜒1𝜒2𝜃)𝐿2(ℝ1+𝑑)|

≤ ‖
‖[𝑃𝖻,𝗊,𝜑, 𝜒](𝜒3𝑢)

‖
‖𝐻−1

𝑡 𝐿2
‖
‖𝑒𝜏𝜙𝜒1𝜒2𝜃

‖
‖𝐻1

𝑡 𝐿2𝑥

≤ 𝐶𝜏𝑒−𝜂𝜏/2 ‖𝜒3𝑢‖𝐻−1
𝑡 𝐻1𝑥

‖𝜃‖𝐻1
𝑡 𝐿2𝑥

≤ 𝐶𝑒−𝜂𝜏/4 ‖𝜒3𝑢‖𝐻−1
𝑡 𝐻1𝑥

‖𝜃‖𝐻1
𝑡 𝐿2𝑥

,

where we have used (4.15) as well as the support properties of ∇𝐱𝜒, 𝑢, 𝜒1, 𝜒2. Coming
back to (4.14) we have thus obtained the estimate

‖
‖𝑒𝜏𝜙[𝑃𝖻,𝗊,𝜑, 𝜒]𝑢

‖
‖𝐻−1

𝑡 𝐿2𝑥
≤ 𝐶𝑒−𝜂𝜏/4 ‖𝜒3𝑢‖𝐻−1

𝑡 𝐻1𝑥
.

Similarly, one has
𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖𝐻−1

𝑡 𝐻1𝑥
≤ 𝑒−𝖽𝜏/8 ‖𝜒3𝑢‖𝐻−1

𝑡 𝐻1𝑥
.

Combining the last two estimates with (4.13) and using Lemma 4.3 gives the existence
of some 𝛿 > 0 with

‖𝑄𝜙
𝜇,𝜏𝑤‖𝐿2 ≤ 𝐶𝑒−𝛿𝜏 ‖𝜒3𝑢‖𝐻−1

𝑡 𝐻1𝑥
≤ 𝐶𝑒−𝛿𝜏 ‖𝑢‖𝐿2(Ω) .

From this point forward, the conclusion of the proof of Theorem 1.3 is identical to that
of Theorem 1.2. □

In the course of the proof, we have used the following elliptic regularity lemma. It
is rather classical, but we provide with a short proof for sake of completeness.

Lemma 4.4. Let 𝑉 ⊂ ℝ𝑑 be an open set, assume 𝗀𝑗𝑘 ∈ 𝑊1,∞
loc (𝑉; ℝ) satisfies (1.7), that

𝜑 ∈ 𝑊1,∞
loc (𝑉; ℝ) satisfies 𝜑 > 0 on 𝑉 , and let 𝜒 ∈ 𝐶∞

𝑐 (𝑉). Then, there exists 𝐶 > 0 so
that, for any 𝑤 ∈ 𝐿2(𝑉; ℂ) with 𝜒Δ𝗀,𝜑(𝑤) ∈ 𝐻−1(ℝ𝑑), we have

‖𝜒𝑤‖𝐻1(ℝ𝑑) ≤ 𝐶 ‖‖𝜒Δ𝗀,𝜑(𝑤)
‖
‖𝐻−1(ℝ𝑑)

+ 𝐶 ‖𝑤‖𝐿2(supp(𝜒)) .
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Recall (see e.g. Section 1.3.2) that Δ𝗀,𝜑 = div𝜑∇𝗀 = ∑𝑗𝑘
1
𝜑𝜕𝑥𝑗𝗀

𝑗𝑘𝜑𝜕𝑥𝑘 . Note that,
for any 𝜑 and 𝗀 as in the statement, there is a Lipschitz continuous Riemannian met-
ric 𝑔 such that 𝗀𝜑 = 𝑔√det(𝑔) (namely 𝑔 ≔ det(𝗀𝜑)−

1
𝑑+2 𝗀𝜑) and for this 𝑔 we have

Δ𝗀,𝜑 = √det(𝑔)
𝜑 Δ𝑔 = det(𝗀𝜑)

2
𝑑+2Δ𝑔. In this expression (and in the setting of Lemma 4.4),

the prefactor is a Lipschitz nonvanishing function. Since multiplication by a 𝑊 1,∞

function is bounded on𝐻−1 (for it is on𝐻1), it suffices to prove the result of Lemma 4.4
for Δ𝑔 (defined at the beginning of Section 2.1) in place of Δ𝗀,𝜑.

Proof. We may assume 𝑤 ∈ 𝐶∞
𝑐 (𝑉; ℝ), the conclusion of the lemma will follow from

a density argument, together with application of the result to the real and imaginary
parts of the function. By integration by parts, using the notation of Section 2.1, we have

∫||∇𝑔(𝜒𝑤)||
2
𝑔 = −∫Δ𝑔(𝜒𝑤)𝜒𝑤

= −∫Δ𝑔(𝑤)𝜒2𝑤 − (Δ𝑔𝜒)𝜒𝑤2 − 2 ⟨∇𝑔𝜒,∇𝑔𝑤⟩𝑔 𝜒𝑤.

Rewriting ⟨∇𝑔𝜒,∇𝑔𝑤⟩𝑔 𝜒𝑤 = ⟨∇𝑔𝜒,∇𝑔(𝜒𝑤)⟩𝑔𝑤 − ||∇𝑔𝜒||
2
𝑔𝑤

2, we deduce

∫||∇𝑔(𝜒𝑤)||
2
𝑔 = −∫Δ𝑔(𝑤)𝜒2𝑤 + (||∇𝑔𝜒||

2
𝑔 − Δ𝑔𝜒𝜒)𝑤2 − 2 ⟨∇𝑔𝜒,∇𝑔(𝜒𝑤)⟩𝑔𝑤.

