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Abstract. In this article, we first prove quantitative estimates associated to the unique continuation
theorems for operators with partially analytic coefficients of Tataru [Tat95, Tat99b], Robbiano–
Zuily [RZ98] and Hörmander [Hör97]. We provide local stability estimates that can be propagated,
leading to global ones.

Then, we specify those results to the wave operator on a Riemannian manifold M with bound-
ary. For this operator, we also prove Carleman estimates and local quantitative unique continuation
from and up to the boundary ∂M. This allows us to obtain a global stability estimate from any open
subset 0 of M or ∂M, with the optimal time and dependence on the observation.

As a first application, we compute a sharp lower estimate of the intensity of waves in the shadow
of an obstacle.

We also provide the cost of approximate controllability on the compact manifold M: for any
T > 2 supx∈M dist(x, 0), we can drive any H 1

0 × L
2 data in time T to an ε-neighborhood of zero

in L2
×H−1, with a control located in 0, at cost eC/ε .

We finally obtain related results for the Schrödinger equation.

Keywords. Unique continuation, stability estimates, wave equation, control theory, Schrödinger
equation
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1. Introduction and main results

In this article, we are interested in the quantification of global unique continuation results
of the following form: given a differential operator P on an open set � ⊂ Rn, and given
a small subset U of �, we have

[Pu = 0 in �, u|U = 0] ⇒ u = 0 on �. (1.1)

More generally, in cases where (1.1) is known to hold, we are interested in proving a
quantitative version of

[Pu small in �, u small in U ] ⇒ u small in �.

A more tractable problem than (1.1) is the so called local unique continuation problem:
given x0

∈ Rn and an oriented local hypersurface S containing x0, do we have the fol-
lowing implication:

there is a neighborhood � of x0 such that

[Pu = 0 in �, u|�∩S− = 0] ⇒ x0 /∈ supp u, (1.2)

where S− denotes one side of S? It turns out that proving (1.2) for a suitable class of
hypersurfaces (with regard to the operator P ) is in general a key step in the proof of
properties of the type (1.1). The first general unique continuation result of the form (1.2) is
the Holmgren theorem (due to Holmgren [Hol01] in a special case, and to John [Joh49] in
the general case), stating that, for operators with analytic coefficients, unique continuation
holds across any noncharacteristic hypersurface S (see e.g. [Hör90, Theorem 8.6.5] for a
precise statement). This local unique continuation result enjoys a global version proved
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by John [Joh49], where uniqueness is propagated through a family of noncharateristic
hypersurfaces.

For operators with (only) smooth (C∞) coefficients, the most general result was
proved by Hörmander [Hör63, Chapter VIII], [Hör94, Chapter XXVIII]. Uniqueness
across a hypersurface holds under a strict pseudoconvexity condition (see e.g. Defini-
tion 1.7 below). This result uses as a key tool Carleman estimates, which were introduced
in [Car39] and developed at first for elliptic operators in [Cal58]. We also refer to [Zui83]
for a general presentation of these problems.

A particular motivation comes from geoseismics [Sym83] and control theory [Lio88a,
Lio88b]: in these contexts, one is interested in recovering the data/energy of a wave from
the observation on a small part of the domain along a time interval. As well, unique con-
tinuation results for waves have been useful tools to solve inverse problems, for instance
using the boundary control method [Bel87] (see also the review article [Bel07] and the
book [KKL01]).

More precisely, consider the wave operator P = ∂2
t − 1g on � = (−T , T ) ×M,

where (M, g) is a Riemannian manifold (with or without boundary) and 1g the associ-
ated (negative) Laplace–Beltrami operator. A central question raised by the above appli-
cations is that of global unique continuation from sets of the form (−T , T ) × ω, where
ω ⊂M (resp. ω ⊂ ∂M) is an observation region.

In this setting and in the context of control theory, the unique continuation prop-
erty (1.1) is equivalent to approximate controllability (from (−T , T )×ω); and an associ-
ated quantitative estimate (as proved in the present paper) is equivalent to estimating the
cost of approximate controls.

If M is analytic (and connected), the above-mentioned Holmgren theorem applies,
which together with the argument of John [Joh49] allows one to prove unique continua-
tion from (−T , T ) × ω for any nonempty open set ω as soon as T > L(M, ω), where,
for E ⊂M, we have set

L(M, E) := sup
x∈M

dist(x, E), dist(x, E) = inf
y∈E

dist(x, y), (1.3)

with

dist(x, y) = inf {length(γ ) : γ ∈ C1([0, 1];M), γ (0) = x, γ (1) = y},

length(γ ) =
∫ 1

0

√
gγ (t)(γ̇ (t), γ̇ (t)) dt.

Due to finite speed of propagation, it is also not hard to prove that unique continuation
from (−T , T ) × ω does not hold if T < L(M, ω) (see also [Rus71a, Rus71b]), so that
the result is sharp. Unique continuation from (−T , T ) × ω may even fail in critical time
T = L(M, ω) in certain situations [Rus71b, Theorem 5].

Removing the analyticity condition on M has led to considerable difficulties, since
Hörmander’s general uniqueness result does not apply in this setting: time-like surfaces,
as {x1 = 0}, do not satisfy the pseudoconvexity assumption for the wave operator. The
local unique continuation can even fail after adding some smooth lower order terms to the
wave operator, as proved by Alinhac–Baouendi [AB79, Ali83, AB95].
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This uniqueness problem in the C∞ setting was first solved by Rauch–Taylor [RT73]
and Lerner [Ler88] in the case T = ∞ and M = Rd (under different assumptions
at infinity). Then, Robbiano [Rob91] managed to prove that unique continuation from
(−T , T ) × ω holds in any domain M as soon as ω 6= ∅ and T ≥ C0L(M, ω), with
C0 sufficiently large. Hörmander [Hör92] improved this result to T >

√
27/23L(M, ω).

That these two results fail to hold in time L translates the fact that the local uniqueness
results of these two authors are not valid across any noncharacteristic surface.

The local uniqueness theorem across any noncharacteristic surface for ∂2
t − 1g was

proved by Tataru [Tat95], leading to the global unique continuation result in optimal time
T > L(M, ω). The result of Tataru was not restricted to the wave operator: he considered
operators with coefficients that are analytic in part of the variables, interpolating between
the Holmgren theorem and the Hörmander theorem. The technical assumptions of that
article were successively removed by Robbiano–Zuily [RZ98], Hörmander [Hör97] and
Tataru [Tat99b], leading to a very general local unique continuation result for operators
with partially analytic coefficients (containing as particular cases both the Holmgren and
Hörmander theorems).

Concerning quantitative estimates of unique continuation, when (1.1) holds, one may
expect to have an estimate of the form

‖u‖� ≤ Kϕ(‖u‖U , ‖Pu‖�̃, ‖u‖�̃)

with ϕ(a, b, c)→ 0 when (a, b)→ 0 with c bounded, (1.4)

where U ⊂ � ⊂ �̃ are nonempty, K is a constant, and for appropriate norms. In this
context, much less seems to be known. Two additional difficulties arise: one needs first
to quantify the local unique continuation property (1.2), and then to “propagate” the local
estimates obtained to a global one.

In the setting of the Holmgren theorem, local estimates of unique continua-
tion of the form (1.4) were proved by John [Joh60]: they are of Hölder type, i.e.
ϕ(a, b, c) = (a + b)δc1−δ , in case P is elliptic, and of logarithmic type, i.e. ϕ(a, b, c) =
c
(
log
(
1+ c

a+b

))−1, in the general case.
In the situation of the Hörmander theorem, it was proved by Bahouri [Bah87] that

Hölder stability always holds locally. Such local estimates were propagated, leading to
global ones (in the case of elliptic operators P of order 2 with appropriate boundary con-
ditions, even with low regularity assumptions) by Lebeau and Robbiano [Rob95, LR95].
They can also be improved to ϕ(a, b, c) = a + b if boundary conditions are added to
close the estimates [Rob95, LR95].

