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Abstract

This memoir is concerned with quantitative unique continuation estimates for
equations involving a “sum of squares” operator L on a compact manifold M as-
suming: (i) the Chow-Rashevski-Hörmander condition ensuring the hypoellipticity
of L, and (ii) the analyticity of M and the coefficients of L.

The first result is the tunneling estimate ‖ϕ‖L2(ω) ≥ Ce−cλ
k
2 for normalized

eigenfunctions ϕ of L from a nonempty open set ω ⊂ M, where k is the hypoellip-
ticity index of L and λ the eigenvalue.

The main result is a stability estimate for solutions to the hypoelliptic wave
equation (∂2

t + L)u = 0: for T > 2 supx∈M(dist(x, ω)) (here, dist is the sub-
Riemannian distance), the observation of the solution on (0, T ) × ω determines

the data. The constant involved in the estimate is CecΛ
k

where Λ is the typical
frequency of the data.
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vi ABSTRACT

We then prove the approximate controllability of the hypoelliptic heat equation
(∂t +L)v = 1ωf in any time, with appropriate (exponential) cost, depending on k.
In case k = 2 (Grushin, Heisenberg...), we further show approximate controllability
to trajectories with polynomial cost in large time.

We also explain how the analyticity assumption can be relaxed, and a boundary
∂M can be added in some situations.

Most results turn out to be optimal on a family of Grushin-type operators.
The main proof relies on the general strategy to produce quantitative unique

continuation estimates, developed by the authors in Laurent-Léautaud (2019).
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CHAPTER 1

Introduction and main results

1.1. Introduction

Let M be a smooth compact connected d-dimensional manifold without bound-
ary. We denote by X∞ the space of smooth vector fields on M (with real coeffi-
cients), which we identify to derivations on M. We assume M is endowed with a
smooth positive density measure ds, so that we may integrate functions on M1. We
may then define the space L2(M) = L2(M, ds) of square integrable functions with
respect to this measure. For X ∈ X∞, we define by X∗ its formal dual operator
for the duality of L2(M), that is2,∫

M
X∗(u)(x)v(x)ds(x) =

∫
M

u(x)X(v)(x)ds(x), for any u, v ∈ C∞(M).

Given m ∈ N and m vector fields3 X1, · · · , Xm ∈ X∞, we are interested in
properties of the following (non-positive) second order operator, associated to the
Xi’s (namely the so-called type I Hörmander operator)4

L =

m∑
i=1

X∗
i Xi.(1.1)

Note that this operator is formally symmetric nonnegative, when defined on func-
tions in C∞(M), since we have

(Lu, u)L2(M) =
m∑
i=1

‖Xiu‖2L2(M) .(1.2)

Both from the geometric control and the operator theoretic points of view, it is
in this context natural to consider iterated Lie brackets of the vector fields Xi. We
refer for instance to the following classical article [Bel96] and textbooks [Mon02,
Jea14,Rif14,ABB16b].

Definition 1.1. For any family F of smooth vector fields on M and � ∈ N
∗,

we define the subspaces Lie�(F) of X∞ by iteration as follows:

• Lie1(F) is the space spanned by F in X∞,

1See e.g. [Lee13, Chapter 16 p427]: given a local chart (Uφ, φ) of M, we have
∫
Uφ

u ds =
∫
φ(Uφ) u◦φ

−1(y)ϕφ(y)dy for an appropriate smooth positive function ϕφ, and for any u ∈ C0
c (Uφ).

2Note that in the local chart (Uφ, φ) we have Xφ =
∑

j a
φ
j (x)∂j , and thus (Xφ)∗ =

∑
j −aφj (x)∂j−∂ja

φ
j −

∂jϕ
φ

ϕφ aφj , which is a vector field (namely −X) plus a multiplication operator

(namely −divds(X), see Remark 1.30 below).
3The assumption 1 ≤ m ≤ d is sometimes made in the references we use, but can always be

removed.
4See Remark 1.30 below for a discussion on general sub-Riemannian Laplacians.

1
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• Lie�+1(F) = span
(
Lie�(F) ∪

{
[X,Y ];X ∈ F , Y ∈ Lie�(F)

})
.

For any point x ∈ M, � ∈ N
∗, we denote by Lie�(F)(x) the set of all tangent vectors

X(x) with X ∈ Lie�(F).

We shall always assume that the family (Xi) satisfies the Chow-Rashevski-
Hörmander condition (or is “bracket generating”).

Assumption 1.2. There exists � ≥ 1 so that for any x ∈ M,

Lie�(X1, · · · , Xm)(x) = TxM5.

Denote then by k ∈ N
∗ the minimal � for which this holds.

The integer k will sometimes be refered to as the hypoellipticity index of L.
Assumption 1.2 is central in control theory and operator theory, for it characterizes
both the controllability of the controlled ODE driven by the vector fields (Xi) and
the Hypoellipticity of the operator L. Let us now recall these two seminal results,
namely the Chow-Rashevski theorem and the Hörmander theorem, which we both
use in the sequel.

Theorem 1.3 (Chow [Cho39], Rashevski [Ras38]). Under Assumption 1.2,
the following statement holds: for any x0, x1 ∈ M, any T > 0, there exist ui ∈
L1(0, T ) for i ∈ {1, · · · ,m} such that the unique solution of

γ̇(t) =
m∑
i=1

ui(t)Xi(γ(t)), γ(0) = x0(1.3)

satisfies γ(T ) = x1.

We refer e.g. to [Jea14, Chapter 1.4], [Rif14, Chapter 1.4] or [Mon02, Chap-
ter 2] for statements and proofs of the Chow-Rashevski theorem, and in particular
for the definition of the solution of (1.3). See also [Cor07, Chapter 3] for examples
and applications in control theory. This theorem motivates the following definition.

Definition 1.4 (Horizontal path). We say that an absolutely continuous func-
tion γ : [0, T ] → M is a horizontal path if there exist ui ∈ L1(0, T ;R) for i =
1, · · · ,m such that for almost every t ∈ [0, T ], we have γ̇(t) =

∑m
i=1 ui(t)Xi(γ(t)).

Such a trajectory is in particular absolutely continuous and almost everywhere
tangent to the so-called horizontal distribution span(X1, · · · , Xm). The second key
role played by Assumption 1.2 in analysis is summarized in the following result.

Theorem 1.5 (Hörmander [Hör67], Rothschild-Stein [RS76]). Under As-
sumption 1.2, the operator L in (1.1) is hypoelliptic, that is, for all u ∈ D′(M)
and x0 ∈ M, if Lu ∈ C∞ near x0 then u ∈ C∞ near x0.

5Note that it is sufficient to assume that for all x ∈ M, there is � = �(x) ∈ N such that this
holds. The upper semi-continuity of x �→ �(x) (see e.g. [Jea14, Section 2.1.2]) and the compactness
of M then imply the stronger form of Assumption 1.2 as stated.
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Moreover, it is subelliptic of order 1
k , that is, the following estimates hold: there

is C > 0 such that for any u ∈ C∞(M), we have

‖u‖2
H

1
k (M)

≤ C
m∑
i=1

‖Xiu‖2L2(M) + C ‖u‖2L2(M) ,(1.4)

‖u‖2
H

1
k (M)

≤ C(Lu, u)L2(M) + C ‖u‖2L2(M) ,(1.5)

‖u‖2
H

2
k (M)

≤ C ‖Lu‖2L2(M) + C ‖u‖2L2(M) .(1.6)

The hypoellipticity was shown by Hörmander [Hör67], who also provided with
a subelliptic estimate with loss (see also [Koh78,Koh05] or [HN05, Chapter 2] for
a simpler proof). The optimal subelliptic estimate (1.4) with gain of 1/k derivatives
is proved by [RS76] (see also [FP81, p288] for a different proof, or [BCN82]
for a simpler one). More precisely, (even slightly hidden) it is written in [RS76]
Theorem 17 and estimate (17.20) p311 in a local form. It is then easy to globalise
on the compact manifold M to obtain (1.4) (since commutators of Xi with smooth
cutoff functions are multiplication operators).

Both estimates (1.5) and (1.6) may then be deduced from (1.4). This is clear
for (1.5) when recalling (1.2). The proof of (1.6) requires a commutator argument
(detailed e.g. in [FP83]) and is proved in Appendix B.1, as well as Hs vari-
ants of (1.5) and (1.6). Note that these subelliptic estimates are also obtained in
Fefferman-Phong [FP83] for some wider class of symmetric operators, not necces-
sarily sums of squares.

Since the operator L is symmetric non-negative, the hypoellipticity of L + 1
and the compactness of M directly imply that L is essentially selfadjoint (see e.g.
Reed-Simon [RS80, Theorem X.26]). Hence, it extends uniquely as a selfadjoint
operator (its Friedrich extension)

L : D(L) ⊂ L2(M) → L2(M),

with, according to (1.6), H2(M) ⊂ D(L) ⊂ H
2
k (M) (still under Assumption 1.2).

The operator L is hence selfadjoint on L2(M), with compact resolvent: it admits a
Hilbert basis of eigenfunctions (ϕj)j∈N, associated with the real eigenvalues (λj)j∈N,
sorted increasingly, that is

Lϕi = λiϕi, (ϕi, ϕj)L2(M) = δij , 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞.

(1.7)

Note that a bootstrap argument in (1.6) shows that ϕj ∈ C∞(M). Also, the
spectral decomposition allows to define solutions of the hypoelliptic wave and heat
equations (respectively (∂2

t + L)v = f and (∂t + L)u = f), which we shall consider
in this paper.

In addition to Assumption 1.2, we will also assume in the main part of the
article that everything is real-analytic. This assumption in not made in Section 5
though, where we give some results in the non-analytic context.

Assumption 1.6. The manifold M, the density ds, and the vector fields Xi

are real-analytic.

In particular, it implies that the operator L has analytic coefficients in any
analytic coordinate set compatible with the manifold M. Note that under this
assumption, the converse of Theorems 1.3 and 1.5 also hold, namely:
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• Attainability, in the sense of Theorem 1.3, implies Assumption 1.2,
see [Her63,Nag66] (see also [Lob70,Sus73] for generalizations);

• The hypoellipticity of L, in the sense of Theorem 1.5, implies Assumption
1.2, see [Der71, Theorem 2.2] if there is no point x0 where all Xi cancel.

The analyticity assumption is further discussed in Sections 1.2.4 and 1.3 below.
Before stating our main results, let us provide with classical examples of oper-

ators that are considered in the present paper.

Example 1.7 (Elliptic operators, k = 1). In the case k = 1, then,

span(X1, · · · , Xm)(x) = TxM for all x ∈ M,

and the operator L is elliptic. Most of the results stated in this paper (or stronger
versions of them) are already known in this situation (and in greater generality),
see [LR95, Leb92, LL19]. That all Laplace-Beltrami operators can be written
under the form (1.1) is a consequence of Remark 1.2 below.

Example 1.8 (The Grushin operator, k = 2). Consider the torus M =
(R/2Z)× (R/Z) (which we identify with [−1, 1[×[0, 1[ with periodicity conditions),
endowed with the Lebesgue measure ds = dx1dx2 and

L = −
(
∂2
x1

+ x2
1∂

2
x2

)
= X∗

1X1 +X∗
2X2, with X1 =

∂

∂x1
, X2 = x1

∂

∂x2
.

We have span(X1, X2) = R
2 if x1 �= 0, but on the singular set x1 = 0, we have

span(X1, X2) = RX1. However, we have [X1, X2] =
∂

∂x2
, so that

span(X1, X2, [X1, X2]) = R
2

on the whole M, and Assumption 1.2 is satisfied for k = 2. Remark that x2
1

is not analytic (not even C1) on the torus M; here it can be replaced e.g. by
sin(πx1)

2, being analytic and satisfying the same Hypoelliptic property (with two
zones of degeneracy). The original Grushin operator will also be discussed later
with Dirichlet boundary conditions, in which case it has smooth coefficients on
[−1, 1]× (R/Z) or [−1, 1]× [0, 1].

Example 1.9 (Higher order Grushin operators, k ∈ N). Consider again M =
(R/2Z)× (R/Z), ds = dx1dx2 and, for γ ∈ N, set

(1.8) Lγ = −
(
∂2
x1

+ x2γ
1 ∂2

x2

)
= X∗

1X1 +X∗
2X2, with X1 =

∂

∂x1
, X2 = xγ

1

∂

∂x2
.

Again, x2γ
1 may be replaced by sin(πx1/2)

2γ so that Lγ has analytic coefficients.
We have span(X1, X2) = R

2 if x1 �= 0, but on the singular set x1 = 0, we have to

use iterated Lie brackets: Since
[

∂
∂x1

, xβ
1

∂
∂x2

]
= βxβ−1

1
∂

∂x2
for all β ≥ 1, we have,

with F = {X1, X2}, that
• Lie1(F) is the space spanned by F in X∞;

• Lie�(F) =
{
f = a ∂

∂x1
+
∑γ

i=γ−�−1 bix
i
1

∂
∂x2

|a, bi ∈ R

}
for 1 ≤ � ≤ γ + 1;

• Lie�(F) = Lieγ+1(F) =
{
f = a ∂

∂x1
+B(x1)

∂
∂x2

|a ∈ R, B ∈ R
γ [X]

}
if � ≥

γ + 1.

Hence, for x = (0, x2), we have Lie
�(F)(x) = R

∂
∂x1

if � < γ+1 and Lieγ+1(F)(x) =

R
2. In particular, Assumption 1.2 is fulfilled with k = γ + 1. Note that we recover

Example 1.7 in case γ = 0 and Example 1.8 in case γ = 1.
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Example 1.10 (The Heisenberg operator on the Heisenberg group). On R
3

with current point w = (x, y, s), the following two vector fields X1 = ∂x+2y∂s and
X2 = ∂y − 2x∂s constitute the model case for contact geometry. Indeed, we have,
with F = {X1, X2}, that

• Lie1(F) = span(F) is of dimension 2 at any point in R
3;

• Lie2(F) = R
3 at any point in R

3, since [X1, X2] = −4∂s.

Let us now define a compact context in which these are two analytic vector fields.
First equip R

3 with the (non-commutative) group law

w • w′ = (x, y, s) • (x′, y′, s′) = (x+ x′, y + y′, s+ s′ − 2xy′ + 2yx′).

With this law, (R3, •) (with R
3 endowed with its canonical differential structure) is

a Lie group which we denote by G. Given L > 0, the set Γ = LZ× LZ× L2
Z is a

subgroup of G, and both vector fieldsX1 andX2 are left invariant vector fields onG,
i.e. setting mg : G → G,w �→ g•w, we have dmg(Xj(w)) = Xj(mg(w)) = Xj(g•w)
for j = 1, 2. The subgroup Γ being co-compact, the left quotient M := Γ \G is a
compact three dimensional analytic manifold. Moreover, the vector fields X1, X2

go to the quotient as analytic vector fields on M. From the computation on R
3, we

obtain dimLie1(F)(w) = 2 and Lie2(F)(w) = TwM for some/any point w ∈ M.
The Haar measure turns out to be the Euclidian measure in the coordinates (x, y, s).
In this case, the operator we consider is L = X∗

1X1 +X∗
2X2 = −X2

1 −X2
2 = −ΔH,

sometimes called the Kohn Laplacian, for which k = 2. We refer for instance
to [BFKG12, Section 1.2] for more on this example.

This last example belongs to the following general class of constant rank sub-
Riemannian structures.

Example 1.11 (Lie Groups). Assume that (M, •) is a compact d-dimensional
Lie group. Let 1 be the identity of (M, •), and write L := T1M its Lie alge-
bra. Recall (see e.g. [God82, Tome II, p627]) that there is a unique real-analytic
differentiable structure on M compatible with the action of •, with which we en-
dow M. We write as in the above example mg : M → M, x �→ g • x for the
left multiplication. Given m < d and m vectors (e1, · · · em) ∈ Lm, we denote by
(X1, · · · , Xm) the associated m left-invariant vector fields defined, for x ∈ M, by
Xj(x) := dmx(Xj(1)) = dmx(ej).

Now, we assume that the vectors (e1, · · · em) generate the whole Lie algebra,
namely Lie(M) = L, which implies that the vector fields (X1, · · · , Xm) satisfy
Assumption 1.2, for some k.

Finally, we remark that, by construction, both the vector fields Xj and the
Haar measure ds of M are real-analytic and left invariant. All our results shall
hence apply to the associated operator L.

Finally, let us mention that hypoelliptic operators appear naturally in several
physical and mathematical contexts such as stochastic processes and the theory
of functions of several complex variables. We refer to [Bra14, Chapter 2] for a
presentation of some of these applications.

1.2. Main results

Our main results under Assumptions 1.2 and 1.6 are of three different types:

(1) Tunneling estimates for eigenfunctions ϕj of L (Section 1.2.1);
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(2) Quantitative approximate observability (and associated controllability) of
the hypoelliptic wave equation (∂2

t + L)v = 0 from a subset ω ⊂ M
(Section 1.2.2);

(3) Quantitative approximate observability (and associated controllability) of
the hypoelliptic heat equation (∂t + L)u = 0 from ω (Section 1.2.3).

Also, we provide with a class of examples (which are generalizations of those consid-
ered in Example (1.9)) where all these results hold as well without the analyticity
Assumption 1.6 (Section 1.2.4).

All results obtained have a global and quantitative flavor. Their local qualitative
counterpart in the present context could be formulated using the Holmgren theorem
(except in the partially analytic case of Section 1.2.4). We refer to Section 1.3 for
a comparison with the literature.

Also, all these results depend explicitely on the hypoellipticity index k of the
operator considered, i.e. the minimal number of iterated brackets necessary to
span the whole tangent space, given by Assumption 1.2. We finally prove with an
example that the results are optimal in general.

1.2.1. Eigenfunction tunneling. Our first result is the following.

Theorem 1.12. Let ω be a nonempty open subset of M. Then, there is C, c > 0
such that for all (λ, ϕ) ∈ R+ × L2(M) satisfying Lϕ = λϕ, we have

‖ϕ‖L2(M) ≤ Cecλ
k/2‖ϕ‖L2(ω).(1.9)

This estimate may be read as ‖ϕ‖L2(ω) ≥ 1
C e−cλk/2

for all normalized eigen-
functions ϕ, and hence quantizes the possible vanishing rate of eigenfunctions on
any subdomain ω.

In the case k = 1, i.e. when L is an elliptic operator, the analyticity as-
sumption 1.6 is not needed and the result follows from the Donnelly-Fefferman
paper [DF88]. In this situation, it also holds on a manifold with boundary for
Dirichlet eigenfunctions [DF90,LR95] (see also [LR97] for other boundary condi-
tions).

We shall also deduce from estimates of [BCG14, Section 2.3] that the tunneling
estimate (1.9) is optimal in the following particular setting (close to Example (1.9)).

Example 1.13 (Higher order Grushin operators on the rectangle). Consider the
manifold with boundary M = [−1, 1]× [0, 1] or M = [−1, 1]× (R/Z), endowed with

the Lebesgue measure dx, and for γ > 0, define the operator Lγ = −
(
∂2
x1

+x2γ
1 ∂2

x2

)
as in (1.8) with Dirichlet conditions on ∂M. If γ ∈ N, then the operator Lγ is
hypoelliptic of order k = γ + 1 (i.e. Assumption 1.2 is fulfilled with k = γ + 1).

Proposition 1.14. Consider, for γ > 0 the situation of Example 1.13. Assume
that ω ∩ {x1 = 0} = ∅. Then there exists C, c0 > 0 and a sequence (λj , ϕj) of
eigenvalues and associated eigenfunctions of Lγ with λj → +∞ such that

‖ϕj‖L2(ω) ≤ Ce−c0λ
γ+1
2

j ‖ϕj‖L2(M).

We recall that if γ ∈ N
∗, then Lγ is hypoelliptic of order k = γ + 1, so that

Proposition 1.14 shows that, in general, one cannot expect a better estimate than
that of Theorem 1.12. We shall also prove (see Section 1.2.4) that Estimate (1.9)
holds as well in a setting containing those of Example 1.9 and Example 1.13, thus
providing a genuine converse of Proposition 1.14 (for γ ∈ N

∗).
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Note that in the analytic context, the qualitative uniqueness:(
Lϕ = λϕ on M, ϕ = 0 on ω

)
=⇒ ϕ ≡ 0 on M,

was proved by Bony [Bon69], as a consequence of the Holmgren-John theorem. Re-
moving the analyticity assumption, even for such a qualitative unique continuation
property, remains a very subtle issue, as discussed in Section 1.3.1 below.

1.2.2. Quantitative approximate observability of the hypoelliptic
wave equation. To state our main result here, we need to introduce the appro-
priate notions of Sobolev spaces and sub-Riemannian distance, which are adapted
to the analysis of the operator L.

All along the paper, we shall use the functional calculus given, for appropriate
functions f and u, by

f(L)u =
∑
j∈N

f(λj)(u, ϕj)L2(M)ϕj .(1.10)

This allows for instance to define the operators (1 + L) s
2 : C∞(M) → C∞(M),

which, by duality, may be extended as operators (1 + L) s
2 : D′(M) → D′(M). We

next define the Sobolev spaces

Hs
L = {u ∈ D′(M), (1 + L) s

2 u ∈ L2(M)}, s ∈ R,

and associated norms

‖u‖Hs
L
=
∥∥(1 + L) s

2u
∥∥
L2(M)

, s ∈ R.

Let us now also introduce basic notions of sub-Riemannian geometry needed to
formulate our main result. We refer to [Bel96,Mon02,Jea14,Rif14,ABB16a,
ABB16b] for an introductions to sub-Riemannian geometry, as well as for further
developments. The so-called sub-Riemannian metric associated to the vector fields
(X1, · · · , Xm) is defined, for x ∈ M and v ∈ TxM, by

g(x, v) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
inf

{
m∑
i=1

u2
i , (u1, · · · , um) ∈ R

m,

m∑
i=1

uiXi(x) = v

}
if v ∈ span(Xi(x), i ∈ {1, · · · ,m}),

+∞ if not.

(1.11)

This defines for any x ∈ M a positive definite quadratic form g(x, ·) on the hori-
zontal space

span(X1(x), · · · , Xm(x)).

Remark that, if finite, the infimum is in fact a minimum, and is realized by a vector
(u1, · · · , um) ∈ R

m. Given γ : [0, 1] → M an absolutely continuous path, we define
its length accordingly by

length(γ) :=

∫ 1

0

√
g(γ(t), γ̇(t))dt.

The fact that this quantity is finite implies that γ̇(t) ∈ span
(
X1(γ(t)), · · · ,

Xm(γ(t))
)
for almost all t ∈ [0, 1]. Note also that when the vectors are linearly

independent, the infinimum is among one unique u realizing the decomposition.
Also, it is always finite if γ is a horizontal path (in the sense of Definition 1.4).
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Then, this allows to define a sub-Riemannian (also called Carnot-Carathéodory)
distance on M by

dL(x0, x1)=inf {length(γ) |γ horizontal path, γ(0)=x0, γ(1)=x1 } , x0, x1 ∈ M

The Chow-Rashevski Theorem 1.3 implies that, under Assumption 1.2, the dis-
tance dL is always finite on M × M. We also define accordingly dL(x0, E) =
infx1∈E dL(x0, x1) for a point x0 ∈ M and a subset E ⊂ M.

With these definitions in hand, we may now state our main result, which con-
cerns the quantitative unique continuation (or quantitative approximate observ-
ability) for the Hypoelliptic wave equation{

∂2
t u+ Lu = 0

(u, ∂tu)|t=0 = (u0, u1).
(1.12)

Theorem 1.15. Let L as above satisfying Assumptions 1.2 and 1.6. Assume
that ω is a non empty open set of M and let T > supx∈M dL(x, ω). Then, there
exist ν, C, μ0 > 0 such that we have

‖(u0, u1)‖L2×H−1
L

≤ Ceνμ
k ‖u‖L2(]−T,T [×ω) +

1

μ
‖(u0, u1)‖H1

L×L2(1.13)

for all μ ≥ μ0, for any (u0, u1) ∈ H1
L × L2, and associated u solution of (1.12) on

]− T, T [.

Note first that this estimate could be stated equivalently for all μ > 0 (see
e.g. [LL19, Lemma A.3]). We chose to keep the above formulation to underline the
interesting case (being μ large). Note also that this theorem can be equivalently
rewritten under one of the following two formulations (see e.g. [LL19, Lemma A.3]):
for all (u0, u1) ∈ H1

L × L2 \ {(0, 0)}, one has

‖(u0, u1)‖H1
L×L2 ≤ CecΛ

k ‖u‖L2(]−T,T [×ω) , with Λ =
‖(u0, u1)‖H1

L×L2

‖(u0, u1)‖L2×H−1
L

,(1.14)

or

‖(u0, u1)‖L2×H−1
L

≤ C
‖(u0, u1)‖H1

L×L2

log

(
‖(u0,u1)‖H1

L×L2

‖u‖L2(]−T,T [×ω)
+ 1

) 1
k

,(1.15)

where, in the last expression, the function x �→
(
log(1 + 1

x )
)− 1

k has to be extended
by zero at x = 0+.

Again, in the particular situation of Example 1.13, i.e. for the operators (1.8),

the sequence of eigenfunctions of Proposition 1.14 shows that the exponent eνμ
k

in (1.13) (resp. ecΛ
k

in (1.14) and log−
1
k in (1.15)) cannot be improved in general.

Remark 1.16. That dL is the relevant distance function in view of the study
of the Hypoelliptic partial differential operator L comes from the fact that the
sub-Riemannian metric g(x, v) and the principal symbol �(x, ξ) of the operator L
are linked through the Legendre transform 1

2g(x, v) = maxξ∈T∗
xM(〈ξ, v〉 − 1

2�(x, ξ))
(see [Bel96, Section 1.2] or Appendix C): dL is thus the appropriate distance when
analyzing properties of L.
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Moreover, the assumption on the time T > supx∈M dL(x, ω) is optimal. More
precisely, even the qualitative unique continuation property(

(∂2
t + L)u = 0 on (−T, T )×M, u = 0 on (−T, T )× ω

)
=⇒ u ≡ 0,(1.16)

(weaker than Estimates like (1.13)-(1.14)-(1.15)) fails if T < supx∈M dL(x, ω). This
follows from the fact that the hypoelliptic wave equation (1.12) also satisfies finite
speed of propagation. This property has a similar formulation to that associated to
the classical wave equation (k = 1), but with the Riemannian distance replaced by
the sub-Riemannian distance dL, and was proved by Melrose [Mel86] (see also the
remarks in [JSC87, Section 4] for the link between the distance defined in [Mel86]
and dL).

As a corollary of this result (see [Rob95] or [LL18a, Appendix]), we obtain
the approximate controllability of the Hypoelliptic wave equation, as well as an
estimate of the cost of approximate controls. Here, we only state approximate
controllability to zero, which is equivalent to approximate controllability to the
whole state space H1

L × L2 on account to the reversibility of the equation.

Corollary 1.17 (Cost of approximate control). For any T >2 supx∈M dL(x, ω),
there exist C, c > 0 such that for any ε > 0 and any (u0, u1) ∈ H1

L×L2, there exists
g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤ Ce
c

εk ‖(u0, u1)‖H1
L×L2 ,

such that the solution of{
(∂2

t + L)u = 1ωg in (0, T )×M,
(u, ∂tu)|t=0 = (u0, u1), in M,

satisfies ‖(u, ∂tu)|t=T ‖L2×H−1
L

≤ ε ‖(u0, u1)‖H1
L×L2 .

To the authors’ knowledge, these results are the first ones concerning the ap-
proximate observability/controllability of hypoelliptic waves. They furnish not only
the approximate observability/controllability but also an (optimal in general) esti-
mate of the cost.

In the elliptic case k = 1, these can be obtained by the theory developed by
Lebeau in [Leb92] (even on a manifold with boundary). However, in this (ellip-
tic) case, the analyticity assumption can be removed, as proved by the authors
in [LL19]. This result followed a long series of papers concerning the qualita-
tive unique continuation (1.16), see [RT73, Ler88,Rob91,Hör92,Tat95] (see
also [RZ98,Hör97,Tat99b] for more general operators), and another series of
papers [Rob95,Phu10,Tat99a] concerning variants of Estimate (1.13) (still in
the elliptic case k = 1) which are not optimal with respect to the minimal time
and the exponent of μ. We refer to the introductions of [LL19,LL16] for a more
detailed discussion on this issue. Here, in the analytic context, we directly prove
the quantitative result but, to our knowledge, even the qualitative result was not
known.

Note that if one is only interested in the qualitative statement (1.16), our
proof simplifies considerably. It reduces essentially to the geometric construction
of Section 3.1 together with the use of the Holmgren theorem. See the begining of
Section 1.4 for a discussion.
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Finally, we shall see that we prove actually a more general statement in which
the term ‖(u0, u1)‖H1

L×L2 in the right-handside of Estimate (1.13) can be changed

into ‖(u0, u1)‖Hs
L×Hs−1

L
for any s > 0, if changing the power of μ accordingly, see

Theorem 1.33 below.

1.2.3. Quantitative approximate observability of the hypoelliptic heat
equation. We now turn to the study of observability properties for solutions of
the hypoelliptic heat equation{

∂ty + Ly = 0, in (0, T )×M,
y(0) = y0 in M,

(1.17)

from a subdomain ω ⊂ M. By duality, we are equivalently concerned here with
different controllability properties of the following system{

(∂t + L)u = 1ωg, in (0, T )×M,
u(0) = u0, in M.

(1.18)

We provide with three main results, still under Assumptions 1.2 and 1.6:

(1) For any k ∈ N
∗, we prove an approximate observability result in any

time T > 0 with a frequency-depending constant of order CecΛ
k

, where

Λ =
‖y0‖H1

L
‖y0‖L2

, or, equivalently, approximate controllability with cost e
c

εk .

These are the analogues of Theorem 1.15 and Corollary 1.17 for parabolic
equations.

(2) If we moreover assume the data to be sufficiently smooth (in some Gevrey-
type norm with respect to the spectral decomposition of L), then the cost
of approximate observability can be improved to a polynomial one, i.e. of
the form C

εβ
for some β > 0; this yields approximate controllability in a

much weaker topology, but with a much lower cost.
(3) Finally, in the very particular case k = 2 (including Grushin and Heisen-

berg operators), we prove an approximate observability/controllability
property to trajectories in large time with a polynomial cost. This may be
interpreted as a counterpart of the exact controllability to trajectories for
the heat equation [LR95,FI96] (case k = 1). There is no similar result
if k > 2.

The first result we obtain provides the cost of approximate observability of the
whole state space L2(M). There is no restriction for the hypoellipticity index k,
but the (exponential) cost depends on this parameter.

Theorem 1.18. For all T > 0, there exist C, c > 0 such that for any y0 ∈ H1
L

and associated solution y of (1.17), we have

‖y0‖2L2 ≤ CecΛ
k

∫ T

0

∫
ω

|y(t, x)|2 dx dt, Λ =
‖y0‖H1

L

‖y0‖L2

,(1.19)

and, for any μ > 0,

‖y0‖2L2 ≤ Cecμ
k

∫ T

0

∫
ω

|y(t, x)|2 dx dt+
1

μ2
‖y0‖2H1

L
.(1.20)

That both inequalities (1.19) and (1.20) (as well as a “log−
1
k ” formulation as

in (1.15)) are equivalent comes for instance from [LL19, Lemma A.3]. Again, in
the particular situation of Example 1.13, i.e. for the operators (1.8), the sequence
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of eigenfunctions of Proposition 1.14 shows that the exponent eνμ
k

in (1.20) (resp.

ecΛ
k

in (1.19)) cannot be improved in general.
This theorem generalizes the results of Fernandez-Cara-Zuazua and Phung

[FCZ00,Phu04] in the elliptic case k = 1. Yet, in this framework, the analyt-
icity was not necessary (as in all above stated results in the case k = 1) and the
setting can be relaxed (uniform dependence of the constants with respect to lower
order terms and to the time T , boundary value problems...).

As a corollary (see [LL18a, Appendix]), we obtain, given an initial state and
a target state both belonging to the space L2(M), and given a precision ε, the
existence of a control function bringing the initial state in an ε-neighborhood of the
target (in appropriate topology). We obtain as well an estimate of the cost of the
control.

Corollary 1.19 (Cost of approximate control to the state space). For any
T > 0, there exist C, c > 0 such that for any ε > 0 and any u0 ∈ L2(M), u1 ∈
L2(M), there exists g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤ Ce
c

εk
∥∥e−TLu0 − u1

∥∥
L2(M)

,

such that the solution of (1.18) issued from u0 satisfies

‖u(T )− u1‖H−1
L

≤ ε
∥∥e−TLu0 − u1

∥∥
L2(M)

.