Since 𝑔𝑗𝑘 ∈ 𝑊1,∞
loc (𝑉; ℝ) and 𝜒 ∈ 𝐶∞

𝑐 (𝑉) we have Δ𝑔𝜒 ∈ 𝐿∞(𝑉). As a consequence, we
have for any 𝜀 > 0, the existence of 𝐶𝜀 = 𝐶𝜀(𝜒, 𝑔) > 0 such that

∫||∇𝑔(𝜒𝑤)||
2
𝑔 ≤

‖
‖𝜒Δ𝑔(𝑤)

‖
‖𝐻−1(ℝ𝑑)

‖𝜒𝑤‖𝐻1(ℝ𝑑) + 𝐶 ‖𝑤‖2𝐿2(supp(𝜒))

+ 𝐶 ‖‖∇𝑔(𝜒𝑤)‖‖𝐿2(ℝ𝑑)
‖𝑤‖𝐿2(supp(𝜒))

≤ 𝐶𝜀 ‖‖𝜒Δ𝑔(𝑤)
‖
‖
2

𝐻−1(ℝ𝑑)
+ 𝜀 ‖𝜒𝑤‖𝐻1(ℝ𝑑)

+ 𝐶𝜀 ‖𝑤‖
2
𝐿2(supp(𝜒)) + 𝜀 ‖‖∇𝑔(𝜒𝑤)‖‖

2

𝐿2
.(4.16)

Using ellipticity and boundedness of 𝑔 on supp(𝜒), we further have existence of 𝐶𝑔 =
𝐶𝑔(𝜒) > 1 such that for all 𝑤 ∈ 𝐶∞

𝑐 (𝑉),

𝐶−1
𝑔 ‖𝜒𝑤‖2𝐻1(ℝ𝑑) ≤

‖
‖∇𝑔(𝜒𝑤)‖‖

2

𝐿2
+ ‖𝜒𝑤‖2𝐿2 ≤ 𝐶𝑔 ‖𝜒𝑤‖

2
𝐻1(ℝ𝑑) .

Combining this with (4.16), we have now obtained

𝐶−1
𝑔 ‖𝜒𝑤‖2𝐻1(ℝ𝑑)

≤ 𝐶𝜀 ‖‖𝜒Δ𝑔(𝑤)
‖
‖
2

𝐻−1(ℝ𝑑)
+ 𝜀(1 + 𝐶𝑔) ‖𝜒𝑤‖𝐻1(ℝ𝑑) + (𝐶𝜀 + 1) ‖𝑤‖2𝐿2(supp(𝜒)) ,

which concludes the proof of the lemma when choosing 𝜀 = 𝐶−1
𝑔 (1 + 𝐶𝑔)−1/2. □

Appendix A. Tools

In this appendix, we collect technical lemmata that are used along the article.
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A.1. The conclusive lemma for unique continuation. The following is [Hör97,
Proposition 2.1] that we state here (without proof) for the reader’s convenience.

Lemma A.1. Let 𝑢 ∈ 𝐿2(ℝ𝑛) and let 𝜙 be a smooth real valued function. Let (𝐴𝜏)𝜏>0 be
a family of continuous bounded functions in ℝ𝑛, such that for any compact set 𝐾 ⊂ ℝ𝑛,
we have ‖𝐴𝜏 − 1‖𝐿∞(𝐾) →𝜏→∞ 0. If there exist 𝐶, 𝜏0 > 0 such that

‖
‖𝐴𝜏(𝐷)𝑒𝜏𝜙𝑢

‖
‖𝐿2 ≤ 𝐶, for all 𝜏 ≥ 𝜏0,

then supp 𝑢 ⊂ {𝜙 ≤ 0}.

A.2. The regularization argument for Carleman estimates in energy spaces.
We recall here classical regularization arguments (see e.g. [Ler19, Appendix B]), that
allow to deduce Carleman estimates for functions in well-suited 𝐻𝑘 spaces from Car-
leman estimates for smooth functions. They are used in the proof of Theorem 1.2 in
Section 4.2 for the Schrödinger operator and in Appendix B for the plate operator.

Lemma A.2 (Lemma B.18 and B.19 of [Ler19]). Let 𝜃 ∈ 𝐶∞
𝑐 (ℝ𝑛; ℝ+) with integral 1,

set 𝜃𝜀(𝑥) = 𝜀−𝑛𝜃(𝑥/𝜀) and take 𝑎 ∈ 𝐿∞loc(ℝ𝑛). Then, for any 𝑣 ∈ 𝐿2(ℝ𝑛) with compact
support, we have

lim
𝜀→0+

(𝑎 (𝜃𝜀 ∗ 𝑣) − 𝜃𝜀 ∗ (𝑎𝑣)) = 0, in 𝐿2(ℝ𝑛).(A.1)

If in addition 𝑎 ∈ 𝑊1,∞
loc (ℝ𝑛) and 𝑣 ∈ 𝐻𝑚−1(ℝ𝑛), then for |𝛼| = 𝑚, we have

lim
𝜀→0+

(𝑎𝜕𝛼𝑥 (𝜃𝜀 ∗ 𝑣) − 𝜃𝜀 ∗ (𝑎𝜕𝛼𝑥 𝑣)) = 0, in 𝐿2(ℝ𝑛).(A.2)

We also use the following anisotropic variant of LemmaA.2, which is obtained using
exactly the same proof.

Lemma A.3. Let 𝑚 ∈ ℕ∗ and 𝛼 = 𝛾 + 𝛽 ∈ ℕ𝑛 be such that |𝛾|=1 and |𝛽| = 𝑚 − 1.
Assume that 𝑎 ∈ 𝐿∞(ℝ𝑛) satisfies 𝜕𝛾𝑥𝑎 ∈ 𝐿∞(ℝ𝑛). Then, for any 𝑣 ∈ 𝐿2(ℝ𝑛)with compact
support and such that 𝜕𝛽𝑥𝑣 ∈ 𝐿2, (A.2) holds.

We omit the proof since it is exactly that of [Ler19, Lemma B.19].

A.3. A technical lemma on the Gaussian multiplier. We first recall the formula

(A.3) ℱ(𝑒−
|⋅|2
𝜆 )(𝜉) = (𝜋𝜆)1/2𝑒−𝜆

|𝜉|2
4 , 𝜉 ∈ ℝ,

used several times in the article, and its consequence

(A.4) (𝑒−
ℎ
2 |𝐷𝑡|2𝑓) (𝑡) = ( 1

2𝜋ℎ)
1/2

∫
ℝ
𝑓(𝑠)𝑒−

|𝑡−𝑠|2
2ℎ 𝑑𝑠, 𝑡 ∈ ℝ.

LemmaA.4. Let (𝒳, ‖⋅‖𝒳) be anormed vector space,𝜒1, 𝜒2 ∈ 𝐶∞(ℝ)with all derivatives
boundedand such thatdist(supp(𝜒1), supp(𝜒2)) ≥ 𝑑 > 0. Then for every𝑘,𝑚 ∈ ℕ, there
exist 𝐶, 𝑐 > 0 such that for all 𝑢 ∈ 𝒮(ℝ;𝒳) and all 𝜆 > 0 we have

‖
‖‖𝜒1𝑒

− |𝐷𝑡|2
𝜆 (𝜒2𝑢)

‖
‖‖𝐻𝑘(ℝ;𝒳)

≤ 𝐶𝑒−𝑐𝜆 ‖𝑢‖𝐻−𝑚(ℝ;𝒳) .