The global problem for the wave operator in the analytic setting was tackled by
Lebeau [Leb92]. For � = �̃ = (−T , T ) ×M and U = (−T , T ) × ω with ω ⊂ M
(or more precisely 0 ⊂ ∂M), he proved that the stability estimate (1.4) with ϕ(a, b, c) =
c
(
log
(
1 + c

a+b

))−1 holds for any T > L(M, ω). He also proved that this inequality is
optimal if there exists a ray of geometric optics that does not intersect (−T , T )× ω (and
only has transverse intersection with ∂M). Under this assumption the (stronger) linear
observability estimate (i.e. (1.4) with ϕ(a, b, c) = a + b) of the Bardos–Lebeau–Rauch–
Taylor theorem [RT74, BLR92] is not satisfied. In the C∞ situation for this problem, the
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first result is due to Robbiano [Rob95], who proved estimate (1.4) for T sufficiently large
with ϕ(a, b, c) = c

(
log
(
1 + c

a+b

))−1/2. This result was improved by Phung [Phu10] to

ϕ(a, b, c) = c
(
log
(
1 + c

a+b

))−(1−ε) (still in large time, for any ε > 0, with the constant
K in (1.4) depending on ε). In his unpublished lecture notes [Tat99a], Tataru proposes
a strategy to obtain estimates of the form (1.4) with ϕε = c

(
log
(
1 + c

a+b

))−(1−ε) in the
general context of uniqueness theorems for operators with partially analytic coefficients.

In this article, we develop a systematic approach both to quantifying the local unique-
ness theorem of Tataru, Robbiano–Zuily and Hörmander, and to propagating the quan-
titative local uniqueness results to a global one, with an optimal dependence ϕ =
c
(
log
(
1+ c

a+b

))−1. When doing so, we face both difficulties of producing quantitative and
global estimates. Then, we specify the results to the wave operator on M. For this opera-
tor, we also prove appropriate Carleman estimates and local quantitative unique continu-
ation results from and up to the boundary ∂M. This allows us to obtain a global stability
estimate from any open subset of M or ∂M, with the optimal time (T > L(M, ω)) and
dependence on the observation. This generalizes the result of Lebeau [Leb92] to nonan-
alytic manifolds, and provides the cost of approximate controllability. We also treat the
case of the Schrödinger operator.

In the present introduction, we first discuss the case of the wave and Schrödinger
equations; in these particular settings, the results are more precise and simpler to state.
Moreover, in this context, we are able to deal with the boundary value problem as well.
Second, we state a general quantitative uniqueness result for operators with partially an-
alytic coefficients in the setting of Tataru [Tat95, Tat99b], Robbiano–Zuily [RZ98] and
Hörmander [Hör97] (used in the proof for the wave and Schrödinger equations).

1.1. The wave and Schrödinger equations

In this section, we describe the motivating applications of our main result, i.e. to the
wave equation with Dirichlet boundary conditions. In this very particular setting, we are
also able to tackle the boundary value problem. We finally state a related result for the
Schrödinger equation.

When dealing with a manifold M with boundary, we will always assume that the
manifold, the boundary and the metric are smooth. Moreover, Int(M) will denote the set
of points in M which have a neighborhood homeomorphic to an open subset of Rn. The
boundary of M, denoted by ∂M, is the complement of Int(M) in M. All manifolds
considered will be assumed to be connected.

Theorem 1.1 (Quantitative unique continuation for waves). Let M be a compact Rie-
mannian manifold with (or without) boundary. For any nonempty open subset ω of M
and any T > 2L(M, ω), there exist C, κ, µ0 > 0 such that for any (u0, u1) ∈ H

1
0 (M)×

L2(M) and u the solution of
∂2
t u−1gu = 0 in (0, T )× Int(M),

u = 0 in (0, T )× ∂M,

(u, ∂tu)|t=0 = (u0, u1) in Int(M),

(1.5)
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we have, for any µ ≥ µ0,

‖(u0, u1)‖L2×H−1 ≤ Ce
κµ
‖u‖L2((0,T );H 1(ω)) +

1
µ
‖(u0, u1)‖H 1×L2 .

If ∂M 6= ∅ and 0 is a nonempty open subset of ∂M, then for any T > 2L(M, 0) there
exist C, κ, µ0 > 0 such that for any (u0, u1) ∈ H

1
0 (M) × L2(M) and u the solution

of (1.5), we have

‖(u0, u1)‖L2×H−1 ≤ Ce
κµ
‖∂νu‖L2((0,T )×0) +

1
µ
‖(u0, u1)‖H 1×L2 .

Theorem 1.1 remains valid if1g is perturbed by lower order terms that are analytic in time
but may have low regularity in space. In the special case where they are time-independent,
the constants in the previous estimates may be chosen uniformly with respect to these
perturbations (in appropriate norms). We refer to Theorem 6.1 for a precise statement.
Note also that the statement of Theorem 1.1 remains valid for all µ > 0 (not only µ ≥
µ0), the estimate for µ bounded being trivial (see Lemma A.3). However, we preferred to
keep the formulation with µ ≥ µ0 to stress that only large values of µ are of interest. This
result can also be formulated in the following way, closer to (1.4) (see again Lemma A.3).
We only give the boundary observation case, the internal observation case being similar.

Corollary 1.2. Assume ∂M 6= ∅ and 0 is a nonempty open subset of ∂M. Then, for any
T > 2L(M, 0), there exists C > 0 such that for any (u0, u1) ∈ H

1
0 (M) × L2(M) \

{(0, 0)} and u the solution of (1.5), we have

‖(u0, u1)‖L2×H−1 ≤ C
‖(u0, u1)‖H 1×L2

log
(
1+

‖(u0,u1)‖H1×L2
‖∂νu‖L2((0,T )×0)

) ,
‖(u0, u1)‖H 1×L2 ≤ Ce

C3
‖∂νu‖L2((0,T )×0) with 3 =

‖(u0, u1)‖H 1×L2

‖(u0, u1)‖L2×H−1
.

In the first estimate, the function on the right hand side is to be understood as being
(log(1+ 1/x))−1 for x > 0 and 0 for x = 0.

In the second estimate, 3 has to be considered as the typical frequency of the ini-
tial data. So, the estimate states the cost of observability of the order of an exponential
of the typical frequency. As an illustration, taking for initial data (u0, u1) = (ψλ, 0)
with ψλ a normalized eigenfunction of the Laplace–Dirichlet operator on M, associated
to the eigenvalue λ, one has 3 ∼

√
λ and Corollary 1.2 recovers the tunneling estimate

‖∂νψλ‖L2(0) ≥ C
−1e−C

√
λ (see [LR95]).

As proved by Lebeau [Leb92] in the analytic context, this exponential dependence is
sharp in general. More precisely, the form of the estimates in Theorem 1.1 and Corol-
lary 1.2 is optimal as soon as there is a ray of geometric optics (traveling at speed 1)
which does not intersect the region 0 (resp. ω in the internal observation case) in the
time interval [0, T ] (and only has transverse intersection with the boundary). See [Leb92,
Section 2, pp. 5 and 6].
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As a consequence of the previous theorem, we can obtain approximate controllability
results. For brevity, we only state the case of boundary control.