In this statement, e−TLu0 stands for the solution at time T to Equation (1.18)
with g = 0.

To state our second result concerning the hypoelliptic heat equation, we need
to introduce the following spectral Gevrey-type norms for functions defined on M:
For α > 0, θ ∈ R, we set

‖u‖2α,θ =
∑
j∈N

e2θλ
α
j |uj |2 ∈ [0,+∞], with u =

∑
j∈N

ujϕj .(1.21)

For θ ≥ 0, we defineHα,θ to be the subspace of L2(M) consisting in functions u such
that ‖u‖α,θ < ∞. For θ < 0, we let Hα,θ be the completed of linear combinations

of eigenfunctions for this norm. Remark that taking as usual L2(M) as a pivot

space, the space Hα,−θ is identified to
(
Hα,θ

)′
for θ ≥ 0. Also, according to the

hypoellipticity Assumption 1.2 (see Corollary B.2) we have Hα,θ ⊂ C∞(M) for
θ > 0, so that Hα,−θ is larger than spaces of distributions on M (and its topology
weaker).

We obtain the following result, which assumes the data to be extremely reg-
ular and then yields approximate observability with a polynomial cost only. The
regularity needed is linked to the hypoellipticity index k.

Theorem 1.20. Fix any k ∈ N
∗. There exists θ0 > 0 such that for any T > 0

and any θ > θ0, there exist C > 0 so that for ε > 0, we have for any y0 ∈ H
k
2 ,θ

and associated solution y to (1.17),

‖y0‖2L2 ≤ C

ε
θ0

θ−θ0

∫ T

T/2

∫
ω

|y(t, x)|2 dt dx+ ε ‖y0‖2k/2,θ .(1.22)

Again Proposition 1.14 shows that a polynomial cost is optimal for data inHθ, k2

in the situation of Example 1.13. As in the previous case of logarithmic dependence,
the previous polynomial estimate can also be written in terms of Hölder dependence,
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or interpolation inequality. We refer to Remark 1.35 for more precision. Note that
we provide with an explicit dependence of the polynomial cost (i.e. the power θ0

θ−θ0
)

with respect to the regularity of the data; in particular, we see how it improves
when θ becomes larger. As a Corollary of Theorem 1.20, we obtain an approximate
controllability result with polynomial cost, but the target is well approximated in
a very weak topology.

Corollary 1.21 (Cost of approximate control to the state space in very weak
topology). With θ0 > 0 given as in Theorem 1.20 (depending only on M, ω,L),
for any T > 0 and θ > θ0, there exist C > 0 such that for any ε > 0 and any
u0 ∈ L2(M), u1 ∈ L2(M), there exists g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤
C

ε
θ0

θ−θ0

∥∥e−TLu0 − u1

∥∥
L2(M)

,

such that the solution of (1.18) issued from u0 satisfies

‖u(T )− u1‖k/2,−θ ≤ ε
∥∥e−TLu0 − u1

∥∥
L2(M)

.

We are not aware of any such results, even for the usual heat equation (i.e. with
k = 1). In this case, our proof also works in the C∞ context, and in the presence of
boundaries, starting from the estimates obtained in [LL19] or the spectral estimates
of [LR95].

Our last main result concerning the hypoelliptic heat equation is, as opposed to
the first two ones, concerned with final state approximate observability (or equiv-
alently an approximate controllability to trajectories) with a polynomial cost, and
is restricted to the case k = 2.

Theorem 1.22. Assume that k = 2. There exist T0, C > 0 such that for all
η > 0, all T > T0 + η and all ε > 0, we have for any y0 ∈ L2(M) and associated
solution y to (1.17),

D ‖y(T )‖2L2 ≤ 1

εβ

∫ T

T−η

∫
ω

|y(t, x)|2 dt dx+ ε ‖y0‖2L2 ,(1.23)

with D = min{ e−C/η

C , 1} and β = T0

T−(T0+η) .

In particular, we obtain an explicit (but certainly not optimal) estimate on how
the cost improves as T increases. Note that Estimate (1.23) can be reformulated
equivalently as an interpolation inequality, see Remark 1.35 below. This result gives
directly the following corollary concerning approximate controllability to trajecto-
ries (or, equivalently, to zero) at a polynomial cost (see again [LL18a, Appendix]).

Corollary 1.23 (Cost of approximate control to trajectories if k = 2). As-
sume that k = 2, and let T0 > 0 as in Theorem 1.22. For all η > 0, all T > T0 + η
and all ε > 0, we have the following statement: for any u0, ũ0 ∈ L2, there exists
g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤
C̃

εβ
‖u0 − ũ0‖L2 ,

such that the associated solution u of (1.18) satisfies∥∥u(T )− e−TLũ0

∥∥
L2(M)

≤ ε ‖u0 − ũ0‖L2 ,

where β = T0

T−(T0+η) and C̃ = C̃(η, T0, T ).
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Remark that these two results only hold in the case k = 2. Once again, in the
particular situation of Example 1.13, i.e. for the operators (1.8), the sequence of
eigenfunctions of Proposition 1.14 shows that this result cannot hold if k ≥ 3 (or
even, if γ > 1). Let us here be more precise: assume in the context of Example 1.13
that an estimate of the form (1.23) is satisfied for a cost function Φ(ε), that is

‖y(T )‖2L2 ≤ Φ(ε)

∫ T

0

∫
ω

|y(t, x)|2 dt dx+ ε ‖y(0)‖2L2 , for all ε > 0,

and test it with y(t) = e−λjtϕj (solution of (1.17)), where ϕj is given by Proposi-
tion 1.14. Then we have for all ε > 0,

e−2λjT ≤ Φ(ε)
e−2c0λ

k/2
j

λj
+ ε, for all ε > 0.

Fixing then ε = εj :=
e−2λjT

2 → 0+ and taking logarithm yields

(1.24) 2(c0λ
k/2
j − λjT ) ≤ log Φ(εj).

That Φ(ε) ≤ C/εβ (i.e. having a polynomial cost) implies k ≤ 2. In the case k = 2,
(1.24) implies Φ(εj) ≥ 1

(2εj)
c0
T

−1
, so that for T < c0, the polynomial cost cannot

be improved. Unfortunately, the constant T0 in the above result is much larger
than c0, so that this discussion does not imply neither that the polynomial cost is
the optimal one, nor that a minimal time is necessary. However, as we shall see
in Section 1.3.2 below, it may happen that exact controllability holds for no time
T > 0, which may indicate that a polynomial cost is not far from being sharp.

1.2.4. Relaxing the analyticity assumption. Notice first that, strictly
speaking, the analyticity assumption required in the proofs of all above results
is not Assumption 1.6, but only that M is real-analytic, ds,Xi’s are C∞, and that
all coefficients of L (which depend both on the vectorfields (Xi)i∈{1,··· ,m} and the
density ds) are analytic in every (analytic) chart. We did not state the assumption
this way for the sake of clarity.

In this section, we provide with a simple family of examples for which the
analyticity Assumption 1.6 (or even the above described condition) can be partially
removed. Still, this family contains those of Examples 1.9 and 1.13. In this context,
most above results hold as well. The motivation is both to show that the theory
of [LL19] allows to relax the analyticity assumption (and replace it with a partially
analytic condition), and to include the boundary setting of the article [BCG14].

Example 1.24 (Partially analytic Grushin-type operators). Consider the man-
ifold with boundary M = [−1, 1]× (R/Z), endowed with the Lebesgue measure dx,
and define, for f ∈ C∞([−1, 1]× (R/Z)), the Grushin type operator

L = X∗
1X1 +X∗

2X2, X1 = ∂x1
, X2 = f(x1, x2)∂x2

,(1.25)

that is

L = −∂2
x1

− f2∂2
x2

− (2f∂x2
f)∂x2

,

with Dirichlet conditions on ∂M. We further assume that

• f(x1, x2) is analytic in the variable x2 (that is, for any point x = (x1, x2) ∈
]−1, 1[×(R/Z), f is equal to its partial Taylor expansion at x2 with respect
to the variable x2 uniformly in a neighborhood of x in ]− 1, 1[×(R/Z));
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• there exists ε > 0 such that f(x1, x2) = f(x1) does not depend on x2, and
f(x1) �= 0 for all x1 ∈ [−1,−1 + ε] ∪ [1− ε, 1];

• X1 and X2 satisfy the Chow-Rashevski-Hörmander Assumption 1.2;
• f(x1, x2) does not depend on x2 in a neighborhood of ω.

Note that under these assumptions, the operator L is elliptic near the boundary
∂M.

For instance if f(x1, x2) = f(x1) ∈ C∞([−1, 1]) does not depend on the variable
x2, and we have :

f(x1) �= 0, for x1 �= 0 f (α)(0) = 0, for all α ≤ k − 2, and f (k−1)(0) �= 0,

then, the operator L defined by (1.25), namely L = −∂2
x1

− f(x1)
2∂2

x2
, satisfies

all assumptions of Example 1.24 (in particular, it is hypoelliptic of order k). This
contains the situation of Examples 1.9 and 1.13 (for γ ∈ N of course).

We prove the following result.

Theorem 1.25. In the context of Example 1.24, all results of Theorems 1.12,
1.20 and 1.22 still hold, as well as their corollaries.

Theorem 1.15 is true with the following estimate instead

‖(u0, u1)‖L2×H−1
L

≤ Ceνμ ‖u‖L2(]−T,T [×ω) +
1

μ
‖(u0, u1)‖Hk

L×Hk−1
L

.(1.26)

Theorem 1.18 is still true but with the estimates

‖y0‖2L2 ≤ CecΛk

∫ T

0

∫
ω

|y(t, x)|2 dx dt, Λk =
‖y0‖Hk

L

‖y0‖L2

,(1.27)

‖y0‖2L2 ≤ Cecμ
∫ T

0

∫
ω

|y(t, x)|2 dx dt+
1

μ2
‖y0‖2Hk

L
.(1.28)

Note that since f does not vanish near ∂M, the metric g defined as in (1.11)
is Riemannian near ∂M and the notions of length and distance defined above can
be extended up to the boundary.

We explain in Section 5 how the proofs in the completely analytic case need
to be modified. Notice that the formulation of the estimates of Theorem 1.25
(with Hk

L norms and ecμ costs) differs slightly with all estimates above in the

completely analytic case (where H1
L norms and ecμ

k

costs appeared instead). In

that case actually, we prove a whole family of estimates with Hs
L norms and ecμ

k
s

cost functions (this is stated precisely in Theorem 1.33 in the case of the hypoelliptic
wave equation). For instance, the statement (1.26) is a particular case of that of
Theorem 1.33 with s = k. We refer to the discussion in Section 1.5 below.

Remark 1.26. Under appropriate assumption on f , it is classical to extend
Theorem 1.25 to the same situation as in Example 1.24, but on the domain M =
[−1, 1]x1

× [−1, 1]x2
with Dirichlet boundary conditions by using symmetry argu-

ments. Also, the case of the domain M = (R/Z)2 is simpler.

Remark 1.27. All observability results of Theorem 1.25 also hold if the in-
ternal observation term ‖u‖L2(]−T,T [×ω) is replaced by a boundary observation

‖∂nu‖L2(]−T,T [×Γ), where Γ is a nonempty open subset of ∂M and ∂n denotes

the normal derivative to ∂M. See [LL19, Section 5]. In turn, they imply their
boundary controllability counterparts. We do not state these results for the sake
of brevity.
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1.3. Comparison to other works

1.3.1. Previous works on unique continuation for sum-of-squares op-
erators. Observability inequalities (as those provided by Theorems 1.12, 1.15,
1.18, 1.20 and 1.22 above, or as (1.29) below) are quantitative estimates of the
unique continuation property for the operator involved (namely L−λ, ∂2

t +L, and
∂t + L respectively). Hence, when studying such inequalities, it is natural to com-
pare our results with the known unique continuation properties for such operators.
When the ellipticity condition is dropped, i.e., when k > 1, this property seems to
be a very intricate problem, even under the simplest form(
(L+ l.o.t.)u = 0 on M, u = 0 on ω

)
=⇒ u = 0 in a neighborhood of ω in M.

To our knowledge, the most general such result was proved by Bony [Bon69], and
holds under both the Chow-Rashevski-Hörmander condition and the assumption
that the coefficients of the operator are analytic. Therefore, our assumptions 1.2
and 1.6 (except in the partially analytic case of Theorem 1.25) are essentially the
same as in this paper. In particular, Theorem 1.12 could be read as a quantification
of Bony’s result. Also, the proof of the result of Bony mainly relies on the Holmgren-
John theorem and is quite indirect. Here, we need to make a new proof of his result,
that we are also able to quantify.

Some attempts have been done to relax this analyticity assumption. Watanabe
[Wat82] proved the unique continuation property for C∞ coefficients in dimension
d = 2. Yet, later on, Bahouri [Bah86] proved a surprising general non-uniqueness
result: for a large class of sum-of-squares operators L with C∞ coefficients, and
satisfying Assumption 1.2, there is C∞ potentials V such that L + V does not
satisfy the local unique continuation property. These counterexamples to unique
continuation contain for instance in dimension d = 3 and d = 4 the case where
the horizontal distribution is of dimension d−1 (Heisenberg-like situations). More-
over, this result suggests both that a classical Carleman estimate approach cannot
work for all hypoelliptic operators, and that the (complete or partial) analyticity
assumptions that we make are not completely artificial.

This analyticity assumptions might be completely removed in some specific
situations where the operator is elliptic outside of a submanifold, see the comments
of Bahouri [Bah86, p140]. This was proved in the paper [Gar93] by Garofalo for
specific examples. Colombini-Del Santo-Zuily [CDSZ93] also treated some related
classes of degenerate elliptic operators having a specific form with respect to a
hypersurface. Nevertheless, even in these situations, the quantitative estimates
that we obtain are optimal as stated in Proposition 1.14.

All these results are concerned with the unique continuation property for oper-
ators like L (“degenerate elliptic operators”). We are not aware of works studying
the unique continuation property for operators like ∂2

t + L or ∂t + L (“hyperbolic,
resp. parabolic operators with a degenerate elliptic part”), except in the context
of control theory, that we review in the next section.

1.3.2. Previous works on the controllability of the hypoelliptic heat
equation. The investigation of the controllability properties of hypoelliptic equa-
tions has, to the best of our knowledge, been mainly restricted to some specific
operators or classes of operators. A striking result concerning the parabolic ob-
servation problem (1.17), where L = Lγ is given by Example 1.13 (i.e. higher
order Grushin operators on the rectangle, with Dirichlet boundary conditions), was
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proved by Beauchard, Cannarsa and Guglielmi [BCG14]. The authors are inter-
ested in the following observablity inequality, equivalent to the controllability to
zero (and hence to trajectories)

‖y(T )‖2L2(M) ≤ C

∫ T

0

∫
ω

|y(t, x)|2 dtdx,(1.29)

for all y0 ∈ L2(M) and y solution of (1.17).

Theorem 1.28 (Beauchard, Cannarsa and Guglielmi [BCG14]). Assume L =
Lγ is given by Example 1.13.

(1) If γ ∈ [0, 1[, then the observability inequality (1.29) holds true for any
nonempty open set ω ⊂ M in any time T > 0.

(2) If γ = 1 and if ω =]a, b[×]0, 1[ where 0 < a < b < 1, then there exists
T ∗ ≥ a2/2 such that

• for every T > T ∗ the observability inequality (1.29) holds true,
• for every T < T ∗ the observability inequality (1.29) is false.

(3) If γ > 1 and ω ⊂ (0, 1) × (0, 1), then the observability inequality (1.29)
never holds true, in any time T > 0.

In the case γ = 1 (i.e. k = 2) and with a symmetric observation region
ω = (] − b,−a[∪]a, b[)×]0, 1[ with 0 < a < b ≤ 1, it has been recently proved by
Beauchard, Miller and Morancey [BMM15] that T ∗ = a2/2 is actually the critical
time. This result is quite surprising since parabolic type equations often display
an infinite speed of propagation. The controllability of parabolic evolutions thus
usually holds in an arbitrary small time independent on the geometry; appearance
of a minimum controllability time is hence unusual. Yet, the proof uses a lot the
specific geometry of ω as a vertical strip. Indeed, another very striking result was
recently proved by Koenig in the case γ = 1 (i.e. for the Grushin operator): if ω is
disjoint from an horizontal strip, null-controllability never holds (in any time).

Theorem 1.29 (Koenig [Koe17]). Let L = Lγ be given by Example 1.13 with
γ = 1. Assume that there is 0 < c < d < 1 such that ω ∩

(
] − 1, 1[×]c, d[

)
= ∅.

Then, for any T > 0 the observability inequality (1.29) is false.

A remarkable consequence of this result, when compared with the two above-
mentioned ones is that a geometric condition on the set ω is needed for the observ-
ability estimate 1.29 to hold.

Hence, the best result one can then expect in a general situation is a final
state approximate observability result with a cost function Φ(ε) →ε→0+ +∞ (or
equivalently an approximate controllability to trajectories with cost Φ(ε)), which
is precisely our Theorem 1.22 and Corollary 1.23 with Φ(ε) = ε−β .

Finally, let us also underline that all these result hold in the context of Exam-
ple 1.13, that is for the operator −(∂2

x1
+ x2γ

1 ∂2
x2
), which coefficients are analytic

(indeed constant) with respect to the variable x2. As such, they fit into the frame-
work of Theorem 1.25 as long as γ ∈ N.

More recently, the controllability of the heat equation on the Heisenberg group
has been investigated by Beauchard and Cannarsa [BC17]. It still corresponds
to the case k = 2 as described in Example 1.10. Some phenomenon similar to the
Grushin case seems to occur with the existence of a minimal time if the observability
is made on a cylinder. This strenghtens the fact suggested by our result, that the
important parameter is the hypoelliptic index k.
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Yet, in both cases of Grushin and Heisenberg (or more generally when k =
2), it remains to understand geometric property on the observation set ω makes
the difference between the polynomial cost provided by our result without any
assumption on ω (which is likely to be optimal in general as suggested by Theorem
1.29), and the exact observability/controlability (1.29) (which requires geometrical
assumptions on ω).

Finally, for generalized Grushin operators as in Example 1.13, the
article [BMM15] also provides with a precise description of the reachable states
in terms of spaces of analytic functions in the vertical variable. It is quite likely,
but not totally clear to us, that these spaces are related to the Gevrey type spaces
described in Corollary 1.21.

1.3.3. Controllability of other equations driven by degenerate elliptic
operators. To conclude this section, let us mention different works related to the
controllability of parabolic equations driven by hypoelliptic or degenerate elliptic
operators, that do not fit in the framework of the present article.

First, the paper [Mor15] by Morancey treats the approximate controllabil-
ity (or the unique continuation property) for the heat equation associated with the
Laplace Beltrami operator of the Grushin sub-Riemannian metric defined in [BL13].
This operator is equal to the Grushin operator discussed in Example 1.8 plus a sin-
gular potential on the singular set x1 = 0. Hence, the analysis of the cost associated
to approximate controls is much beyond the scope of the present paper.

Second, we only considered here type I (selfadjoint) Hörmander operators, that
is L =

∑m
i=1 X

∗
i Xi. Another classical class of hypoelliptic operators consists in

type II Hörmander operators, namely L =
∑m

i=1 X
∗
i Xi+X0, where the vector field

(the drift) X0 is necessary to span the full tangent space with iterated Lie brackets.
These are no longer selfadjoint operators. The simplest example is the so-called
Kolmogorov (or Fokker-Planck) operator L = −∂2

v + v∂x. Our results do not apply
in this setting, especially because our main theorems only see the principal symbol
of the operator. Yet, recent progress has been made to analyse the observabil-
ity/controllability of parabolic equations driven by such operators (mainly for some
variants of the Komogorov operator, though). We quote for instance the papers
[BZ09,Bea14,BHHR15]. The observability/controllability problem has also been
considered on the whole space R

d. This led to other geometrical problems about
how the domain is “spread out” at infinity, see Le Rousseau-Moyano [LRM16]
for the Kolmogorov equation and Beauchard-Pravda-Starov [BPS18,BPS17] for
some more general class of quadratic operators. In the last three papers, the idea
of the proof is to combine observability of low frequencies (defined via the usual
Fourier transform, or via the spectral theory of the harmonic oscillator) together
with decay and regularizing properties of the semigroup.

It would be very interesting to understand the common features and differ-
ences of our results and methods with these ones. At first sight, it seems that in
both cases, one important idea (which goes back to Lebeau-Robbiano [LR95]) is
to compare the decay rate of high frequency solutions to the heat equation together
with the cost of observability (or control) of low frequencies. In the present paper,
“frequency” is defined with respect to the hypoelliptic operator L and therefore,
decay estimates high frequency are rather classical. The hard part of the analysis
consists in understanding the cost of observability of low frequencies. In the pa-
pers [LRM16,BPS18,BPS17], it seems that the authors have chosen to define
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frequency as the usual Euclidian one (or with respect to a fixed well known oper-
ator as the harmonic oscillator in [BPS17]). In this situation, the observation at
low (Euclidian) frequency does not really see the hypoelliptic operator and follows
from more usual Carleman estimates. Yet, the decay rate of high frequency (see for
instance Proposition 2.2 of [BPS18]) and the understanding of the commutation
with Fourier cutoff turns out to be much more intricate and to reflect deeply the
hypoelliptic properties of the operator.

Note that the unique continuation property for type II Hörmander operators
has also been investigated (see e.g. [LZ82] for related operators).

Finally, other types of degeneracies have also been studied, as for instance
elliptic operators with coefficients vanishing near the boundary of a domain M ⊂
R

d. In this case, adaptations of the usual Carleman estimates (combined with
appropriate Hardy inequalities) are sometimes tractable. The literature is vast,
and we simply mention the recent memoir [CMV16] and refer the reader to the
references therein.

1.4. Sketch of the proofs and plan of the paper

Even though this is not explicit in the discussion above, the cornerstone result
of this paper is Theorem 1.15, concerning the hypoelliptic wave equation. All
results concerning eigenfunctions (Theorem 1.12) or the hypoelliptic heat equation
(Theorems 1.18, 1.20 and 1.22) are then deduced from Theorem 1.15. The proof
in the partially analytic case (Theorem 1.25) shall be discussed afterwards. Let us
hence first comment the proof of Theorem 1.15.

The proof of Theorem 1.15 is based on the general strategy developed by the
authors in [LL19] for quantifying and propagating unique continuation proper-
ties. From [LL19], we only use here (except for the partially analytic situation
of Theorem 1.25) the “Holmgren-John” case, i.e. when the operator has analytic
coefficients. It states basically

• that an appropriate quantitative (low frequency) estimate holds across
any non-characteristic hypersurface;

• that such local estimates can be propagated, leading towards global ones.

In Chapter 2, we review results and tools developed in [LL19]; for sake of read-
ability, we specify the latter to the very particular case of second order operators
that are elliptic when restricted to ζa = 0 (the cotangent variable to the analytic
variable, called ξa in [LL19]), which includes all operators studied in the present
article.

Here, when compared to the case of the classical wave equation, two addi-
tional difficulties arise: one being of geometric nature, and the other one related to
the compatibility between the energy spaces associated to L and those dealt with
in [LL19].

Let us first describe the geometric difficulty. The proof is inspired by the case
of the classical wave equation given in [LL19, Section 6.1]: the idea is, given a
point x0 ∈ M, to take any path γ : [0, 1] → M with γ(0) = x0 and γ(1) ∈ ω
(observation set), of length sufficiently small, and then to construct a family of
appropriate noncharacteristic hypersurfaces in these coordinates near [−T, T ] × γ.
There, we apply the general theorem of [LL19], which allows to bound the solution
u to (∂2

t −Δ)u = 0 in a neighborhood of (t, x) = (0, x0) by u in [−T, T ]× ω.
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Here, due to the non definiteness/ellipticity of the operator L, we are not able
to construct global coordinates near any path γ together with appropriate non-
characteristic hypersurfaces, in which to apply the results of [LL19]. To overcome
this difficulty, we do not consider any path between x0 and ω, but rather only so
called normal geodesics, that is, projections on M of hamiltonian curves of the
principal symbol of the operator L. The existence of such paths γ (minimizing the
sub-Riemannian distance) from any point x0 to ω is a well-known result in sub-
Riemannian geometry, proved by Rifford and Trélat [RT05]. Then, locally near a
point of γ, the introduction of normal geodesic coordinates allows us to define local
coordinates in which to apply a local version of our results in [LL19].

Note that this single geometric construction, combined with the usual Holmgren
theorem would be enough to prove the qualitative uniqueness statement (1.16).

When considering the quantitative statement, a new difficulty, linked to the
methods used in [Tat95,Tat99b,RZ98,Hör97,LL19], then arises: the whole
setting of these papers relies on a splitting of space into analytic and non-analytic
coordinates. Hence, most “patchable estimates” (linked to a relation �, see Sec-
tion 2.2) produced in [LL19] require the analytic variable to be global and straight,
which is obviously not the case here. To solve this problem we do not rely on the
main (neither global, nor local) result of [LL19], but rather on the specific result
of [LL19, Theorem 4.11], which takes into account the possible changes of variables.
These arguments eventually allows to prove an estimate of the form

‖u‖L2(]−ε,ε[×M) ≤ Ceνμ ‖u‖L2(]−T,T [×ω) +
C

μ
‖u‖H1(]−T,T [×M) ,(1.30)

for μ large and u solution to (∂2
t + L)u = 0. This estimate is the same as that

obtained in [LL19] for the wave equation.
This leads us to the second main difficulty we have to face in the proof of

Theorem 1.15. Whereas the left hand-side of (1.30) is bounded from below by the
natural L2 × H−1

L norm of the data, the right hand-side is not directly linked to
their H1

L × L2 norm. More precisely, the hypoelliptic estimates of Rothschild and
Stein [RS76] (see Theorem 1.5 above and Appendix B.1) imply that

‖u‖H1(]−T,T [×M) ≤ C ‖(u0, u1)‖Hk
L×Hk−1

L
.

This provides a weaker version of Theorem 1.15 which has exactly the same form as
in the case of the wave equation (cost eνμ), but with the norm ‖(u0, u1)‖Hk

L×Hk−1
L

in the right hand-side. This weaker version is however interesting for itself since
the proof is much less involved, and we prove it in Section 3.3.1.

To obtain the estimate of Theorem 1.15 (and in fact, a family of such estimates
with any Hs

L × Hs−1
L , s > 0, in the right hand-side, see Theorem 1.33 below), we

thus need to work with a version of (1.30) still containing frequency cutoff localiza-
tion and an e−cμ small remainder (instead of the 1/μ one). These low-frequency-
with-exponentially-small-remainder estimates are then combined with the spectral
representation of solutions to (∂2

t +L)u = 0 in order to gain back derivatives in the
remainder term. Such estimates are close to those we prove in [LL18a] for the clas-
sical wave equation. These final energy estimates are performed in Section 3.3.3,
and conclude the proof of Theorem 1.15.

Starting from Theorem 1.15, let us now explain how to deduce the other results
of the paper, namely Theorems 1.12, 1.18, 1.20 and 1.22. First of all, Theorems 1.12
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is simply deduced from Theorem 1.15 by using a particular solution to the wave
equation (1.12), namely u(t, x) = cos(

√
λt)ϕ(x). See Section 3.3.2.

Chapter 4 is devoted to the proofs of Theorems 1.18, 1.20 and 1.22, which fol-
low the general idea that the controllability/observability properties for hyperbolic
equations implies controllability/observability properties for their parabolic coun-
terpart, see [Rus73,Mil06a,EZ11a,EZ11b] (see also [LR95]). This has been
named as “transmutation methods” by Luc Miller [Mil06a]. Here, we use the
method developed in [EZ11a] (itself relying on a Lebeau-Robbiano strategy). In
that paper, Ervedoza and Zuazua deduced the (exact final time) observability of
the heat equation (known from [LR95,FI96]) from the approximate observability
estimate for waves (namely the analogue of Theorem 1.15) as proved in [Phu10]
(with loss) or [LL19] (without loss). Their proof consists in constructing an ap-
propriate kernel kT (t, s) such that if y(t) is a solution to the usual heat equation,

u(s) =
∫ T

0
kT (t, s)y(t)ds is a solution to the usual wave equation, to which we can

apply the analogue of Theorem 1.15. Because of the exponential cost in terms of
the frequency (ecΛ), the resulting estimates are only useful at low frequency: for

data having (spectral) frequencies
√

λj ≤
√
λ, one then obtain observability (or

controllability if we think about the dual problem) at cost ec
√
λ as in [LR95]. The

proof of final state observability then follows from comparing this cost with the heat
dissipation for frequencies

√
λj ≥

√
λ, namely e−tλ as in the original proof [LR95]

(see also [LRL12] or the simplified argument of [Mil10]).
Here, we follow the approach of [EZ11a] (in particular, we use the same kernel

kT and its properties) in the proofs of Theorems 1.18, 1.20 and 1.22, with the
following modifications.

The proof of Theorems 1.20 and 1.22 are vey close to that of [EZ11a]. However,
application of the method of [EZ11a] yields that the observability of low frequencies√
λj ≤

√
λ costs ecλ

k/2

, see Lemma 4.2 (remark that Proposition 1.14 implies that
this is optimal in general). This cost has to be compared to the dissipation for

high frequencies
√

λj ≥
√
λ, namely e−tλ. Hence, we see that the cases k = 1

(classical heat equation, already discussed), k = 2 (Grushin, Heisenberg...), and
k > 2 display very different features:

(1) In case k = 2, the cost of observation of low frequencies ecλ and the para-
bolic dissipation for high frequencies e−tλ have the same strength: in this
case, we need to wait a time long enough so that the dissipation “beats”
the cost of the observability (essentially t > c). Moreover, the iterative
procedure devised in [LR95] in order to control/observe all frequencies
in finite time cannot converge here: each step would need a time t > c.
Therefore, we only obtain the approximate controllability result of Theo-
rem 1.22, with a cost improving as time increases. See Section 4.1 for the
proof of Theorem 1.22.

(2) In case k > 2, the dissipation for high frequencies e−tλ has no chance to

compete with the cost of observation of low frequencies ecλ
k/2

. Assuming
that the initial data are in the Gevrey-type space Hθ,α with α = k/2

allows to compensate for the cost of low frequencies ecλ
k/2

(the θ having
to be compared to c), leading to Theorem 1.20. Note that parabolic
dissipation at high frequencies does not play any role here: low frequencies
are observed thanks to transmutation and high-frequencies are absorbed
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by the Gevrey norm. The cases k = 1, 2 (in which the Gevrey norm
is relatively weaker) in Theorem 1.20 are a little different and require
elements similar to those used in the proof of Theorem 1.18. Note that
this type of result seems to be new for the classical heat equation as well
(in which case our proof also holds in a much more general setting). The
proof of Theorem 1.20 is performed in Section 4.2.

Finally, the proof of Theorem 1.18 in Section 4.3 relies on the same trans-
mutation technique. However, we do not split the solution into low and high-
frequencies, but rather apply the transmutation kernel kT (t, s) to the full solution

y to the heat equation: u(t) =
∫ T

0
kT (t, s)y(s)ds is a solution to the wave equa-

tion. We then prove a fine asymptotic analysis of
∫ T

0
kT (0, s)e

−λsds for high fre-
quencies together with convexity estimates to bound the “frequency function” of

u(0), namely
‖u(0)‖H1

L
‖u(0)‖L2

by the frequency function of y(0). The proof of this result

via a direct transmutation method seems to be new, even for the classical heat
equation. The usual proofs [FCZ00,Phu04] rather rely on the exact final time
observability estimate, which does not hold here in general. However, as opposed
to [FCZ00,Phu04], we do not recover uniform estimates in terms of the control
time T as T → 0+.

Finally, in Chapter 5, we prove the partially analytic result of Theorem 1.25.
Only the analogue of Theorem 1.15 at regularity Hk

L needs to be proved (namely
estimate (1.26)), since, as discussed above, all results of Theorems 1.12, 1.18, 1.20
and 1.22 (under the appropriate form) are corollaries of that of Theorem 1.15.
The situation is almost the same as that of Theorem 1.15 except for four main
differences. First, the presence of the boundary makes it complicated to apply
globally the geometric result of Rifford and Trélat [RT05], and we only rely on a
local version of it. Second, the partial analyticity assumption does not allow to
make changes of variables. This difficulty is overcome by the very simple geometry
of [−1, 1]x1

×Tx2
, in which we barely do not perform any change of variable. Third,

the application of the results in [LL19] yields an observation term in a mixed
L2 −H1 norm; we have to refine this estimate to recover the L2 observation term.
Finally, the available hypoelliptic estimates do not apply directly in the presence of
boundary and we have to patch hypoelliptic estimates in the interior with elliptic
estimates at the boundary.