See e.g. [LL19a, Lemma 2.4] in case𝑚 = 𝑘 = 0.
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Proof. We start with 𝑘 = 𝑚 = 0 and recall (A.4). Using the support properties of𝜒1, 𝜒2,
this implies

𝜒1𝑒−
|𝐷𝑡|2
𝜆 (𝜒2𝑢)(𝑡) = ( 𝜆4𝜋)

1/2
𝜒1(𝑡)∫

|𝑡−𝑠|≥𝑑
𝑒−

𝜆
4 (𝑠−𝑡)

2𝜒2(𝑠)𝑢(𝑠)𝑑𝑠

= ( 𝜆4𝜋)
1/2

𝜒1(𝑡)𝟙|⋅|≥𝑑𝑒−
𝜆
4 (⋅)

2 ∗ 𝜒2(⋅)(𝑡).

The Young inequality thus yields

‖
‖‖𝜒1𝑒

− |𝐷𝑡|2
𝜆 (𝜒2𝑢)

‖
‖‖𝐿2(ℝ;𝒳)

≤ ( 𝜆4𝜋)
1/2

‖𝜒1‖𝐿∞
‖
‖𝟙|⋅|≥𝑑𝑒

− 𝜆
4 (⋅)

2‖
‖𝐿1(ℝ)

‖𝜒2𝑢‖𝐿2(ℝ;𝒳)

≤ ( 𝜆4𝜋)
1/2

‖𝜒1‖𝐿∞ ‖𝜒2‖𝐿∞
‖
‖𝟙|⋅|≥𝑑𝑒

− 𝜆
4 (⋅)

2‖
‖𝐿1(ℝ)

‖𝑢‖𝐿2(ℝ;𝒳) .

The result for 𝑘 = 𝑚 = 0 then follows from the fact that

1
2
‖
‖𝟙|⋅|≥𝑑𝑒

− 𝜆
4 (⋅)

2‖
‖𝐿1(ℝ) = ∫

∞

𝑑
𝑒−

𝜆
8 𝑠

2𝑒−
𝜆
8 𝑠

2𝑑𝑠 ≤ 𝑒−
𝜆
8 𝑑

2 ∫
∞

0
𝑒−

𝜆
8 𝑠

2𝑑𝑠

≤ 𝐶𝑒−
𝜆
8 𝑑

2

√𝜆
∫

∞

0
𝑒−𝑠2𝑑𝑠 ≤ 𝐶𝑒−𝑐𝜆.

As a preparation for the general case, we prove a similar estimate if 𝑒−
|𝐷𝑡|2
𝜆 is replaced

by 𝐷𝑘
𝑡 𝑒−

|𝐷𝑡|2
𝜆 for 𝑘 ∈ ℕ. Notice that from (A.4), we have

𝐷𝑘
𝑡 𝑒−

|𝐷𝑡|2
𝜆 𝑓 = ( 𝜆4𝜋)

1/2
∫
ℝ
𝐷𝑘
𝑡 𝑒−

𝜆
4 (𝑠−𝑡)

2𝑓(𝑠)𝑑𝑠

= ( 𝜆4𝜋)
1/2

∑
0≤𝑘1,𝑘2≤𝑘

𝛼𝑘1,𝑘2 ∫
ℝ
𝜆𝑘1(𝑠 − 𝑡)𝑘2𝑒−

𝜆
4 (𝑠−𝑡)

2𝑓(𝑠)𝑑𝑠,

where 𝛼𝑘1,𝑘2 ∈ ℂ do not depend on 𝜆. As a consequence, proceeding as above with the
Young inequality, we obtain

‖
‖‖𝜒1𝐷

𝑘
𝑡 𝑒−

|𝐷𝑡|2
𝜆 (𝜒2𝑢)

‖
‖‖𝐿2(ℝ;𝒳)

≤ 𝐶𝑘𝜆𝑘+1/2 ∑
0≤𝑘2≤𝑘

‖
‖𝜒1(𝑡)𝟙|⋅|≥𝑑𝑒

− 𝜆
4 (⋅)

2(⋅)𝑘2 ∗ (𝜒2𝑢)(𝑡)‖‖𝐿2(ℝ;𝒳)

≤ 𝐶𝑘𝜆𝑘+1/2 ‖𝜒1‖𝐿∞ ‖𝜒2‖𝐿∞ ∑
0≤𝑘2≤𝑘

‖
‖𝟙|⋅|≥𝑑𝑒

− 𝜆
4 (⋅)

2(⋅)𝑘2‖‖𝐿1(ℝ)
‖𝑢‖𝐿2(ℝ;𝒳) .

Using now

‖
‖𝟙|⋅|≥𝑑𝑒

− 𝜆
4 (⋅)

2(⋅)𝑘2‖‖𝐿1(ℝ) = 2∫
∞

𝑑
𝑒−

𝜆
8 𝑠

2𝑒−
𝜆
8 𝑠

2𝑠𝑘2𝑑𝑠 ≤ 2𝑒−
𝜆
8 𝑑

2 ∫
∞

0
𝑠𝑘2𝑒−

𝜆
8 𝑠

2𝑑𝑠

= 𝑒−
𝜆
8 𝑑

2 (8𝜆)
𝑘2+1
2

Γ (𝑘2 + 1
2 ) ≤ 𝐶𝑘2𝑒

−𝑐𝑘2𝜆.
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Combining these two lines, we finally deduce that for any 𝑘 ∈ ℕ and any 𝜒1, 𝜒2 ∈
𝐿∞(ℝ) such that dist(supp 𝑓1, supp 𝑓2) ≥ 𝑑 > 0, there are 𝐶𝑘, 𝑐𝑘 > 0 such that for all
𝑢 ∈ 𝒮(ℝ;𝒳),

‖
‖‖𝜒1𝐷

𝑘
𝑡 𝑒−

|𝐷𝑡|2
𝜆 (𝜒2𝑢)

‖
‖‖𝐿2(ℝ;𝒳)

≤ 𝐶𝑘𝑒−𝑐𝑘𝜆 ‖𝑢‖𝐿2(ℝ;𝒳) .(A.5)

Now, we prove the following statement: for all 𝑘, ℓ,𝑚 ∈ ℕ, for all 𝜒1, 𝜒2 ∈ 𝐶∞
𝑏 (ℝ) such

that dist(supp 𝑓1, supp 𝑓2) ≥ 𝑑 > 0 there are 𝐶, 𝑐 > 0 such that for all 𝑢 ∈ 𝒮(ℝ;𝒳),