Theorem 1.3 (Cost of boundary approximate control). For any T > 2L(M, 0), there
exist C, c > 0 such that for any ε > 0 and any (u0, u1) ∈ H

1
0 (M)×L2(M), there exists

g ∈ L2((0, T )× 0) with

‖g‖L2((0,T )×0) ≤ Ce
c/ε
‖(u0, u1)‖H 1

0 (M)×L2(M)

such that the solution of
(∂2
t −1)u = 0 in (0, T )× Int(M),

u = 10g in (0, T )× ∂M,

(u, ∂tu)|t=0 = (u0, u1) in Int(M),

satisfies ‖(u, ∂tu)|t=T ‖L2(M)×H−1(M) ≤ ε‖(u0, u1)‖H 1
0 (M)×L2(M).

That this result is a consequence of Theorem 1.1 is proved in [Rob95, proof of Theorem 2,
Section 3]. The solution of the nonhomogeneous boundary value problem is defined in
the sense of transposition [Lio88a].

Another application of Theorem 1.1, given in [LL16] and which was at the origin
of the present work, is concerned with the exact observability/controllability problem.
This property was completely characterized (with optimal geometric conditions) in the
seminal paper [BLR92]. The proof there proceeds in two steps: first dealing with high
frequencies (propagation of wavefront sets), and then reducing the low frequency prob-
lem to a unique continuation property. Both steps are nonconstructive (i.e. rely e.g. on
contradiction arguments). In [LL16], we explain how Theorem 1.1 allows one to give a
completely constructive proof of the second step. We also provide a constructive proof of
the first step on a compact manifold. As an application, we estimate the dependence of the
observability constant on the observation time T or on the addition of a potential V (x) in
the wave operator.

The estimates of Theorem 1.1 and Corollary 1.2 can actually be stated more locally, and
interpreted in a different physical context (motivated by [RT73]). The following theorem
shows that they are independent of the global geometry, and in particular do not require
that M is compact if one only wants to recover data supported in a given compact set.

Theorem 1.4 (Penetration into shadow for waves). Let M be a complete Riemannian
manifold with (possibly empty) compact boundary ∂M. Let ω0 be an open subset of M
and ω1 a compact subset of M. Then, for any

T > L(ω1, ω0) := sup
x∈ω1

dist(x, ω0),

there exists C > 0 such that for any (u0, u1) ∈ H
1
0 (M)×L2(M) \ {(0, 0)} supported in

ω1 and u the solution of (1.5) (taken on the time interval (−T , T ) instead of (0, T )), we
have

‖(u0, u1)‖H 1×L2 ≤ Ce
C3
‖u‖L2((−T ,T );H 1(ω0))

with 3 =
‖(u0, u1)‖H 1×L2

‖(u0, u1)‖L2×H−1
.
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Roughly speaking, the theorem describes the following physical situation: take a noise
creating an initial data compactly supported in ω1, and suppose an observer is located in
a zone ω0. Then, by observing during the time interval (−L(ω1, ω0)− ε,L(ω1, ω0)+ ε),
ε > 0, the observer will be able to recover at least a proportion of the initial energy of
the order e−C3 where 3 is the typical frequency of the data. This result is particularly
interesting if the zone ω1 is in the “shadow” of an obstacle when seen from ω0, that is,
no rays of geometric optics starting from ω1 ever reach ω0. In that case, the classical
geometric optics approximation would predict that the observer does not receive any in-
formation. We refer to [RT73] for a qualitative result in infinite time; here, Theorem 1.4
provides a quantitative result in finite time, which is optimal with respect to the time and
the form of the estimate if ω1 is indeed in the “shadow” region when observed from ω0.
More precisely, [Leb92, Section 2] implies that the eC3 is optimal as soon as there is
a ray of geometric optics (having only transverse intersections with ∂M) starting from
the interior of ω1 at time zero and not intersecting ω0 during the time interval [−T , T ].
Such an estimate in the shadow region is reminiscent of the tunneling effect for waves
(see e.g. [Leb96, LR97, Bur98]). It is of course also related to the tunneling effect in
semiclassical analysis [Zwo12, Chapter 7].

Note that it could be desirable to make the observation in positive time only, that is,
on the interval (0, T ). This can be easily seen to be impossible in general, for instance
in dimension one by looking at solutions of the form u(x + t). Yet, a classical parity
argument in the time variable allows one to obtain (in any dimension) a similar result with
observation on (0, T ), T > L(ω1, ω0), for all initial data of the form (u0, 0) or (0, u1).

We also obtain related results for the Schrödinger equation. We only state here the
counterpart of Theorem 1.1 in this setting.

Theorem 1.5. Let M be a compact Riemannian manifold with (or without) boundary.
For any nonempty open subset ω of M and any T > 0, there exist C, κ, µ0 > 0 such that
for any u0 ∈ H

2
∩H 1

0 and u the solution of
i∂tu+1gu = 0 in (0, T )× Int(M),

u = 0 in (0, T )× ∂M,

u(0) = u0 in Int(M),

(1.6)

we have, for any µ ≥ µ0,

‖u0‖L2 ≤ Ce
κµ
‖u‖L2((0,T );H 1(ω)) +

1
µ
‖u0‖H 2 .

If ∂M 6= ∅ and 0 is a nonempty open subset of ∂M, then for any T > 0, there exist
C, κ, µ0 > 0 such that for any u0 ∈ H

2
∩H 1

0 and u the solution of (1.6), we have

‖u0‖L2 ≤ Ce
κµ
‖∂νu‖L2((0,T )×0) +

1
µ
‖u0‖H 2 .

This result still holds with some lower order perturbations, analytic in t ; see Theorem 6.6
for a more precise statement. Note that some related results have already been proven in
the internal case by Phung [Phu01] with eκµ replaced by eκµ

2
.
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1.2. Quantitative unique continuation for operators with partially analytic coefficients

Let us now turn to the general stability result and present the class of partial differential
operators we will be dealing with. We consider domains � ⊂ Rn = Rna × Rnb , where
na + nb = n. We denote by x = (xa, xb) the global variables and by ξ = (ξa, ξb)

the associated dual variables. The variables xa will be those with respect to which the
operator considered is analytic.

Given a bounded domain � ⊂ Rn = Rna × Rnb , we say that a smooth function
f : � → C is analytic with respect to xa if, for any x0

= (x0
a , x

0
b) ∈ �, there is ε > 0

such that f extends as a holomorphic function in the variable xa for x = (xa, xb) ∈

(B(x0
a , ε)+ iB(0, ε))× B(x

0
b , ε).

The following definition is due to Tataru [Tat99b, Definition 2.2].

Definition 1.6 (Analytically principally normal operators). Let P be a partial differen-
tial operator on an open set � ⊂ Rna × Rnb , of order m ∈ N∗, with smooth coefficients
and principal symbol p(xa, xb, ξa, ξb). We say that P is an analytically principally nor-
mal operator in {ξa = 0} inside � if the coefficients of P are real-analytic in the variable
xa and for any x0

∈ � there exist�a ⊂ Rna and�b ⊂ Rnb such that x0
∈ �a ×�b ⊂ �

and there exists a complex neighborhood �C
a of �a in Cna and a constant C > 0 such

that for all za, z̃a ∈ �C
a and all (xb, ξb) ∈ �b × Rnb , ξb 6= 0, we have

|{p(za, ·, 0, ·), p(z̃a, ·, 0, ·)}(xb, ξb)| +
∣∣{p(za, ·, 0, ·), p(z̃a, ·, 0, ·)

}
(xb, ξb)

∣∣
≤ C|p(za, xb, 0, ξb)| |ξb|m−1, (1.7)

|∂zap(za, xb, 0, ξb)| ≤ C|p(za, xb, 0, ξb)|.