The paper ends with three appendices, the first of which, Appendix A, is de-
voted to the proof of the optimality result of Proposition 1.14 using some estimates
of [BCG14, Section 2.3]. The second part, Appendix B provides the proof of
several subelliptic estimates that are used throughout the paper. They are conse-
quences of Theorem 1.5. Finally, Appendix C contains a technical sub-Riemannian
computation.

1.5. Some remarks and further comments

This section contains several remarks concerning the setting of the present
paper and the results we obtain.

Remark 1.30 (Sub-Riemannian Laplacians). Here, we explain why the as-
sumption that L writes as a sum of X∗

jXj , although seemingly restrictive, contains
in fact a general family of intrinsically defined sub-Riemannian Laplacians.
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We first define here the sub-Riemannian Laplacian Δ(U,f),ds associated to a
sub-Riemannian structure (U, f) on M and a smooth density ds. We then explain
why it can be rewritten under the form (1.1) for some (sufficiently many) vector
fields X1, · · · , Xm.

First, we assume that M is equipped with a general sub-Riemannian structure
(U, f), see [Bel96, Definition 1.3] or [ABB16a, Definition 3.2] with U a Euclidean
bundle with base M and f : U → TM a smooth map being linear on fibers. This
allows to define first a sub-Riemannian metric, that is, a metric on the horizontal
distribution D with Dx = f(Ux) ⊂ TxM by g(x, v) = inf{|u|, u ∈ Ux, v = f(x, u)}
(where | · | denotes the Euclidean norm in U). Second, this provides a sub-
Riemannian gradient ∇(U,f) on M: namely, for u ∈ C∞(M), ∇(U,f)u(x) is the
unique vector in Dx such that for all v ∈ Dx, we have dxu(v) = g̃(x,∇(U,f)u(x), v)
(where g̃ is the bilinear form associated to g).

Next, the smooth density ds allows to define the divergence divds of a vector
field X ∈ X∞ by

d

dt
(etX)∗(ds)

∣∣∣∣
t=0

= divds(X)ds,

where etX denotes the flow of X (or, equivalently, by the formula X∗ = −X −
divds(X)). Hence, a natural definition of the sub-Riemannian Laplacian Δ(U,f),ds

is
Δ(U,f),dsu = divds

(
∇(U,f)u

)
, u ∈ C∞(M).

Now, according to [ABB16a, Corollary 3.26], the sub-Riemannian structure
(U, f) is equivalent to a free one, that is, there exist m ∈ N and m vector fields
X1, · · · , Xm on M such that the horizontal distribution at x ∈ M is given by Dx =
span(X1(x), · · · , Xm(x)), and the metric on this distribution is defined by (1.11). A
computation similar to that in Appendix C shows that the sub-Riemannian gradient
∇(U,f) of a function u is then given by

∇(U,f)u =
m∑
i=1

(Xiu)Xi.

Hence, the formula divds(uX) = u divds(X) + Xu for u ∈ C∞(M) and X ∈ X∞

yields

Δ(U,f),dsu = divds

(
m∑
i=1

(Xiu)Xi

)
=

m∑
i=1

divds(Xi)Xiu+X2
i u = −

m∑
i=1

X∗
i Xiu.

As a consequence, all results presented in this article remain valid for general,
intrinsically defined sub-Riemannian Laplacians Δ(U,f),ds.

In the above discussion, we assume the density ds to be given: the sub-
Riemannian Laplacian Δ(U,f),ds then depends both on the sub-Riemannian struc-
ture (U, f) and the density. One may also wonder whether, given the sub-Rieman-
nian structure (U, f) only, there is an associated intrinsic choice of density ds, as
in the Riemannian case. This question is an object of current research. While it
seems that in the equiregular case, i.e., when the growth vector does not depends
on the point, there is a natural intrisic measure (namely the Popp measure, see
e.g. [Mon02]), there is no consensus for what should be the natural one in the
general case. For instance, in the Grushin case of Example 1.8 the metric g defined
in (1.11) is Riemannian outside of {x1 = 0}. Hence, a natural choice would be to
take the Riemannian density outside of {x1 = 0}. The associated Laplacian is equal
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to that of Example 1.8 plus a potential which is singular on {x1 = 0}. The analysis
in [BL13] shows that the zone {x1 = 0} creates a barrier which the information
cannot cross. This phenomenon differs strongly from those exhibited in the present
paper.

To conclude this remark, let us also notice that the whole class of operators
studied by Fefferman and Phong in [FP83] is not contained in the class of sub-
Riemannian Laplacians Δ(U,f),ds defined above. It would be interesting to investi-
gate the questions of the present paper for such hypoelliptic operators.

Remark 1.31 (Norm of the observation term). Note that in the right hand-
side of (1.13), the observation term only comes with a L2 norm (which is not the
case in most results in [LL19]). This is due to the fact that we are in the context
of operators with analytic coefficients with respect to all variables. In the case of
partially analytic operators as described in Subsection 1.2.4, we are able to get
observability in L2 using a refined argument (see Section 5.3). Similar arguments
are also applied to the classical wave equation in a forthcoming companion paper
[LL18a].

Remark 1.32 (Other levels of Hs
L regularity). As already mentionned, The-

orem 1.15 is a particular case of general estimates where all Sobolev scales are
possible for measuring the typical frequency of the initial datum. Indeed, we prove
the following more general result.

Theorem 1.33. Let L as above satisfying Assumptions 1.2 and 1.6. Assume
that ω is a non empty open set of M and T > supx∈M dL(x, ω). Then, for any

s > 0, there exist ν, C, μ0 so that for all μ ≥ μ0, and all (u0, u1) ∈ Hs
L ×Hs−1

L and
u solution of (1.12), we have

‖(u0, u1)‖L2×H−1
L

≤ Ceνμ
k ‖u‖L2(]−T,T [×ω) +

1

μs
‖(u0, u1)‖Hs

L×Hs−1
L

(1.31)

Theorem 1.15 is the case s = 1 of Theorem 1.33 and we believe that the
frequency functions Λ used in Theorem 1.15 is the more natural presentation. Yet,
it turns out that Theorem 1.33 is actually easier to prove for s = k. Below, we first
prove this simpler case s = k (Section 3.3.1); then we need to prove refined estimates
for the general case (Section 3.3.3). The second part of the proof seems to require
additional arguments in the partially analytic case described in Section 1.2.4. That
is the reason why the estimate (1.26) of Theorem 1.25 is restricted to the case s = k.
Nevertheless, as already explained, most of the results about eigenfunction and the
hypoelliptic heat equation only use the easier case s = k.

Remark also that, in inequalities such as (1.31), deducing the Hs′

L case from the
Hs

L case follows from an interpolation argument if s′ > s. Indeed, for 0 ≤ s < s′,

denoting H̃s = Hs
L ×Hs−1

L we have

‖U‖
˜Hs ≤ ‖U‖1−

s
s′

˜H0
‖U‖

s
s′
˜Hs′ ≤ (1− s

s′
)A ‖U‖

˜H0 +
s

s′
A1− s′

s ‖U‖
˜Hs′ , for all A > 0.

Taking then A = 1
2μ

s and putting this into (1.31) yields the same estimate with s
replaced by s′. Hence, the difficulty in Theorem 1.33 when compared to the case
s = k (which proof is simpler) is only for small s > 0.

Finally, let us mention that the result of Theorem 1.18 remains valid as well
with the H1

L-norm replaced by any Hs
L-norm, s > 0, when modifying the powers

accordingly.
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Remark 1.34 (Constants). Note that there are mostly two relevant constants
in Theorem 1.15, namely the minimal time 2 supx∈M dL(x, ω), and the constant
ν in the exponent of (1.13). The constant ν is expected to contain geometric
information, see e.g. [LL18b] in the elliptic case. All other relevant constants
appearing in the results of Section 1.2.3 can be explicitely estimated in terms of
these two. For instance, in Theorem 1.22, the constant T0 can be taken as T0 > ν,
where ν is the exponent in (1.13) for some S > supx∈M dL(x, ω). We refer to
Remark 4.3 below for more on this subject.

Remark 1.35 (Interpolation spaces, see [Leb92, LL18a]). Notice that Es-
timate (1.23) may be reformulated (after an optimization in ε) as the following
interpolation inequality, for y solution to (1.17)

‖y(T )‖L2 ≤ C ‖y‖
T−(T0+η)

T−η

L2((0,T )×ω) ‖y(0)‖
T0

T−η

L2 ,

while (1.22) can be written

‖y(0)‖2L2 ≤ C ‖y‖
θ−θ0

θ

L2((0,T )×ω) ‖y(0)‖
θ0
θ

k/2,θ .

More generally, in both cases, there exists α ∈]0, 1[ so that, we have the estimates

‖y0‖F1
≤ C ‖y0‖αFobs

‖y0‖1−α
F0

,(1.32)

where F0, F1 and Fobs are defined as the spaces of data obtained as the completion
of linear combinations of eigenfunctions of L for the norms
(1.33)
‖y0‖F1

=
∥∥e−TLy0

∥∥
L2 , resp. ‖y0‖F1

= ‖y0‖L2 ,
‖y0‖F0

= ‖y0‖L2 , resp. ‖y0‖F0
= ‖y0‖k/2,θ ,

‖y0‖Fobs
= ‖y‖L2((0,T )×ω) =

∥∥e−tLy0
∥∥
L2((0,T )×ω)

in both cases.

The latter are proper norms as a consequence of uniqueness, backward uniqueness
(consequence e.g. of Lemma 4.6 below) and unique continuation property for the
hypoelliptic heat equation (1.17). Note that we have F0 ⊂ Fobs, F1 in the first case,
and F0 ⊂ F1 ⊂ Fobs in the second.

As a consequence of (1.32) (see for instance [Leb92, Appendix, Lemma 1]),
there exists δ > 0 such that

[F0, Fobs]δ ⊂ F1,

where [F0, Fobs]δ is the space of interpolation between F0 and Fobs. As in Lebeau
[Leb92, Section 3], this yields

F ′
1 ⊂ [F ′

0, F
′
obs]1−δ.(1.34)

Now, the duality between (1.17) and (1.18) will allow to identify the spaces F ′
0, F

′
1

and F ′
obs to deduce properties of the controllable and the attainable sets.

First, the duality between (1.17) and (1.18) writes∫ T

0

(1ωy(T − t), g)L2(M)dt = (y0, u(T ))L2(M) − (y(T ), u0)L2(M).(1.35)

We define

Eatt =
{
u1 ∈ L2(M), there exists g ∈ L2((0, T )× ω),

s.t. the associated solution u to (1.18) with u(0) = 0 satisfies u(T ) = u1

}
,
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the space of attainable data from zero with L2 controls, endowed with the norm

‖u1‖Eatt
= inf

{
‖g‖L2((0,T )×ω) , g ∈ L2((0, T )× ω)

s.t. the associated solution u to (1.18) with u(0) = 0 satisfies u(T ) = u1

}
.

From (1.35), we obtain for all u1 ∈ Eatt ⊂ L2 and all y0 ∈ L2

∣∣(y0, u1)L2(M)

∣∣ = ∣∣∣∣∣
∫ T

0

(1ωy(T − t), g)L2(M)dt

∣∣∣∣∣ ≤ ‖y0‖Fobs
‖u1‖Eatt

.

Hence, the L2(M) scalar product extends uniquely as a duality product

〈y0, u1〉Fobs,Eatt
,

allowing to identify F ′
obs with Eatt. With the identification, we have as well F1 =

eTLL2(M) and F0 = L2(M) (resp. F1 = L2(M) and F0 = Hk/2,θ) so that
F ′
1 ≈ e−TLL2(M) and F ′

0 ≈ L2(M) (resp. F ′
1 ≈ L2(M) and F ′

0 ≈ Hk/2,−θ).
With (1.34), this yields

e−TLL2 ⊂ [Eatt, L
2]1−δ,

resp. L2 ⊂ [Eatt, H
k/2,−θ]1−δ.

We also define Econt the (abstract) space of data that can be controled towards
zero as the completion of the space

{u0 ∈ L2, there exists g ∈ L2((0, T )× ω),

s.t. the associated solution u to (1.18) satisfies u(T ) = 0}

for the norm

‖u0‖Econt
= inf

{
‖g‖L2((0,T )×ω) , g ∈ L2((0, T )× ω)

s.t. the associated solution u to (1.18) satisfies u(T ) = 0
}
.

From (1.35), we obtain for all u1 ∈ Econt ⊂ L2 and all y0 ∈ L2

∣∣(y(T ), u1)L2(M)

∣∣ = ∣∣∣∣∣
∫ T

0

(1ωy(T − t), g)L2(M)dt

∣∣∣∣∣ ≤ ‖y0‖Fobs
‖u1‖Econt

.

Similarly, the scalar product 〈y0, u1〉 = (e−TLy0, u1)L2(M) extends uniquely as a
duality product 〈y0, u1〉Fobs,Eatt

, allowing to identify F ′
obs with Econt. With this

same identification, we have as well F ′
1 ≈ L2(M) and F ′

0 ≈ e−TLL2(M) (resp.
F ′
1 ≈ e−TLL2(M) and F ′

0 ≈ e−TLHk/2,−θ). Similarly, (1.34) also yields

L2 ⊂ [Econt, e
−TLL2]1−δ

e−TLL2 ⊂ [Econt, e
−TLHk/2,−θ]1−δ.

Note that when k > 2, e−TLHk/2,−θ ≈ Hk/2,−θ which is not a distributional set
whatever the time T is. Yet, if k = 2, e−TLHk/2,−θ ≈ H1,−θ+T , which is a space
of very regular functions if T > θ.

The next remark concerns the results of Theorem 1.22 and Corollary 1.23.
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Remark 1.36 (Large time approximate controllability with polynomial cost of
“critical anomalous diffusion”). The proof of Theorem 1.22 and Corollary 1.23 also
applies to any positive selfadjoint operator satisfying spectral estimates (or similar
estimates for the control of the heat equation for spectrally localized initial data)
like

‖w‖L2(M) ≤ Cecλ ‖w‖L2(ω) , for all w =
∑
λj≤λ

wjϕj .(1.36)

This is in particular the case for the square root of the Laplacian
√
−Δg where

Δg is the elliptic Laplace-Beltrami operator on a compact Riemannian manifold
(even without the analyticity assumption and with Dirichlet boundary condition),
see [LR95]. Therefore, for the associated evolution operator (so called “critical
anomalous diffusion”) ∂t +

√
−Δg (studied in [Mil06b]), the same approximate

controllability result with a polynomial cost holds. Note also that even for the one
dimensional case (namely the operator ∂t + |∂x| on the circle), it has been proved
by Koenig [Koe17] that exact controllability in finite time T > 0 never holds (as
long as the control domain is not the whole circle). In particular, it suggests that
approximate controllability at polynomial cost might be the best to obtain under
general spectral assumptions like (1.36).
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CHAPTER 2

The quantitative Holmgren-John theorem of
[LL19]

In this chapter, we briefly review some results obtained in [LL19], that will
be at the core of the proofs of the present paper. We shall only consider a very
particular class of operators, namely second order operators with real principal
symbol. Also, we shall only consider non-characteristic surfaces. This assumption
can be also relaxed (see e.g. [LL19, Definition 1.7 and Remark 1.9]), even though
we are not aware of any application of the refined result.

The interest of taking such operators and surfaces is that, in this context,
several assumptions and formulations of the results in [LL19] are simplified. In
this chapter, we state results for an operator P in R

n, where, in the application in
Chapter 3 below, we shall mainly consider P as a local version of ∂2

t +L on R×R
d

(recall that dim(M) = d), that is n = d+1. For this reason (and as opposed to the
notation of [LL19]), we shall denote by z ∈ R

n the running variable and ζ ∈ R
n its

cotangent variable. In the applications in the next chapter, we will have z = (t, x)
and ζ = (τ, ξ).

2.1. A typical quantitative unique continuation result of [LL19]

A typical instance (in the situation describe above) of the main result of [LL19]
may be stated as follows (see [LL19, Theorem 1.11] together with [LL19, Re-
mark 1.10]).

Geometric setting: (see Figure 1) We first fix two splittings of Rn:

• R
n = R

na × R
nb , where na + nb = n. We denote z = (za, zb) the global

variable and ζ = (ζa, ζb) the associated cotangent variable.
• and R

n = R
n−1
z′ × Rzn ,

possibly in two different bases. We let D be a bounded open subset of Rn−1 with
smooth boundary and G = G(z′, ε) a C2 function defined in a neighborhood of
D × [0, 1], such that

(1) G(z′, 0) = 0;
(2) For all ε ∈ (0, 1], we have {z′ ∈ R

n−1, G(z′, ε) ≥ 0} = D;
(3) for all z′ ∈ D, the function ε �→ G(z′, ε) is strictly increasing;
(4) for all ε ∈ (0, 1], we have {z′ ∈ R

n−1, G(z′, ε) = 0} = ∂D.

We set S0 = D × {0} and, for ε ∈ (0, 1],

Sε = {(z′, zn) ∈ R
n, zn ≥ 0 and G(z′, ε) = zn}

= (D × R) ∩ {(z′, zn) ∈ R
n, G(z′, ε) = zn};

K = {z ∈ R
n, 0 ≤ zn ≤ G(z′, 1)}.

27
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z′

zb

za

S1

S0

Ω

ω̃

K

zn

Figure 1. Geometric setting of Theorem 2.1

We recall that the local surface S := {ϕ = 0} � z0, dϕ(z0) �= 0 is called
non-characteristic at z0 for the differential operator P with principal symbol p if
p(z0, dϕ(z0)) �= 0, and that this is a property of the sole surface S (together with the
point z0 and the principal symbol of the operator p) and not its defining function
ϕ.

Note also that in the main part of the paper, the operators are analytic with
respect to all variables. In this case, the following Theorem 2.1 is a quantitative
version of the Holmgren-John theorem (for second order operators, see [LL19] in
the general case), and may be seen as a generalization of [Leb92], which concerns
the (analytic) wave operator.

Theorem 2.1. In the above geometric setting, we moreover let Ω ⊂ R
na ×R

nb

be a bounded open neighborhood of K, and P be a differential operator of order 2
on Ω such that

• all coefficients of P are smooth and depend analytically on the variable za,
• the principal symbol of P , namely p(z, ζ) = Qz(ζ), is a z-family of real
quadratic forms such that ζb �→ Qz(0, ζb) is definite on R

nb for any z ∈ Ω.

Assume also that, for any ε ∈ [0, 1 + η), η > 0, the surface Sε is non-
characteristic for P at each point of Sε.

Then, for any open neighborhood ω̃ ⊂ Ω of S0, there exists a neighborhood U of
K, and constants ν, C, μ0 > 0 such that for all μ ≥ μ0 and u ∈ C∞

0 (Rn), we have

‖u‖L2(U) ≤ Ceνμ
(
‖u‖H1

b (ω̃) + ‖Pu‖L2(Ω)

)
+

C

μ
‖u‖H1(Ω) ,(2.1)

where we have denoted ‖u‖H1
b (ω̃) =

∑
|β|≤1

∥∥∥Dβ
b u
∥∥∥
L2(ω̃)

.

Unfortunately, in the present paper, this global result does not apply under this
form. In order to state the refined (and more technical) version, used in the main
part of the paper, we shall need some definitions taken from [LL19, Section 2.3].
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2.2. Definitions and tools for propagating the information

We first define the following regularization process for functions f defined on
R

n, by f �→ fλ with

fλ := e−
|Da|2

λ f = F−1
a

(
e−

|ζa|2
λ Fa(f)(ζa, zb)

)
(za),

where Fa denotes the Fourier transform in the variable za only, or, equivalently

fλ(za, zb) =

(
λ

4π

)na
2 (

e−
λ
4 |·|

2 ∗Rna f(·, zb)
)
(za)

=

(
λ

4π

)na
2
∫
Rna

f (ya, zb) e
−λ

4 |za−ya|2 dya.

Then, we also need to introduce frequency localization functions, i.e. appropri-
ately smoothed Fourier multipliers. Let m(ζa) be a smooth radial function (i.e.
depending only on |ζa|), compactly supported in |ζa| < 1 such that m(ζa) = 1 for

|ζa| < 3/4. We denote by Mμ the Fourier multiplier Mμu = m
(

Da

μ

)
u, that is

(Mμu)(za, zb) = F−1
a

(
m

(
ζa
μ

)
Fa(u)(ζa, zb)

)
(za).

Given λ, μ > 0, we shall denote by Mμ
λ the Fourier multiplier of symbol mμ

λ(ζa) =

mλ

(
ζa
μ

)
, i.e. Mμ

λ = mμ
λ(Da) = mλ

(
Da

μ

)
or

(Mμ
λu)(za, zb) = F−1

a

(
mλ

(
ζa
μ

)
Fa(u)(ζa, zb)

)
(za),

with, according to the above notation for the subscript λ,

mλ(ζa) =

(
λ

4π

)na
2
∫
Rna

m (ηa) e
−λ

4 |ζa−ηa|2 dηa.(2.2)

Note that in this definition, the symbol is first regularized and then dilated.
We stress the fact that these Fourier multipliers only act in the variable za. The
following key estimate on regularized functions like mλ(ζa) will be used all along
the paper: given a bounded continuous function f on R

na , we have, for all ζa ∈ R
na

|fλ(ζa)| ≤ C 〈λ〉
na
2 ‖f‖L∞ 〈dist(ζa, supp(f))〉na−1

e−
λ
4 dist(ζa,supp(f))

2

.(2.3)

It follows from [LL19, Equation (2.9)] in a simple situation.
The typical local estimate of [LL19, Theorem 3.1], which is the building block

for semiglobal statements like that of Theorem 2.1, reads as∥∥Mβμ
μ σμu

∥∥
1
≤ Ceνμ

(∥∥Mαμ
μ ϑμu

∥∥
1
+ ‖Pu‖L2(B(0,R))

)
+ Ce−ν′μ ‖u‖1 ,

for all μ ≥ μ0 and u ∈ C∞
0 (Rn), where σ is a cutoff function in a small ball B(0, r),

r < R, whereas ϑ is a cutoff in only one side (the one where the information is
taken) of the hypersurface passing through zero (and being non-characteristic).

Here, and below, the norm ‖·‖1 is the norm ‖·‖H1(Rn).

Such an estimate only provides information on the low frequency part of the
function, through the frequency cutoff Mβμ

μ , with an exponentially small Ce−ν′μ

remainder (as opposed to the 1/μ remainder term in (2.1)). Iterating this result
allows us to propagate the low frequency information. In this section, we recall
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some tools, used in [LL19, Section 4], for this iterative procedure. They are aimed
at describing how information on the low frequency part of the solution can be
deduced from one subregion to another one.

The following is [LL19, Definition 4.4], given here in the context of second
order operators.

Definition 2.2. Fix Ω be an open set of Rn = R
na ×R

nb and P a differential
operator of order 2 defined in Ω, and (Vj)j∈J and (Ui)i∈I two finite collections of
bounded open sets of Rn. We say that (Vj)j∈J is under the strong dependence
of (Ui)i∈I , denoted by

(Vj)j∈J � (Ui)i∈I ,

if there exists Wi � Ui such that for any ϑi ∈ C∞
0 (Rn) such that ϑi(z) = 1 on

a neighborhood of Wi, for any ϑ̃j ∈ C∞
0 (Vj) and for all ν, α > 0, there exist

C, ν′, β, μ0 > 0 such that for all (μ, u) ∈ [μ0,+∞)× C∞
0 (Rn), we have∑

j∈J

∥∥∥Mβμ
μ ϑ̃j,μu

∥∥∥
1
≤ Ceνμ

(∑
i∈I

∥∥Mαμ
μ ϑi,μu

∥∥
1
+ ‖Pu‖L2(Ω)

)
+ Ce−ν′μ ‖u‖1 .

If the cardinal of I is one, writing U the single set of the family (Ui)i∈I , we simply
denote (Vj)j∈J � U . We use the same convention for V in case the cardinal of J is
one. The norm ‖·‖1 is taken in R

n.

We summarize the properties of this relation in the following proposition [LL19,
Proposition 4.5].

Proposition 2.3. We have the following properties

(1) If (Vj)j∈J � (Ui)i∈I with Ui = U for all i ∈ I, then (Vj)j∈J � U .
(2) If Vi � Ui for any i ∈ I, then, (Vi)i∈I � (Ui)i∈I .
(3) If Vi � Ui for any i ∈ I, then

⋃
i∈I Vi � (Ui)i∈I .

(4) If for any i ∈ I, Vi � Ui, then (Vi)i∈I � (Ui)i∈I . In particular, if for any
i ∈ I, Ui � U , then (Ui)i∈I � U .

(5) The relation � is transitive, that is

[(Vj)j∈J � (Ui)i∈I and (Ui)i∈I � (Wk)k∈K ] =⇒ (Vj)j∈J � (Wk)k∈K .

Note that we do not always have U � U .

Remark 2.4. We stress the fact that the definition of � actually depends on
the set Ω, the splitting R

n = R
na × R

nb and the operator P . The dependence of
� upon these objects will be mentioned when needed. For the applications, it is
important that the function u is not necessarily supported in Ω.

In the following, we will only need to use this relation � in some appropriate
coordinate charts. However, it will not be a problem for what we want to prove,
even on a compact manifold. Indeed, we will fix some coordinate chart on an open
set Ω ⊂ R

n close to a point or close to a trajectory. Then, we will use the relation
� related to Ω to finally obtain some estimates which will be invariant by changes
of coordinates.

We will also use the following proposition, [LL19, Proposition 4.9], which allows
to iterate local propagation results towards global ones.
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Proposition 2.5. Assume that there exists some open sets U0, Ui,j , ωi,j , Vi,j,
with j ∈ �1, N� and i ∈ Ij (Ij finite) such that we have

Ui,j � Vi,j and ωi,j � Ui,j , for all j ∈ �1, N� and i ∈ Ij ;

Vm,l+1 �

⎡⎣U0 ∪
⋃

j∈�1,l�

⋃
i∈Ij

ωi,j

⎤⎦ , for all l ∈ �0, N − 1�, and m ∈ Il+1,

where we consider the union
⋃

j∈�1,l� empty if l = 0. Then, we have⎡⎣U0 ∪
⋃

j∈�1,N�

⋃
i∈Ij

ωi,j

⎤⎦� V0

for any open set V0 such that U0 � V0.

In this proposition, the local propagation results is Ui,j �Vi,j but the iteration
is made by packets. Roughly speaking, we use all sets corresponding to indices
i ∈ Ij , j ≤ l to deduce the information on the sets with indices i ∈ Il+1.

2.3. Semiglobal estimates along foliation by hypersurfaces

Now, we formulate the results of [LL19] in the form they will be used in the
next section, which is different from Theorem 2.1 with two respects:

• First, we keep the formulation with�; this means that we keep a frequency
cutoff in both handsides of the estimate, as well as an exponentially small
remainder (it is a low frequency estimate only). This allows to patch
estimates together (which is no longer the case when the high frequencies
have been taken into account, i.e. when estimates take the form of (2.1)).
The high frequencies will then be taken into account to close the estimates
with two different methods in Section 3.3.

• Second, we allow the linear change of variables between the two splittings
(namely (za, zb) for the analytic dependence and (z′, zn) for the geometry)
to be replaced by a diffeomorphism, which shall be very useful in the
following.

We give a first statement that is a low frequency formulation of Theorem 2.1,
using the notation � (see [LL19, Theorem 4.7]).

Theorem 2.6. Under the assumptions of Theorem 2.1, there exists an open
neighborhood U of K such that

U � ω̃.

This essentially means that Estimate (2.1) may be replaced by the following:
for all χ ∈ C∞

0 (U) and ϕ ∈ C∞
0 (Ω) such that ϕ = 1 on a neighborhood of ω̃, we

have ∥∥Mβμ
μ χμu

∥∥
1
≤ Ceνμ

(∥∥Mμ
μϕμu

∥∥
1
+ ‖Pu‖L2(Ω)

)
+ Ce−ν′μ ‖u‖1 ,(2.4)

(for any ν > 0, there exist C, β, ν′, μ0 > 0 such that for μ ≥ μ0) i.e. keep the
frequency cutoff and the exponentially small remainder.

A remaining drawback of this statement, given by the geometric framework of
Theorems 2.1, is that the hypersurfaces are described by graphs in some coordinates
(namely (z′, zn)). This choice of description is mainly convenient to make the
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foliation more effective and order the hypersurfaces more easily, but is too rigid
for the application in the present paper. Now, we give a slight variant of Theorem
2.6, more adapted to possible changes of variables. This result is a specific case
of [LL19, Theorem 4.11] and is proved in [LL19, Section 4.3]. The fact that
the operators described in the following Theorem fulfill the assumptions of [LL19,
Theorem 4.11] is actually a consequence of [LL19, Remark 1.10]: such operators
are analytically principally normal in {ξa = 0} and any non-characteristic surface
is strongly pseudoconvex in {ξa = 0} (we refer to [LL19, Section 1.2] for definitions
of these properties).

Theorem 2.7 (Theorem 4.11 of [LL19]). Let Ω ⊂ R
n = R

na × R
nb and P be

a differential operator of order 2 on Ω such that

• all coefficients of P are smooth and depend analytically on the variable za,
• the principal symbol of P namely p(z, ζ) = Qz(ζ) is a z-family of real
quadratic forms, such that ζb �→ Qz(0, ζb) is definite on R

nb for any z ∈ Ω.

Let Φ be a diffeomorphism of class C2 from Ω to Ω̃ = Φ(Ω). Assume that the

Geometric Setting of Theorem 2.1 is satisfied for some D, G, K, Sε on Ω̃ (and not
on Ω). Assume further that for any ε ∈ [0, 1+ η), η > 0, the surface Φ−1(Sε) (well
defined on Ω) is non-characteristic for P (at every point of Φ−1(Sε)).

Then, for all neighborhood ω of Φ−1(S0), there exists an open neighborhood
U ⊂ Ω of Φ−1(K) such that

U � ω,

where � = �Ω,P is related to the operator P defined on Ω (see Remark 2.4).

In this result, the operator P has the appropriate form in Ω ⊂ R
na × R

nb

whereas the geometry of the surfaces is defined in Ω̃, both being linked by a diffeo-
morphism.

With this theorem in hand, we may now prove the results presented in Sec-
tion 1.2.
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CHAPTER 3

The hypoelliptic wave equation, proof of
Theorem 1.15

The main goal of this chapter is to prove Theorem 1.15. The proof is inspired
by the case of the classical wave equation (see [LL19, Section 6.1]) with mainly
two differences:

• We are not able to construct global coordinates near any path γ, as in
the case of the wave equation. However, if γ is a normal geodesic (see
definition 3.3 below), we are able to do this construction locally. Then,
this local result needs to be iterated.

• The H1 norm is no longer equivalent to the energy norm for the hypoel-
liptic operator. We thus need to use hypoelliptic estimates instead.

The proof is divided into three parts, the first of which concerning the geomet-
ric constructions, the second the iterative use of quantitative unique continuation
arguments (propagation of smallness), and the last the energy estimates.

Let us start by introducing geometrical definitions and facts used all along
the proofs. First, denote by � = �(x, ξ) ∈ C∞(T ∗M) the principal symbol of the
operator L, that is

�(x, ξ) =
m∑
i=1

〈ξ,Xi(x)〉2 .(3.1)

where 〈ξ,X(x)〉 = 〈ξ,X(x)〉T∗
xM,TxM is the duality bracket.

Remark 3.1. In view of unique continuation results, note that a local hyper-
surface {ϕ = 0} at x0 ∈ M (where ϕ : M → R with ϕ(x0) = 0 and dϕ(x0) �= 0) is
characteristic for the operator L if �(x0, dϕ(x0)) = 0, that is, according to (3.1), if

〈dϕ(x0), Xi(x0)〉 = 0 for all i ∈ {1, · · · ,m}.

This means that a local hypersurface is characteristic for L at x0 if it is tangent to
all vectors Xi(x0).

Definition 3.2. The Hamiltonian curve of the symbol � issued from ρ0 ∈ T ∗M
is the unique maximal solution ρ(s) = (γ(s), ξ(s)) of the ODE

ρ̇(s) = H�(ρ(s)), ρ(0) = ρ0,(3.2)

where H� is the Hamiltonian vector field associated to the Hamiltonian �. In local
charts, this is {

γ̇(s) = ∂
∂ξ �(γ(s), ξ(s)),

ξ̇(s) = − ∂
∂x �(γ(s), ξ(s)).