‖
‖‖𝐷

ℓ
𝑡 𝜒1𝐷𝑘

𝑡 𝑒−
|𝐷𝑡|2
𝜆 (𝜒2𝐷𝑚

𝑡 𝑢)
‖
‖‖𝐿2(ℝ;𝒳)

≤ 𝐶𝑒−𝑐𝜆 ‖𝑢‖𝐿2(ℝ;𝒳) .(A.6)

To this aim, given ℓ,𝑚 ∈ ℕ, we consider the induction assumption

(A.6) is satisfied for all 𝑘 ∈ ℕ.(𝐴(ℓ,𝑚))

We notice first that (𝐴(0, 0)) is (A.5). Then, we assume (𝐴(ℓ,𝑚)) and prove (𝐴(ℓ +
1,𝑚 + 1)). For this, we decompose and expand

𝐷ℓ+1
𝑡 𝜒1𝐷𝑘

𝑡 𝑒−
|𝐷𝑡|2
𝜆 𝜒2𝐷𝑚+1

𝑡 = 𝐷ℓ
𝑡 (𝜒1𝐷𝑡 + [𝐷𝑡, 𝜒1])𝐷𝑘

𝑡 𝑒−
|𝐷𝑡|2
𝜆 (𝐷𝑡𝜒2 + [𝜒2, 𝐷𝑡])𝐷𝑚

𝑡

= 𝐷ℓ
𝑡 𝜒1𝐷𝑘+2

𝑡 𝑒−
|𝐷𝑡|2
𝜆 𝜒2𝐷𝑚

𝑡 + 𝑖𝐷ℓ
𝑡 𝜒1𝐷𝑘+1

𝑡 𝑒−
|𝐷𝑡|2
𝜆 𝜒′2𝐷𝑚

𝑡

− 𝑖𝐷ℓ
𝑡 𝜒′1𝐷𝑘+1

𝑡 𝑒−
|𝐷𝑡|2
𝜆 𝜒2𝐷𝑚

𝑡 + 𝐷ℓ
𝑡 𝜒′1𝐷𝑘

𝑡 𝑒−
|𝐷𝑡|2
𝜆 𝜒′2𝐷𝑚

𝑡 ,

and notice that the induction assumption (𝐴(ℓ,𝑚)) applies to all of these four terms
since supp𝜒′𝑗 ⊂ supp𝜒𝑗 , 𝑗 = 1, 2. This concludes the proof of (A.6).
To conclude the proof of the lemma, we deduce from (A.6) (for 𝑘 = 0) that for

ℓ,𝑚 ∈ ℕ, and all 𝑣 ∈ 𝒮(ℝ;𝒳),

‖
‖‖(1 + 𝐷2

𝑡 )ℓ𝜒1𝑒−
|𝐷𝑡|2
𝜆 (𝜒2(1 + 𝐷2

𝑡 )𝑚𝑣)
‖
‖‖𝐿2(ℝ;𝒳)

≤ 𝐶𝑒−𝑐𝜆 ‖𝑣‖𝐿2(ℝ;𝒳) .

Letting 𝑣 ≔ (1 + 𝐷2
𝑡 )−𝑚𝑢 in this expression, we deduce that for all 𝑢 ∈ 𝒮(ℝ;𝒳),

‖
‖‖𝜒1𝑒

− |𝐷𝑡|2
𝜆 (𝜒2𝑢)

‖
‖‖𝐻2ℓ(ℝ;𝒳)

= ‖
‖‖(1 + 𝐷2

𝑡 )ℓ𝜒1𝑒−
|𝐷𝑡|2
𝜆 (𝜒2(1 + 𝐷2

𝑡 )𝑚𝑣)
‖
‖‖𝐿2(ℝ;𝒳)

≤ 𝐶𝑒−𝑐𝜆 ‖𝑣‖𝐿2(ℝ;𝒳) = 𝐶𝑒−𝑐𝜆 ‖𝑢‖𝐻−2𝑚(ℝ;𝒳) .

This concludes the proof of the lemma (for even integers, and thus for all integers). □

A.4. Acomplex analysis lemma. The following regularity lemma is used in the con-
jugation argument.

Lemma A.5. Let 𝑈 ⊂ ℂ an open set containing 0 and ℎ ∈ 𝐶2(𝑈) such that |𝜕 ̄𝑧ℎ(𝑧)| =
𝑜(|𝑧|) as 𝑧 → 0. Then, the function defined by

𝑤(𝑧) ≔ ℎ(𝑧) − ℎ(0)
𝑧 , for 𝑧 ≠ 0, and 𝑤(0) = 𝜕𝑧ℎ(0)

satisfies 𝑤 ∈ 𝐶1(𝑈).
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Proof. The only problem is close to 𝑧 = 0 and may thus assume that 𝑈 is a small
open ball centered at 0. We write the Taylor formula ℎ(𝑧) = ℎ(0) + 𝑧∫1

0 𝜕𝑧ℎ(𝑠𝑧)𝑑𝑠 +
̄𝑧 ∫1
0 𝜕 ̄𝑧ℎ(𝑠𝑧)𝑑𝑠 and obtain

𝑤(𝑧) = ∫
1

0
𝜕𝑧ℎ(𝑠𝑧)𝑑𝑠 +

̄𝑧
𝑧 ∫

1

0
𝜕 ̄𝑧ℎ(𝑠𝑧)𝑑𝑠, 𝑧 ≠ 0.(A.7)

The first term in the right-hand side is of class 𝐶1 by assumption and we only need to
prove that the second term𝑢(𝑧) ≔ ̄𝑧

𝑧 ∫
1
0 𝜕 ̄𝑧ℎ(𝑠𝑧)𝑑𝑠 can be extended as a𝐶1 functionnear

0. The assumption |𝜕 ̄𝑧ℎ(𝑧)| = 𝑜(|𝑧|) implies that 𝑢(𝑧) can be continuously extended by
0 at 0 so, we are left to consider the derivatives of 𝑢. Denoting by ∇ any derivative, we
have

∇𝑢(𝑧) = ∇ ( ̄𝑧
𝑧)∫

1

0
𝜕 ̄𝑧ℎ(𝑠𝑧)𝑑𝑠 +

̄𝑧
𝑧 ∫

1

0
𝑠∇𝜕 ̄𝑧ℎ(𝑠𝑧)𝑑𝑠.(A.8)