Note that in this definition, the Poisson brackets are taken only with respect to the (xb, ξb)
variables. Yet, the combination of the two conditions (1.7) and (1.8) implies that such
operators are in particular principally normal in {ξa = 0} in the following more usual
sense (see [RZ98], [Hör97] or [Tat99b, Definition 2.1]). Given a closed conic subset 0 of
T ∗�, one says that P is principally normal in 0 if

|{p, p}(x, ξ)| ≤ C|p(x, ξ)| |ξ |m−1 for all (x, ξ) ∈ 0, (1.9)

where (as opposed to (1.7)–(1.8)) {p, p} is computed with respect to all variables.
Two interesting cases of operators P being analytically principally normal in {ξa=0},

considered in [RZ98] and [Hör97], are operators with analytic coefficients in xa satisfying
one of the following two assumptions:

(E) transversal ellipticity: p(xa, xb, 0, ξb) ≥ c|ξb|m for (xa, xb) ∈ �, ξb ∈ Rnb ;
(H) principal normality and invariance with respect to the null bicharacteristic flow in
{ξa = 0}:

|{p, p}(xa, xb, 0, ξb)| ≤ C|p(xa, xb, 0, ξb)| |ξb|m−1 and ∂xap(xa, xb, 0, ξb) = 0.

We now formulate the definition of strongly pseudoconvex surfaces for an operator P
(see [Hör94, Definition 28.3.1], [Tat99b, Definitions 2.3 and 2.4] and [Tat99a, Sec-
tion 1.2]).
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Definition 1.7 (Strongly pseudoconvex oriented surface). Let � ⊂ Rn, 0 be a closed
conic subset of T ∗�, and P be principally normal in 0 inside � (in the sense of (1.9))
with principal symbol p. Let S be a C2 oriented hypersurface of � and x0

∈ S ∩ �. We
say that S is strongly pseudoconvex in 0 at x0 for P if there exists φ ∈ C2(�;R) such
that S = {φ = 0}, ∇φ(x0) 6= 0, and

Re {p, {p, φ}}(x0, ξ) > 0 if p(x0, ξ) = {p, φ}(x0, ξ) = 0 and ξ ∈ 0x0 , ξ 6= 0,

(1.10)
1
iτ
{pφ, pφ}(x

0, ξ) > 0 if pφ(x0, ξ) = {pφ, φ}(x
0, ξ) = 0 and ξ ∈ 0x0 , τ > 0,

(1.11)

where pφ(x, ξ) = p(x, ξ + iτ∇φ).

Note that this is a property of the oriented surface S solely, and not of the defining func-
tion φ (see [Hör94, beginning of Section 28.3]). If 0 = T ∗�, it is the usual condition
of the Hörmander theorem (see [Hör94, Section 28.3]), that is, under which uniqueness
holds for P at x0 across the hypersurface S, i.e. from φ > 0 to φ < 0.

Below, this condition will always be used for 0 = {ξa = 0}. In this case, and using
the homogeneity of p in ξ , assumption (1.11) may be rephrased as

1
i
{p(x, ξ − i∇φ), p(x, ξ + i∇φ)}(x0, 0, ξb) > 0 if p(ζ ) = {p, φ}(ζ ) = 0, ξb ∈ Rnb ,

where ζ = (x0, i∇aφ(x
0), ξb + i∇bφ(x

0)). An important feature of this definition is that
it is invariant by changes of coordinates.

Note also that in the case 0 = {ξa = 0}, condition (1.10) is the limit as τ → 0+ of
(1.11) on the subset

{pφ(x
0, ξ) = {pφ, φ}(x

0, ξ) = 0} ∩ 0x0 ,

thanks to the principal normality assumption (1.9) (see Remark 3.5 below).
Before stating our main result, let us discuss some cases of operators of particular

interest.

Remark 1.8 (Hörmander case). If na = 0, there is no analytic variable. In this case,
Definition 1.6 coincides with the definition of principally normal operators [Hör94, Chap-
ter XXVIII] and Definition 1.7 with 0 = T ∗� of strongly pseudoconvex functions.
The unique continuation result under consideration is the classical Hörmander theo-
rem [Hör94, Chapter XXVIII].

Remark 1.9 (Holmgren case). If na = n, that is, the operator is analytic in all the vari-
ables, we have xa = x, ξa = ξ , and hence 0 = � × {ξa = 0} = � × {ξ = 0}. In this
situation, conditions (1.7), (1.8) are empty since all the terms vanish.

Next, concerning the conditions on the surface {φ = 0}, notice that (1.10) is also
empty since 0x0 ∩ {ξ 6= 0} = ∅. For (1.11), if ξ ∈ 0x0 , that is, ξ = 0, we have
pφ(x

0, ξ) = p(x0, iτ∇φ(x0)) = (iτ )mp(x0,∇φ(x0)): any noncharacteristic surface
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at x0 (i.e. satisfying p(x0,∇φ(x0)) 6= 0) is a strongly pseudoconvex oriented surface.
The unique continuation result under consideration is the classical Holmgren theorem.

Note that, in the case na = n, the results presented here hold under condition (1.11),
namely

p(x0,∇φ(x0)) = {p, φ}(x0,∇φ(x0)) = 0

⇒
1
i
{p(x, ξ − i∇φ), p(x, ξ + i∇φ)}(x0, 0) > 0,

which is weaker than the noncharacteristicity condition p(x0,∇φ(x0)) 6= 0 of the
Holmgren theorem.

Remark 1.10 (Wave type and Schrödinger type operators). Let us now consider the case
of operators P with principal symbol of the form p2(x, ξ) = Qx(ξ), where Qx is a
smooth x-family of real quadratic forms in ξ such that Qx(0, ξb) is positive (or negative)
definite on Rnb . This is the case of the wave operator or Schrödinger type operators. We
remark first that for such operators:

• condition (E) is fulfilled thanks to the positive definiteness of Qx(0, ξb),
• condition (H) is also fulfilled in case the (real-valued) coefficients of Qx are indepen-

dent of xa .

Then, assumption (1.10) holds (uniformly with respect to x ∈ �) again according to the
positive definiteness of Qx(0, ξb). It is indeed empty since p2(x, (0, ξb)) does not vanish
for ξb 6= 0. Moreover, {p2, φ}(x, ξ) = 2Q̃x(ξ,∇φ), where Q̃x is the polar form of Qx ,
and

{p2, φ}(x, ξ + i∇φ) = 2Q̃x(ξ,∇φ)+ 2iQx(∇φ).

As a consequence (Q being real), Im{p2, φ}(x, ξ + i∇φ) = 2Qx(∇φ) so that (1.11) is
also empty (and thus satisfied) for any noncharacteristic hypersurface.

In conclusion, for real quadratic forms which are positive (or negative) definite on Rnb
at ξa = 0, any noncharacteristic hypersurface is strongly pseudoconvex in the sense of
Definition 1.7. In the case na = 1, this includes the following operators of particular
interest:

• P = D2
xa
−
∑n−1
i,j=1 αij (x)Dxjb

Dxib
+ `.o.t. (wave operator) with

p = ξ2
a −

∑n−1
i,j=1 αij (x)ξ

j
b ξ

i
b,

• P = Dxa −
∑n−1
i,j=1 αij (x)Dxjb

Dxib
+ `.o.t. (Schrödinger operator) with

p = −
∑n−1
i,j=1 αij (x)ξ

j
b ξ

i
b,

where the quadratic form with coefficients αi,j is positive definite.

We are now prepared to formulate our main result in the general framework. We first
describe the geometric context and then state the theorem.