33
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Such a curve is smooth (even real analytic since M and � are). Moreover, the
first equation writes

γ̇(s) =
m∑
j=1

2 〈ξ(s), Xi(γ(s))〉Xi(γ(s)),(3.3)

so that the projection on M of a Hamiltonian curve is a smooth horizontal curve
(see Definition 1.4). Note also that a Hamiltonian curve, locally defined according to
the Cauchy-Lipschitz theorem, is actually globally defined (see e.g. [Rif14, Propo-
sition 2.3.2]). Note finally that the Hamiltonian � is preserved along a Hamiltonian
curve of �, i.e. �(ρ(s)) = �(ρ0) for every ρ0 ∈ T ∗M, s ∈ R, where ρ is the solution
to (3.2).

Given a Hamiltonian curve ρ = (γ, ξ) : [0, S] → T ∗M, one may compute
the speed along the horizontal geodesic γ : [0, S] → M. Namely, we have (see
Lemma C.1 for a proof of the first identity)

g(γ(s), γ̇(s))=
m∑
j=1

4 〈ξ(s), Xi(γ(s))〉2=4�(γ(s), ξ(s))=4�(ρ(0)), for all s ∈ [0, S].

We can hence compute the length of the horizontal path γ, namely,

length(γ) =

∫ S

0

√
g(γ(s), γ̇(s))ds = 2S

√
�(ρ(0)).

This motivates the following definition:

Definition 3.3. We say that a horizontal curve γ : [0, L0] → M is a normal
geodesic if there exists ξ(s) ∈ T ∗

γ(s)M such that s �→ (γ(s), ξ(s)) is a Hamiltonian

curve of the symbol � with �(γ(s), ξ(s)) = 1
4 .

As a consequence of this definition, such a curve γ : [0, L0] → M has unit
speed:√

g(γ(s), γ̇(s)) = 2
√
�(γ(s), ξ(s)) = 2

√
�(ρ(0)) = 1, for all s ∈ [0, L0],

(it is hence parametrized by arclength) and length L0.

Definition 3.4. We say that a curve γ : [0, L] → M is a minimizing geodesic
path between x and y if γ(0) = x, γ(L) = y, if γ is a horizontal curve and if we
have dL(x, y) = length(γ) together with g(γ(s), γ̇(s)) constant.

See [Rif14, Chapter 2] or [ABB16a, Section 3.3]. Note that all above defini-
tions are intrinsic. The following key result in our proofs is [RT05, Theorem 1.1].

Theorem 3.5 (Rifford-Trélat [RT05]). For all x1 ∈ M, there exists a dense
subset Nx1

⊂ M such that for all x ∈ Nx1
, there is a (unique) minimizing geodesic

path between x1 and x. Moreover, this path is a normal geodesic path.

As a direct corollary, we obtain the following result, which is a key step in the
proof of Theorem 1.15 (in particular for obtaining the minimal time).

Corollary 3.6. Let ω a nonempty open subset of M and T >supx∈M dL(x, ω).
Then, for any x1 ∈ M, there exists x0 ∈ ω and a normal geodesic path γ : [0, L] →
M of length L ∈ (0, T ), so that γ(L) = x1, γ(0) = x0, and γ is also a minimizing
geodesic path.

Note that this path being minimizing, it is in particular non self-intersecting.
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Proof. According to the definition of T , the set Ox1
:= ω∩{x ∈ M, dL(x, x1)

< T} is open (the continuity of dL is a consequence of the Chow-Rashevski Theo-
rem 1.3) and nonempty. Hence, it intersects the dense setNx1

given by Theorem 3.5.
Taking any x0 ∈ Ox1

∩Nx1
, there is a normal geodesic curve γ : [0, L] → M joining

x0 and x1 of length L ∈ (0, T ) which is also a minimizing geodesic. �

Now, one of the main purposes of the present Section 3 is to give a proof of the
following proposition (which essentially amounts to (1.30)). Indeed, Theorem 1.33
in the simple case s = k will follow. The proof of the full range of s in Theorem 1.33
will require more work.

Proposition 3.7. Let T > 0, x0, x1 ∈ M, and assume that there is a normal
geodesic path of length L ∈ (0, T ) between x0 and x1. Then, for any ε > 0, there
exists ε̃ > 0, there is C, ν, μ0 > 0 such that for all u ∈ H1(] − T, T [×M) solution
of (∂2

t + L)u = 0 on ]− T, T [×M, and for all μ ≥ μ0, we have

‖u‖L2(]−ε̃,ε̃[×B(x1,ε̃))
≤ Ceνμ ‖u‖L2(]−T,T [×B(x0,ε))

+
C

μ
‖u‖H1(]−T,T [×M) .

Note here that the H1(] − T, T [×M) norm is the usual one, issued from the
structure of M as a compact manifold. Also, since ε and ε̃ are arbitrary small, balls
could be defined according to any metric on M defining an equivalent topology
(balls could equivalently be replaced by neighborhoods). It is convenient to use the
distance induced by the sub-Riemannian geometry since it appears in other parts
of the proof (for defining the distance dL for instance) and to avoid any confusion.

Using Proposition 3.7, together with Corollary 3.6 and a compactness argument
directly yields the following global estimate, which is the main result of this step.

Corollary 3.8. Let ω a nonempty open set M and T > supx∈M dL(x, ω).
Then, there exist ε̃, C, ν, μ0 > 0 such that for all u ∈ H1(]− T, T [×M) solution of
(∂2

t + L)u = 0 on ]− T, T [×M, and for all μ ≥ μ0, we have,

‖u‖L2(]−ε̃,ε̃[×M) ≤ Ceνμ ‖u‖L2(]−T,T [×ω) +
C

μ
‖u‖H1(]−T,T [×M) .

The last step towards the proof of Theorem 1.33 (in the case s = k; the general
case requires a slightly more precise version of this result), performed in Section 3.3,
will be to transfer the time-space information carried by this inequality into some
Sobolev norm Hs

L related to the operator L. This will be the object of Section 3.3.
Sections 3.1 and 3.2 are devoted to the proof of Proposition 3.7. For this,

the main point is to apply the quantitative unique continuation result adapted to
changes of variable, namely Theorem 2.7. The main drawback of this result is that
it only works in a subset Ω of Rn, i.e. it is not invariant by diffeomorphism. More
precisely, all estimates obtained from the results of Section 2.3 can only be patched
together in straight coordinates.

As a consequence, in the present context, we need to introduce global coordi-
nates near the trajectory between the points x0 and x1. Then, locally, we shall
define hypersurfaces to match the geometric setting of Section 2.1. This will be
done in another set of coordinates (not necessarily analytic), which is allowed by
the precise formulation of Theorem 2.7.

Finally, the energy estimates needed to conclude the proof of Theorem 1.33 are
performed in Section 3.3.
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3.1. Step 1: Geometric setting and non-characteristic hypersurfaces

We now consider x1, x0 ∈ M (recall that dim(M) = d), together with a normal
geodesic γ as in Corollary 3.6. We first need to work in analytic coordinates near
the whole curve γ. The existence of such coordinates is ensured by the following
lemma.

Lemma 3.9. Let γ : [0, L] �→ M be an analytic injective curve with γ̇(t) �= 0
for all t ∈ [0, L]. Then, there exist an open neighborhood Nγ of γ([0, L]) in M, an
open neighborhood Ωγ of [0, L]× {0Rd−1} in R

d and an analytic diffeomorphism

φγ : Nγ → Ωγ ⊂ R
d(3.4)

such that φγ(γ([0, L])) ⊂ Ωγ and φγ(γ(t)) = (t, 0, · · · , 0) for all t ∈ [0, L].

This results is classical in the C∞ setting, but we did not find a reference in
the analytic context. We give a proof for the sake of completeness.

Proof. Without loss of generality (see [Mor58]), we can assume that M ⊂
R

N is an embedded manifold. We denote by g Riemannian metric on M induced by
the Euclidean metric on R

N , and notice that it is real-analytic. Moreover, without
changing the image of γ, we can assume that γ has unit speed for the metric g. We
make the following claim that we prove hereafter.

Claim: there exists an analytic application: t ∈ (−ε, L+ε) �→ (v2(t), · · · , vd(t))
with vi(t) ∈ Tγ(t)M ⊂ TRN � R

N so that (γ̇(t), v2(t), · · · , vd(t)) is an orthonormal
basis of Tγ(t)M.

We then define the application

φ̃γ : (−ε, L+ ε)×BRd−1(0, ε) → M,

φ̃γ(t, s2, · · · , sd) = expγ(t)(s2v2(t) + · · ·+ sdvd(t)),

where the exponential map is that of (M, g). Note in particular that

φ̃γ(t, 0, · · · , 0) = γ(t).

Moreover, we can check that if we identify Tγ(t)M with R
d thanks to the basis

(γ̇(t), v2(t), · · · , vd(t)), then the differential of φ̃γ at the point (t, 0, · · · , 0) is the
identity matrix and is therefore invertible. In particular, we can apply the inverse
function theorem to get that φ̃γ is locally invertible. Since γ does not have self-
intersection, one can prove (see for instance the second part of the proof of [Lee13,

Theorem 6.24]) that up to taking ε small, φ̃γ is a diffeomorphism onto its image

which contains γ by construction. The inverse diffeormorphism φγ := φ̃−1
γ satisfies

the statement of the lemma.
Now, we get back to the proof of the claim. By compactness, we can select

a finite number of open set Uj ⊂ R
N , j ∈ {1, · · · , J}, covering γ([0, L]), ordered

so that Uj ∩ Uj+1 �= ∅ and Uj ∩ Uj+2 = ∅, and in which M is locally described
by Uj ∩M = {f1,Uj

= 0} ∩ · · · ∩ {fN−d,Uj
= 0} for some analytic functions fk,Uj

.

We select J closed intervals (Ij)j∈{1,··· ,J} such that Ij ⊂ [0, L], [0, L] = ∪J
j=1Ij

and for all j ∈ {1, · · · , J}, γ(Ij) ⊂ Uj ∩ M. In each coordinate chart Uj ∩ M,
we construct d − 1 continuous applications ui : Ij → R

N for i ∈ {2, · · · , d}, such
that (γ̇(t), u2(t), · · · , ud(t)) is a basis of Tγ(t)M for all t ∈ Ij . We may moreover
construct these applications iteratively (starting from U1, passing from Uj to Uj+1,
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ending with UJ ) so that they coincide on Ij∩Ij+1. We end up with d−1 continuous
applications

ui : (−2ε, L+ 2ε) → TRN � R
N , t �→ ui(t), with ui(t) ∈ Tγ(t)R

N � R
N ,

for i ∈ {2, · · · , d}, so that

| det(γ̇(t),∇gf1,Uj
(γ(t)), · · · ,∇gfN−d,Uj

(γ(t)), u2(t), · · · , ud(t))| > η > 0

for all j ∈ J and all t such that γ(t) ∈ Uj . By an approximation argument applied
to each t �→ ui(t) (just extend ui to R by setting zero outside of (−2ε, L + 2ε),
and then take the convolution with a one dimensional heat kernel for instance), we
obtain another family of applications t �→ wi(t) for i ∈ {2, · · · , d} that are analytic
from (−ε, L+ ε) → R

N and moreover satisfy

| det(γ̇(t),∇gf1,Uj
(γ(t)), · · · ,∇gfN−d,Uj

(γ(t)), w2(t), · · · , wd(t))| > η/2

for all j ∈ {1, · · · , J} and all t such that γ(t) ∈ Uj . In particular, for j ∈ {1, · · · , J}
and for all t ∈ (−ε, L + ε) such that γ(t) ∈ Uj , these vectors form a basis of
R

N and we can apply the Gram-Schmidt algorithm to this family with respect
to the Euclidian metric. When doing this, we obtain some orthonormal basis
γ̇(t), X1,j(t), · · · , XN−d,j(t), v2(t), · · · , vd(t) of R

N . In the process, notice that,
because of the order of the vectors, the algorithm yields for all t ∈ (−ε, L + ε)
that span{X1,j(t), · · · , XN−d,j(t)} = span{∇gf1,Uj

(γ(t)), · · · ,∇gfN−d,Uj
(γ(t))} =

(Tγ(t)M)⊥, which does not depend on j. Since the construction of one vl only

involves its projection on γ̇(t), on span{X1,j(t), · · · , XN−d,j(t)} = (Tγ(t)M)⊥ and
on the vi, i < l already constructed, the vectors v2(t), · · · , vd(t) produced do not
depend on the choice of chart Uj and satisfy by construction

span{γ̇(t), v2(t), · · · , vd(t)} = Tγ(t)M.

Finally, we can also check that since the algorithm only involve orthogonal projec-
tions on vectors depending analytically on t ∈ (−ε, L + ε), all functions involved
remain analytic. Therefore, γ̇(t), v2(t), · · · , vd(t) is an analytic orthonormal basis
of Tγ(t)M ⊂ R

N , which proves the claim. �

From now on, we shall only work in the chart (Ωγ , φγ). For the sake of
readability, we shall keep the same notation for all objects pulled back formNγ ⊂ M
to Ωγ ⊂ R

d. For instance, we shall still denote Xj instead of (φ−1
γ )∗Xj , L instead

of (φ−1
γ )∗Lφ∗

γ , γ ⊂ Ωγ instead of (φ−1
γ )∗γ etc... Recall that all above definitions

(in particular Definitions 3.2, 3.3 and 3.4) are intrinsic, so that, in particular, the
whole sub-Riemannian structure may be transported to Ωγ , and the curve γ is still
a normal geodesic in Ωγ .

Now, we define other local coordinates in which to construct the (local) non-
characteristic surfaces in order to apply Theorem 2.7. We first need the following
lemma.

Lemma 3.10 (local coordinates). Given γ : [0, L] → Ωγ a normal geodesic path,
for any point x0 = γ(s0) on this curve, there exists an open neighborhood Vx0

of
x0, and appropriate coordinates, denoted x = (x̌, xd) ∈ R

d−1 × R (with associated
cotangent variables ξ = (ξ̌, ξd) ∈ R

d−1 × R) in which

• the symbol � can be written

�(x, ξ) = ξ2d + r(x, ξ̌),(3.5)
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where r(x, ξ̌) is a non negative quadratic form in ξ̌;
• the point x0 is sent to (0, · · · , 0, s0) and γ(s) = (0, · · · , 0, s) for s close
enough to s0.

Proof. This is e.g. a consequence of [Hör85, Appendix C.5]. More precisely,
we denote by s �→ (γ(s), ξ(s)) ∈ T ∗Ω\0 the Hamiltonian curve associated to the nor-
mal geodesic γ. We let ϕ be a real-valued function defined locally in a neighborhood
of x0, such that ϕ(x0) = 0 and dϕ(x0) = ξ(s0). Then, the hypersurface {ϕ = 0}
is non-characteristic for � at x0 since �(x0, dϕ(x0)) = �(γ(s0), ξ(s0)) = 1

4 �= 0,
according to the definition of a normal geodesic path. According to [Hör85, Corol-
lary C.5.3], there are local coordinates (x̌, xd) ∈ R

d−1×R, defined in a neighborhood
of 0 in which

• x0 is sent to 0,
• the surface {ϕ = 0} is given by {xd = 0},
• the first item of the lemma holds.

We now just have to check that the second item of the lemma holds in these
coordinates. First remark that dϕ(x0) = ξ(s0) is sent to (0, ξd) for some ξd ∈ R

∗,
so that �(γ(s0), ξ(s0)) =

1
4 implies, with the form of � in (3.5), that ξ2d = 1

4 . Up to
changing xd �→ −xd (without changing any of the three properties described in the
above items), we may further assume that ξd > 0. Hence dϕ(x0) = ξ(s0) is sent to
(ξ̌, ξd) = (0, 12 ). Second, the form of � in (3.5) yields that the Hamiltonian curves
of � satisfy in these coordinates:

˙̌x = ∂ξ̌r(x, ξ̌), ẋd = 2ξd,
˙̌ξ = −∂x̌r(x, ξ̌), ξ̇d = −∂xd

r(x, ξ̌).(3.6)

The Hamiltonian curve associated to the normal geodesic γ in these coordinates
is the unique curve of (3.6) passing through x = 0 and (ξ̌, ξd) = (0, 12 ). But the

function (x̌, xd, x̌, ξd)(s) = (0, s− s0, 0,
1
2 ) solves (3.6) since ∂x̌r, ∂xd

r are quadratic

in ξ̌ and ∂ξ̌r is linear in ξ̌ (and, in particular, all vanish at ξ̌ = 0). It also starts

at time s0 at (0, 0, 0, 12 ), so that (0, s − s0, 0,
1
2 ) is the sought Hamiltonian curve.

As a consequence, the normal geodesic γ is given by (x̌, xd)(s) = (0, s − s0) in
these coordinates. This concludes the proof after the linear change of variable
(x̌, xd) �→ (x̌, xd + s0). �

Lemma 3.11 (Construction of non characteristic hypersurfaces in normal co-
ordinates). Assume that for some r0, l0 > 0, the symbol � is given by (3.5) in

coordinates (x̌, xd) ∈ Ω̃ := B(0, r0)×]− l0, 2l0[⊂ R
d−1
x̌ ×Rxd

. Then, for any t0 > l0
and 0 < r1 < r0, there exists D, G, K, Sε satisfying items 2-3-4 of the Geometric
Setting of Section 2.1 in R

n = R
d+1 in the coordinates

(z′, zn) = (t, x̌, xd), with z′ = (t, x̌) and zn = xd,(3.7)

together with

(4) D ⊂ [−t0, t0] × B(0, r1), that is S0 ⊂ [−t0, t0]t × B(0, r1)x̌ × {0}xd
⊂

Rt× ⊂ R
d−1
x̌ × {0}xd

;
(5) {0}t × {0}x̌ × [0, l0]xd

⊂ K;
(6) for any ε ∈ [0, 1 + η), the surface Sε is non-characteristic for P = ∂2

t + L
at each point of Sε.
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Proof. The principal symbol of the operator P = ∂2
t + L in the coordinates

of Lemma 3.10 is given by

p(x̌, xd, τ, ξ̌, ξd) = −τ2 + �(x̌, xd, ξ̌, ξd) = −τ2 + ξ2d + r(x, ξ̌), ξ = (ξ̌, ξd),(3.8)

To match the geometric setting of Section 2.1, we define the coordinates (z′, zn)
according to (3.7), as well as

D =

{
(t, x̌)

∣∣∣∣( x̌

r1

)2
+
( t

t0

)2
< 1

}
, G(t, x̌, ε) = εl0ψ

(√( x̌

r1

)2
+
( t

t0

)2)
,

φε(t, x̌, xd) := G(t, x̌, ε)− xd, Sε = {φε = 0}, ε ∈ [0, 1 + η),

with r1, η > 0 small to be fixed, where ψ is such that, for some η0, η1 > 0,

ψ : [−1− η0, 1 + η0] → [−η1, 1], smooth and even, ψ(±1) = 0, ψ(0) = 1,

ψ(s) ≥ 0, if and only if s ∈ [−1, 1], and |ψ′| ≤ α on [−1− η0, 1 + η0],

with 1 < α < t0
l0
. This is possible since t0

l0
> 1.

Note first that Item 4 is satisfied according to the definition ofD. Note also that
the point (t, x̌, xd) = (0, 0, l0) belongs to S1 = {φ1 = 0}. Hence, Item 5 is satisfied
since {0}t × {0}x̌ ∈ D and G(0t,x̌, 1) = l0, so that we have 0 ≤ xd ≤ G(0t,x̌, 1) = l0
if xd ∈ [0, l0].

Let us now check Item 6. We have

dφε(t, x̌, xd)

= εl0

(( x̌

r1

)2
+
( t

t0

)2)−1/2

ψ′

(√( x̌

r1

)2
+
( t

t0

)2)( tdt

t20
+

x̌dx̌

r21

)
− dxd.

Given the form of the principal symbol of the operator P in these coordinates (see
(3.8)), we obtain

− p(x̌, xd, dφε(t, x̌, xd))

= ε2l20
t2

t40

(( x̌

r1

)2
+
( t

t0

)2)−1

|ψ′|2 − l20
ε2

r41
r(x, x̌)

(( x̌

r1

)2
+
( t

t0

)2)−1

|ψ′|2 − 1,

where |ψ′|2 is taken at the point

(√(
x̌
r1

)2
+
(

t
t0

)2)
. Since r is non negative, we

get

−p(x̌, xd, dφε(t, x̌, xd)) ≤ ε2l20
t2

t40

(( x̌

r1

)2
+
( t

t0

)2)−1

|ψ′|2 − 1

Since |ψ′| ≤ α and ε ∈ [0, 1 + η], we obtain for any (t, x̌, xd) ∈ D × [0, l0],

−p(x̌, xd, dφε(t, x̌, xd)) ≤
ε2

t20
l20

( t

t0

)2( t

t0

)−2

α2 − 1

≤ (1 + η)2
l20
t20
α2 − 1 < 0,

the last constant being negative for η small enough because α < t0
l0
. Therefore, the

surface Sε = {φε = 0} is noncharacteristic for any ε ∈ [0, 1 + η], which concludes
the proof of Item 6, and hence of the lemma. �
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3.2. Step 2: Propagation of smallness

We recall that z = (t, x) and n = d+ 1, and introduce the notation

Vois(K, r) :=
⋃
z∈K

B(z, r) for K ⊂ R
n.

Lemma 3.12 (local version near a piece of a normal geodesic). Given γ :

[0, L] → Ωγ a normal geodesic path and fix s̃ ∈ [0, L]. Then, there exists L̃s, r̃s
small such that for any s0 ∈ [0, L], L0 > 0 so that [s0, s0 + L0] ⊂]s̃ − L̃s, s̃ + L̃s[,
for all T > L0 and 0 < r1 < r̃s, there exists r2 > 0 so that

]− r2, r2[×Vois(γ([s0, s0 + L0]), r2)�]− T, T [×Vois(γ(s0), r1),(3.9)

where � is related to the operator P = ∂2
t + L in the set ]− T − ε, T + ε[×Ωγ .

See Figure 1 for a picture of the sets involved in (3.9).

γ(s0) γ(s)γ(s0 + L0)

r2

T

t

−T
r1

Figure 1. Schematic representation of the sets involved in
Lemma 3.12. Recall that length(γ([s0, s0 + L0])) = L0 < T ; the
dashed line represents the boundary of the wave cone.

The proof is almost the same as in Theorem 6.3 of [LL19]. The only difference
is that the coordinates where we have a nice diagonal form for the operator P are
not global and are not those where we want to apply the local result. Note that this
would not have been a problem if we had proved that the relation � is invariant
by change of coordinates. Now, we perform the following steps:

• use Lemma 3.10 to obtain nice coordinates in a neighborhood of γ(s);
• construct the non characteristic hypersurfaces in these coordinates accord-
ing to Lemma 3.11;
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• apply Theorem 2.7 in these coordinates, w.r.t. those surfaces, keeping
in mind that the fact to be non characteristic is invariant by changes of
coordinates.

Note also that the presence of s̃ and s0 in the statement may seem strange and
it would look simpler to consider only s0 and intervals [s0, s0 + L0]. Yet, this will
be useful later in compactness and covering arguments where we have to substract
and cut some intervals.

Proof. By Lemma 3.10, we can find a diffeomorphism from a neighborhood
of γ(s̃) in Ωγ to BRd−1(0, r0)×]s̃ − 4L̃s, s̃ + 4L̃s[� (x̌, xd) in which the symbol
� is as in (3.5) and γ(s) is given by (x̌, xd) = (0, s̃). By translation and using

[s0, s0 +L0] ⊂]s̃− L̃s, s̃+ L̃s[, we have a diffeomorphism Φ from a neighborhood V
of γ(s0) in Ωγ onto BRd−1(0, r0)×]− L0, 2L0[� (x̌, xd) where Φ(γ(s0)) = 0.

For later purposes, fix r3 so that

Φ−1(BRd(0, r3)) � BRd(γ(s0), r1).(3.10)

We will keep denoting Φ the same diffeomorphism acting on ]−T −ε, T +ε[×V

leaving the t variable unchanged, and set Ω̃ :=] − T − ε, T + ε[×BRd−1(0, r0)×] −
L0, 2L0[.

Now, construct D, G, K, Sε according to Lemma 3.11. In particular, all

surfaces Sε are non characteristic for P (or, more precisely, for (Φ∗)−1PΦ∗) in Ω̃).
By change of coordinates, the surface Φ−1(Sε) is non characteristic for P at each
point of Φ−1(Sε).

For 0 < L0 < t0 < T , take ω = Φ−1(] − t0, t0[×B(0, r3)) so that Item 4 of
Lemma 3.11 implies that ω is a neighborhood of Φ−1(S0).

The assumptions of Theorem 2.7 are fulfilled (with na = n = d+ 1, i.e. in the
Holmgren-John case), so there exists an open neighborhood U ⊂ Ω of Φ−1(K) such
that U � ω. Note here that the strict application of Theorem 2.7 yields this result
for the relation �]−T−ε,T+ε[×V,P , but the latter then implies the same property for
the relation �]−T−ε,T+ε[×Ωγ ,P . We will keep the notation �.

Moreover, Item 5 of Lemma 3.11 implies, after having applied Φ−1, that

Φ−1 ({0}t × {0}x̌ × [0, l0]xd
) ⊂ Φ−1(K) ⊂ U.

Using the form of P on Ω̃ and that γ is a normal geodesic, we obtain that

Φ−1 ({0}t × {0}x̌ × [0, L0]xd
) = {0}t × γ([s0, s0 + L0]).

In particular since U is open and the previous set is compact, we can find r2 > 0
so that ]− r2, r2[×Vois(γ([s0 − r2, s0 +L0]), r2) � U . Items 2 and 5 of Proposition
2.3 imply

]− r2, r2[Rt
×Vois(γ([s0 − r2, s0 + L0]), r2)� ω.

Finally, the definition of ω, T > t0 and (3.10) imply ω �]− T, T [×Vois(γ(s0), r1).
This gives the final result by applying again Item 2 and 5 of Proposition 2.3. �

We can iterate the previous local result to get a more global one, which will be
the main step for Proposition 3.7.

Proposition 3.13 (global version near a normal geodesic). Given γ : [0, L] →
Ωγ a normal geodesic path, and let 0 < L < T . Then, there exists r0 small, such
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that for any 0 < r1 < r0, there exists r2 > 0 such that

]− r2, r2[×Vois(γ([0, L]), r2)�]− T, T [×Vois(γ(0), r1).(3.11)

Proof of Proposition 3.13. We prove the result for another T̃ > T . It
gives the result since it is arbitrary.

For any s̃ ∈ [0, L], Lemma 3.12 provides L̃s and r̃s and an interval ]s̃−L̃s, s̃+L̃s[
with the appropriate conclusion. By compactness of γ([0, L]), we can extract a finite

covering such that γ([0, L]) ⊂
⋃

j∈�1,N� γ(]s̃j − L̃j , s̃j + L̃j [). Then, the issue is that∑N
j=1 2L̃j may be very large with respect to 2T . To overcome this difficulty, starting

from this covering, we can always obtain (for this, suppress some intervals and cut
them when they overlap too much) a finite number of intervals [sj , sj + Lj ] and
associate times Tj that satisfy the following properties:

• [0, L] ⊂ ∪N
j=1]sj , sj + Lj [,

• [sj , sj + Lj ] ⊂]s̃j − L̃j , s̃j + L̃j [, for all j ∈ �1, N�,
• s1 = 0,
• sj+1 ∈]sj , sj + Lj [, for all j ∈ �1, N − 1�,

• L <
∑N

j=1 Lj < T ,

• Lj < Tj and
∑N

j=1 Tj < T .

So, for any j ∈ �1, N�, since [sj , sj + Lj ] ⊂]s̃j − L̃j , s̃j + L̃j [, Lemma 3.12 can be
applied to the path γ([sj , sj + Lj ]) and gives the existence of r̃s associated to s̃j ,

which we here denote rj0. We also denote by r0 the minimum of all rj0, j ∈ �1, N�,

so that the conclusion of Lemma 3.12 remains true with any choice of rj1 < r0. We

next define rj1 and rj2 recursively in the following way:

• r11 = min(r0, r1)/2 and r12 is given by the Lemma 3.12 for the interval
[s1, s1 + L1] = [0, L1].

• We choose rj+1
1 = min(r0, r

j
2)/4 and rj+1

2 is given by Lemma 3.12 applied

to the path [sj , sj + Lj ] ⊂]s̃j − L̃j , s̃j + L̃j [ and the time Tj > Lj .

The conclusion of Lemma 3.12 is then

]− rj2, r
j
2[Rt×Vois(γ([sj , sj + Lj ]), r

j
2)�

(
]− Tj , Tj [Rt×Vois(γ(sj), r

j
1)
)
.(3.12)

Now, for any l ∈ �1, N�, consider a sequence of time (tli)i∈Il such that the family(
]tli − rl2, t

l
i + rl2[

)
i∈Il

is a finite covering of ]−T +
∑l

j=1 Tj , T −
∑l

j=1 Tj [. One can

also impose tli ∈]− T +
∑l

j=1 Tj , T −
∑l

j=1 Tj [.

We want to apply Proposition 2.5 with the following definitions for j ∈ �1, N�,
i ∈ Ij

• Ui,j =]tji − rj2, t
j
i + rj2[×Vois(γ([sj , sj + Lj ]), r

j
2),

• ωi,j =]tji − rj2/2, t
j
i + rj2/2[×Vois(γ([sj , sj + Lj ]), r

j
2/2),

• Vi,j =]tji − Tj , t
j
i + Tj [×Vois(γ(sj), r

j
1),

• U0 =]− T, T [×Vois(γ(0), 2r11).

Since Lemma 3.12 is invariant by translation in time, (3.12) and the choices of

rj1, r
j
2 give Ui,j � Vi,j . We also have ωi,j � Ui,j . So, the main point to check is

Vm,l+1 �

⎡⎣U0 ∪
⋃

j∈�1,l�

⋃
i∈Ij

ωi,j

⎤⎦ , for all m ∈ Il+1, and l ∈ �1, N − 1�.(3.13)
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We first check the degenerate case l = 0, which amounts to proving that Vm,1 � U0

for m ∈ I1. Since t1m ∈]− T + T1, T − T1[ (by choice), we have ]t1m − T1, t
1
m + T1[�

] − T, T [. Moreover, since s1 = 0, we have Vois(γ(s1), r
j
1) � Vois(γ(0), 2r11), and

Vm,1 � U0 by definition.
Concerning the case l ∈ �1, N − 1�, we prove the stronger property

Vm,l+1 �
⋃
i∈Il

ωi,l, for all m ∈ Il+1.(3.14)

First, we have by definition⋃
i∈Il

ωi,l =

[⋃
i∈Il

]tli − rl2/2, t
l
i + rl2/2[

]
×Vois(γ([sl, sl + Ll]), r

l
2/2).

Since
(
]tli − rl2, t

l
i + rl2[

)
i∈Il

is a finite covering of ]−T +
∑l

j=1 Tj , T −
∑l

j=1 Tj [, we

have

]− T +

l∑
j=1

Tj , T −
l∑

j=1

Tj [×Vois(γ([sl, sl + Ll]), r
l
2/2) ⊂

⋃
i∈Il

ωi,l.(3.15)

We also have tl+1
i ∈]− T +

∑l+1
j=1 Tj , T −

∑l+1
j=1 Tj [, so that

]tl+1
i − Tl+1, t

l+1
i + Tl+1[�]− T − Tl+1 +

l+1∑
j=1

Tj , T + Tl+1 −
l+1∑
j=1

Tj [,

that is

]tl+1
i − Tl+1, t

l+1
i + Tl+1[�]− T +

l∑
j=1

Tj , T −
l∑

j=1

Tj [.(3.16)

Moreover, γ(sl+1) ∈ γ(]sl, sl + Ll[) and rl+1
1 < rl2/2 by construction, so

Vois(γ(sl+1), r
l+1
1 ) � Vois(γ([sl, sl + Ll]), r

l
2/2).(3.17)

Combining the definition of Vi,l+1 =]tl+1
i − Tl+1, t

l+1
i + Tl+1[×Vois(γ(sl+1), r

l+1
1 ),

(3.16), (3.17) and (3.15), we obtain Vi,l+1 �
⋃

i∈Il
ωi,l. This finishes the proof of

(3.14) and therefore (3.13), so that all assumptions of Proposition 2.5 are satisfied.
The conclusion of this proposition can then be written as⎡⎣U0 ∪

⋃
j∈�1,N�

⋃
i∈Ij

ωi,j

⎤⎦� V0 for any V0 such that U0 � V0.(3.18)

Now, we pick r2 < min(T −
∑N

j=1 Tj , r
l
2/2). Using (3.15) and then the covering

property [0, L] ⊂
⋃

j∈�1,N�]sj , sj + Lj [, we obtain

]− r2, r2[×Vois(γ([sj , sj + Lj ]), r2/2) ⊂
⋃
i∈Ij

ωi,j ,

]− r2, r2[×Vois(γ([0, L]), r2/2) ⊂
⋃

j∈�1,N�

⋃
i∈Ij

ωi,j .