By assumption, 𝜕 ̄𝑧ℎ ∈ 𝐶1 and wemay thus write (Taylor expansion with Peano form of
the remainder) 𝜕 ̄𝑧ℎ(𝑧) = 𝜕 ̄𝑧ℎ(0)+𝑧𝜕𝑧𝜕 ̄𝑧ℎ(0)+ ̄𝑧𝜕2̄𝑧ℎ(0)+𝑜(|𝑧|). Sincewe further assume
|𝜕 ̄𝑧ℎ(𝑧)| = 𝑜(|𝑧|), we deduce that 𝜕 ̄𝑧ℎ(0) = 0, ∇𝜕 ̄𝑧ℎ(0) = 0, and therefore |∇𝜕 ̄𝑧ℎ(𝑧)| =
𝑜(1) as 𝑧 → 0. Since ||∇ ( ̄𝑧

𝑧)|| ≤ 𝐶|𝑧|−1, we deduce from (A.8) and |𝜕 ̄𝑧ℎ(𝑧)| = 𝑜(|𝑧|) that

|∇𝑢(𝑧)| ≤ 𝐶|𝑧|−1∫
1

0
𝑜(|𝑠𝑧|)𝑑𝑠 +∫

1

0
𝑠2|𝑧|𝑑𝑠 → 0,

as 𝑧 → 0 (note that in the first integral, we have used that, since ℎ is 𝐶2, we have
𝑜(𝑧) = 𝑧𝑚(𝑧) with 𝑚 continuous near zero and 𝑚(𝑧) → 0 as 𝑧 → 0, together with the
Lebesgue convergence theorem). This proves that 𝑢 is of class 𝐶1 near zero and hence,
coming back to (A.7), so is 𝑤 (with ∇𝑤(0) = ∇𝜕𝑧ℎ(0)). □

A.5. Integration by parts formulæ. Given a bounded 𝐶1 (or piecewise 𝐶1) domain
Ω ⊂ ℂ and a 𝐶1 one form 𝜔 defined in a neighborhood of Ω, we recall the Stokes
formula

∫
𝜕Ω

𝜔 = ∫
Ω
𝑑𝜔.

Here, 𝜕Ω is given the orientation coming from the canonical orientation of ℂ.
Now given a Banach space ℬ and a function 𝑓0 ∶ ℝ2 ≃ ℂ → ℬ, and under the

identification 𝑓0(𝑥, 𝑦) = 𝑓(𝑧, ̄𝑧), we apply the above formula with the one Banach-
valued form 𝜔(𝑥, 𝑦) = 𝑓(𝑧, ̄𝑧)𝑑𝑧 to obtain

∫
𝜕Ω

𝑓(𝑧, ̄𝑧)𝑑𝑧 = ∫
Ω
𝑑 (𝑓(𝑧, ̄𝑧)𝑑𝑧) = ∫

Ω
𝜕𝑧𝑓(𝑧, ̄𝑧)𝑑𝑧 ∧ 𝑑𝑧 + 𝜕 ̄𝑧𝑓(𝑧, ̄𝑧)𝑑 ̄𝑧 ∧ 𝑑𝑧

= ∫
Ω
𝜕 ̄𝑧𝑓(𝑧, ̄𝑧)𝑑 ̄𝑧 ∧ 𝑑𝑧,

that is

(A.9) ∫
𝜕Ω

𝑓(𝑧, ̄𝑧)𝑑𝑧 = ∫
Ω
𝜕 ̄𝑧𝑓(𝑧, ̄𝑧)𝑑 ̄𝑧 ∧ 𝑑𝑧.

Note also that if 𝑓 is holomorphic, we recover the usual deformation of contour princi-
ple ∫𝜕Ω 𝑓(𝑧)𝑑𝑧 = 0. Here 𝜕Ω is oriented so thatΩ lies to the left of 𝜕Ω, see for instance
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[Hör63, Chapter 1, Section 1.2]. Applying this to 𝑓 = 𝑔ℎ with 𝑔 ∈ 𝐶1(ℂ; ℂ), ℎ ∈
𝐶1(ℂ;ℬ), we deduce

(A.10) ∫
Ω
𝑔𝜕 ̄𝑧ℎ𝑑 ̄𝑧 ∧ 𝑑𝑧 = ∫

𝜕Ω
𝑔ℎ𝑑𝑧 −∫

Ω
ℎ𝜕 ̄𝑧𝑔𝑑 ̄𝑧 ∧ 𝑑𝑧.

If now 𝑔 ∈ 𝐶1(ℂ) and ℎ ∈ 𝐶1(ℂ;ℬ) satisfy ℎ𝑔 → 0 at infinity and 𝑔𝜕 ̄𝑧ℎ ∈ 𝐿1(ℂ;ℬ),
ℎ𝜕 ̄𝑧𝑔 ∈ 𝐿1(ℂ;ℬ), then we may choose Ω = 𝐵(0, 𝑅) and let 𝑅 → +∞, yielding the
following statement.

Lemma A.6. Assume ℬ is a Banach space, 𝑔 ∈ 𝐶1(ℂ; ℂ) and ℎ ∈ 𝐶1(ℂ;ℬ) satisfy
𝑔𝜕 ̄𝑧ℎ ∈ 𝐿1(ℂ;ℬ), ℎ𝜕 ̄𝑧𝑔 ∈ 𝐿1(ℂ;ℬ) and ∫𝜕𝐵(0,𝑅) ‖ℎ𝑔‖ℬ(𝑧)𝑑𝑧 → 0 as 𝑅 → +∞. Then

(A.11) ∫
ℂ
𝑔𝜕 ̄𝑧ℎ𝑑 ̄𝑧 ∧ 𝑑𝑧 = −∫

ℂ
ℎ𝜕 ̄𝑧𝑔𝑑 ̄𝑧 ∧ 𝑑𝑧.

Note finally that 𝑧 = 𝑥 + 𝑖𝑦 and ̄𝑧 = 𝑥 − 𝑖𝑦 so that
𝑑 ̄𝑧 ∧ 𝑑𝑧 = 𝑑(𝑥 − 𝑖𝑦) ∧ 𝑑(𝑥 + 𝑖𝑦) = 2𝑖𝑑𝑥 ∧ 𝑑𝑦,

where 𝑑𝑥 ∧ 𝑑𝑦 is the usual Lebesgue measure on ℝ2 (oriented).