Geometric setting (see Figure 1). We first fix two splittings Rn = Rn−1
x′
×Rxn and Rn =

Rnaxa × Rnbxb , possibly in two different bases. We let D be a bounded open subset of Rn−1
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K
xa

xb

x′

xn

S1

S0

�

ω̃

Fig. 1. Geometric setting of Theorem 1.11.

with smooth boundary and G = G(x′, ε) a C2 function defined in a neighborhood of
D × [0, 1] such that
• for all ε ∈ (0, 1], we have {x′ ∈ Rn−1

: G(x′, ε) ≥ 0} = D;
• for all x′ ∈ D, the function ε 7→ G(x′, ε) is strictly increasing;
• for all ε ∈ (0, 1], we have {x′ ∈ Rn−1

: G(x′, ε) = 0} = ∂D;
• G(x′, 0) = 0.
We set, S0 = D × {0} and, for ε ∈ (0, 1],

Sε = {(x
′, xn) ∈ Rn : xn ≥ 0 and G(x′, ε) = xn}

= (D × R) ∩ {(x′, xn) ∈ Rn : G(x′, ε) = xn},
K = {x ∈ Rn : 0 ≤ xn ≤ G(x′, 1)}.

Theorem 1.11. In the above geometric setting, let � be a bounded open neighborhood
ofK , and P be a differential operator of orderm, which is analytically principally normal
on � in {ξa = 0}. Assume also that, for any ε ∈ [0, 1 + η), the oriented surfaces Sε =
{φε = 0} with φε(x′, xn) := G(x′, ε) − xn are strongly pseudoconvex in {ξa = 0} for P
on the whole Sε, in the sense of Definition 1.7.

Then, for any open neighborhood ω̃ ⊂ � of S0, there exists a neighborhood U of K
and constants κ, C,µ0 > 0 such that for all µ ≥ µ0 and u ∈ C∞0 (R

n), we have

‖u‖L2(U) ≤ Ce
κµ
(
‖u‖

Hm−1
b (ω̃)

+ ‖Pu‖L2(�)

)
+

C

µm−1 ‖u‖Hm−1(�),

where we have denoted ‖u‖
Hm−1
b (ω̃)

=
∑
|β|≤m−1 ‖D

β
b u‖L2(ω̃).

If na = n (Holmgren case), then, for any ϕ̃ ∈ C∞0 (ω̃) with ϕ̃ = 1 on a neighbor-
hood of S0, and for any s ∈ R, there exist κ, C,µ0 > 0 such that for all µ ≥ µ0 and
u ∈ C∞0 (R

n), we have

‖u‖L2(U) ≤ Ce
κµ
(
‖ϕ̃u‖H−s (Rn) + ‖Pu‖L2(�)

)
+

C

µm−1 ‖u‖Hm−1(�).

If na = 0 (Hörmander case), there are c, κ, C,µ0 > 0 such that for all µ ≥ µ0 and
u ∈ C∞0 (R

n), we have

‖u‖Hm−1(U) ≤ Ce
κµ
(
‖u‖Hm−1(ω̃) + ‖Pu‖L2(�)

)
+ Ce−cµ‖u‖Hm−1(�).
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Note that in the first two cases, we obtain a result of the type (1.4) with a logarithmic
function ϕ, whereas in the framework of the Hörmander theorem, we obtain the stronger
Hölder type dependence (see [Bah87, Rob95, LR95, LRL12]):

‖u‖Hm−1(U) ≤ C
(
‖u‖Hm−1(ω̃) + ‖Pu‖L2(�)

)δ
‖u‖1−δ

Hm−1(�)

for some δ ∈ (0, 1).
The formulation of the above result using a foliation by hypersurfaces is inspired by

that of [Joh49, Theorem, p. 224] in the context of the Holmgren theorem. The statement
describing the hypersurfaces by graphs could look rigid. We will give later, in Theo-
rem 4.11, a slight variant where the partial analyticity and the foliation by graphs can
be described in different coordinates: the linear change of coordinates between the two
different splittings Rn = Rn−1

x′
× Rxn and Rn = Rna × Rnb may be replaced by a dif-

feomorphism. We have chosen not to present this more general result here for the sake
of exposition. Most of the global theorems for the wave and Schrödinger equations on a
manifold are proved in the setting of Theorem 1.11, after some suitable change of coordi-
nates. In a forthcoming paper [LL17], we apply the more invariant result of Theorem 4.11
to the case of the hypoelliptic wave operator, for which we are not able to construct ap-
propriate coordinates to apply Theorem 1.11 directly.

1.3. Idea of the proof

As already mentioned, unique continuation theorems (e.g. the Hörmander theorem) are
often proved with Carleman estimates, that is, weighted L2 estimates of the form

‖eτψu‖L2 ≤ C‖e
τψPu‖L2 , (1.12)

where τ is a large parameter and ψ a weight function having level sets appropriately
situated with respect to the surface S. Such inequalities are already quantitative, and hence
furnish a good starting point towards local quantitative unique continuation results. This
strategy has already been followed in [Rob95, LR95] in the case of elliptic operators
(see also [Bah87]). Starting from the Carleman inequality (1.12), the idea is to apply the
estimates to some function χ(x)u where χ is a cutoff function according to the level
sets of ψ . The exponential weight eτψ(x) in (1.12) (giving an exponentially large/small
strength to the large/small values of ψ) naturally leads to inequalities of the form

‖u‖V2 ≤ e
κµ(‖u‖V1 + ‖Pu‖V3)+ e

−κµ
‖u‖V3 , (1.13)

uniformly for µ ≥ µ0 and for small open sets V1 ⊂ V2 ⊂ V3 depending on the local
geometry (namely, on the cutoff function χ , the support of [P, χ], and hence on the level
sets of ψ). By optimizing in µ (see [Rob95] or [LRL12, Lemma 5.2]) this can then be
written as an interpolation estimate

‖u‖V2 ≤ (‖u‖V1 + ‖Pu‖V3)
δ
‖u‖1−δV3

for some δ ∈ (0, 1). The interest of these interpolation estimates (or directly of estimates
like (1.13)) is that they can be easily iterated, leading to some global ones. This procedure
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ends up with a Hölder type dependence, i.e. (1.4) with ϕ = (a + b)δc1−δ . We refer for
instance to the survey article [LRL12] for a description of these estimates in the elliptic
case, with application to spectral estimates and control results for the heat equation.

Yet, in the context of the unique continuation theorem for partially analytic operators,
the Carleman estimates proved in [Tat95, RZ98, Hör97, Tat99b] contain a “microlocal”
weight of the form e−

ε
2τ |Da |

2
eτψ(x) instead of eτψ(x). Whereas the usual eτψ is still here

to give strength to the level sets of ψ , the additional term e−
ε

2τ |Da |
2

is now aimed at lo-
calizing in the low frequencies in the variable xa . In this context, the proof of unique
continuation proceeds via a (qualitative) complex-analytic argument (maximum princi-
ple). Here, this additional argument in the proof of unique continuation also requires to
be quantified. As in [Rob95], this procedure naturally leads to local logarithmic (instead
of Hölder) stability estimates. The main issue one has to face when quantifying unique
continuation is that such estimates cannot be iterated (or would yield dependence esti-
mates of the type (1.4) with a function ϕ being a composition of as many “log” as steps
needed in the iteration).