In particular, we have

]− r2/4, r2/4[×Vois(γ([0, L]), r2/4) �
⋃

j∈�1,N�

⋃
i∈Ij

ωi,j .
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Now, since T̃ > T and r11 ≤ r1/2, we have U0 �] − T̃ , T̃ [×Vois(γ(0), 2r1) := V0.
Combining this together with (3.18) and the use of Proposition 2.3 (several times),
we finally obtain

]− r2/4, r2/4[×Vois(γ([0, L]), r2/4)�]− T̃ , T̃ [×Vois(γ(0), 2r1).

This concludes the proof of Proposition 3.13. �

From Proposition 3.13, let us now briefly explain the proof of Proposition 3.7.
We proceed exactly as in [LL19, Section 4.2], in the proof that Theorem 4.7 implies
Theorem 1.11 (which, in Section 2 of the present paper, corresponds to the proof
that Theorem 2.6 implies Theorem 2.1). Note that it only consists in getting
rid of the frequency cutoffs appearing in the definition of �, i.e. considering all
frequencies, at the cost of replacing the e−νμ exponentially small remainder by a
1
μ . This concludes the proof of Proposition 3.7.

For an application in the context of Section 5 (partially analytic operators with
a boundary), we need to relax the condition that γ is globally a normal geodesic.

Remark 3.14. The proof of Step 2 took the following structure.

• Lemma 3.12 proves some relations of dependence (3.9) for some local
region around some small part of a normal geodesic.

• Proposition 3.13 uses the fact that the relations of dependence that we
obtained in Lemma 3.12 can be iterated to be around a global normal
geodesic to get some relation of dependence that has the same form but
globally, namely (3.11).

Therefore, with exactly the same iteration process as Proposition 3.13, except that
we invoke Proposition 3.13 itself instead of Lemma 3.12, we can obtain that the
same result as Proposition 3.13 is true if γ is only geodesic by piece. This is the
following Proposition.

Proposition 3.15 (global version near a piecewise normal geodesic). The same
result as Proposition 3.13 is true if γ is only normal geodesic by piece.

3.3. Step 3: Energy estimates

3.3.1. Simple energy estimates concluding the proof of Theorem 1.33
with s = k. As precised earlier in the introduction, Theorem 1.33 is easier to prove
in the specific case s = k. To conclude this proof from Corollary 3.8, it only remains
to prove for solutions of (1.12) the two estimates:

‖(u0, u1)‖L2×H−1
L

≤ Cε̃ ‖u‖L2(]−ε̃,ε̃[×M) ,(3.19)

‖u‖H1(]−T,T [×M) ≤ CT ‖(u0, u1)‖Hk
L×Hk−1

L
.(3.20)

On the one hand, (3.19) is a “straightforward observability estimate”, the proof of
which is exactly the same as inequality (6.9) in the proof of Theorem 6.1 in [LL19]
for the classical wave equation.

On the other hand, the proof of (3.20) relies on the (optimal) subelliptic esti-
mates stated in Theorem 1.5 and Corollary B.1. First define the energies

Es(u) =
1

2
‖∂tu‖2Hs−1

L
+

1

2
‖u‖2Hs

L
=

1

2
‖(u, ∂tu)‖2Hs

L×Hs−1
L

, s ∈ R.(3.21)
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Then, rewriting (1.12) as (∂2
t + L + 1)u = u and taking the inner product with

(L+ 1)s−1∂tu yields

d

dt
Es(u)(t) =

(
(L+ 1)

s−1
2 u, (L+ 1)

s−1
2 ∂tu

)
L2

,

and hence

−Es(u)(t) ≤
d

dt
Es(u)(t) ≤ Es(u)(t),

so that we have

Es(u)(t) ≤ CTEs(u)(0) for t ∈ [−T, T ].(3.22)

Also, according to Corollary B.2, we have ‖u‖H1(M) ≤ C ‖u‖Hk
L
. This estimate

yields

‖u‖2H1(]−T,T [×M) =

∫ T

−T

(
‖∂tu‖2L2(M) + ‖u‖2H1(M)

)
dt

≤ C

∫ T

−T

(
E1(u) + ‖u‖2Hk

L

)
dt.

Since Es(u) ≤ Eσ(u) for s ≤ σ, we obtain

‖u‖2H1(]−T,T [×M) ≤ C

∫ T

−T

Ek(u)(t)dt ≤ CTEk(u)(0) = 2CT ‖(u0, u1)‖2Hk
L×Hk−1

L
.

This proves (3.20), which, combined with the estimate of Corollary 3.8 and (3.19)
implies

‖(u0, u1)‖L2×H−1
L

≤ Cse
νμ ‖u‖L2(]−T,T [×ω) +

C

μ
‖(u0, u1)‖Hk

L×Hk−1
L

.

This finally proves the estimate (1.31) with s = k, up to changing μ by μk/C,
and μ0 and ν accordingly. Estimate (1.14) is then a direct consequence of [LL19,
Lemma A.3] and the inequality ‖u‖L2(]−T,T [×ω) ≤ C ‖(u0, u1)‖Hk

L×Hk−1
L

.

Remark 3.16. Note that the previous energy estimates do not use any analyt-
icity property of the solution and are equally true in the partially analytic case.

Remark 3.17. Until this point, all proofs work as well if L is replaced by
L + V where V is a time-dependent complex-valued analytic potential. Beware
that in Section 3.3.3 below, the spectral theory used restricts the discussion to
time-independent real-valued analytic potentials.

3.3.2. Interlude: eigenfunction tunneling, a proof of Theorem 1.12.
Here, we focus on eigenfunctions of L, that is, solutions to Lϕ = λϕ. Denoting
v(t, x) = cos(

√
λt)ϕ, we remark that v is solution to{

∂2
t v + Lv = 0

(v, ∂tv)t=0 = (ϕ, 0).

Therefore, thanks to Theorem 1.33 with s = k, we have the estimate

‖ϕ‖H1
L
≤ CecΛ ‖v‖L2(]−T,T [×ω) = CT e

cΛ ‖ϕ‖L2(ω) ,

with Λ =
‖ϕ‖Hk

L
‖ϕ‖L2

= (λ+ 1)k/2. This proves Theorem 1.12 from Theorem 1.33 with

s = k (or any given s > 0).
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3.3.3. End of the proof of Theorem 1.33 in the general case. We now
prove the appropriate energy estimates to conclude the proof of Theorem 1.33 for
any s > 0. Recall again that z = (t, x) and that all variables are analytic, that is
z = za. Hence, we have ζ = ζa = (τ, ξ) together with D = Da = Dt,x.

Remark 3.18. The main idea of this section is that since we are only dealing
with low frequency estimates, the remainder can be taken in any “arbitrary weak”
norm; this gives then a lot of flexibility for the norms that we can finally take.

Yet, in our estimates, the remainder term is actually in H1. It would certainly
be possible to obtain a weaker norm in the general Theorem of Quantitative Unique
Continuation of [LL19], but it would require to revisit all proofs of [LL19], and
even the Carleman estimate itself. Instead, we could try to only apply our general
estimate to a function with low frequency, for example u = mμ(Dt,x)v where v
is solution of Pv = 0. But in this case, to obtain good estimates of Pu, we
need exponentially small estimates for the commutator [P,mμ(Dt,x)]. This would
certainly be possible but quite lengthy and would rely on global analytic regularity
properties for P . Instead, for the specific case of wave type equations, regularity in
time essentially translates into regularity in space. That is why it is more convenient
to consider a regularizer mμ(Dt) which commutes exactly with the wave operator.
Remark that the method may extend to other evolution equations.

Remark 3.19. In this section, we are in the case where all variables are an-
alytic, that is za = z = (t, x). Therefore, the proof below does not a priori apply
to the partially analytic case described in Section 1.2.4. This explains why the
statement of Theorem 1.25 is slightly less general. The same results might be true
in the partially analytic case but would certainly require more work and additional
arguments.

In the relation �, the remainder terms are always measured in the norm H1.
In this section, we describe how, in the case of solutions of the wave equation, the
remainder term can be chosen in any weak Sobolev norm.

The starting point of the proof is Proposition 3.13, which implies the following
statement (without the use of the notation �). Let γ : [0, L] → Ωγ a normal
geodesic path such that γ(0) ∈ ω, and let 0 < L < T . Then, there exists ε > 0 such
that for any ϑ ∈ C∞

0 (Rd+1) equal to one in a neighborhood of ] − L,L[×{γ(0)}
and ϑ̃ ∈ C∞

0 (Rd+1), supported in ]− 2ε, 2ε[×B(γ(L), 2ε), we have: for all ν, α > 0,
there exist C, ν′, β, μ0 > 0 such that for all (μ, v) ∈ [μ0,+∞)×C∞

0 (Rd+1), we have∥∥∥Mβμ
μ ϑ̃μv

∥∥∥
1
≤ Ceνμ

(∥∥Mαμ
μ ϑμv

∥∥
1
+ ‖Pv‖L2(˜Ωγ)

)
+ Ce−ν′μ ‖v‖1 .(3.23)

where Ω̃γ =] − T, T [×Ωγ . In particular, we may (and we shall) take ϑ supported

in ]− T, T [×ω and ϑ̃ = 1 in a neighborhood of ]− ε, ε[×B(x0, ε). Notice also that
we can impose β < α < 1; indeed, the estimate for a smaller β is actually worse
(than that for a larger β) up to an error term of the form Ce−cμ ‖v‖1 (see e.g.
Lemma 3.25, Item 3 below).

Up to choosing the coordinate charts Ωγ smaller, we can still select some other
open set Ω ⊂ R

d with Ωγ � Ω so that there is an analytic diffeomorphism from an
open neighborhood of γ to Ω and such that this diffeomorphism coincides with the
φγ defined in (3.4) on Ωγ .
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From this starting point, the plan of the proof of Theorem 1.33 is to apply
(3.23) to the function

v = χ0(t)χ1
μ(

Dt

μ
)χ2

μ(t)χ
3(x)u,(3.24)

where u is a solution of{
Pu = (∂2

t + L)u = 0
(u, ∂tu)t=0 = (u0, u1) = U0,

(3.25)

pulled back to the local coordinate chart Ω (we however keep the notation u for
simplicity).

The time, frequency, and spatial cut off functions χi are chosen as follows:

• χ2 ∈ C∞
0 (] − T − ε, T + ε[) so that χ2(t) = 1 on ] − T, T [; we also write

χ2
μ = (χ2)μ,

• χ0 ∈ C∞
0 (] − T − ε, T + ε[) so that χ0(t) = 1 in an neighborhood of

supp(χ2),
• χ3 ∈ C∞

0 (Ω) so that χ3(x) = 1 for x ∈ Ωγ ,
• χ1 ∈ C∞

0 (R) is supported in ]−2, 2[ and such that χ1(τ ) = 1 for τ ∈]−1, 1[;
we also write χ1

μ = (χ1)μ.

Remark 3.20. Note that since χ3 ∈ C∞
0 (Ω) and χ0 ∈ C∞

0 (R), v is a well
defined function in C∞

0 (Rd+1) if U0 (and hence u) is smooth. So, (3.23) is ap-
plicable. Moreover, v is not a local function in terms of u in the time variable;
indeed, it depends on all values of u(t) for t ∈ R. However, since u is a solution to
Equation (3.25), u may rather be seen as a function of the data U0 only.

Our task is now to estimate each term in (3.23) in terms of the observation
‖u‖L2(]−T,T [×ω) and appropriate (weak) norms on U0. This is done respectively in

Lemmata 3.21, 3.22 and 3.23 below. Finally, to conclude the proof, it will remain to
estimate also the high frequency part of the solution (this is done in Lemma 3.24).
The proof of these results rely on several technical estimates, which are postponed
to the next Section 3.3.4 for the sake of readability.

All along this section, we shall use the following natural product norms for
s ∈ R,

‖U0‖s,× = ‖U0‖Hs
L×Hs−1

L
=
√
2Es(U0).

Lemma 3.21. For all s ≥ 0, there is C,N, c, μ0 > 0 such that for all μ ≥ μ0

and for all u solution to (3.25) and v defined accordingly in (3.24), we have∥∥Mαμ
μ ϑμv

∥∥
1
≤ CμN ‖u‖L2(]−T,T [×ω) + Ce−cμ ‖U0‖−s,× .

Proof of Lemma 3.21. First note that, according to (2.3), we have (for some
N ∈ N, changing from line to line),

mμ(η) ≤ CμN 〈η〉Ne−
μ
4 dist(η,supp(m))2 .
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Hence, recalling the definition of m in Section 2.2, we obtain, for all s ≥ 0, for some
C,N, c > 0,

|η|s+1mμ(η) = |η|s+1mμ(η)1|η|≤3/2 + |η|s+1mμ(η)1|η|≥3/2

≤ C1|η|≤3/2 + CμN 〈η〉Ne−
μ
2 (|η|−1)21|η|≥3/2

≤ C1|η|≤3/2 + CμN 〈η〉Ne−
μ
8 |η|21|η|≥3/2

≤ C1|η|≤3/2 + Ce−cμ.

As a consequence, since m = 1 on a neighborhood of [0, 3/4], we obtain, for all
s ≥ 0, the existence of C,N, c > 0 such that for μ ≥ μ0, we have

〈ζ〉mμ(
ζ

αμ
) ≤ CμN 〈ζ〉−s1 |ζ|

αμ≤3/2
+ C〈ζ〉−se−cμ

≤ CμN 〈ζ〉−smμ(
ζ

2αμ
) + C〈ζ〉−se−cμ.

This implies ∥∥Mαμ
μ ϑμv

∥∥
1
≤ CμN

∥∥M2αμ
μ ϑμv

∥∥
−s

+ Ce−cμ ‖ϑμv‖−s .(3.26)

Concerning the last term, we have

‖ϑμv‖−s ≤ C ‖v‖−s = C

∥∥∥∥χ0(t)χ1
μ(

Dt

μ
)χ2

μ(t)χ
3(x)u

∥∥∥∥
−s

≤ C
∥∥χ2

μ(t)χ
3(x)u

∥∥
−s

≤ C ‖U0‖−s,× ,

where, in the last inequality, we used (3.37).
Concerning the first term in the right hand-side of (3.26), we write∥∥M2αμ

μ ϑμv
∥∥
−s

=

∥∥∥∥M2αμ
μ ϑμχ

0(t)χ1
μ(

Dt

μ
)χ2

μ(t)χ
3(x)u

∥∥∥∥
−s

(3.27)

≤
∥∥∥∥M2αμ

μ ϑμχ
0(t)(1− χ1

μ(
Dt

μ
))χ2

μ(t)χ
3(x)u

∥∥∥∥
−s

+
∥∥M2αμ

μ ϑμχ
0(t)χ2

μ(t)χ
3(x)u

∥∥
−s

.

Concerning the first term in (3.27), we have∥∥∥∥M2αμ
μ ϑμχ

0(t)(1− χ1
μ(

Dt

μ
))χ2

μ(t)χ
3(x)u

∥∥∥∥
−s

≤
∥∥∥∥M2αμ

μ ϑμ(1− χ1
μ(

Dt

μ
))χ2

μ(t)χ
3(x)u

∥∥∥∥
−s

+

∥∥∥∥M2αμ
μ ϑμ(1− χ0(t))(1− χ1

μ(
Dt

μ
))χ2

μ(t)χ
3(x)u

∥∥∥∥
−s

≤ Ce−cμ
∥∥χ2

μ(t)χ
3(x)u

∥∥
−s

,

where we have used Lemma 3.30 for the first term and then that χ0(t) = 1 on suppϑ
and Lemma 3.27 for the second. That this term is bounded by Ce−cμ ‖U0‖−s,× then

follows from to (3.37).
The second term in (3.27) is simpler to handle. Consider θω a smooth cutoff

function supported in ] − T, T [×ω and equal to one on a neighborhood of suppϑ.
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We have∥∥Mαμ
μ ϑμχ

0(t)χ2
μ(t)χ

3(x)u
∥∥
−s

≤
∥∥ϑμθωχ

0(t)χ2
μ(t)χ

3(x)u
∥∥
−s

+
∥∥ϑμ(1− θω)χ

0(t)χ2
μ(t)χ

3(x)u
∥∥
−s

≤ ‖u‖L2(]−T,T [×ω) + Ce−cμ
∥∥χ2

μ(t)χ
3(x)u

∥∥
−s

≤ ‖u‖L2(]−T,T [×ω) + Ce−cμ ‖U0‖−s,× ,

where we have used Lemma 3.27 and then again Estimate (3.37) in the last step.
The last two estimates combined with (3.26) and (3.27) conclude the proof of the
lemma. �

The proofs of the following two lemmata are based on the spectral representa-
tion (3.28) of the solution u as

u(t, x) =
∑
j∈N

(
a+j e

i
√

λjt + a−j e
−i
√

λjt
)
ϕj(x), (t, x) ∈ R×M.(3.28)

This explicit expression allows to prove that a time-frequency cutoff χ(Dt

μ ) truncates

also space-frequencies (see in particular the use of Lemma 3.31 below).

Lemma 3.22. For all s ≥ 0, there is C, c > 0 such that for all μ ≥ 1 and for
all u solution to (3.25) and v defined accordingly in (3.24), we have

‖Pv‖L2(˜Ωγ)
≤ Ce−cμ ‖U0‖−s,× .

Proof of Lemma 3.22. Since Pu = 0, χ3(x) = 1 on Ωγ and χ0(t) = 1 on

]− T, T [, we have on Ω̃γ =]− T, T [×Ωγ

Pv = (∂2
t + L)χ0(t)χ1

μ(
Dt

μ
)χ2

μ(t)χ
3(x)u = χ0(t)χ1

μ(
Dt

μ
)[∂2

t , χ
2
μ(t)]χ

3(x)u,(3.29)

with [∂2
t , χ

2
μ(t)] = (∂2

t χ
2)μ(t) + 2(∂tχ

2)μ∂t (the terms [χ0, ∂2
t ] and [χ3,L] being

supported outside of Ω̃γ). We only treat the second term in this commutator, the
first one being simpler to handle.

We split u given in (3.28) into high and low frequencies as u = u≤ + u> with

u≤ := 1√
L≤8μu =

∑
√

λj≤8μ

· · · , and u> := 1√
L>8μu =

∑
√

λj>8μ

· · · .(3.30)

We also write f(t) = ∂tχ
2(t) and fμ(t) = (∂tχ

2)μ(t). We first estimate the low
frequencies as∥∥∥∥χ0(t)χ1

μ(
Dt

μ
)fμχ

3(x)∂tu≤

∥∥∥∥
L2(˜Ωγ)

≤ C

∥∥∥∥1]−T,T [χ
1
μ(

Dt

μ
)fμχ

3(x)∂tu≤

∥∥∥∥
L2(Rt×Ωγ)

≤ C

∥∥∥∥1]−T,T [χ
1
μ(

Dt

μ
)fμχ

0
μ(t)χ

3(x)∂tu≤

∥∥∥∥
0

+ C

∥∥∥∥1]−T,T [χ
1
μ(

Dt

μ
)fμ(1− χ0

μ(t))χ
3(x)∂tu≤

∥∥∥∥
0

.
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Concerning the fist term in the right hand-side, we have∥∥∥∥1]−T,T [χ
1
μ(

Dt

μ
)fμχ

0
μ(t)χ

3(x)∂tu≤

∥∥∥∥
L2(Rt×Ωγ)

≤
∥∥∥∥1]−T,T [χ

1
μ(

Dt

μ
)fμ

∥∥∥∥
L2(Rt)→L2(Rt)

∥∥χ0
μ(t)χ

3(x)∂tu≤
∥∥
0

≤ Ce−cμ ‖(u≤, ∂tu≤)|t=0‖1,× ≤ Ce−cμμs ‖U0‖−s,× ,

after having used Lemma 3.28 together with (3.38). Concerning the second term
in the right hand-side, we write∥∥∥∥1]−T,T [χ

1
μ(

Dt

μ
)fμ(1− χ0

μ(t))χ
3(x)∂tu≤

∥∥∥∥
L2(Rt×Ωγ)

≤
∥∥∥∥1]−T,T [χ

1
μ(

Dt

μ
)(1− χ0

μ(t))

∥∥∥∥
L2(Rt)→L2(Rt)

∥∥fμ(t)χ3(x)∂tu≤
∥∥
0

and we conclude with the same arguments. Hence, we have the low frequency
estimate ∥∥∥∥χ0(t)χ1

μ(
Dt

μ
)fμχ

3(x)∂tu≤

∥∥∥∥
L2(˜Ωγ)

≤ Ce−cμ ‖U0‖−s,× .(3.31)

Concerning now the high-frequency part, still denoting f = ∂tχ
2, we have∥∥∥∥χ0(t)χ1

μ(
Dt

μ
)fμ(t)χ

3(x)∂tu>

∥∥∥∥
L2(˜Ωγ)

≤
∥∥∥∥χ1

μ(
Dt

μ
)fμ(t)χ

3(x)∂tu>

∥∥∥∥
L2(Rt×M)

,

where

χ1
μ(

Dt

μ
)fμ(t)χ

3(x)∂tu>

=
∑

√
λj>8μ

i
√
λj

[
χ1
μ(

Dt

μ
)fμ(t)

(
a+j e

i
√

λjt − a−j e
−i
√

λjt
)] [

χ3ϕj

]
(x).

As a consequence of the triangular inequality, the Plancherel theorem and the fact
that (ϕj) is an orthonormal family in L2(M), we obtain∥∥∥∥χ0(t)χ1

μ(
Dt

μ
)fμ(t)χ

3(x)∂tu>

∥∥∥∥
L2(˜Ωγ)

≤
∑

√
λj≥8μ

√
λj

∥∥∥∥χ1
μ(

Dt

μ
)fμ(t)

(
a+j e

i
√

λjt − a−j e
−i
√

λjt
)∥∥∥∥

L2(Rt)

∥∥χ3(x)ϕj

∥∥
L2(M)

≤
∑

√
λj≥8μ

√
λj

∥∥∥∥χ1
μ

(
τ

μ

)(
f̂μ(τ −

√
λj)a

+
j − f̂μ(τ +

√
λj)a

−
j

)∥∥∥∥
L2(Rτ )

≤
∑

√
λj≥8μ

√
λj |a+j |

∥∥∥∥χ1
μ

(
τ

μ

)
f̂μ(τ −

√
λj)

∥∥∥∥
L2(Rτ )

+
√
λj |a−j |

∥∥∥∥χ1
μ

(
τ

μ

)
f̂μ(τ +

√
λj)

∥∥∥∥
L2(Rτ )

.
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Using now Lemma 3.31, this yields∥∥∥∥χ0(t)χ1
μ(

Dt

μ
)fμ(t)χ

3(x)∂tu>

∥∥∥∥
L2(˜Ωγ)

≤
∑

√
λj≥8μ

√
λjCe−c

√
λj (|a+j |+ |a−j |)

≤ C
( ∑
√

λj≥8μ

e−c
√

λj (|a+j |2 + |a−j |2)
)1/2

≤ Ce−cμ ‖U0‖−s,× ,

after having used the Cauchy-Schwarz inequality in �2(N). This together with (3.31)
and (3.29) concludes the proof of the lemma. �

The following Lemma will be used to estimate the last term in (3.23).

Lemma 3.23. For all s ≥ 0, there is C,N > 0 such that for all μ ≥ 1 and for
all u solution to (3.25) and v defined accordingly in (3.24), we have

‖v‖1 ≤ CμN ‖U0‖−s,× .

Proof. We first write

‖v‖1 ≤
∥∥∥∥χ1

μ(
Dt

μ
)χ2

μ(t)χ
3(x)u

∥∥∥∥
H1(Rt×M)

,

and decompose u in (3.28) as u = u≤+u> with u≤ = 1√
L≤8μu and u> = 1√

L>8μu

being defined as in (3.30). We have

∥∥∥∥χ1
μ(

Dt

μ
)χ2

μ(t)χ
3(x)u

∥∥∥∥
H1(Rt×M)

≤
∥∥∥∥χ1

μ(
Dt

μ
)χ2

μ(t)χ
3(x)u≤

∥∥∥∥
H1(Rt×M)

+

∥∥∥∥χ1
μ(

Dt

μ
)χ2

μ(t)χ
3(x)u>

∥∥∥∥
H1(Rt×M)

.

Concerning the first term (low-frequencies), we simply use (3.39) to write

∥∥∥∥χ1
μ(

Dt

μ
)χ2

μ(t)χ
3(x)u≤

∥∥∥∥
H1(Rt×M)

≤ C
∥∥χ2

μ(t)χ
3(x)u≤

∥∥
H1(Rt×M)

≤ C ‖(u≤, ∂tu≤)|t=0‖k,×
≤ Cμk+s ‖U0‖−s,× .

Concerning the second term (high-frequencies), we use

‖f(t)g(x)‖H1(R×M) ≤ C‖f‖H1(R)‖g‖H1(M),
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and proceed as in the above proof of Lemma 3.22. This yields∥∥∥∥χ1
μ(

Dt

μ
)χ2

μ(t)χ
3(x)u>

∥∥∥∥
H1(Rt×M)

≤ C
∑

√
λj≥8μ

∥∥∥∥〈τ 〉χ1
μ

(
τ

μ

)(
χ̂2
μ(τ −

√
λj)a

+
j + χ̂2

μ(τ +
√
λj)a

−
j

)∥∥∥∥
L2(Rτ )

×
∥∥χ3(x)ϕj

∥∥
H1(M)

≤ C
∑

√
λj≥8μ

λ
N(k,s)
j

∥∥∥∥χ1
μ

(
τ

μ

)(
χ̂2
μ(τ −

√
λj)a

+
j + χ̂2

μ(τ +
√
λj)a

−
j

)∥∥∥∥
L2(Rτ )

≤ C
∑

√
λj≥8μ

Ce−c
√

λj
(
|a+j |+ |a−j |

)
≤ C ‖U0‖−s,× ,

where we have used ‖ϕj‖Hs(M) ≤ C(λj + 1)
ks
2 (which follows directly from Corol-

lary B.2), Lemma 3.31 and the Cauchy-Schwarz inequality in �2(N). �
Before concluding the proof of Theorem 1.33, we need to explain how to esti-

mate the high-frequency part of the solution (recall indeed that our starting point,
Estimate (3.23), is a low-frequency estimate only). This is the aim of the following
lemma, which proof is close to the proof that Theorem 4.7 implies Theorem 1.11
in [LL19].

Lemma 3.24. For all s ∈ [0, k], there is C, μ0 > 0 such that for all μ ≥ μ0 and
for all u solution to (3.25), we have∥∥∥(1−Mβμ

μ )ϑ̃μχ
0(t)χ2

μ(t)χ
3(x)u

∥∥∥
L2(Rt×Rd

x)
≤ C

μs/k
‖U0‖s,× .

Note that this estimate is almost∥∥∥(1−Mβμ
μ )ϑ̃μv

∥∥∥
L2(Rt×Rd

x)
≤ C

μs/k
‖U0‖s,× .

(which is also true, but not used here), the difference being that v contains an addi-
tional time-frequency cutoff χ1

μ(
Dt

μ ) (which does not play any role in the estimates

below).
The proof below only gives the endpoint case s = k, the intermediate situations

being deduced by interpolation. A direct proof of intermediate estimates would
follow the same lines, yet being slightly longer.

Proof. We first notice that it is enough to treat the case s = k. Indeed, s = 0
is direct by standard energy estimates for v (see for instance (3.22)) and uniform

bound on χ2
μ and ϑ̃μ. Hence, since all operators involved are linear, the result for

s ∈ [0, k] follows by interpolation, see for instance [Tar07, Chapter 23].
Concerning the case s = k, we write w = χ0(t)χ2

μ(t)χ
3(x)u, together with∥∥∥(1−Mβμ

μ )ϑ̃μw
∥∥∥
0
≤ C sup

η∈Rd+1

∣∣∣∣〈η〉−1
(1−mμ)(

η

βμ
)

∣∣∣∣ ∥∥∥ϑ̃μw
∥∥∥
1
.

In the range |η| ≥ βμ/2 with μ ≥ μ0, we have the loose estimate∣∣∣∣〈η〉−1
(1−mμ)(

η

βμ
)

∣∣∣∣ ≤ C

μ
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whereas in the range |η| ≤ βμ/2, using dist
(
supp(1−m( ·

β )), {|η| ≤ β/2}
)
> 0, we

have
∣∣∣(1−mμ)(

ζ
βμ )

∣∣∣ ≤ Ce−cμ according to estimate (2.3) below. This implies, for

μ ≥ μ0 that ∥∥∥(1−Mβμ
μ )ϑ̃μw

∥∥∥
L2(Rt×Rd

x)
≤ C

μ

∥∥∥ϑ̃μw
∥∥∥
H1(Rt×Rd

x)
.(3.32)

Next, we have that∥∥∥ϑ̃μw
∥∥∥
H1(Rt×Rd

x)
≤ ‖w‖H1(Rt×Rd

x)
≤
∥∥χ2

μ(t)χ
3(x)u

∥∥
H1(Rt×Rd

x)
.(3.33)

uniformly for μ ≥ 1, since all derivatives of ϑ̃μ are uniformly bounded for μ ≥ 1.
We write for w̃ = χ2

μ(t)χ
3(x)u

‖w̃‖H1(Rt×Rd
x)

≤ ‖w̃‖H1(Rt;L2(Rd
x))

+ ‖w̃‖L2(Rt;H1(Rd
x))

,

and estimate each term separately. Concerning the first term in this estimate, we
have

‖w̃‖H1(Rt;L2(Rd
x))

≤ ‖w̃‖L2(Rt×Rd
x)

+ ‖∂tw̃‖L2(Rt×Rd
x)

≤
∥∥χ2

μ(t)χ
3(x)u

∥∥
L2(Rt×Rd

x)
+
∥∥(∂tχ2)μ(t)χ

3(x)u
∥∥
L2(Rt×Rd

x)

+
∥∥χ2

μ(t)χ
3(x)∂tu

∥∥
L2(Rt×Rd

x)

≤ C ‖U0‖k,× .

after having used (3.37), (3.38) and k ≥ 1. Similarly, the second term is estimated
as

‖w̃‖L2(Rt;H1(Rd
x))

=
∥∥χ2

μ(t)χ
3(x)u

∥∥
L2(Rt;H1(Rd

x))
≤ C ‖U0‖k,× ,

as a direct consequence of (3.39). The above three estimates together with (3.32)
and (3.33) conclude the proof of the lemma. �

With the above four lemmata in hand, we can now conclude the proof of The-
orem 1.33.

Proof of Theorem 1.33. We only prove the result for s ∈]0, k], the conclu-
sion for all s > 0 being then a consequence of Remark 1.32.

Starting form Estimate (3.23), combined with Lemmata 3.21, 3.22 and 3.23 to
bound the terms in the right hand side, we first obtain the intermediate estimate∥∥∥Mβμ

μ ϑ̃μv
∥∥∥
1
≤ Cecμ ‖u‖L2(]−T,T [×ω) + Ce−c′μ ‖U0‖−s,× .(3.34)

Note that in order to obtain this inequality, we have chosen ν in (3.23) to be small
enough compared to the constant c appearing in Lemmata 3.21 and 3.22. Now,
recalling that v = χ0(t)χ1

μ(
Dt

μ )χ2
μ(t)χ

3(x)u, we decompose

ϑ̃μχ
0(t)χ2

μ(t)χ
3(x)u = Mβμ

μ ϑ̃μv +Mβμ
μ ϑ̃μχ

0(t)

(
1− χ1

μ(
Dt

μ
)

)
χ2
μ(t)χ

3(x)u

+ (1−Mβμ
μ )ϑ̃μχ

0(t)χ2
μ(t)χ

3(x)u.(3.35)
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The first term is estimated in (3.34), the last one is estimated in Lemma 3.24 so
that it only remains to estimate the second one. We have

Mβμ
μ ϑ̃μχ

0(t)

(
1− χ1

μ(
Dt

μ
)

)
χ2
μ(t)χ

3(x)u

= Mβμ
μ ϑ̃μ

(
1− χ1

μ(
Dt

μ
)

)
χ2
μ(t)χ

3(x)u

+Mβμ
μ ϑ̃μ(1− χ0(t))

(
1− χ1

μ(
Dt

μ
)

)
χ2
μ(t)χ

3(x)u.