Appendix B. The plate operator

The goal of this section is to prove Theorem 1.10 concerning the plate operator 𝒯𝖻,𝗊
defined in (1.21). We introduce the unperturbed plate operator 𝑇 = 𝒯0,0, that is to say

𝑇 = 𝜕2𝑡 + Δ2𝑔.(B.1)
We follow the notation in Section 2.2: we define 𝑇 on an interval 𝐼 in 𝑡 and an open
set 𝑉 in 𝑥. In order to give a meaning to the bi-Laplace and to iterate our Carleman
estimates, we assume that 𝑔𝑗𝑘 ∈ 𝑊 3,∞(𝑉). In particular, under this assumption, the
operator 𝑇 can be written under the form (1.1) with order 𝑚 = 4, with time indepen-
dent coefficients, with coefficients of order 4 in𝑊 3,∞(𝑉), while lower-order terms are
at least in 𝐿∞(𝑉).
Theorem B.1 (Carleman estimate for the plate operator). Let 𝐱0 = (𝑡0, 𝑥0) ∈ Ω =
𝐼 × 𝑉 ⊂ ℝ1+𝑑. Assume that 𝜙 and 𝑓 satisfy the assumptions of Theorem 2.5 for some
𝑟 > 0. Then, for all 𝜇 > 0 and 𝑘 ∈ ℕ, there exist 𝖽, 𝐶, 𝜏0 > 0 such that for all 𝜏 ≥ 𝜏0 and
𝑣 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟8 )), for 𝑇 defined in (B.1), we have

𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝑇𝑣‖‖

2

𝐿2
+ 𝐶𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑣

‖
‖
2

𝐿2𝑡𝐻3𝑥
≥ 𝜏4‖𝑄𝜙

𝜇,𝜏𝑣‖2𝐻1𝜏
.(B.2)

Proof. Recalling the definition of 𝑃 in (2.1), we define the operator 𝑃 by

𝑃 = −𝑖𝜕𝑡 + Δ𝑔 = 𝐷𝑡 −
𝑑
∑
𝑗,𝑘=1

1
√det 𝑔

𝐷𝑗√det 𝑔𝑔𝑗𝑘𝐷𝑘.

We set 𝑤 = 𝑃𝑣 and remark that, since 𝑃 is a local operator, 𝑤 is still compactly sup-
ported in 𝐵(𝐱0, 𝑟8 ). Since 𝑔

𝑗𝑘 ∈ 𝑊 3,∞(𝑉), we have𝑤 ∈ 𝐶∞(𝐼;𝑊 2,∞(𝑉)), and, in partic-
ular, 𝑤 ∈ 𝐿2(𝐼; 𝐻1(𝑉)) and 𝑃𝑤 ∈ 𝐿2(𝐼 × 𝑉).
We have obtained in the proof of Theorem 1.2 that Estimate (4.5) still holds for func-

tions 𝑤 ∈ 𝐿2(𝐼; 𝐻1(𝑉)) such that 𝑃𝑤 ∈ 𝐿2 and supp𝑤 ⊂ 𝐵(𝐱0, 𝑟8 ). This is also the case
for the variant (2.7) for any 𝑘 ∈ ℕ (we only need to check that the approximation
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‖
‖𝑒𝜏𝜙𝑤𝜀

‖
‖𝐻−𝑘

𝑡 𝐻1𝑥
converges to ‖‖𝑒𝜏𝜙𝑤

‖
‖𝐻−𝑘

𝑡 𝐻1𝑥
, which is clear with the assumptions). Ap-

plying (2.7) to 𝑤 = 𝑃𝑣 thus yields

𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝑃𝑃𝑣‖‖

2

𝐿2
+ 𝐶𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑃𝑣

‖
‖
2

𝐻−𝑘
𝑡 𝐻1𝑥

≥ 𝜏‖𝑄𝜙
𝜇,𝜏𝑃𝑣‖2𝐻1𝜏

.(B.3)

A crude estimate gives ‖‖𝑒𝜏𝜙𝑃𝑣
‖
‖𝐻−𝑘

𝑡 𝐻1𝑥
≤ 𝐶𝜏2 ‖‖𝑒𝜏𝜙𝑣

‖
‖𝐻−𝑘+1

𝑡 𝐻3𝑥
. Also, we notice that since

𝜙 is real valued, ‖𝑄𝜙
𝜇,𝜏𝑃𝑣‖𝐻1𝜏 =

‖
‖‖𝑄

𝜙
𝜇,𝜏𝑃𝑣‖‖‖𝐻1𝜏

= ‖
‖𝑄

𝜙
𝜇,𝜏𝑃𝑣‖‖𝐻1𝜏

≥ 𝜏 ‖‖𝑄
𝜙
𝜇,𝜏𝑃𝑣‖‖𝐿2 . Applying

now (2.7) to 𝑣 ∈ 𝐶∞
𝑐 (𝐵(𝐱0, 𝑟8 )), we obtain

𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝑃𝑣‖‖

2

𝐿2
+ 𝐶𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑣

‖
‖
2

𝐻−𝑘
𝑡 𝐻1𝑥

≥ 𝜏‖𝑄𝜙
𝜇,𝜏𝑣‖2𝐻1𝜏

.(B.4)

Combining (B.3) and (B.4), noticing that 𝑇 = 𝑃𝑃 and that ‖𝑄𝜙
𝜇,𝜏𝑣‖𝐻1𝜏 = ‖𝑄𝜙

𝜇,𝜏𝑣‖𝐻1𝜏 and
‖
‖𝑒𝜏𝜙𝑣

‖
‖𝐻−𝑘

𝑡 𝐻1𝑥
= ‖
‖𝑒𝜏𝜙𝑣

‖
‖𝐻−𝑘

𝑡 𝐻1𝑥
, we have obtained, with a different constant, still denoted

𝐶,

𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝑇𝑣‖‖

2

𝐿2
+ 𝐶𝑒−𝖽𝜏𝜏4 ‖‖𝑒𝜏𝜙𝑣

‖
‖
2

𝐻−𝑘+1
𝑡 𝐻3𝑥

+ 𝐶𝑒−𝖽𝜏𝜏3 ‖‖𝑒𝜏𝜙𝑣
‖
‖
2

𝐻−𝑘
𝑡 𝐻1𝑥

≥ 𝜏4‖𝑄𝜙
𝜇,𝜏𝑣‖2𝐻1𝜏

.