One idea to overcome this difficulty, proposed by Tataru in his unpublished lecture
notes [Tat99a], was to propagate some low frequency estimates of the form{

‖u‖Hm−1 = 1∥∥m(Da
µ

)
σ
(
x
R

)
Pu
∥∥
L2 ≤ e−µ

α

}
⇒

∥∥∥∥m(Daτ
)
σ

(
x

r

)
u

∥∥∥∥
Hm−1

≤ e−τ , ∀τ < cµα,

for functions u supported in {φ < φ(x0)}, for appropriate compactly supported cutoff
functions σ and m(ξ) of Gevrey class 1/α, α < 1, and for some r < R. Such estimates
could be propagated and would lead to some global stability estimates of the form (1.4)
with ϕε(a, b, c) = c

(
log
(
1+ c

a+b

))−(1−ε).
The loss 1 − ε in the power of log is due to the use of functions of Gevrey class 1/α

with compact support. The optimal case α = 1 would correspond to analytic functions.
Yet, analytic functions cannot have compact support, which is a key ingredient in the
usual application of Carleman estimates.

Let us now explain our strategy to solve this problem.

1.3.1. Obtaining local information at low frequency. Part of the proof of the present
paper is inspired by this idea of propagating only low frequency estimates (in the analytic
variable xa). However, we replace the Gevrey cutoff functions by some analytic “almost
cutoff” functions of the form

χλ := e
−|Da |

2/λχ, (1.14)

where χ is smooth with the expected compact support, being convolved/regularized with
a heat kernel in the variable xa , hence analytic in this variable. It turns out that the right
choice of the regularization parameter λ is λ = Cµ where µ is the frequency where we
want to measure our solution. That such functions are not compactly supported makes all
commutator estimates (e.g. when applying the Carleman estimate to functions like χλu
instead of χu, as explained above) much more intricate and requires a careful study of the
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dependence on the regularization parameter λ, the local frequency µ and the parameter τ
in the Carleman inequality. All estimates are carried out up to an exponentially small
remainder (in terms of these parameters).

When following this procedure, the local estimate we prove (which we are in addition
able to propagate) is a generalization of (1.13), but truncated at low frequencies in the
analytic variable xa . In a neighborhood of a point x0, it is of the form∥∥∥∥mµ(Daβµ

)
χ2,µu

∥∥∥∥
Hm−1

≤ Ceκµ
(∥∥∥∥mµ(Daµ

)
χ1,µu

∥∥∥∥
Hm−1

+ ‖Pu‖L2(B(x0,R))

)
+ Ce−κ

′µ
‖u‖Hm−1 , (1.15)

uniformly for µ ≥ µ0. See the beginning of Section 3 for a more precise statement and
remarks on this result. Here, χ1 and χ2 are some cutoff functions in the physical space
that localize respectively to the place where the information is taken (locally in {φ > 0})
and where it is propagated to (a small neighborhood of x0). These functions respectively
correspond to 1V1 and 1V2 in (1.13). The Fourier multiplier mµ cuts off (analytically)
the ξa frequencies (m has to be thought of as 1BRna (0,1)). All these cutoff functions are
used only with their analytic regularization according to (1.14) with λ = µ. They never
localize exactly. Using such regularized cutoff functions and Fourier multipliers follows
the spirit of analytic semiclassical analysis [Sjö82] (see also [Mar02]). However, we do
not make use of that theory and rather construct the relevant mollifiers by hand, making
the proof self-contained in this respect.

The proof of estimates like (1.15), stated more precisely in Theorem 3.1, is the object
of Section 3. It proceeds in three steps. First, as in the usual proofs of unique continu-
ation results, starting from the hypersurface {φ = 0}, one needs to construct a weight
function ψ with two properties:

• satisfying the assumptions required to apply the Carleman estimate (ψ should be a
strongly pseudoconvex function in the sense of Definition 2.1 below);
• having level sets appropriately located with respect to those of φ (so that propagating

uniqueness across level sets of ψ still corresponds to propagating zero locally from
φ > 0 to φ < 0).

This corresponds to the so called “convexification process” [Hör94, Chapter XXVIII].
Second, we apply as a black box the Carleman estimates of [Tat95, RZ98, Hör97,

Tat99b] (or some similar ones that we prove in the presence of boundary) to χu, where χ
is a particular cutoff function (localizing near the point of interest, and according to level
sets of ψ), containing both rough cutoffs and mollified ones. We then need to estimate all
terms arising from the commutator e−

ε
2τ |Da |

2
eτψ [P, χ], which are either well localized

or yield an exponentially small contribution.
Finally, we need to transfer the information given by the Carleman inequality to some

estimate like (1.15) on the low frequencies of the function. This is done through a com-
plex analysis argument, the Carleman parameter τ playing the role of complex variable, as
in [Tat95]. If ζ is the complex variable, the Carleman estimate corresponds to an estimate
for ζ = iτ ∈ iR+. Combined with a priori estimates, a Phragmén–Lindelöf type theorem
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allows us to extend this estimate to part of the real domain, where it corresponds to esti-
mating

∥∥m(Da
βµ

)
χu
∥∥. To obtain estimates that are uniform with respect to the frequency

(and regularization) parameter µ, we also need, following [Tat99a], a scaling argument,
replacing τ by τ/µ.

1.3.2. Propagating local information to global one. Once the local estimates are proved,
we need to iterate them to obtain a global estimate. This is the object of Section 4. At
first, we define some tools that will allow propagating our local estimate (1.15) easily in
an abstract way. Estimate (1.15) says essentially that, for a solution of Pu = 0, infor-
mation can be transferred from the support of χ1 to the support of χ2. We formalize that
with the notion of zone of dependence. Roughly speaking, we say that an open set O2
depends on O1 if (1.15) holds for every χ1 equal to 1 on O1 and any χ2 supported in
O2. This part allows formulating the proof of Theorem 1.11 as a completely geometric
one. Even if quite different in definition, it is close in spirit to the interpolation theory
developed by Lebeau [Leb92] to propagate globally the local information obtained by the
Cauchy–Kowalevski theorem. Moreover, it should adapt to some more general kinds of
foliations. Note that at each step of this propagation argument, we have a loss in the range
of frequency: from information on frequencies ≤ µ, we obtain from (1.15) information
on frequencies ≤ βµ, with β small. This is overcome by the fact that we only have a
finite number of steps in this iterative procedure.

Once this propagation result is obtained, we are left with low frequency information
on the solution u. Since we have no information about the high frequency part, the only
thing to do is to use some trivial bound of the type∥∥∥∥(1−m

(
Da

µ

))
u

∥∥∥∥
L2
≤

C

µm−1 ‖u‖m−1.

This is actually much worse than the negative exponential that we already had. But it
turns out to be the best we can do without any more information.

In Section 6, we specify our general result to the case of the wave and Schrödinger
equations. The main task is to construct appropriate noncharacteristic hypersurfaces that
fit in the geometric setting of Theorem 1.11. This part is quite classical and was already
present for instance in [Leb92]. We recall the argument in the present context.

1.3.3. Carleman estimates for the Dirichlet boundary value problem. Finally, to prove
the results of Section 1.1, it remains to deal with the boundary value problem. This is
the object of Section 5. As far as (qualitative) unique continuation is concerned, there
is no need to prove quantitative estimates up to the boundary. As a consequence, we
need here to carry over the analysis of [Tat95, RZ98, Hör97, Tat99b] at the boundary. In
this context, we consider only a particular class of operators and a particular boundary
condition. We assume that the operator belongs to the class described in Remark 1.10
(hence encompassing wave and Schrödinger type operators), that is, with symbols of the
form p2(x, ξ) = Qx(ξ) where Qx is a smooth family of real quadratic forms. We further
assume that the analytic variables xa are tangent to the boundary, and that the functions
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satisfy Dirichlet boundary conditions. Recall that this situation is of particular interest
for the wave/Schrödinger equations, for which xa is the time variable, which is always
tangent to the boundary of the cylindrical domain R1

xa
×Mxb .