According to Lemma 3.30 and (3.37) below, the first of these two terms satisfies∥∥∥∥Mβμ
μ ϑ̃μ

(
1−χ1

μ(
Dt

μ
)

)
χ2
μ(t)χ

3(x)u

∥∥∥∥
0

≤Ce−cμ
∥∥χ2

μ(t)χ
3(x)u

∥∥
0
≤Ce−cμ ‖U0‖0,× ,

whereas, according to Item 2 of Lemma 3.25, we have∥∥∥ϑ̃μ(1− χ0(t))
∥∥∥
L2(Rn)→L2(Rn)

≤ Ce−cμ,

so that the second one is bounded as well as∥∥∥∥Mβμ
μ ϑ̃μ(1− χ0(t))

(
1− χ1

μ(
Dt

μ
)

)
χ2
μ(t)χ

3(x)u

∥∥∥∥
0

≤ Ce−cμ
∥∥χ2

μ(t)χ
3(x)u

∥∥
0

≤ Ce−cμ ‖U0‖0,× .

Coming back to the decomposition (3.35), using the above two estimates together
with (3.34) and Lemma 3.24, we now have (for s ∈]0, k])∥∥∥ϑ̃μχ

0(t)χ2
μ(t)χ

3(x)u
∥∥∥
L2(Rt×Rd

x)
≤ Ceνμ ‖u‖L2(]−T,T [×ω) +

C

μs/k
‖U0‖s,× .

Now, since ϑ̃ = 1 in a neighborhood of ] − ε, ε[×B(x0, ε), for μ large enough, we

have ϑ̃μ ≥ 1/2 on ]− ε, ε[×B(x0, ε), and the same also holds for χ2
μ(t). Hence, we

obtain

‖u‖L2(]−ε,ε[×B(x0,ε))
≤ Ceνμ ‖u‖L2(]−T,T [×ω) +

C

μs/k
‖U0‖s,× .

Since x0 ∈ M is arbitrary, a compactness argument allows to obtain other constants
still denoted C, ν, μ0, ε > 0 such that for μ ≥ μ0,

‖u‖L2(]−ε,ε[×M) ≤ Ceνμ ‖u‖L2(]−T,T [×ω) +
C

μs/k
‖U0‖s,× .

We conclude the proof of Theorem 1.33, in the case s ∈]0, k], by using Estimate
(3.19) and changing μ into μk. In the case s > k, the proof follows from the estimate
with s = k and an interpolation argument, as explained in Remark 1.32. �

3.3.4. Technical lemmata used in the previous section (only). In this
section, we collect some technical results used in the above Section 3.3.3 (and in
that section only). We first state results that are either directly taken from [LL19],
or direct consequences of these. Second, we prove three lemmata using these results.
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Estimates taken from [LL19]. In addition to the fundamental Estimate (2.3),
we used the following four lemmata, taken from [LL19].

Lemma 3.25 (Lemma 2.3 of [LL19]). The following three statements hold true.

(1) For any d > 0, there exist C, c > 0 such that for any f1, f2 ∈ L∞(Rn)
such that

dist(supp(f1), supp(f2)) ≥ d,

and all λ ≥ 0, we have

‖f1,λf2‖L∞ ≤ Ce−cλ ‖f1‖L∞ ‖f2‖L∞ , ‖f1,λf2,λ‖L∞ ≤ Ce−cλ ‖f1‖L∞ ‖f2‖L∞ .

(2) If moreover f1, f2 ∈ C∞(Rn) have bounded derivatives, then for all k ∈ N,
there exist C, c > 0 such that for all λ ≥ 1, we have

‖f1,λf2‖Hk(Rn)→Hk(Rn) ≤ Ce−cλ.

(3) Let f1, f2 ∈ L∞(Rna) such that dist(supp(f1), supp(f2)) > 0 . Then there
exist C, c > 0 such that for all λ ≥ 1, for all k ∈ N, for all μ ≥ 1, we have

‖f1,λ(Da/μ)f2(Da/μ)‖Hk(Rn)→Hk(Rn) ≤ Ce−cλ,

‖f1,λ(Da/μ)f2,λ(Da/μ)‖Hk(Rn)→Hk(Rn) ≤ Ce−cλ.

Lemma 3.26 (Lemma 2.9 of [LL19]). Let k ∈ N and f ∈ C∞
0 (Rn). Then, there

exist C, c such that, for any λ, μ > 0, we have∥∥∥Mμ
λ fλ(1−M2μ

λ )
∥∥∥
Hk(Rn)→Hk(Rn)

≤ Ce−cμ2

λ + Ce−cλ;∥∥∥(1−M2μ
λ )fλM

μ
λ

∥∥∥
Hk(Rn)→Hk(Rn)

≤ Ce−cμ2

λ + Ce−cλ.

Lemma 3.27. Let f1, f2 ∈ C∞(R) with all derivatives bounded and such that
supp(f1) ∩ supp(f2) = ∅. Then, for any s ∈ N, there is C, c > 0 such that for all
w ∈ H−s(R), we have

‖f1f2,μw‖−s ≤ Ce−cμ ‖w‖−s .

Lemma 3.27 is obtained by duality from Item 2 of Lemma 3.25.

Lemma 3.28. Let f ∈ C∞(R) bounded such that supp(f)∩ [−T, T ] = ∅. Then,
there is C, c > 0 such that∥∥1]−T,T [χ

1
μ(Dt/μ)fμ

∥∥
L2(Rt)→L2(Rt)

≤ Ce−cμ.

Lemma 3.28 is a particular case of [LL19, Lemma 2.10].
A few estimates using the above lemmata. Recalling the definition of Es in (3.21)

we now refine the rough Estimate (3.22). Indeed, on account to the spectral theory
of L, if we denote Π0 the spectral projector on ker(L) = spanL2(1), we have, for all
u ∈ Hs

L,

‖u‖Hs
L
�
∥∥L s

2 u
∥∥
L2(M)

+ |Π0u|.

Notice now that the energy
∥∥L s

2 u
∥∥2
L2 +

∥∥∥L s−1
2 ∂tu

∥∥∥2
L2

is preserved by the equa-

tion (3.25), and that the equation for the zero frequency is ∂2
tΠ0u = 0 hence

growing at most linearly. As a consequence, we finally obtain that for all s ∈ R,
there is C > 0 such that for all solution u of (3.25), we have

Es(u)(t) ≤ C(1 + |t|)Es(u)(0), for all t ∈ R.(3.36)

This estimate is now used to bound some integrals of Es(u).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

56 3. THE HYPOELLIPTIC WAVE EQUATION

Lemma 3.29. Let η ∈ C∞
0 (R), denote χ3(x) as above and fix s ≥ 0. Then,

there is C > 0 such that for all μ ≥ 1 and for all solution u of (3.25), we have∥∥ημ(t)χ3(x)u
∥∥
−s

≤ C ‖U0‖−s,× ,(3.37) ∥∥ημ(t)χ3(x)∂tu
∥∥
0
≤ C ‖U0‖1,× ,(3.38) ∥∥ημ(t)χ3(x)u

∥∥
1
≤ C ‖U0‖k,× ,(3.39) ∥∥ημ(t)χ3(x)u

∥∥
L2(Rt;H

s
k (Rd

x))
≤ C ‖U0‖s,× .(3.40)

Proof. We first remark (see e.g. (2.3)) that there is C, c > 0 such that for
μ ≥ 1, we have 0 ≤ ημ(t) ≤ Ce−c|t| for all t ∈ R. To prove (3.37), we now simply
write∥∥ημ(t)χ3(x)u

∥∥2
−s

≤
∫
R

Ce−c|t| ∥∥χ3(x)u
∥∥2
H−s(Ωγ)

dt =

∫
R

Ce−c|t| ∥∥χ3(x)u
∥∥2
H−s(M)

dt

≤
∫
R

Ce−c|t| ‖u‖2H−s(M) dt ≤
∫
R

Ce−c|t| ‖u‖2H−s
L

dt,

where we used (B.6) and s ≥ 0 in the last inequality. Recalling the definition of Es

in (3.21) together with estimate (3.36), we now have∥∥ημ(t)χ3(x)u
∥∥2
−s

≤
∫
R

Ce−c|t|E−s(u)(t)dt

≤ C

(∫
R

e−c|t|(1 + |t|)dt
)
E−s(u)(0) = C ‖U0‖2H−s

L ×H−s−1
L

,

which concludes the proof of (3.37). The proof of (3.38) is the same, except that we

use ‖∂tu‖2L2(M) ≤ 2E1(u) instead of (B.6). The proof of (3.39) is similar: after using

the chain rule, each term is either of the form ημ(t)χ
3(x)u (treated in (3.37)) or of

the form ημ(t)χ
3(x)∂tu (treated in (3.38)) or of the form ημ(t)χ

3(x)∂xu, for which

the proof is the same using ‖u‖2
H

s
k (M)

≤ 2Es(u), consequence of Corollary B.2,

instead of (B.6). The proof of (3.40) is the same, still using Corollary B.2. �

Lemma 3.30. Fix α < 1. Let χ1 ∈ C∞
0 (R) such that χ1(τ ) = 1 for τ ∈]− 1, 1[

and ϑ ∈ C∞
0 (R1+d). Then, for any s ∈ N, there is C, c > 0 such that for all

w ∈ H−s(R1+d), we have∥∥∥∥Mαμ
μ ϑμ(1− χ1

μ(
Dt

μ
))w

∥∥∥∥
−s

≤ Ce−cμ ‖w‖−s .

Note that in the proofs above, the parameter α of Lemma 3.30 is both taken
to be the parameters α or β appearing estimate (3.23). This is the reason why we
assumed α, β < 1 there.

Proof. This lemma is very close to (and a consequence of) Lemma 3.26 except
that χ1

μ(Dt) is a Fourier cutoff in Dt only whereas Mαμ
μ are Fourier cutoffs in

the whole Dt,x (and that the Sobolev orders are negative). Recall that Mαμ
μ =

mμ

(
D
αμ

)
, D = Dt,x, where m is compactly supported in |ξ| < 1 and m(ξ) = 1 for

|ξ| < 3/4 (see the beginning of Section 2.2).
Let m̃ be a radial smooth function on R

1+d such that m̃(ξ) = 1 in a neigh-
borhood of |ξ| ≤ α and m̃(ξ) = 0 in a neighborhood of |ξ| ≥ 1. Then we have
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1− χ1 = 0 on the support of m̃. For s ∈ N, we write∥∥(1− χ1
μ(Dt))ϑμM

αμ
μ w

∥∥
s
≤
∥∥(1− χ1

μ(Dt/μ))(1− m̃μ(D/μ))ϑμM
αμ
μ w

∥∥
s

+
∥∥(1− χ1

μ(Dt))m̃μ(D/μ)ϑμM
αμ
μ w

∥∥
s

≤ C
∥∥(1− m̃μ(D/μ))ϑμM

αμ
μ w

∥∥
s

+ C
∥∥(1− χ1

μ(Dt))m̃μ(D/μ)ϑμM
αμ
μ w

∥∥
s
.

According to Lemma 3.26 and the respective supports of m̃ and m( ·
α ), we have∥∥(1− m̃μ(D/μ))ϑμM

αμ
μ w

∥∥
s
≤ Ce−cμ ‖w‖s .

Also, according to Item 3 of 3.25, and the respective supports of m̃ and χ1, we have∥∥(1− χ1
μ(Dt/μ))m̃μ(D/μ)

∥∥
Hs→Hs ≤ Ce−cμ,

and hence ∥∥(1− χ1
μ(Dt/μ))m̃μ(D/μ)ϑμM

αμ
μ w

∥∥
s
≤ Ce−cμ ‖w‖s

This finally yields for s ∈ N∥∥(1− χ1
μ(Dt/μ))ϑμM

αμ
μ w

∥∥
s
≤ Ce−cμ ‖w‖s ,

and the sought estimate by a duality argument. �

Lemma 3.31. Let χ ∈ C∞
0 (R) and m ∈ C∞

0 (]− 1, 1[), and define

fμ,λ(τ ) = mμ

(
τ

μ

)
χ̂μ(τ − λ).

Then, for all σ ∈ R, there is C, c > 0 so that we have

‖〈τ 〉σfμ,λ(τ )‖L2 ≤ Ce−c|λ|, for all λ ∈ R, μ ≥ 0 such that |λ| ≥ 4μ.(3.41)

Proof. We decompose fμ,λ = f1
μ,λ + f2

μ,λ with f1
μ,λ(τ ) = fμ,λ(τ )1|τ |≤2μ and

f2
μ,λ(τ ) = fμ,λ(τ )1|τ |>2μ. Using that mμ is uniformly bounded, we have

∥∥〈τ 〉σf1
μ,λ

∥∥2
L2 ≤ C〈2μ〉σ

∫ 2μ

−2μ

e−
|τ−λ|2

μ |χ̂(τ − λ)|2 dτ

= C〈2μ〉σ
∫ 2μ−λ

−2μ−λ

e−
|τ|2
μ |χ̂(τ )|2 dτ

≤ C〈λ〉σ
∫
|τ |≥|λ|/2

e−
|τ|2
μ |χ̂(τ )|2 dτ

≤ C〈λ〉σe−
|λ|2
4μ

∫
|τ |≥|λ|/2

|χ̂(τ )|2 ≤ Ce−|λ|,

where we have used that |λ| ≥ 4μ implies |λ|/2 ≤ |λ| − 2μ (and in particular

τ ∈ [−2μ− λ, 2μ− λ] implies |τ | ≥ |λ|/2) and |λ|2
4μ ≥ |λ|.

Concerning now f2
μ,λ, remark that |s| ≥ 2 implies dist(s, [−1, 1]) ≥ |s|/2. Hence,

using (2.3) together with the support of m, we have uniformly∣∣mμ(s)1|s|≥2

∣∣ ≤ C 〈μ〉1/2 e−
μs2

16 1|s|≥2.
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Using this with s = τ/μ, we obtain∥∥〈τ 〉σf2
μ,λ

∥∥2
L2 ≤ C 〈μ〉1/2

∫
|τ |≥2μ

〈τ 〉σe− τ2

16μ e−
|τ−λ|2

μ |χ̂(τ − λ)|2 dτ

≤ C 〈μ〉1/2 e−λ2

5μ

∫
R

〈τ 〉σ|χ̂(τ − λ)|2 dτ,

where we have used the estimate τ2

16 +|τ−λ|2 ≥ λ2 min
{
s2/16 + (s− 1)2

∣∣ s ∈ R
}
≥

cλ2 with c > 0. Using now that |λ| ≥ 4μ, we have∥∥〈τ 〉σf2
μ,λ

∥∥2
L2 ≤ C 〈μ〉1/2 e−cλ2

μ 〈λ〉σ
∫
R

〈τ 〉σ|χ̂(τ )|2 dτ ≤ C〈λ〉σ+1/2e−4c|λ|,

which concludes the proof of the lemma. �
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CHAPTER 4

The hypoelliptic heat equation

This chapter is devoted to the proofs of Theorems 1.18, 1.20 and 1.22, which
all rely on the methods of [EZ11a, Propositions 1 and 2] (proved in [EZ11b,
Section 3]). We summarize these results in the next proposition for readibility.

Proposition 4.1 ([EZ11a,EZ11b]). Let T, S > 0 and α > 2S2. Then, there
exists some kernel function kT (t, s) such that

• if y is solution of the heat equation (1.17), then w(s) =
∫ T

0
kT (t, s)y(t)dt

is solution of

(4.1)

{
∂2
sw + Lw = 0, for s ∈]− S, S[,

(w, ∂sw)|s=0 =
(
0,
∫ T

0
∂skT (t, 0)y(t)dt

)
=
(
0,
∫ T

0
e−α( 1

t+
1

T−t)y(t)dt
)
;

• for all δ ∈]0, 1[, there is C > 0 such that for all (t, s) ∈]0, T [×]−S, S[, kT
satisfies

|kT (t, s)| ≤ C|s| exp
(

1

min {t, T − t}

(
s2

δ
− α

(1 + δ)

))
.(4.2)

Note that this last estimate is most useful for δ sufficiently close to one so that
α ≥ S2(1 + 1

δ ).
The proof of Theorems 1.22 and 1.20 then follows the Lebeau-Robbiano trans-

mutation method, as implemented in [EZ11a], splitting high and low frequencies.
The proof of Theorem 1.18 is slightly different and does not rely on this splitting.
For the purposes of Theorems 1.22 and 1.20, we define

Eλ = span {ϕj , λj ≤ λ} ,
where (λj , ϕj) are the spectral elements of L, defined in (1.7). The first step of
the proofs of Theorems 1.22 and 1.20 is to show, using the above transmutation
technique, that we can transfer estimates obtained for solutions of the wave equation
to solutions of the heat equation. More precisely, we first prove the following
low-frequency observability estimate, with a precise estimation of the observability
constant with respect to the cutoff frequency.

Lemma 4.2. There exist C, γ > 0 such that for any T > 0, λ ≥ 0, for every
y0 ∈ Eλ and associated solution y to (1.17), we have

‖y(T )‖2L2 ≤ C

T
e(2γλ

k/2+C
T )
∫ T

0

∫
ω

|y(t, x)|2 dt dx.(4.3)

Moreover, there exists c0 > 0 such that for any T > 0 there exists C = CT > 0
such that for any λ ≥ 0, any y0 ∈ Eλ and associated solution y to (1.17), we have

‖y0‖2L2 ≤ Ce2c0λ
k/2

∫ T

0

∫
ω

|y(t, x)|2 dt dx.(4.4)

59
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Remark 4.3. • The constant γ appearing in the exponent in (4.3) may
exactly be taken as γ = ν+ε for any ε > 0 where ν appears in the exponent
in Estimate (1.13) of Theorem 1.15 for some S > supx∈M dL(x, ω). In this
case, the constant C > 0 in front of the exponential also depend on ε.

• The constant c0 appearing in the exponent in (4.4) may also be taken
as c0 = ν + ε for any ε > 0 (where ν appears in the exponent in Esti-
mate (1.13) of Theorem 1.15 for some S > supx∈M dL(x, ω)) in the case
where k ≥ 2, but only c0 = ν + 2

√
α + ε for any ε > 0 in the case k = 1,

which is the classical (elliptic) heat equation (where α is any constant

>
√
2 supx∈M dL(x, ω)).

• This is exactly the cost of controlling low frequencies, following [LR95].
For instance, (4.3) implies that for all y0 ∈ ΠλL

2(M) = Eλ (Πλ being the
orthogonal projector associated to the spectral space of L with eigenvalues
lower that λ), there exists f ∈ L2((0, T );L2(ω)) with ‖f‖2L2((0,T );L2(ω)) ≤
C
T e(2γλ

k/2+C
T ) ‖y0‖2L2 such that the solution to{

∂ty + Ly = Πλ1ωf
y(0) = y0

(4.5)

satisfies y(T ) = 0. Note that this finite dimensional observablity/con-
trollabilty property is interesting in itself. For the time being and to the
authors’ knowledge, it is now understood in few situations, i.e. essentially
in case L is an elliptic selfadjoint second order operator [LR95], the bi-
Laplace operator [LR15], the Stoke operator [CSL16], and in case of
some lower order perturbation of such operators [Léa10].

Again, the situation of Example 1.13, the exponent λk/2 is optimal in
general, as can be seen when testing on eigenfunctions and using Propo-
sition 1.14.

In the proofs of Estimate (4.4) and Theorem 1.18, we shall moreover make use
of the integral

I(T, λ) =
∫ T

0

e−α( 1
t+

1
T−t)e−λtdt,(4.6)

and associated operator

I(T,L)u =
∑
j∈N

I(T, λj)ajϕj =
∑
j∈N

(∫ T

0

e−α( 1
t+

1
T−t)e−λjtdt

)
ajϕj ,(4.7)

for u =
∑
j∈N

ajϕj ,

together with the norms

‖u‖2δ,θ,σ =
∥∥∥(L+ 1)

σ
2 eθL

δ

u
∥∥∥2
L2

=
∑
j∈N

(λj + 1)σe2θλ
δ
j |aj |2, for u =

∑
j∈N

ajϕj .(4.8)

Proof of Lemma 4.2. The proofs of (4.3) and (4.4) are similar. Let us begin
with that of (4.3). We start by using Theorem 1.33 in the simpler case s = k, for
some (any) S > supx∈M dL(x, ω): Estimate (1.13) yields the existence of C, ν, μ0 >
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0 such that for all W0 = (w, ∂sw)|s=0 (note that all constants then depend on these,
and hence on the chosen S > 0), the associated solution to (4.1) satisfies

‖W0‖L2×H−1
L

≤ Ceνμ ‖w‖L2(]−S,S[×ω) +
1

μ
‖W0‖Hk

L×Hk−1
L

, μ ≥ μ0.(4.9)

Note that (4.9) implies the same estimate for all μ > 0, in which case ν has to be
replaced by a bigger constant.

Assume now that w(s) is associated to y as w(s) =
∫ T

0
kT (t, s)y(t)dt, where y

is the solution to (1.17) with initial datum y0 ∈ Eλ. Then, in (4.1), W0 is of the

particular formW0 =
(
0,
∫ T

0
e−α( 1

t +
1

T−t )y(t)dt
)
, so that a calculation (see [EZ11a,

Equation (3.3)]) yields

‖W0‖2L2×H−1
L

≥ (1 + λ)−1 ‖W0‖2H1
L×L2 = (1 + λ)−1

∥∥∥∥∥
∫ T

0

e−α( 1
t +

1
T−t )y(t)dt

∥∥∥∥∥
2

L2

≥ (1 + λ)−1T 2

9
e−

9α
T ‖y(T )‖2L2 .(4.10)

Moreover, we have W0 ∈ Eλ × Eλ so that

‖W0‖Hk
L×Hk−1

L

‖W0‖L2×H−1
L

≤ (1 + λ)
k
2 .(4.11)

As a consequence, (4.9) implies(
1− (1 + λ)

k
2

μ

)
‖W0‖L2×H−1

L
≤ Ceνμ ‖w‖L2(]−S,S[×ω) , μ ≥ μ0,

and hence, choosing μ = (1 + λ)
k
2 (1 + ε) for ε ∈ (0, 1), this is

ε ‖W0‖L2×H−1
L

≤ C(1 + ε)eν(1+λ)
k
2 (1+ε) ‖w‖L2(]−S,S[×ω) , λ ≥ λ0 = μ

2
k
0 ,

and ‖W0‖L2×H−1
L

≤ Cεe
(ν+ε)λ

k
2 ‖w‖L2(]−S,S[×ω) for all ε > 0 (different from that

in the previous line). Using Cauchy-Schwarz inequality together with (4.2) (with δ
sufficiently close to one) we obtain, for some C > 0 (depending only on S, α, δ, but
not on T ) the estimate

‖w‖2L2(]−S,S[×ω) ≤
(∫

]0,T [×]−S,S[

kT (t, s)
2dt ds

)∫ T

0

∫
ω

|y(t, x)|2 dx dt

≤ CTe
C
T

∫ T

0

∫
ω

|y(t, x)|2 dx dt,(4.12)

which then gives (4.3) for λ ≥ λ0. The estimate for λ ∈ [0, λ0] remains valid up to
changing the constant C.

To prove (4.4), we follow the same lines, except for the lower bound (4.10),
which we replace by an estimate of Corollary 4.5 below. Namely, with the nota-
tion (4.7), we have W0 = (0, I(T,L)y0), so that, according to Corollary 4.5, we
have for all T > 0 and s ∈ R, the existence of C = Cα,T,s > 0 such that

‖W0‖L2×H−1
L

= ‖I(T,L)y0‖H−1
L

≥ C ‖y0‖ 1
2 ,−2

√
α,−1− 3

2
= C

∥∥∥(L+ 1)−
5
4 e−2

√
αLy0

∥∥∥
L2

.(4.13)
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Recalling that y0 ∈ Eλ, this implies

‖W0‖L2×H−1
L

≥ C
∥∥∥(L+ 1)−

5
4 e−2

√
αLy0

∥∥∥
L2

≥ C
∥∥∥e−(2+ε)

√
αLy0

∥∥∥
L2

≥ Ce−(2+ε)
√
αλ ‖y0‖L2 .

Applying then (4.9) (for any μ > 0) with this lower bound, together with (4.12)

and (4.11) as above and the fact that e(2+ε)
√
αλ ≤ Cεe

ελ
k
2 for any k ≥ 2 (in case

k = 1, the constant (2 + ε)
√
α has to be taken into account), concludes the proof

of (4.4), and hence of the lemma. �

Note that in the proof of (4.4), and in the case k > 2, we could simply re-
place (4.13) by the rough estimate

‖yλ(0)‖2L2 ≤ e2λT ‖yλ(T )‖2L2 ,

which would be enough for the purpose of Estimate (4.4). This is not possible at
all in case k = 1, and in case k = 2, would require c0 to depend (linearly) on T .

4.1. Approximate controllability with polynomial cost in large time:
Proof of Theorem 1.22

From the low-frequency Lemma 4.2, Estimate (4.3), the proof of the theorem
follows the spirit of [LR95,Mil10,EZ11a] but is simpler. It combines the cost

of controllability of low frequencies, of order eγλ
k
2 = eγλ (k = 2 in this part) and

the dissipation of the heat at high frequency, of order e−tλ. However, here, we do
not perform the usual iterative procedure since it does not seem to improve the
estimates.

Proof of Theorem 1.22. For y ∈ L2(M), we decompose y = yλ + rλ with
yλ ∈ Eλ and rλ ∈ E⊥

λ .
On the one hand, using Lemma 4.2 Estimate (4.3) for yλ on the time interval

(T − η, T ) (the problem being time invariant), we obtain, uniformly with respect
to T > 0, η ∈]0, T [, λ > 0,

‖yλ(T )‖2L2 ≤ Ce(2γλ
k/2+C

η )
∫ T

(T−η)

∫
ω

|yλ(t, x)|2 dt dx.(4.14)

On the other hand, we have

‖rλ(t)‖L2 ≤ e−λt ‖rλ(0)‖L2 ≤ e−λt ‖y(0)‖L2 ,(4.15) ∫ T

T−η

∫
ω

|rλ(t, x)|2 dt dx ≤ 1

2λ
e−2λ(T−η) ‖y(0)‖2L2 .

The last estimate gives∫ T

(T−η)

∫
ω

|yλ(t, x)|2 dt dx ≤ 2

∫ T

(T−η)

∫
ω

|y(t, x)|2 dt dx+
1

λ
e−2λ(T−η) ‖y(0)‖2L2 .
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So, using successively (4.15), (4.14) and the last estimate, we finally obtain for
T > 0, η ∈]0, T [, λ > 0,

‖y(T )‖2L2 = ‖yλ(T )‖2L2 + ‖rλ(T )‖2L2

≤ ‖yλ(T )‖2L2 + e−2λT ‖y(0)‖2L2

≤ Ce(2γλ
k/2+C

η )
∫ T

T−η

∫
ω

|y(t, x)|2 dt dx

+ C
(
e−2λT + e(2γλ

k/2+C
η −2λ(T−η))

)
‖y(0)‖2L2

≤ Ce(2γλ
k/2+C

η )
∫ T

T−η

∫
ω

|y(t, x)|2 dt dx

+ 2Ce(2γλ
k/2+C

η −2λ(T−η)) ‖y(0)‖2L2 .

Now, we recall that we assume k = 2 (for k > 2, the diffusion cannot compete
with the cost of controllability of low frequencies). Consequently, we obtain, for all
T > 0, η ∈]0, T [, λ > 0,

‖y(T )‖2L2 ≤ CeC/η

(
e2γλ

∫ T

T−η

∫
ω

|y(t, x)|2 dt dx+ e2λ(γ+η−T ) ‖y(0)‖2L2

)
.(4.16)

This now provides information if T is sufficiently large. Namely, setting ε = e−2λ,
we obtain the existence of C > 0 such that for all η > 0, T ≥ γ + η, all ε ∈]0, 1[,
we have

‖y(T )‖2L2 ≤ CeC/η

(
1

εγ

∫ T

T−η

∫
ω

|y(t, x)|2 dt dx+ εT−(γ+η) ‖y(0)‖2L2

)
.

Changing εT−(γ+η) into ε, this implies the existence of C > 0 such that for all
η > 0, all T > γ + η and all ε ∈]0, 1[, we have

e−C/η

C
‖y(T )‖2L2 ≤ 1

ε
γ

T−(γ+η)

∫ T

T−η

∫
ω

|y(t, x)|2 dt dx+ ε ‖y(0)‖2L2 .

This concludes the proof of Theorem 1.22 with T0 := γ after having remarked that
the parabolic dissipation yields ‖y(T )‖2L2 ≤ ‖y(0)‖2L2 , and hence the case ε ≥ 1. �

4.2. Approximate controllability in Gevrey-type spaces: Proof of
Theorem 1.20

The proof of Theorem 1.20 follows the same lines as Theorem 1.22, decomposing
into low and high frequencies, but uses Estimate (4.4) instead of (4.3).

Proof of Theorem 1.20. For y ∈ L2(M) arbitrary, we again write the de-
composition y = yλ + rλ with yλ ∈ Eλ and rλ ∈ E⊥

λ . Note that, using the fact that
yλ is solution of the heat equation in Eλ, we obtain from Lemma 4.2 that

‖yλ(0)‖2L2 ≤ CT e
2c0λ

k/2

∫ T

0

∫
ω

|yλ(t, x)|2 dt dx.
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Moreover, we have (recall that the norm ‖·‖α,θ is defined in (1.21); α will be even-

tually taken equal to k/2)

‖rλ(t)‖L2 ≤ e−λt ‖rλ(0)‖L2 ≤ e−λte−θλα ‖rλ(0)‖α,θ ≤ e−λt−θλα ‖y(0)‖α,θ∫ T

T−η

∫
ω

|rλ(t, x)|2 dt dx ≤ 1

2λ
e−2λ(T−η)e−2θλα ‖y(0)‖2α,θ .

From this last estimate, we obtain∫ T

0

∫
ω

|yλ(t, x)|2 dt dx ≤ 2

∫ T

0

∫
ω

|y(t, x)|2 dt dx+ 2

∫ T

0

∫
ω

|rλ(t, x)|2 dt dx

≤ 2

∫ T

0

∫
ω

|y(t, x)|2 dt dx+ λ−1e−2θλα ‖y(0)‖2α,θ .

So, combining all these estimates, we finally obtain for λ > 0

‖y(0)‖2L2 = ‖yλ(0)‖2L2 + ‖rλ(0)‖2L2

≤ ‖yλ(0)‖2L2 + e−2θλα ‖y(0)‖2α,θ

≤ CT e
2c0λ

k/2

(
2

∫ T

0

∫
ω

|y(t, x)|2 dt dx+ e−2θλα ‖y(0)‖2α,θ

)
(4.17)

+ e−2θλα ‖y(0)‖2α,θ .

Now, for α = k/2, we find for all λ > 0 that

‖y(0)‖2L2 ≤ Ce2c0λ
k/2

∫ T

0

∫
ω

|y(t, x)|2 dt dx+ Ce−2(θ−c0)λ
k/2 ‖y(0)‖2k/2,θ .

Assuming θ > c0, and setting ε = Ce−2(θ−c0)λ
k/2 ∈]0, 1[, this is precisely (1.22)

with θ0 = c0. The full range of ε > 0 follows from the simple estimate ‖y(0)‖2L2 ≤
‖y(0)‖2k/2,θ. �

4.3. Approximate controllability in natural spaces with exponential
cost: Proof of Theorem 1.18

Let us now proceed to the proof of Theorem 1.18. It does not rely on frequency
cutoff (we do not distinguish between low and high frequencies), and hence on
Lemma 4.2. Instead, we directly apply the transmutation result of Proposition 4.1
to the full solution and use precise properties of the operator I(T,L) defined in (4.7)
(which we aready used in the proof of Estimate (4.4)), proved in the next section.
Note also that here, as opposed to the above two sections, we need to use the strong
version of Theorem 1.15 (i.e. with s = 1, and not s = k).