Since 𝑘 is arbitrary in (2.7), we finally obtain (B.2) up to changing the constants 𝖽 and
𝜏0. □

Remark B.2. It is worth noticing that the plate operator 𝑇 does not satisfy the general
assumptions of the Tataru-Robbiano-Zuily-Hörmander Theorem [RZ98,Hör97,Tat99].
Indeed, its principal symbol 𝑞(𝑡, 𝑥, 𝜉𝑡, 𝜉𝑥) = |𝜉𝑥|4𝑔∗ = 𝑝(𝑥, 𝜉𝑥)2 is the square of the prin-
cipal symbol 𝑝 = −|𝜉𝑥|2𝑔∗ of the Laplace operator. Writing 𝑞𝜙(𝐱, 𝜉) = 𝑞(𝐱, 𝜉 + 𝑖𝜏𝑑𝜙(𝐱)),
we have

𝑞𝜙 = 𝑝2𝜙,
{𝑞𝜙, 𝜙} = 2𝑝𝜙 {𝑝𝜙, 𝜙} ,
{𝑞𝜙, 𝑞𝜙} = 2 {𝑞𝜙, 𝑝𝜙} 𝑝𝜙 + 2 {𝑝𝜙, 𝑞𝜙} 𝑝𝜙.

In particular, 𝑞𝜙 = 0 is equivalent to 𝑝𝜙 = 0 which implies {𝑞𝜙, 𝜙} = {𝑞𝜙, 𝑞𝜙} = 0. So,
the pseudoconvexity condition

𝑞𝜙 = {𝑞𝜙, 𝜙} = 0, 𝜉𝑡 = 0, 𝜏 > 0 ⟹ 1
𝑖 {𝑞𝜙, 𝑞𝜙} > 0,

which is part of the assumptions of the Tataru-Robbiano-Zuily-Hörmander theorem,
is never satisfied if there is a point (𝑡, 𝑥, 𝜉𝑡, 𝜉𝑥, 𝜏) with 𝜉𝑡 = 0, 𝜏 > 0 and 𝑝𝜙 = 0. There
is always such a point except in dimension 1 in 𝑥.
As a consequence, even for lower-order operators depending analytically on time,

the unique continuation result of Theorem 1.10 does not follow directly from the
Tataru-Robbiano-Zuily-Hörmander Theorem [RZ98,Hör97,Tat99].
This fact explains the loss of a power of 𝜏 in the previous Carleman estimate, show-

ing that we are losing one full power in the subelliptic estimate instead of one half in
the usual case. This is already described e.g. by Le Rousseau-Robbiano [LRR20] for
the (related elliptic) bi-Laplace operator, where fine estimates close to the boundary
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are proved. Here, we are using in a crucial way the structure as a product of two opera-
tors. Note that the unique continuation for elliptic operators of order four is not always
true, see Pliś [Pli61] or [Hör74], so a specific structure of the operator seems necessary
in general.

Remark B.3. It is likely that one can obtain improved estimates where 𝜏4‖𝑄𝜙
𝜇,𝜏𝑣‖2𝐻1𝜏

in the right-hand side of (B.2) is replaced by ‖𝑄𝜙
𝜇,𝜏𝑣‖2𝐻3𝜏

, i.e. with the same powers of
𝜏, but including higher order derivatives. This would allow to consider lower-order
perturbations of higher order, but we do not pursue in this direction here.

We recall that the operator𝒯𝖻,𝗊 is defined in (1.21). We are ready to state the variant
of Theorem 4.1 for plates.

TheoremB.4 (Carleman estimate for plates with Gevrey lower-order terms). Let 𝐱0 =
(𝑡0, 𝑥0) ∈ Ω = 𝐼 × 𝑉 ⊂ ℝ1+𝑑 and assume that the metric 𝑔 satisfies 𝑔𝑗𝑘 ∈ 𝑊 3,∞(𝑉),
with time-independent coefficients, and 𝖻𝑗 , 𝗊 ∈ 𝒢2(𝐼; 𝐿∞(𝑉; ℂ)). Assume that 𝜙 and 𝑓
satisfy the assumptions of Theorem 2.5. Then, for all 𝑘 ∈ ℕ and all 𝜇 > 0, there exist
𝑟, 𝖽, 𝐶, 𝜏0 > 0 such that for all 𝜏 ≥ 𝜏0 and 𝑤 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟)), we have

𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝒯𝖻,𝗊𝑤‖‖

2

𝐿2
+ 𝐶𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐻−𝑘
𝑡 𝐻3𝑥

≥ 𝜏4‖𝑄𝜙
𝜇,𝜏𝑤‖2𝐻1𝜏

.(B.5)

Proof. Using the notation 𝑅 ≔ ∑𝑑
𝑗=1 𝖻𝑗𝜕𝑥𝑗 + 𝗊 as in the proof of Theorem 4.1, we still

have (4.3), that is to say

(B.6) ‖
‖𝑄

𝜙
𝜇,𝜏𝑅𝑤‖‖𝐿2 ≲ 𝜏 ‖‖𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐿2 +

‖
‖𝑄

𝜙
𝜇,𝜏𝑤‖‖𝐻1𝑥

+ 𝑒−
𝑐
2 𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖𝐻−𝑘

𝑡 𝐻1𝑥
.

Since 𝒯𝖻,𝗊 = 𝑇 + 𝑅, we have ‖‖𝑄
𝜙
𝜇,𝜏𝒯𝖻,𝗊𝑤‖‖

2

𝐿2
≳ ‖
‖𝑄

𝜙
𝜇,𝜏𝑇𝑤‖‖

2

𝐿2
− ‖
‖𝑄

𝜙
𝜇,𝜏𝑅𝑤‖‖

2

𝐿2
. Combining

(B.6) with (B.2), we finally deduce

𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝒯𝖻,𝗊𝑤‖‖

2

𝐿2
+ 𝐶(𝑒−𝖽𝜏 + 𝑒−𝑐𝜏) ‖‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐻−𝑘
𝑡 𝐻3𝑥

+ ‖𝑄𝜙
𝜇,𝜏𝑣‖2𝐻1𝜏

≥ 𝜏4‖𝑄𝜙
𝜇,𝜏𝑤‖2𝐻1𝜏

.