The proofs of the quantitative unique continuation results up to and from the bound-
ary rely on Carleman estimates for these operators at the boundary. As such, the es-
timates interpolate between the “boundary elliptic Carleman estimates” of Lebeau and
Robbiano [LR95], and the “partially analytic Carleman estimates” of Tataru [Tat95] (see
also [RZ98, Hör97]). Then, we obtain the counterpart of the local estimate of Theorem 3.1
for this boundary value problem. All local, semiglobal and global results will then follow
as in the boundaryless case. We only need to be careful when performing changes of
variables.

2. Preliminaries

The preliminary results presented in this section are mainly used in Section 3 for the local
estimate. Some are also used independently in Section 4 for the semiglobal estimate. They
concern:

• the Carleman estimate adapted to operators with partially analytic coefficients, as stated
in [Tat95, RZ98, Hör97, Tat99b];
• the regularization procedure for cutoff functions and Fourier multipliers (which is a

key part in the proofs);
• some preliminary commutator-type estimates.

2.1. Notation

First, let us recall basic notation, used all along the article.
Throughout, dist stands for the Euclidean distance in Rn, R or Rna , or the Riemannian

distance on (M, g). ForK ⊂ Rn (resp. R, Rna ) and d > 0, we define the d-neighborhood
of K by

Nhd(K, d) :=
⋃
x∈K

B(x, d),

where the balls are taken according to the distance dist. For open sets U,U ′, we write
U b U ′ if U is compact and U ⊂ U ′.

We denote by F the Fourier transform in all variables, and by Fa that in the variables
xa ∈ Rna only. When no confusion is possible, we shall write û = Fa(u) or û = F(u).

We write 〈ξ〉 = (1 + |ξ |2)1/2, and denote by ‖ · ‖m the classical Hm norm on Rn:
‖u‖m := ‖〈ξ〉

mF(u)‖L2(Rn). Similarly,

‖u‖m,τ = (2π)n/2‖(τ 2
+ |D|2)m/2u‖0 = ‖(τ

2
+ |ξ |2)m/2F(u)‖0

will denote the weighted (semiclassical) Hm norm for τ ≥ 1. In the main part of this
article, τ will be a large parameter. Finally, we use the notation ‖·‖H k→H ` for the operator
norm from H k(Rn) to H `(Rn).
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2.2. The Carleman estimate

Before stating the Carleman estimate used in the main part of paper, we need to introduce
appropriate weight functions ψ .

Definition 2.1 (Strongly pseudoconvex function). Let 0 be a closed conic subset of
T ∗�, and let P be a principally normal operator in 0 (in the sense of (1.9)), with principal
symbol p. Let ψ ∈ C2(�;R) and let x0

∈ �. We say that ψ is strongly pseudoconvex
in 0 at x0 for P if

Re {p, {p,ψ}}(x0, ξ) > 0 if p(x0, ξ) = 0 and ξ ∈ 0x0 , ξ 6= 0, (2.1)
1
iτ
{pψ , pψ }(x

0, ξ) > 0 if pψ (x0, ξ) = 0 and ξ ∈ 0x0 , τ > 0, (2.2)

where pψ (x, ξ) = p(x, ξ + iτ∇ψ).

Note that in the case 0 = T ∗�, this property is the usual one for proving a Carleman esti-
mate with weight function ψ . It is classical that a strongly pseudoconvex surface S (in the
sense of Definition 1.7) is a level surface for some strongly pseudoconvex function in the
sense of Definition 2.1 (see e.g. [Hör94, Proposition 28.3.3] or [Tat99a, Theorem 1.5]),
and that both definitions are stable with respect to small C2 perturbations. In what fol-
lows, a more precise link (adapted to our needs) between these two notions will be made
in Section 3.1.

In this paper (just as in [Tat95, RZ98, Hör97, Tat99b]), Definitions 1.7 and 2.1 will
always be used with 0 = �× {ξa = 0}.

For ε, τ > 0 we define the operator

Qψ
ε,τu = e

−
ε

2τ |Da |
2
(eτψu), (2.3)

introduced in [Tat95].
The following result is due to Tataru [Tat99b, Theorem 2]. A proof in cases (E) and

(H) can be found in [Hör97, (5.15), and the last equation before Section 7]. Some closely
related estimates are also proved in [RZ98, Proposition 4.6].

In Section 5, when studying the boundary value problem for wave equations, we in-
clude a proof of this result in case (H) assuming that P has a real principal part, is of
order m = 2, and under the additional assumption that the coefficients of P do not de-
pend on xa .

Theorem 2.2. Let x0
∈ � = �a × �b ⊂ Rna × Rnb and P be a partial differential

operator on � of order m. Assume that

• P is analytically principally normal in {ξa = 0} inside � (in the sense of Defini-
tion 1.6);
• ψ is a quadratic polynomial in x = (xa, xb), strongly pseudoconvex in � × {ξa = 0}

at x0 for P (in the sense of Definition 2.1).
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Then there exist ε,R, d, C, τ0 > 0 such that B(x0,R) ⊂ � and for any τ > τ0, we have

τ‖Qψ
ε,τu‖

2
m−1,τ ≤ C

(
‖Qψ

ε,τPu‖
2
0 + ‖e

τ(ψ−d)Pu‖20 + ‖e
τ(ψ−d)u‖2m−1,τ

)
(2.4)

for any u ∈ C∞0 (B(x
0,R)).

Note that, compared to usual Carleman estimates of the form (1.12), there are two ad-
ditional remainder terms in (2.4) due to the introduction of the frequency localization
operator e−

ε
2τ |Da |

2
. Moreover, most Carleman estimates in [Tat95, RZ98, Hör97, Tat99b]

do not contain the term ‖eτ(ψ−d)Pu‖20 on the right hand side. Also, this result was stated
in [Tat99b] under the assumption that pseudoconvexity holds on all of �. Yet, pseudo-
convexity at one point implies pseudoconvexity in a small neighborhood (see [Tat99b,
Lemmata 2.5 and 2.6]), so it implies the local Carleman estimate for functions supported
close to x0.

2.3. Regularization of cutoff functions and Fourier multipliers

All along the paper, we shall use several cutoff functions and need to regularize them.
Here, we explain the regularization procedure we use, give some of its basic properties,
and define some (appropriately regularized) Fourier multipliers.

2.3.1. Regularization of functions. Before describing the regularization operators, let us
collect some basic facts about Gaussian integrals. Note first that (differentiate with respect
to z or see e.g. [Le72, (2.1.7), p. 17]), for z ≥ 0,

∫
+∞

z

e−s
2
ds =

e−z
2

√
π

∫
+∞

0

e−z
2s2

1+ s2 ds ≤

√
π

2
e−z

2
.