Proof of Theorem 1.18. We apply directly the transmutation kernel to the
solution. Using Theorem 1.15, we obtain

‖W0‖L2×H−1
L

≤ Ceνμ
k ‖w‖L2(]−S,S[×ω) +

1

μ
‖W0‖H1

L×L2 , μ > 0,(4.18)

see e.g. [LL19, Lemma A.3] or [LL18b] to obtain the range μ ∈ [0, μ0]. Then, we
recall that, with the notation (4.7), we have

W0 = (0, I(T,L)y0),
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so that, according to Corollary 4.5, we have for all T > 0 and s ∈ R, the existence
of C = Cα,T,s > 0 such that

C−1 ‖y0‖ 1
2 ,−2

√
α,s− 3

2
≤ ‖W0‖Hs+1

L ×Hs
L
= ‖I(T,L)y0‖Hs

L
≤ C ‖y0‖ 1

2 ,−2
√
α,s− 3

2
,

where ‖y0‖ 1
2 ,−2

√
α,s =

∥∥∥(L+ 1)
s
2 e−2

√
αLy0

∥∥∥
L2

(see (4.8) for the definition of the

norms). In particular, this implies, with Λ1(y0) =
‖y0‖H1

L
‖y0‖L2

and H(λ) = (λ +

1)−
5
4 e−2

√
αλ,

‖W0‖H1
L×L2

‖W0‖L2×H−1
L

≤ C
‖y0‖ 1

2 ,−2
√
α,− 3

2

‖y0‖ 1
2 ,−2

√
α,−1− 3

2

= CΛ1(H(L)y0) ≤ 2CΛ1(y0),

where we have used Corollary 4.9 in the last inequality using that H(λ) is positive
and decreasing to zero.

When combined with (4.12) (still valid in this context), we now obtain, for all
μ > 0,

‖W0‖2L2×H−1
L

≤ Ce2νμ
k

∫ T

0

∫
ω

|y(t, x)|2 dx dt+
C

μ2
Λ1(y0)

2 ‖W0‖2L2×H−1
L

.

Writing Λ = Λ1(y0), taking μ =
√
2CΛ, and recalling that C−1 ‖y0‖ 1

2 ,−2
√
α,−1− 3

2
≤

‖W0‖L2×H−1
L
, this gives after absorption

‖y0‖21
2 ,−2

√
α,−1− 3

2
≤ CecΛ

k

∫ T

0

∫
ω

|y(t, x)|2 dx dt, Λ =
‖y0‖H1

L

‖y0‖L2

.(4.19)

To conclude, we recall that

‖y0‖ 1
2 ,−2

√
α,−1− 3

2
=
∥∥∥(L+ 1)−

5
4 e−2

√
αLy0

∥∥∥
L2

≥ C
∥∥∥e−3

√
α(L+1)y0

∥∥∥
L2

and we use Lemma 4.6 with F (s) = s + 1 and G(s) = e−3
√
αs which is convex, to

finally obtain

‖y0‖L2 ≤ CecΛ1(y0)
∥∥∥e−3

√
α(L+1)y0

∥∥∥
L2

≤ CecΛ1(y0) ‖y0‖ 1
2 ,−2

√
α,−1− 3

2
.

Together with (4.19), this conludes the proof of (1.19). Now, to prove (1.20), take

any μ > 0. Either Λ1(y0) =
‖y0‖H1

L
‖y0‖L2

≥ μ, and (1.20) holds (without the observation

term), or else Λ1(y0) ≤ μ, and (1.19) yields (1.20) (without additional term on the
right hand-side). This concludes the proof of the Theorem. �

4.4. Technical lemmata used for the heat equation

In this section, we collect three technical lemmata that we used in the proofs
of Theorems 1.18, 1.20 and 1.22 above.

First, we need an asymptotic expansion of the integral I(T, λ) defined in (4.6)
as λ → +∞.

Lemma 4.4. For all α > 0 and T > 0, there exists CT , λ0 > 0 such that for all
λ ≥ λ0, there is R(T, λ) ∈ R such that we have

I(T, λ) =
√
π
α

1
4

λ
3
4

e−
α
T e−2

√
αλ

(
1 +

R(T, λ)

λ
1
4

)
, |R(T, λ)| ≤ CT .
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Next, this lemma allows us to link the operator I(T,L) defined in 4.7 and the
norms ‖·‖δ,θ,σ defined by (4.8).

Corollary 4.5. For all s ∈ R, for all T, α > 0, there exists C > 1 such that
we have

C−1 ‖u‖ 1
2 ,−2

√
α,s− 3

2
≤ ‖I(T,L)u‖Hs

L
≤ C ‖u‖ 1

2 ,−2
√
α,s− 3

2
,

The proof of the corollary only consists in remarking that, once α, T are fixed,
we have, according to Lemma 4.4, that

0 < I(T, λ)
(

e−2
√
αλ

(1 + λ)
3
4

)−1

→
√
πα

1
4 e−

α
T > 0 as λ → +∞,

and this quantity does not vanish on R
+ so that there is C > 1 such that for all

λ ≥ 0, we have

C−1 ≤ I(T, λ)
(

e−2
√
αλ

(1 + λ)
3
4

)−1

≤ C,

which yields the result.
Note that it would be interesting to make the asymptotic expansion of

Lemma 4.4 uniform in the parameter T as T → 0+, which we do not do here.

Proof of Lemma 4.4. Note first that, given ε ∈ (0, 1), we may assume that
λ0 is chosen such that T ≥

√
α
λ (1 + ε) for λ ≥ λ0. We first change variables in

I(T, λ), denoting ω =
√
αλ (new large parameter) and setting t =

√
α
λs = α

ω s, we
have

I(T, λ) = α

ω

∫ ωT
α

0

fω(s)e
−ω( 1

s+s)ds, fω(s) = exp

(
− α

T − αs
ω

)
.

The phase h(s) := 1
s + s admits a single global strict (nondegenerate) minimum

at the point s = 1, with h(1) = 2. Note also that 0 ≤ fω ≤ 1. Hence, using that
ωT
α ≥ 1 + ε by assumption, we have for ε ∈ (0, 1), the estimate

I(T, λ) = α

ω

∫ 1+ε

1−ε

fω(s)e
−ω( 1

s+s)ds+OT (e
−(h(1)+cε)ω), cε > 0.

Let φ : (1− ε, 1 + ε) → (−ε1, ε2) be a (Morse) diffeomorphism for some ε1, ε2 > 0,
such that φ(1) = 0, and with u = φ(s), we have

h(s) = h(1) + h′′(1)
u2

2
= 2 + u2, sgn(u) = sgn(s− 1).

Note that it is actually explicit, namely φ(s) = (s − 1)/
√
s. We change variable,

setting u = φ(s), and obtain

I(T, λ) = α

ω

∫ ε2

−ε1

e−ω(2+u2)fω ◦ φ−1(u)|(φ−1)′(u)|du+OT (e
−(2+cε)ω), cε > 0,

where (φ−1)′(0) = 1.
Moreover, for s ∈ [1− ε, 1 + ε] ⊂ [0, ωT

α ], we write fω(s) = fω(1) + Rω(s) with

fω(1) = exp
(
− α

T−α
ω

)
and

|Rω(s)| ≤ |s− 1| sup
[1−ε,1+ε]

|f ′
ω| ≤

c

ω
|s− 1|,(4.20)

where we used f ′
ω(s) = − 1

ωX
−2e−

1
X with X = (T − α

ω s)α
−1 ∈ [0, T/α].
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As a consequence, we obtain

I(T, λ) = α

ω
e−2ω exp

(
− α

T − α
ω

)∫ ε2

−ε1

e−ωu2 |(φ−1)′(u)|du+R(ω)+OT (e
−(2+cε)ω)

=
α

ω
e−2ω exp

(
− α

T − α
ω

){∫ ε2

−ε1

e−ωu2 |(φ−1)′(0)|du+R′(ω)

}
+R(ω) + OT (e

−(2+cε)ω)

=
α

ω
e−2ω exp

(
− α

T − α
ω

){∫
R

e−ωu2 |(φ−1)′(0)|du+R′(ω)

}
+R(ω) + OT (e

−(2+c̃ε)ω), c̃ε > 0

=
α

ω
e−2ω exp

(
− α

T − α
ω

){√
π

ω
+R′(ω)

}
+R(ω) +OT (e

−(2+c̃ε)ω),

with, using (4.20),

|R(ω)| =
∣∣∣∣αω

∫ ε2

−ε1

e−ω(2+u2)Rω ◦ φ−1(u)|(φ−1)′(u)|du
∣∣∣∣

≤ C
α

ω2
e−2ω

∫ ε2

−ε1

|u|e−ωu2

du ≤ α

ω2
e−2ωC

ω
,

and

|R′(ω)| =
∣∣∣∣∫ ε2

−ε1

e−ωu2 (
(φ−1)′(u)− (φ−1)′(0)

)
du

∣∣∣∣ ≤ C

∫ ε2

−ε1

|u|e−ωu2

du ≤ C

ω
.

Using that exp
(
− α

T−α
ω

)
= e−

α
T

(
1 +OT

(
α
ω

))
, we finally obtain

I(T, λ) = α

ω
e−2ω exp

(
− α

T − α
ω

)√
π

ω

(
1 + OT

(
1√
ω

))
,

which, recalling that ω =
√
αλ, concludes the proof of the lemma. �

Lemma 4.6. Let F : R+ → R
+ be any function and let G : F (R+) → R

+ be a
function such that G2 is convex (it is for instance the case if G is). Then, for all
u ∈ HF

L ∩D(G ◦ F (L)), we have

G

(
‖u‖2HF

L

‖u‖2L2

)
‖u‖L2 ≤ ‖G ◦ F (L)u‖L2 ,(4.21)

where the seminorm HF
L is defined by ‖u‖2HF

L
=
∑

j∈N
F (λj)|aj |2 if u =

∑
j∈N

ajϕj.

Remark 4.7. Using the previous lemma with F (s) = s+1 and G(s) = 1√
s
, we

obtain the interpolation inequality

‖u‖L2

‖u‖H−1
L

≤
‖u‖H1

L

‖u‖L2

,

comparing two types of “frequency functions”, the first of which being used e.g.
in [Phu04] for the classical heat equation.
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Proof. Dividing by ‖u‖L2 (if non zero, otherwise the inequality is clear), it is
enough to prove (4.21) assuming ‖u‖L2 = 1. If so, we write u =

∑
j∈N

ajϕj with∑
j∈N

|aj |2 = 1. Using the Jensen inequality with the convex function G2, we have

‖G ◦ F (L)u‖2L2 =
∑
j∈N

G
(
F (λj)

)2|aj |2 ≥ G2

⎛⎝∑
j∈N

F (λj)|aj |2
⎞⎠ = G2(‖u‖2HF

L
),

which concludes the proof of the lemma. �

Lemma 4.8. Let F,G : Sp(L) → R
+ be two nondecreasing functions. Then, for

all u ∈ D(F (L)G(L)), we have

‖F (L)u‖L2 ‖G(L)u‖L2 ≤ 2 ‖F (L)G(L)u‖L2 ‖u‖L2 .

Note that the spectrum of L consisting in a sequence of nonnegative real num-
bers accumulating only at +∞, we may think as F and G to be two nondecreasing
continuous functions defined R

+ → R
+ (extending them e.g. as piecewise affine

functions on R
+).

Note also that, replacing F and G by 1/F and 1/G, the same statement is true
as well if F,G are nonvanishing, nonincreasing.

Corollary 4.9. Denoting, for σ > 0 and v ∈ Hσ
L by Λσ(v) =

‖v‖Hσ
L

‖v‖L2
the

modified frequency functions, we have for any H : Sp(L) → R
+ nonvanishing,

nonincreasing function

Λσ(H(L)v) ≤ 2Λσ(v), for all v ∈ Hσ
L.(4.22)

The corollary is obtained by taking F (s) = (s + 1)
σ
2 in Lemma 4.8, G = 1/H

and u = H(L)v. Remark that the frequency function Λ used in the main part of
the article is Λ = Λ1.

Remark 4.10. The interpretation of the corollary is clearer. Indeed, in this
context, H(L) is a bounded operator (even compact if in addition H(s) →s→+∞ 0)
on all Hσ

L spaces, and (4.22) only states that the “average frequency” of H(L)v is
always bounded by the “average frequency” of v.

Remark 4.11. It is very likely that the previous Lemma (or at least Corol-
lary 4.9) is still true with the constant 2 replaced by 1. Indeed, when taking

H(s) = (s + 1)−β, or H(s) = e−tsβ with β, t > 0, Corollary 4.9 is true with a
constant 1; in the first case, it is proved using Sobolev interpolation and in the
second one using the monotonicity of the frequency function for solutions of the
heat equation, see Phung [Phu04].

Proof of Lemma 4.8. First, we extend both functions F and G, initially
defined on Sp(L) only, as two nonnondecreasing continuous functions (still denoted
F,G) defined R

+ → R
+.
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Next, since F and G are nondecreasing, by decomposing u =
∑

ajϕj with
frequency less than λ and greater than λ, we notice that for any λ ≥ 0, we have

‖F (L)u‖2L2 =
∑
j

F (λj)
2|aj |2 =

∑
λj≤λ

F (λj)
2|aj |2 +

∑
λj>λ

F (λj)
2|aj |2

≤ F (λ)2
∑
λj≤λ

|aj |2 +
∑
λj>λ

F (λj)
2G(λj)

2

G(λ)2
|aj |2

≤ F (λ)2 ‖u‖2L2 +
1

G(λ)2
‖F (L)G(L)u‖2L2 .

Similarly, we have

‖G(L)u‖2L2 ≤ G(λ)2 ‖u‖2L2 +
1

F (λ)2
‖F (L)G(L)u‖2L2 .

Multiplying these two estimates, we obtain, for all λ ≥ 0

‖F (L)u‖2L2 ‖G(L)u‖2L2 ≤ F (λ)2G(λ)2 ‖u‖4L2 + 2 ‖u‖2L2 ‖F (L)G(L)u‖2L2

+
1

F (λ)2G(λ)2
‖F (L)G(L)u‖4L2 ,

which is

‖F (L)u‖L2 ‖G(L)u‖L2 ≤ F (λ)G(λ) ‖u‖2L2 +
1

F (λ)G(λ)
‖F (L)G(L)u‖2L2 ,(4.23)

for all λ ≥ 0. Now, s �→ F (s)G(s) is nondecreasing and hence has a limit as
s → +∞, which we call (FG)(∞) = supFG ∈ [F (0)G(0),+∞]. The func-
tion FG being continuous, it is also onto its image FG([0,+∞)), which is either
[(FG)(0), (FG)(∞)] in case FG (and hence both F and G) is constant near ∞, or
[(FG)(0), (FG)(∞)) if not. We obtain in all cases

(FG)(0) = minFG ≤ ‖F (L)G(L)u‖L2

‖u‖L2

≤ (FG)(∞).

Moreover, equality in the last inequality may only occur if FG is constant near
∞. Henceforth, in all cases, there exists λ ∈ [0,+∞) such that F (λ)G(λ) =
‖F (L)G(L)u‖L2

‖u‖L2
. This, together with Estimate (4.23) yields the sought result. �
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CHAPTER 5

A partially analytic example: Grushin type
operators

In this chapter, we are concerned with the setting of Example 1.24 and give a
proof of Theorem 1.25. As explained in Section 1.4, it only suffices to prove the
analogue of Theorem 1.15 (with estimate (1.26) instead of (1.13)), that is for the
hypoelliptic wave equation; all other results are then deduced as in Chapter 4.

The setting of Example 1.24 differs from the general setting of the paper (com-
pact manifolds, analytic context) with two respects: (i) we do not suppose analyt-
icity in all variables; (ii) the manifold M = [−1, 1] × T has a boundary. Hence,
there are four main differences in the proofs, the first of which being of geometric
nature, the next two being linked to the analysis of [LL19], and the last one to
hypoelliptic estimates:

(1) the presence of the boundary makes it complicated to apply directly The-
orem 3.5 coming from [RT05].

(2) the partial analyticity assumption does not allow to make changes of vari-
ables to define the relation �. For any couple of points x0, x1, we thus
have to find some global set Ω containing one (short) path linking them.

(3) the application of the results in [LL19] yields an observation term of the
form ‖u‖H1

b (ω̃)
and we would expect it to be in L2.

(4) The available hypoelliptic estimates, similar to those of Theorem 1.5, do
not apply directly in the presence of boundary.

The problem imposed by Item 1 is that because of the boundary, the shortest
path between two points in Int(M) does not necessarily exist inside of Int(M). To
understand this issue, it may help to think about the flat metric in R

n \ O where
O a convex obstacle. In the present setting, for the Grushin case for instance, the
boundary ∂M = {x1 = ±1} can be thought of as a convex obstacle (see Figure 3.1 of
[BL13] for some drawing of geodesics of the Grushin sub-Riemannian metric). The
solution we propose is to apply the result of Rifford and Trélat [RT05] only locally
away from the boundary. The drawback is then that our path is only piecewise
normal geodesic. But this will be sufficient thanks to the variant Proposition 3.15
of Proposition 3.13.

The solution to the issue of Item 2 is the very simple straight geometry of
[−1, 1]x1

× Tx2
, so we almost do not perform any change of variable.

The solution to the issue of Item 3 is to use the fact that the operator P is
elliptic in {ζa = 0} where ζa is the dual to the anaytic variable za = (t, x2), see
Section 5.3. This is in fact useful in a more general setting.

Concerning the issue of Item 4, we prove the necessary estimates in Section
B.2. Recall that the operator is elliptic close to the boundary. So, we are left to

71
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patch the usual elliptic estimates close to the boundary with internal hypoelliptic
estimates.

All in all, the proof of Estimate (1.26) is as above in two steps: first, prov-
ing (1.30) (hard part), and then performing energy estimates (soft part). The latter
are done the same way as in Section 3.3.1, except that the hypoelliptic estimates
of Corollary B.1 have to be replaced by those of Theorem B.3 (with boundary).

We now focus on the first part of the proof, that is, proving (1.30) in the context
of Example 1.24. This corresponds to the above Step 1 (Section 3.1) and Step 2
(Section 3.2).

5.1. The geometric context

Denote π : [−1, 1]x1
× Rx2

→ [−1, 1]x1
× Tx2

the natural covering map,

π(x1, x2) = (x1, x2 + Z).

The vector fields X1 and X2 can be lifted to [−1, 1]x1
× Rx2

, which allows to
define the natural sub-Riemannian distance on ] − 1, 1[x1

×Rx2
. As for the case of

[−1, 1]x1
× Tx2

, the latter can be extended up to the boundary as well as all the
other notions naturally inherited. We keep the same notations without leading to
any confusion.

We will need the following Geometric Lemma, the proof of which relies on an
iterative use of a slight variant of the result of Rifford-Trélat [RT05], see Theo-
rem 3.5.

Lemma 5.1. Let x0 = (x0
1, x

0
2) and x1 = (x1

1, x
1
2) in [−1, 1]x1

× Tx2
. Then, for

any ε > 0, there exists a continuous path γ : [0, 1] �→ [−1, 1]x1
× Rx2

so that with
γ(s) = (x1(s), x2(s)) we have

(1) π(γ(0)) = x0 and dist(π(γ(1)), x1) < ε;
(2) x1(s) /∈ {−1, 1} for s ∈]0, 1[;
(3) γ is piecewise normal geodesic in ]− 1, 1[x1

×Rx2
;

(4) if x1
1 = −1 (resp. 1) then there is δ > 0 so that γ(s) = (−s, x1

2) (resp.
γ(s) = (s, x1

2)) for s ∈ [1−δ, 1]. Similarly, if x0
1 = −1 (resp. 1) then there

is δ > 0 so that γ(s) = (−1+s, x0
2) (resp. γ(s) = (1−s, x0

2)) for s ∈ [0, δ];
(5) length(γ) ≤ dist(x0, x1) + ε.

Proof. Note first that the paths defined in Item 4 are normal geodesic paths
(i.e. geodesics, since the metric is Riemannian near the boundary) corresponding to
(ξ1, ξ2) = (±1/2, 0) since f does not depend on x2 near the boundary. Therefore,
by defining γ like this for s ∈ [1 − δ, 1], we have γ(1 − δ) ∈] − 1, 1[x1

×Tx2
and

length(γ(s), s ∈ [1 − δ, 1]) = δ; hence up to changing the length of γ by δ, we are
left to the case where x1 does not belong to the boundary. The argument shows
that we may assume as well that x0 does not belong to the boundary.

Let now γ̃ be a smooth path on [−1, 1]x1
× Tx2

so that γ̃(0) = x0, γ̃(1) =
x1 and length(γ̃) ≤ dist(x0, x1) + ε. We select one continuous lifting of γ̃ on
[−1, 1]x1

×Rx2
, denoted by γ1, so that π(γ1(s)) = γ̃(s) for s ∈ [0, 1]. Moreover, we

have length(γ1) = length(γ̃) that we denote by L. Since x0, x1 /∈ {±1}×T, then up
to deforming a bit γ1 without changing γ1(0) (and still denoting it with the same
name), we can assume that dist(γ1(s), {±1} × R) > η > 0 for all s ∈ [0, 1], up to
having only the estimate length(γ1) ≤ dist(x0, x1) + 2ε. Now, we choose N ∈ N

large enough so that (L+ ε)/N < η. Up to reparametrization, we can also assume
that γ1 : [0, L] →]− 1, 1[×R has unit speed.
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Denote ti = γ1(iL/N) for i = 0, · · · , N . In particular, we have dist(ti, ti+1) ≤
L/N since γ1 has unit speed.

We now definemi for i = 0, · · · , N by induction, so that the following properties
are satisfied:

(P1) dist(mi, ti) < ε/2N ;
(P2) there is a minimizing normal geodesic between mi and mi+1.

Note that these properties imply in particular

dist(mi, {±1} × R) ≥ dist(ti, {±1} × R)− dist(mi, ti) > η − ε/2N > (L+ ε/2)/N.

(5.1)

Let us now construct the points mi by induction as follows:

• m0 = γ̃(0);
• mi → mi+1: by iteration hypothesis, dist(mi, ti) ≤ ε/N . Note that the
ball B(mi, (L+ ε/2)/N) does not intersect the boundary thanks to (5.1)
and that dist(mi, ti+1) ≤ dist(mi, ti) + dist(ti, ti+1) < (L + ε/2)/N . In
particular, ti+1 ∈ B(mi, (L+ ε/2)/N), and there exists one ball of radius
r < ε/2N so that B(ti+1, r) ⊂ B(mi, (L+ ε/2)/N).

A slight variant of Theorem 3.5 of Rifford-Trélat [RT05] implies that
the image of the exponential map (given by T ∗(R2) → R

2, (m0, ξ0) �→
m(1) where (m(t), ξ(t)) is the Hamiltonian curve issued from (m0, ξ0),
see Definition 3.2) from the point mi is dense in B(mi, (L+ ε/2)/N). In
particular, there exists one point, which we choose as mi+1 ∈ B(ti+1, r) ⊂
B(mi, (L + ε/2)/N) so that there exists a minimizing normal geodesic
betweenmi andmi+1, and (P2) is satisfied. Then, we have by construction
dist(mi+1, ti+1) < r < ε/2N , so the first induction assumption (P1) is also
fulfilled.

Once the process is finished, we have by construction,

dist(mi,mi+1) ≤ dist(mi, ti) + dist(ti, ti+1) + dist(mi+1, ti+1) ≤ (L+ ε)/N.

Now, denote by γ, the path defined by concatenation of the above defined normal
geodesic path linking mi and mi+1. We have γ(0) = m0 = γ̃(0) = γ1(0) by con-
struction. Also, we have dist(γ(L), γ1(L)) = dist(mN−1, tN−1) < ε/2N < ε. More-
over, since the geodesic linking mi and mi+1 are minimizing, we have length(γ) =∑N−1

i=0 dist(mi,mi+1) ≤ L+ ε. This concludes the proof of the lemma. �

5.2. A proof of Estimate (1.26)

Let us now sketch the proof of Estimate (1.26). It is very similar to that of
Theorem 1.15, so that we only stress the main differences.

For this, we define Ω = I×U with I a bounded neighborhood of (−T, T ) (where
T is that of the statement of Theorem 1.25) and U a bounded neighborhood of γ
in [−1, 1]x1

× Rx2
. We consider the operator P = ∂2

t + L in this set, and use the
splitting of variables in R

n = R
na × R

nb = R
d+1 with n = 3, na = 2, nb = 1, d = 2,

as
z = (za, zb), za = (t, x2), zb = x1,

with t being the time variable, and x = (x1, x2) the space variable.
Now, we follow the general proof. The geometrical context being made pre-

cise in Lemma 5.1, it only remains to check that we can apply the equivalent of
Proposition 3.15, with the scheme of proof described in Remark 3.14. Since the
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appropriate piecewise geodesic path is constructed in Lemma 5.1, we only need to
check that the local results (the equivalent of Lemma 3.12) can be applied in this
setting.

There are two differences:

• We are in a situation where the only analytic variables are za = (t, x2). So,
all Fourier multipliers defined in Section 2.2 (and therefore the associated
relation �) are taken with respect to these variables, see Remark 2.4. The
symbol of the wave operator P is

p(t, x1, x2, τ, ξ1, ξ2) = −τ2 + ξ21 + f(x1, x2)
2ξ22 .

But we check that we are still in the situation of Remark 1.10 of [LL19]
with za = (t, x2) and zb = x1. Indeed, p(t, x1, x2, 0, ξ1, 0) = ξ21 that is
positive definite on Rξ1 .

• The equivalent of Lemma 3.12 should be obtained in the presence of
boundary. We have to check that we can apply [LL19, Theorem 5.12],
namely “propagation up to the boundary” {x1 = ±1}. Let us only ex-
plain the construction near the boundary {x1 = 1}, the other case being
similar. One important thing is that we are in the geometric situation
described in Lemma 5.1: P is already under the form of (3.5) and the
choice of the geodesic close to the boundary of Item 4 of Lemma 5.1 is
already the same straight line. Indeed, we almost do not need to perform
any change of coordinates, but only a translation. We can directly con-
struct the noncharacteristic hypersurfaces of Lemma 3.11 with l0 = ε0,
(t, x̌) = (t, x2) (tangential) and xd = x1 + 1 − ε0 (normal). Everything
works then as in the interior case precised before, except for the last hyper-
surface S1 = {φ1 = 0}, which touches the boundary {x1 = 1} tangentially.
For this last step, we apply the local propagation result up to the bound-
ary [LL19, Theorem 5.12]. We only need to check that the additional
assumptions of this result are fulfilled:

– The analytic variable za = (t, x2) are tangential with respect to the
boundary {x1 = 1};

– Assumption 5.1 in [LL19] is fulfilled for P because close to the bound-
ary, p = qx((τ, ξ2)) + q̃x(ξ1) where qx((τ, ξ2)) = −τ2 + f(x)2ξ22 and
q̃x(ξ1) = ξ21 are both quadratic forms independent on t and x2;

– The boundary {x1 = 1} is non characteristic for P ;
– To apply Theorem 5.12 of [LL19] in this context, calling (x′, xn) the

variables in that reference (the domain is locally {xn > 0} in [LL19],
it is {x1 < 1} here), one needs to set xn = 1 − x1 and x′ = (t, x2)
so that {x1 ≤ 1} is transformed into R

n
+. The defining function of

the last hypersurface φ1(t, x̌, xd) = G((t, x̌), 1) − xd is changed, for

the application of [LL19, Theorem 5.12] into φ̃1(x
′, xn) = G(x′, 1)−

(1 − xn). The assumption ∂xn
φ̃1 = −∂xd

φ1 = 1 > 0 of [LL19,
Theorem 5.12] is hence satisfied.

This variant of Proposition 3.15, with an application of the boundary Theorem 5.12
of [LL19] as a last step, leads to the relation∥∥Mβμ

μ σr,μu
∥∥
1
≤ Ceνμ

(∥∥Mαμ
μ ϑμu

∥∥
1
+ ‖Pu‖L2(Ω)

)
+ Ce−ν′μ ‖u‖1
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whereMβμ
μ is defined with the analytic variables za = (t, x2) and naturally extended

to the boundary case since za is tangential. The function ϑ ∈ C∞
0 (M) is chosen

supported close to x0 = (x0
1, x

0
2) and can therefore be taken in C∞

0 (] − T, T [×ω).
The function σr ∈ C∞

0 (M) is equal to 1 in a small ball centered at x1 = (x1
1, x

1
2) of

size r > 0.
Lemma 5.2 below allows to obtain with different constants∥∥Mβμ

μ σr,μu
∥∥
1
≤ Ceνμ

(
‖u‖L2(]−T,T [×ω) + ‖Pu‖L2(Ω)

)
+ Ce−ν′μ ‖u‖1 .

Again, as in [LL19, Section 4.2], this leads, after a rough estimate of the high
frequency, to

‖u‖L2(]−ε,ε[×B(x1,r))≤Ceνμ
(
‖u‖L2(]−T,T [×ω)+‖Pu‖L2(Ω)

)
+
1

μ
‖u‖H1(]−T,T [×M) .

This is the equivalent to Proposition 3.7 which leads to a result similar to Corollary
3.8 by a compactness argument.

As explained above, the last step to get estimates (1.26) corresponds to the
energy estimates of “Step 3” of the general proof, in the simpler case of Section 3.3.1.
There, they relied on the hypoelliptic estimates of Corollary B.2. The equivalent
in the present situation with boundary is provided by Theorem B.3.

5.3. An observation term in L2 in quantitative unique continuation
estimates

In this section, we explain how the observation term

‖u‖H1
b (ω̃) =

∑
|β|≤1

∥∥∥Dβ
b u
∥∥∥
L2(ω̃)

in unique continuation estimates as (2.1) can actually be replaced by the weaker
norm ‖u‖L2(ω̃) under suitable assumptions.

Lemma 5.2. Let Ω be a bounded open set of Rn with n = na + nb. Let P be a
differential operator of order 2, defined in a neighborhood of Ω, with real principal
symbol and coefficients independent on the variable za, and being elliptic in {ζa =
0}. Let ω � Ω and ϑ ∈ C∞

0 (ω). Then, for all α > 0, there exists C > 0 such that
for every u ∈ C∞

0 (Rn) and μ ≥ 1, we have∥∥Mμ
αμϑμu

∥∥
H1 ≤ C 〈μ〉 ‖u‖L2(ω) + C ‖Pu‖L2(Ω) + Ce−cμ ‖u‖H1 .

Recall that the regularization process ϑ → ϑμ and the Fourier multiplier Mμ
αμ

are defined at the beginning of Section 2.2.

Proof. Since P is elliptic (say positive to fix the ideas) in ζa = 0 and Ω is
compact, we can find A > 0 (fixed for the rest of the proof) so that A|ζa|2 +
p(zb, ζa, ζb) is elliptic on Ω × R

na+nb (where p is the principal symbol of P ), see
for instance [LL19, Lemma A.1]. Using then the G̊arding inequality, there exists
C > 0 so that

‖v‖2H1 ≤ C Re
(
(A|Da|2 + P )v, v

)
L2 + C ‖v‖2L2

≤ C ‖|Da|v‖2L2 + C Re (Pv, v)L2 + C ‖v‖2L2
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for every v ∈ C∞
0 (Ω). Let ϕ, χ ∈ C∞

0 (Ω) being real valued and such that ϕ = 1 on
a neighborhood of supp(ϑ) and χ = 1 on a neighborhood of suppϕ. Applying this
estimate to v = ϕw for w ∈ C∞

0 (Rn), we obtain that

‖ϕw‖2H1 ≤ C ‖∇a(ϕw)‖2L2 + C Re (P (ϕw), ϕw)L2 + C ‖ϕw‖2L2

≤ C ‖∇aw‖2L2 + C Re (P (ϕw), (ϕw))L2 + C ‖w‖2L2

≤ C ‖∇aw‖2L2 + C ‖P (ϕw)‖H−1 ‖ϕw‖H1 + C ‖w‖2L2 .

Writing P (ϕw) = ϕPw + [P, ϕ]w, where [P, ϕ] is of order 1, we have

‖P (ϕw)‖H−1 ≤ ‖ϕPw‖H−1 + C ‖w‖L2 ,

so that, after absorption, we have proved the existence of C > 0 such that for every
w ∈ C∞

0 (Rn) (and so for w ∈ S(Rn)) , we have

‖ϕw‖2H1 ≤ C ‖∇aw‖2L2 + C ‖ϕPw‖2H−1 + C ‖w‖2L2 .(5.2)

We apply the previous estimate to w = Mμ
αμϑμu. For the first term in the right

handside of (5.2), we have ‖ζamμ(ζa/μ)‖L∞(Rna ) ≤ μ ‖ζamμ(ζa)‖L∞(Rna ) ≤ Cμ, so

that ∥∥∇a(M
μ
αμϑμu)

∥∥
L2 ≤ C 〈μ〉 ‖ϑμu‖L2 .