This is the expected result after absorption of ‖𝑄𝜙
𝜇,𝜏𝑣‖2𝐻1𝜏

for 𝜏 ≥ 𝜏0, with 𝜏0 sufficiently
large. □

Proof of Theorem 1.10. The proof is very close to that of Theorem 1.2 in the case of the
Schrödinger operator. Consider 𝑢 ∈ 𝐻1(𝐼; 𝐻3(𝑉)) solution of𝒯𝖻,𝗊𝑢 = 0 such that 𝑢 = 0
in Ω ∩ {Ψ > 0} and let 𝜙 be as in Lemma 4.2. Theorem B.4 for 𝑘 = 0 implies that there
exist 𝑟, 𝖽, 𝐶, 𝜏0 > 0 such that for all 𝜏 ≥ 𝜏0 and 𝑤 ∈ 𝐶∞

𝑐 (𝐵(𝐱0, 𝑟)), we have

(B.7) 𝐶 ‖‖𝑄
𝜙
𝜇,𝜏𝒯𝖻,𝗊𝑤‖‖

2

𝐿2
+ 𝐶𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤

‖
‖
2

𝐿2𝑡𝐻3𝑥
≥ 𝜏4‖𝑄𝜙

𝜇,𝜏𝑤‖2𝐻1𝜏
≥ 𝜏6‖𝑄𝜙

𝜇,𝜏𝑤‖2𝐿2 .

The coefficients of𝒯𝖻,𝗊 of order 4 are independent of 𝑡 and in𝑊 3,∞(𝑉)while the coeffi-
cients of the lower-order terms are (at least) in 𝐿∞(𝐼 × 𝑉). According to an approxima-
tion argument similar to that in the proof of TheoremB.1, we obtain that estimate (B.7)
still holds for functions 𝑤 ∈ 𝐿2(𝐼; 𝐻3(𝑉)) such that 𝒯𝖻,𝗊𝑤 ∈ 𝐿2 and supp𝑤 ⊂ 𝐵(𝐱0, 𝑟).
With the same notation, we only verify the argument for the term including 𝒯𝖻,𝗊. The
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assumptions imply that 𝑇𝑤 ∈ 𝐿2 and it is sufficient to prove the convergence of the
term involving 𝑇. We are led to estimate

‖
‖𝑄

𝜙
𝜇,𝜏𝑇(𝑤 − 𝑤𝜀)‖‖𝐿2 ≤

‖
‖𝑄

𝜙
𝜇,𝜏 (𝑇𝑤 − (𝑇𝑤)𝜀))‖‖𝐿2 +

‖
‖𝑄

𝜙
𝜇,𝜏 ((𝑇𝑤)𝜀 − 𝑇𝑤𝜀)‖‖𝐿2

≤ 𝐶(𝜏, 𝜇, 𝑟) ‖𝑇𝑤 − (𝑇𝑤)𝜀‖𝐿2
+ 𝐶(𝜏, 𝜇, 𝑟) ‖‖(Δ2𝑔𝑤)𝜀 − Δ2𝑔𝑤𝜀

‖
‖𝐿2 ,(B.8)

where we have used that 𝑄𝜙
𝜇,𝜏 is continuous from 𝐿2(𝐵(𝐱0, 𝑟8 )) to 𝐿

2(ℝ𝑛) and that 𝜕2𝑡
commuteswith the convolution. Thefirst term in the right-hand side of (B.8) converges
to zero since 𝑇𝑤 ∈ 𝐿2 while the second one converges to zero using Lemma A.3. We
conclude that (B.7) holds for 𝑤.
The function 𝜙 is the same function as in the proof of Theorem 1.2 for the

Schrödinger operator, and we still have:
(1) 𝜙(𝐱0) = 0 and there exists 𝜂 > 0 so that 𝜙(𝐱) ≤ −𝜂 for 𝐱 ∈ {Ψ ≤ 0} ∩ {𝑟 ≥

|𝐱 − 𝐱0| ≥ 𝑟/2},
(2) 𝜙(𝐱) ≤ 𝖽/4 for |𝐱 − 𝐱0| ≤ 𝑟.

Let 𝜒 ∈ 𝐶∞
𝑐 (𝐵(𝐱0, 𝑟)) with 𝜒 = 1 in 𝐵(𝐱0, 𝑟/2). In order to apply the Carleman esti-

mate (B.7) to 𝑤 = 𝜒𝑢 ∈ 𝐻1(𝐼; 𝐻3(𝑉)), we first estimate
‖
‖𝑄

𝜙
𝜇,𝜏𝒯𝖻,𝗊𝜒𝑢‖‖𝐿2 ≤

‖
‖𝑄

𝜙
𝜇,𝜏𝒯𝖻,𝗊𝑢‖‖𝐿2 +

‖
‖𝑄

𝜙
𝜇,𝜏[𝒯𝖻,𝗊, 𝜒]𝑢‖‖𝐿2 =

‖
‖𝑄

𝜙
𝜇,𝜏[𝒯𝖻,𝗊, 𝜒]𝑢‖‖𝐿2

≤ ‖
‖𝑒𝜏𝜙[𝒯𝖻,𝗊, 𝜒]𝑢

‖
‖𝐿2 ≤ 𝑒−𝜂𝜏 ‖𝑢‖𝐻1

𝑡𝐻3𝑥
,

according to the fact that supp(∇𝐱𝜒) ⊂ {𝑟 ≥ |𝐱 − 𝐱0| ≥ 𝑟/2} and supp(𝑢) ⊂ {Ψ ≤ 0},
Property (1) and the fact that [𝒯𝖻,𝗊, 𝜒] is a differential operator of order three in 𝑥 and
order one in 𝑡. We have as well

𝑒−𝖽𝜏 ‖‖𝑒𝜏𝜙𝑤
‖
‖𝐿2𝑡𝐻3𝑥

≤ 𝑒−3𝖽𝜏/4𝜏3 ‖𝑢‖𝐿2𝑡𝐻3𝑥
,

thanks to Property (2). Plugging the last two estimates in (B.7), we finally obtain that
there exists a 𝛿 > 0 such that

‖
‖𝑄

𝜙
𝜇,𝜏𝜒𝑢‖‖𝐿2 ≤ ‖𝑄𝜙

𝜇,𝜏𝜒𝑢‖2𝐻1𝜏
≤ 𝐶𝑒−𝛿𝜏 ‖𝑢‖𝐻1

𝑡𝐻3𝑥
,

which implies that ‖‖𝑄
𝜙+𝛿
𝜇,𝜏 𝜒𝑢‖‖𝐿2 ≤𝐶 uniformly in 𝜏≥𝜏0. Lemma A.1 gives supp(𝜒𝑢) ⊂

{𝜙 ≤ −𝛿}. Since 𝜙(𝐱0) = 0 and 𝜒 = 1 in 𝐵(𝐱0, 𝑟/2) one has that𝑊 = 𝐵(𝐱0, 𝑟/2) ∩ {𝜙 >
−𝛿/2} is a neighborhood of 𝐱0 in which 𝜒𝑢 = 𝑢 = 0 and the proof of Theorem 1.10 is
complete. □
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