For this term, we further use that ϑ ∈ C∞
0 (ω), which according to Lemma 3.25

Item 2, gives

‖ϑμu‖L2 ≤ ‖u‖L2(ω) + Ce−cμ ‖u‖L2 .

Note that this previous inequality also rules the term ‖w‖L2 in the right handside
of (5.2).

It only remains to estimate the term ‖ϕPw‖H−1 in the right handside of (5.2).
Using that P is invariant on za (and hence commutes with Mμ

αμ), it is∥∥ϕPMμ
αμϑμu

∥∥
H−1 ≤ ‖[P, ϑμ]u‖H−1 +

∥∥ϕMμ
αμϑμPu

∥∥
H−1

≤ ‖[P, ϑμ]u‖H−1 +
∥∥ϕMμ

αμϑμχPu
∥∥
H−1

+
∥∥ϕMμ

αμ(1− χ)ϑμPu
∥∥
H−1 .

Note that, a priori, since P is not defined on the whole R
n but only in a neigh-

borhood of Ω, the term Pu does not have any meaning. Yet, since P is invariant
in za, the differential operator ϑμP is a well defined operator on R

n, so as χP and
[P, ϑμ]. In the end, all terms involved are well defined for all u ∈ C∞

0 (Rn), even if
not supported inside of Ω.

Now, using ϑ ∈ C∞
0 (ω), we have by (a dual version of) Lemma 3.25 that

‖[P, ϑμ]u‖H−1 ≤ ‖u‖L2(ω) + Ce−cμ ‖u‖L2 .

Finally, since supp(ϕ) ∩ supp(1− χ) = ∅, [LL19, Lemma 2.10] also yields∥∥ϕMμ
αμ(1− χ)

∥∥
H−1→H−1 ≤ Ce−cμ.

Combining the last five inequalities together with (5.2), we are led, after absorption,
to the estimate∥∥ϕMμ

αμϑμu
∥∥
H1 ≤ C ‖Pu‖L2(Ω) + C 〈μ〉 ‖u‖L2(ω) + Ce−cμ ‖u‖H1 .
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The property supp(1−ϕ)∩ supp(ϑ) = ∅ with [LL19, Lemma 2.10] gives the similar
estimate ∥∥(1− ϕ)Mμ

αμϑμu
∥∥
H1 ≤ Ce−cμ ‖u‖H1 ,

which allows to conclude the proof of the lemma. �
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APPENDIX A

On the optimality: Proof of Proposition 1.14

In this appendix, we discuss the optimality of the results presented in the
main part of the paper, in the situation of Example 1.13, i.e. we give a proof
of Proposition 1.14. The estimates we use are mainly extracted from the article
[BCG14] by Beauchard, Cannarsa and Guglielmi. They are slightly spread out in
this reference so that the proof below mainly explains where in [BCG14] to pick
the results. This is mainly the proof of Theorem 5, Section 3.2 and 3.3 in this
reference.

Proof of Proposition 1.14. First, Fourier transforming the operator Lγ =

−(∂2
x1

− x2γ
1 ∂2

x2
) in the x2 variable, we obtain a family An,γ of 1-dimensional op-

erators defined for n ∈ Z by (An,γf)(x1) = −f ′′(x1) + (nπ)2x2γ
1 f(x1) on ] − 1, 1[,

with Dirichlet boundary conditions.
The sequence of eigenfunctions ϕn is then taken of the form ϕn(x1, x2) =√

2vn(x1) sin(nπx2) where vn is the first normalized eigenvector of An,γ (see Lemma
2 of [BCG14]). We have An,γvn = λn,γvn, with λn,γ the lowest eigenfunction of
An,γ , and hence Lγϕn = λn,γϕn. Moreover, vn is even.

The following estimates hold:

(1) 1
Cn

2
1+γ ≤ λn,γ ≤ Cn

2
1+γ , see Proposition 4 of [BCG14].

(2) for 0 < a < b < 1, we have
∫ b

a
vn(x)

2dx ≤ Ce−C1(γ)na
γ+1

cn with cn ≤
nβ for some appropriate β: this is inequality (35) of [BCG14] once we
have checked that for n large enough μn = C(γ)n (written in (33)) and
the definition of xn in (26). For γ = 1, a more precise result is stated
[BCG14, Lemma 4], where the constant is computed, namely λn,γ ≈ nπ

and
∫ b

a
vn(x)

2dx ≈ e−a2nπ

2aπ
√
n

for a > 0.

So, in any cases, if a > 0, there are C, c > 0, so that
∫ b

a
vn(x)

2dx ≤ Ce−cn ≤

Ce−cλ
1+γ
2

n,γ where we have used Item 1. Then, since ω∩{x1 = 0} = ∅ and vn is even,

there exists a, b, C > 0 so that ‖ϕn‖2L2(ω) ≤ C
∫ b

a
vn(x)

2dx. To finish the proof,

it is enough to notice that vn was chosen normalized in L2(] − 1, 1[) so that ϕn is
normalized in L2(M). �

Remark A.1. It is very interesting to compare the estimates obtained by
[BCG14] with respect to those obtained in the present paper, even if the tech-
niques are quite different. The scheme of proof we followed may be summarized in
two steps:

(1) We prove an observability estimate where the cost is, more or less, expo-
nential of the usual Sobolev frequency. This step is performed in [BCG14]
by using only the analyticity of the coefficients in the x2 variable. In their

79



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

80 A. ON THE OPTIMALITY: PROOF OF PROPOSITION 1.14

Proposition 5, they prove a 1D Carleman estimate and the cost is of the
order of ecn where n is the frequency in the x2 (the analytic frequency).

(2) Then, we use the decay of the heat flow using hypoelliptic estimates.

For this, 1
Cn

2
1+γ ≤ λn,γ ≤ Cn

2
1+γ may be seen as a counterpart of the

hypoelliptic estimates of Theorem 1.5. Indeed, these estimates roughly say
that in the worst case, the operator L counts (when we want estimates
from below) as 2

1+γ = 2
k when compared to the usual derivatives (that is

to the usual Sobolev norms).
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APPENDIX B

Subelliptic estimates

B.1. Hs subelliptic estimates on compact manifolds

In this appendix, we draw classical consequences of the subelliptic estimate (1.4)
of Rothschild-Stein [RS76] and Fefferman-Phong [FP83], that are used in the main
part of the paper. The following corollary of the subelliptic estimate (1.4) might
be written elsewhere, but we did not find any reference. The short proof below
stresses that the sole subelliptic estimate we rely on in the paper is (1.4).

Corollary B.1. Under Assumption 1.2, for any s ≥ 0 there is C > 0 such
that we have

‖u‖2
Hs+ 1

k (M)
≤ C

m∑
i=1

‖Xiu‖2Hs(M) + C ‖u‖2L2(M) ,(B.1)

‖u‖2
Hs+ 2

k (M)
≤ C ‖Lu‖2Hs(M) + C ‖u‖2L2(M) ,(B.2)

for any u ∈ C∞(M).

The proof we give is inspired by [FP83] (see the beginning of the proof of
Theorem 1). For this, we let Λ be an elliptic invertible pseudodifferential operator
of order one in M, being selfadjoint in L2(M) (see e.g. [LL16, Remark 2.11] after
having endowed M with a Riemannian metric). Recall that the power operator
Λs is an elliptic invertible pseudodifferential operator of order s in M, being also
selfadjoint in L2(M). All Hs norms are equivalent to ‖·‖Hs(M) = ‖Λs·‖L2(M). We

refer to [Hör85, Chapter XVIII] for pseudodifferential calculus.

Proof. We start proving Estimate (B.1), which is simpler due to the fact that
Xi is only of order 1 and therefore [Xi,Λ

s] is of order s and hence an admissible

remainder term (compared to the estimated norm Hs+ 1
k ). Using the L2 estimate

(1.4), we have

‖u‖2
Hs+ 1

k (M)
≤ C ‖Λsu‖2

H
1
k (M)

≤ C

m∑
i=1

‖XiΛ
su‖2L2(M) + C ‖Λsu‖2L2(M)

≤ C

m∑
i=1

‖ΛsXiu‖2L2(M) + C

m∑
i=1

‖[Λs, Xi]u‖2L2(M) + C ‖Λsu‖2L2(M)

≤ C

m∑
i=1

‖Xiu‖2Hs(M) + C ‖u‖2Hs(M) .

An interpolation estimate gives ‖u‖Hs(M) ≤ ε ‖u‖
Hs+ 1

k (M)
+ Cε ‖u‖L2(M) for any

ε > 0, which yields (B.1) after having taken ε sufficiently small.

81
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Concerning Estimate (B.2), we have to be more careful since the commutator
[L,Λs] is of order s+1 and hence not an admissible remainder term (compared to the

estimated norm Hs+ 2
k ). Following [FP83], we apply the L2-based estimate (1.5)

to Λs+ 1
k u, yielding

‖u‖2
Hs+ 2

k (M)
≤ C Re(LΛs+ 1

k u,Λs+ 1
k u)L2(M) + C

∥∥∥Λs+ 1
k u
∥∥∥2
L2(M)

≤ C Re(Λs+ 1
kLu,Λs+ 1

k u)L2(M) + C Re([L,Λs+ 1
k ]u,Λs+ 1

k u)L2(M)

+ C ‖u‖2
Hs+ 1

k (M)

≤ C Re(ΛsLu,Λs+ 2
k u)L2(M) + C Re([L,Λs+ 1

k ]u,Λs+ 1
k u)L2(M)

+ C ‖u‖2
Hs+ 1

k (M)

≤ 1

2
‖u‖2

Hs+ 2
k (M)

+ C ‖Lu‖2Hs(M) + C Re(Λs+ 1
k [L,Λs+ 1

k ]u, u)L2(M)

+ C ‖u‖2
Hs+ 1

k (M)
,(B.3)

where we have used Cauchy-Schwarz inequality in the last step. The term with the
commutator has to be taken carefully since it is a priori of order 2s + 2

k + 1. But
the following simple remark is in order: this pseudodifferential operator has purely
imaginary principal symbol. Hence, according to pseudodifferential calculus, it can
be written as Λs+ 1

k [L,Λs+ 1
k ] = T1+T2 where T1 is a skew-adjoint pseudodifferential

operator of order 2s+ 2
k + 1, and T2 is a pseudodifferential operator of order 2s+

2
k .

In particular, we have∣∣∣Re(Λs+ 1
k [L,Λs+ 1

k ]u, u)L2(M)

∣∣∣ = ∣∣Re(T2u, u)L2(M)

∣∣ ≤ ‖u‖2
Hs+ 1

k (M)
.

So, at this stage, we have proved

‖u‖2
Hs+ 2

k (M)
≤ C ‖Lu‖2Hs(M) + C ‖u‖2

Hs+ 1
k (M)

.

This concludes the proof of (B.2), after an interpolation argument as above. �

To conclude this section, we prove the continuous injection Hs
L ⊂ Hs/k(M)

for all s ≥ 0. We shall use the following classical operator theoretic (interpolation)
result for which we refer e.g. to [SSV12, Corollary 12.15]. Given two selfadjoint
nonnegative operators (A,D(A)) and (B,D(B)) on a Hilbert space, we have

(B.4) ‖Au‖ ≤ ‖Bu‖ for all u ∈ D(B) =⇒ ‖Aαu‖ ≤
‖Bαu‖ for all α ∈ [0, 1] and u ∈ D(Bα).

Note that this result already yields the simple inequality: for s ≥ 0, there is C > 0
such that for all u ∈ Hs(M),

‖u‖Hs
L
≤ C ‖u‖Hs(M) ,(B.5)

consequence of that obtained for s ∈ 2N. It also yields by duality for all s ≥ 0 the
existence of C > 0 such that for all u ∈ H−s

L ,

‖u‖H−s(M) ≤ C ‖u‖H−s
L

.(B.6)
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Corollary B.2. For all s ≥ 0, there exists C > 0 such that for all u ∈ Hs
L,

we have

‖u‖
H

s
k (M)

≤ C ‖u‖Hs
L
.

Note that it also yields by duality for all s ≥ 0 the existence of C > 0 such that
for all u ∈ H− s

k (M),

‖u‖H−s
L

≤ C ‖u‖
H− s

k (M)
.

Proof. We first prove the result for s = 2p, p ∈ N, and then conclude by
interpolation. We prove by induction that for all p ∈ N, we have

‖u‖
H

2p
k (M)

≤ C ‖u‖H2p
L

= C ‖(L+ 1)pu‖L2(M) , for all u ∈ C∞(M).(B.7)

The case p = 0 is clear. Assume now that this is satisfied for p, and estimate
‖u‖

H
2(p+1)

k (M)
= ‖u‖

H
2p
k

+ 2
k (M)

. After having used (B.2), we have

‖u‖2
H

2(p+1)
k (M)

≤ C ‖Lu‖2
H

2p
k (M)

+ C ‖u‖2L2(M) ,

which, using the induction assumption (B.7) to Lu, yields
‖u‖2

H
2(p+1)

k (M)
≤ C ‖(L+ 1)pLu‖2L2(M) + C ‖u‖2L2(M) .

Using the functional calculus (1.10), this implies

‖u‖2
H

2(p+1)
k (M)

≤ C
∥∥(L+ 1)p+1u

∥∥2
L2(M)

= C ‖u‖2H2(p+1)
L

, for all u ∈ C∞(M),

which is the sought estimate.
Now for s ≥ 0, s /∈ N, pick p ∈ N such that s ∈ [0, p], write (B.7) as

‖Λ 2p
k u‖L2(M) ≤ C ‖(L+ 1)pu‖L2(M) and apply (B.4) to A = Λ

2p
k , B = (L + 1)p,

and α = s
p ∈ [0, 1] to obtain the result. �

B.2. Subelliptic estimates for manifolds with boundaries

In this section, we assume that M is a compact manifold with a nonempty
boundary ∂M, and write M = Int(M) ∪ ∂M, with a disjoint union. We assume
that the coefficients of Xj ’s are smooth up to the boundary, and that we have
span(X1, · · · , Xm)(x) = TxM for x ∈ M \ K, where K is a compact subset of
Int(M) (i.e. the operator L is elliptic in the neighborhood of the boundary) and
that Assumption 1.2 is satisfied on K.

Theorem B.3. Denote by ΔD the Laplace-Dirichlet operator associated to
some/any Riemannian metric equal to that issued from the vector fields (X1, · · · ,
Xm) in M \ K. Then, for all s ≥ 0, we have Hs

L := D(L s
2 ) ⊂ D

(
(−ΔD)

s
2k

)
.

Moreover, there exists C > 0 such that for all u ∈ Hs
L, we have∥∥∥(−ΔD)

s
2k u

∥∥∥
L2(M)

≤ C ‖u‖Hs
L
.

Note that the spaceD ((−ΔD)s) does not depend on the metric chosen to define
Δ inside Int(M) but only on its values in a neighborhood of ∂M. Remark that we
also have the converse simple inclusion D ((−ΔD)s) ⊂ D(Ls).

We now explain how the estimates in the previous section have to be modified
to yield the statement of Theorem B.3.
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We first let Λ
1
k (with a slight abuse of notation: Λ

1
k is not the 1

k power of an
operator) be

• a pseudodifferential operator of order 1
k on M, with kernel compactly

supported in M×M,
• formally selfadjoint on L2(M),
• locally elliptic on a neighborhood N of K (i.e. K � Int(N ) � Int(M)),
• with kernel compactly supported in an ε-neighborhood of diag(M×M),

with ε � dist(K,N c). This implies that for n ∈ N,
(
Λ

1
k

)n
has a kernel

compactly supported in an nε-neighborhood of diag(M×M). Here, we

will use the abuse of notation Λ
n
k instead of (Λ

1
k )n. This will not lead to

any confusion since we will only use Λs for s of the form n
k with n ∈ N.

When a maximal Sobolev exponent s0 is fixed, we will need to use such oper-
ators for n ≤ n0 with n0 = s0k and make proofs by induction using several cutoff
functions. At each step, we shall need to make some estimates on some Cε neigh-
borhood of the zone where we get the information, with C depending on s0 and
some geometric properties of the cutoff functions. At the end, once the number of
steps is fixed, we can select ε small enough (and the associated Λ

1
k ) so that all the

reasoning is valid. To make the presentation more readable, we have chosen not to
keep track of all the constants and the geometrical conditions involved. Yet, the
proof will make it clear that there is ε0 > 0 depending on s0, N , K and M so that
all the support conditions of the following proof are fulfilled if 0 < ε < ε0.

That Assumption 1.2 is satisfied on K (and hence on N , since L is elliptic
on M \ K) yields, for all χ ∈ C∞

0 (M) such that χ = 1 in a neighborhood of K,
the existence of C > 0 such that for all u ∈ C∞

0 (M), we have (see again [RS76]
Theorem 17 and estimate (17.20) p311)

∥∥∥Λ 1
kχu

∥∥∥2
L2(M)

≤ C

m∑
i=1

‖Xiu‖2L2(M) + C ‖u‖2L2(M) ,

and hence, still for u ∈ C∞
0 (M),∥∥∥Λ 1

kχu
∥∥∥2
L2(M)

≤ C(Lu, u)L2(M) + C ‖u‖2L2(M) .(B.8)

We now decompose the proof in several lemmata.
Several times in the proof, we shall use the following fact of pseudodifferential

calculus. Given n ≤ n0 and a function ϕ ∈ C∞
0 (N ), we remark that Λ

n
k is elliptic of

order n
k in a neighborhood of supp(ϕ). As a consequence, the classical parametrix

construction (see for instance [Hör85, Proof of Theorem 18.1.9]) allows, for any

N ∈ N, to construct a pseudodifferential operator Λ̃
−n

k

N of order −n
k , elliptic on a

neighborhood of supp(ϕ), such that Λ̃
−n

k

N Λ
n
k = ϕ(x)+R1

N and Λ
n
k Λ̃

−n
k

N = ϕ(x)+R2
N

with Ri
N , i = 1, 2, pseudodifferential operators of order −N with kernel compactly

supported in M×M. In the applications, N will always be fixed, sufficiently large.

Lemma B.4. For all χ0 ∈ C∞
0 (N ) such that χ0 = 1 in a neighborhood of K,

and all χ1 ∈ C∞
0 (N ) such that χ1 = 1 in a neighborhood of supp(χ0), for all

s ∈ N/k with s + 2/k ≤ s0, for ε small enough, there is C > 0 such that for all
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u ∈ C∞
0 (M), we have∥∥∥Λs+ 2

kχ0u
∥∥∥2
L2(M)

≤ C‖Λsχ0Lu‖2L2(M) + C
∥∥∥Λs+ 1

kχ1u
∥∥∥2
L2(M)

+ ‖χ1u‖2L2(M)

Proof. The proof is almost the same as that of Estimate (B.2) in Corol-
lary B.1, and only relies on the application of (B.8) (instead of (1.5)). First,

estimate (B.8) applies for χu replaced by Λs+ 1
kχ0u since Λs+ 1

kχ0u = χ̃0Λ
s+ 1

kχ0u
for χ̃0 = 1 in an nε-neighborhood of supp(χ0), with n = sk + 1. This yields∥∥∥Λs+ 2

kχ0u
∥∥∥2
L2(M)

≤ C
(
LΛs+ 1

kχ0u,Λ
s+ 1

kχ0u
)
L2(M)

+ C
∥∥∥Λs+ 1

kχ0u
∥∥∥2
L2(M)

.

Then, a computation similar to (B.3), and the only difference comes from the
estimate of the remainder term

Re(χ0Λ
s+ 1

k [L,Λs+ 1
kχ0]u, u)L2(M) = Re((T1 + T2)u, u)L2(M) = Re(T2u, u)L2(M),

where T2 is a pseudodifferential operator of order 2s+ 2
k , with kernel supported

in supp(χ0) × supp(χ0). Given ϕ ∈ C∞
0 (N ) such that ϕ = 1 on supp(χ1), we

may define the associated parametrix Λ̃−(s+ 1
k ) of Λs+ 1

k as above. Writing T2 =
χ1ϕT2ϕχ1, we now have T2 = χ1Λ

s+ 1
k Λ̃−(s+ 1

k )∗T2Λ̃
−(s+ 1

k )Λs+ 1
kχ1+R, where R is a

smoothing operator with kernel compactly supported in M×M. The boundedness

of Λ̃−(s+ 1
k )∗T2Λ̃

−(s+ 1
k ) (as a pseudodifferential operator of order zero) and R on

L2(M) then implies

|Re(T2u, u)L2(M)| = |Re(T2χ1u, χ1u)L2(M)|

≤ C
∥∥∥Λs+ 1

kχ1u
∥∥∥2
L2(M)

+ C ‖χ1u‖2L2(M) ,

which concludes the proof. Note also that the term
∥∥∥Λs+ 1

kχ0u
∥∥∥2
L2(M)

has been

bounded by
∥∥∥Λs+ 1

kχ1u
∥∥∥2
L2(M)

the same way using that Λs+ 1
kχ0 = Λs+ 1

kχ0ϕχ1 =

Λs+ 1
kχ0Λ̃

−(s+ 1
k )

1 Λs+ 1
kχ1 +Rχ1 with R smoothing. �

Before going further, recall that we can localize (B.8) under the following form.

Lemma B.5. For all χ0 ∈ C∞
0 (N ) such that χ0 = 1 in a neighborhood of K,

and all χ1 ∈ C∞
0 (N ) such that χ1 = 1 in a neighborhood of supp(χ0), there is

C > 0 such that for all u ∈ C∞
0 (M), we have∥∥∥Λ 1

kχ0u
∥∥∥2
L2(M)

≤ C (χ0Lu, χ0u)L2(M) + C ‖χ1u‖2L2(M)

Proof. We apply Estimate (B.8) with χ such that χ = 1 on a neighborhood
of supp(χ0):∥∥∥Λ 1

kχ0u
∥∥∥2
L2(M)

=
∥∥∥Λ 1

kχχ0u
∥∥∥2
L2(M)

≤ C(Lχ0u, χ0u)L2(M) + C ‖χ0u‖2L2(M)

≤ C(χ0Lu, χ0u)L2(M) +Re([L, χ0]u, χ0u)L2(M) + C ‖χ0u‖2L2(M) ,

where [L, χ0] is a skew-adjoint first order differential operator: the principal part
of χ0[L, χ0] is thus skew-adjoint, and hence

Re([L, χ0]u, χ0u)L2(M) = Re(χ0[L, χ0]χ1u, χ1u)L2(M) ≤ C ‖χ1u‖2L2(M) ,

which, together with the preceding estimate, proves the lemma. �
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Lemma B.6. For all χ0, χ1, χ2 ∈ C∞
0 (N ) such that χ0 = 1 in a neighborhood

of K, χ1 = 1 in a neighborhood of supp(χ0), and χ2 = 1 in a neighborhood of
supp(χ1), for all p ∈ N with p

k + 2
k ≤ s0 and ε small enough, there is C > 0 such

that for all u ∈ C∞
0 (M), we have∥∥∥Λ p

k+ 2
kχ0u

∥∥∥2
L2(M)

≤ C
∥∥∥Λ p

kχ1Lu
∥∥∥2
L2(M)

+ C ‖χ2u‖2L2(M) .

Proof. We prove the statement by induction. The case p = 0 follows directly
from the estimate of Lemma B.4 with s = 0, combined with Lemma B.5 (using an
additional cutoff function as done below). Assume now this is true for p, then, the
estimate of Lemma B.4 with s = p+1

k yields, for some χ̃1 such that χ̃1 = 1 on a
neighborhood of supp(χ0) and χ1 = 1 in a neighborhood of supp(χ̃1),∥∥∥Λ p+1

k + 2
kχ0u

∥∥∥2
L2(M)

≤ C‖Λ
p+1
k χ0Lu‖2L2(M) + C

∥∥∥Λ p+1
k + 1

k χ̃1u
∥∥∥2
L2(M)

+ C ‖χ̃1u‖2L2(M) .

Using then the induction assumption for p for the term Λ
p
k+ 2

k χ̃1u gives, since χ1 = 1
in a neighborhood of supp(χ̃1),

∥∥∥Λ p+1
k + 2

kχ0u
∥∥∥2
L2(M)

≤ C‖Λ
p+1
k χ0Lu‖2L2(M) + C‖Λ

p
kχ1Lu‖2L2(M) + C ‖χ1u‖2L2(M) .

(B.9)

We now use pseudodifferential calculus and the parametrices of Λ
p+1
k and Λ

p
k to

write, for ϕ = 1 on supp(χ1),

Λ
p+1
k χ0 = Λ

p+1
k χ0ϕχ1 = Λ

p+1
k χ0Λ̃

− p+1
k Λ

p+1
k χ1 +Rχ1,

Λ
p
kχ1 = Λ

p
kϕχ1 = Λ

p
k Λ̃− p+1

k Λ
p+1
k χ1 +Rχ1,

and hence

‖Λ
p+1
k χ0Lu‖L2(M) ≤ C‖Λ

p+1
k χ1Lu‖L2(M) + C‖Rχ1Lu‖L2(M)

≤ C‖Λ
p+1
k χ1Lu‖L2(M) + C‖χ2u‖L2(M),

‖Λ
p
kχ1Lu‖L2(M) ≤ C‖Λ

p+1
k χ1Lu‖L2(M) + C‖χ2u‖L2(M),

which, combined with (B.9) concludes the proof of the statement for p + 1, and
hence of the lemma. �

Lemma B.7. For all χ0 ∈ C∞
0 (N ) such that χ0 = 1 in a neighborhood of K,

and all χ1 ∈ C∞
0 (M) such that χ1 = 1 in a neighborhood of supp(χ0), for all p ∈ N

and ε small enough, there is C > 0 such that for all u ∈ C∞
0 (M), we have∥∥∥Λ 2p

k χ0u
∥∥∥2
L2(M)

≤ C

p∑
j=0

∥∥χ1Lju
∥∥2
L2(M)

.

Proof. Again, we prove this by an induction argument. For p = 1, this is the
estimate of Lemma B.6 with p = 0.

Assume the result for p. Using Lemma B.6, we obtain, for some χ̃1, χ̃2 such
that χ̃1 = 1 on a neighborhood of supp(χ0), χ̃2 = 1 on a neighborhood of supp(χ̃1)
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and χ1 = 1 in a neighborhood of supp(χ̃2),∥∥∥Λ 2p+2
k χ0u

∥∥∥2
L2(M)

≤ C
∥∥∥Λ 2p

k χ̃1Lu
∥∥∥2
L2(M)

+ C ‖χ̃2u‖2L2(M) .

Applying the induction assumption with u replaced by Lu (and χ0 replaced by
χ̃1) yields (since χ1 = 1 in a neighborhood of supp(χ̃1)),∥∥∥Λ 2p+2

k χ0u
∥∥∥2
L2(M)

≤ C

p∑
j=0

∥∥χ1Lj(Lu)
∥∥2
L2(M)

+ C ‖χ̃2u‖2L2(M) ,

which concludes the proof of the lemma since χ1 = 1 in a neighborhood of supp(χ̃2).
�

Combining Lemma B.7 together with classical ellipticity at the boundary, we
are now ready for proving the following results.

Proposition B.8. For all m ∈ N, there is C > 0 such that for all u ∈ D(Lmk),
we have

‖u‖2H2m(M) ≤ C
mk∑
j=0

‖Lju‖2L2(M) ≤ C‖(L+ 1)mku‖L2(M).

From this proposition, we directly obtain by interpolation the statement of
Theorem B.3 (see e.g. the proof of Corollary B.2) using that Lju|∂M = Δu|∂M for
all u ∈ C∞(M).

Proof of Proposition B.8. First write Lemma B.7 with p = mk, χ0 ∈
C∞

0 (N ) with χ0 = 1 in a neighborhood Ñ ⊂ N of K, yielding

‖u‖2H2m( ˜N ) ≤
∥∥Λ2mχ0u

∥∥2
L2(M)

≤ C
mk∑
j=0

∥∥χ1Lju
∥∥2
L2(M)

.(B.10)

Then, concerning estimates near the boundary, we first have the following state-
ment. For all θ0 ∈ C∞(M) such that θ0 = 1 in a neighborhood of ∂M, supp(θ0)∩
K = ∅, and all θ1 ∈ C∞(M) such that θ1 = 1 in a neighborhood of supp(θ0), since
L elliptic in supp(θ1), there is C > 0 such that for all u ∈ C∞(M) with u|∂M = 0,
we have

‖θ0u‖2Hm+2(M) ≤ C‖θ1Lu‖2Hm(M) + C ‖θ1u‖2L2(M) .(B.11)

This is actually a corollary of the usual proof of elliptic regularity up to the bound-
ary. Yet, to check it directly, we can apply the global elliptic regularity result (see

[Eva98, Theorem 5 p323]) to θ0u with a global elliptic operator L̃ equal to L on
supp(θ1). Let V be an open subset with supp(∇θ1) � V � U � M, where U in an
open set so that θ1 = 1 on U . This yields

‖θ0u‖Hm+2(M) ≤ C‖θ0L̃u‖Hm(M) + C‖u‖Hm+1(V ) + C ‖θ0u‖L2(M)

≤ C‖θ1Lu‖Hm(M) + C ‖θ1u‖L2(M) .

where we have used interior regularity (see [Eva98, Theorem 2 p314]) that gives

‖u‖Hm+1(V ) ≤ C‖L̃u‖Hm(U)+C ‖u‖L2(U) ≤ C‖θ1Lu‖Hm(M)+C ‖θ1u‖L2(M). This

proves (B.11).
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Then, from (B.11), another induction argument as in the proof of Lemma B.7
gives, for all m ∈ N and θ0, θ1 as above, the existence of C > 0 such that for all
u ∈ C∞(M) with u|∂M = Lu|∂M = · · · = Lm−1u|∂M = 0,

‖θ0u‖2H2m(M) ≤ C

m∑
j=0

∥∥θ1Lju
∥∥2
L2(M)

.

Combining this for a function θ0 equal to 1 on a neighborhood of M\ Ñ together
with (B.10) now implies for all u ∈ C∞(M) such that Lju|∂M = 0, for 0 ≤ j ≤
m− 1,

‖u‖2H2m(M) ≤ C
mk∑
j=0

∥∥χ1Lju
∥∥2
L2(M)

+ C
m∑
j=0

∥∥θ1Lju
∥∥2
L2(M)

.

Since the set of such functions u is dense in D(Lmk), this yields the sought result.
�
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APPENDIX C

Sub-Riemannian norm of normal vectors

Lemma C.1. Let Xi ∈ R
d for i = 1, · · · ,m and, for v ∈ span(Xi, i = 1, · · · ,m),

set

g(v) = inf

{
m∑
i=1

u2
i , (u1, · · · , um) ∈ R

m,

m∑
i=1

uiXi = v

}
.

Then, for any ξ ∈ (Rd)∗, and for v0 =
∑m

i=1 2〈ξ,Xi〉Xi, we have g(v0) = 4�(ξ)
where �(ξ) =

∑m
i=1〈ξ,Xi〉2.

Note that this is clear if the family (Xi)i=1,··· ,m is linearly independent, in
which case the infimum is realized by a unique (u1, · · · , um) given by ui = 2〈ξ,Xi〉.

Proof. We want to compute the minimum

g(v0) = inf

{
m∑
i=1

u2
i , (u1, · · · , um) ∈ R

m,
m∑
i=1

uiXi =
m∑
i=1

2〈ξ,Xi〉Xi

}
.

First that taking ui = 2〈ξ,Xi〉 in this definition direcly yields that

g(v0) ≤
m∑
i=1

(2〈ξ,Xi〉)2 = 4�(ξ).(C.1)

Then it only remains to prove the converse inequality. To this aim, remark that

�(ξ) = max

{
m∑
i=1

ui〈ξ,Xi〉 −
1

4

m∑
i=1

u2
i , (u1, · · · , um) ∈ R

m

}
.

As a consequence, we have

�(ξ) ≥
〈
ξ,

m∑
i=1

uiXi

〉
− 1

4

m∑
i=1

u2
i , for all (u1, · · · , um) ∈ R

m.

Hence, for all (u1, · · · , um) ∈ R
m such that

∑m
i=1 uiXi =

∑m
i=1 2〈ξ,Xi〉Xi, we

obtain

�(ξ) ≥
〈
ξ,

m∑
i=1

2〈ξ,Xi〉Xi

〉
− 1

4

m∑
i=1

u2
i =

m∑
i=1

2〈ξ,Xi〉2 −
1

4

m∑
i=1

u2
i = 2�(ξ)− 1

4

m∑
i=1

u2
i ,

that is 4�(ξ) ≤
∑m

i=1 u
2
i , and hence 4�(ξ) ≤ g(v0). This, together with (C.1)

concludes the proof of the lemma. �
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