As a consequence,∫
+∞

r

e−s
2/t ds ≤

√
π

2

√
t e−r

2/t ,

∫
+∞

r

〈s〉me−s
2/tds ≤ Cm〈r〉

m
〈t〉(m+1)/2e−r

2/t

for all r ≥ 0, t > 0, m ∈ N, where the second estimate is obtained by iterated integration
by parts. Hence,∫

xa∈Rna , |xa |≥r
e−|xa |

2/t dxa ≤ Cna 〈r〉
na−1
〈t〉na/2e−r

2/t for all r ≥ 0, t > 0. (2.5)

Moreover, for any measurable set E ⊂ Rna , any xa ∈ Rna , and any t > 0,∫
E

e−
1
t
|xa−ya |

2
dya ≤

∫
Rna

e−
1
t
|xa−ya |

2
dya = (πt)

na/2.
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In addition, according to (2.5), there exists Cna > 0 such that for any closed set E ⊂ Rna ,
any xa /∈ E, and any t > 0, we obtain∫

E

e−|xa−ya |
2/t dya ≤

∫
B(xa ,dist(xa ,E))c

e−|xa−ya |
2/t dya

≤ Cna 〈dist(xa, E)〉na−1
〈t〉na/2e−dist(xa ,E)2/t

Hence there exists Cna > 0 such that for any closed set E ⊂ Rna , any xa ∈ Rna , and any
t > 0, we have∫

E

e−|xa−ya |
2/t dya ≤ Cna 〈dist(xa, E)〉na−1

〈t〉na/2e−dist(xa ,E)2/t . (2.6)

We are now prepared to define the appropriate regularization process, used all along
the article. We shall use fλ to denote

• fλ := e
−|D|2/λf for f ∈ L∞(R);

• or (more often)

fλ := e
−|Da |

2/λf

for f ∈ L∞(Rn), and a fortiori for f ∈ L∞(Rna ).

We hope that this will not be confusing. We now discuss in more detail the basic properties
of this regularization process in the second case only (the first case can be seen as the
particular situation na = 1, nb = 0).

The definition can be rewritten as

fλ(xa, xb) =

(
λ

4π

)na/2(
e−

λ
4 |·|

2
∗Rna f (·, xb)

)
(xa)

=

(
λ

4π

)na/2 ∫
Rna

f (ya, xb)e
−
λ
4 |xa−ya |

2
dya .

Note that similar smoothing of functions is used systematically in analytic microlo-
cal analysis (see [Sjö82] or [Mar02]). In this context, it is related to the Fourier–Bros–
Iagolnitzer transform. In applications to unique continuation, it has been used in [RT73,
Ler88, Rob91, Hör92, Leb92, Rob95, Tat95, RZ98, Hör97, Tat99b]. In particular, the op-
erator Qψ

ε,τ defined in (2.3) contains such a regularization (the regularizing parameter λ
being linked to the Carleman large parameter τ ).

Several times in the proofs we will use

‖fλ‖L2(Rn) ≤ (2π)
−na/2‖e−|·|

2/λ
‖L∞(Rna )‖Fa(f )(ξa, xb)‖L2(Rn) = ‖f ‖L2(Rn) (2.7)

and

‖fλ‖L∞ ≤

(
λ

4π

)na/2∥∥e− λ4 |·|2∥∥
L1(Rna )‖f ‖L∞(Rn) = ‖f ‖L∞(Rn). (2.8)
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Notice also that

f ≥ 0 ⇒ fλ ≥ 0, and hence f ≥ g ⇒ fλ ≥ gλ.

Moreover, the function fλ may be extended as an entire function in the variable xa by

fλ(za, xb) =

(
λ

4π

)na/2 ∫
Rna

f (ya, xb)e
−
λ
4 (za−ya)

2
dya, za ∈ Cna , xb ∈ Rnb ,

(where ζ 2
a = ζa · ζa = |Re ζa|2−|Im ζa|

2
+ 2i Re ζa · Im ζa is the real inner product) with

the uniform bound

|fλ(za, xb)| ≤

(
λ

4π

)na/2
‖f ‖L∞

∫
ya∈supp f (·,xb)

∣∣e− λ4 (za−ya)2 ∣∣ dya
≤

(
λ

4π

)na/2
‖f ‖L∞e

λ
4 |Im za |

2
∫
ya∈supp f (·,xb)

e−
λ
4 |Re za−ya |2 dya

≤ C〈λ〉na/2‖f ‖L∞e
λ
4 |Im za |

2

× 〈dist(Re za, supp f (·, xb))〉na−1e−
λ
4 dist(Re za ,supp f (·,xb))2 (2.9)

where the last estimate comes from (2.6) applied with t=4/λ (observe that λ〈1/λ〉=〈λ〉).
Note that supp f (·, xb) is well-defined for every xb ∈ Rnb if f is a continuous function;
however, strictly speaking, this is not the case if f is only in L∞(Rn). In this situation,
supp f (·, xb) in (2.9) can simply be replaced by

Sf (xb) := {xa ∈ Rna : (xa, xb) ∈ supp f } ⊂ Rna ,

where supp f ⊂ Rn is the support of f (in the distributional sense). In case f is contin-
uous, supp f (·, xb) ⊂ Sf (xb) and both statements are correct (the first one being slightly
more precise). We will not discuss this subtlety anymore and will continue to write some
expressions similar to (2.9). The estimate then makes sense by taking an element of L∞

that is zero outside of supp f and is bounded by ‖f ‖L∞ .
For functions compactly supported in the xa variable, we have the simpler estimate

|fλ(za, xb)| ≤ Cλ
na/2‖f ‖L∞ |supp f (·, xb)|e

λ
4 |Im za |

2
e−

λ
4 dist(Re za ,supp f (·,xb))2 . (2.10)

2.3.2. Fourier multipliers. Finally, we also need to introduce frequency localization
functions, i.e. appropriately smoothed Fourier multipliers. Let m(ξa) be a smooth radial
function (i.e. depending only on |ξa|), compactly supported (in |ξa| < 1) with values
in [0, 1] and such that m(ξa) = 1 for |ξa| < 3/4. We shall denote by Mµ the Fourier
multiplier Mµu = m(Da/µ)u, that is,

(Mµu)(xa, xb) = F−1
a

(
m(ξa/µ)Fa(u)(ξa, xb)

)
(xa),
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where Fa denotes the Fourier transform in the variable xa only. Given λ,µ > 0, we
shall denote by Mµ

λ the Fourier multiplier of symbol mµλ (ξa) = mλ(ξa/µ), i.e. Mµ
λ =

mλ(Da/µ) or

(M
µ
λ u)(xa, xb) = F−1

a

(
mλ(ξa/µ)Fa(u)(ξa, xb)

)
(xa),

with, according to the above notation for the subscript λ,

mλ(ξa) =

(
λ

4π

)na/2 ∫
Rna

m(ηa)e
−
λ
4 |ξa−ηa |

2
dηa .

Note that in this definition, the symbol is first regularized and then dilated. We hope
the notation (with the subscript for regularization and the exponent for dilation) will not
be confusing. Note also that these Fourier multipliers only act in the variable xa .

2.4. Some preliminary estimates

In this section, we state several technical lemmata of commutator type, needed to prove
the main local result formulated in Theorem 3.1. The proofs can certainly be omitted by
the hurried reader. The spirit is that all the estimates that we would expect for exact cutoff
functions remain true for their analytically regularized version, up to some exponentially
small remainders in terms of λ. So, the important fact in all the estimates below is the
uniformity with respect to λ and µ as large parameters.

2.4.1. Some basic preliminary estimates

Lemma 2.3. (1) For any d > 0, there exist C, c > 0 such that for any f1, f2 ∈ L
∞(Rn)

such that dist(supp f1, supp f2) ≥ d and all λ ≥ 0, we have

‖f1,λf2‖L∞ ≤ Ce
−cλ
‖f1‖L∞‖f2‖L∞ , ‖f1,λf2,λ‖L∞ ≤ Ce

−cλ
‖f1‖L∞‖f2‖L∞ .

(2) If moreover f1, f2 ∈ C
∞(Rn) have bounded derivatives, then for all k ∈ N, there

exist C, c > 0 such that for all λ ≥ 1, we have

‖f1,λf2‖H k(Rn)→H k(Rn) ≤ Ce
−cλ.

(3) Let f1, f2 ∈ L
∞(Rna ) with dist(supp f1, supp f2) > 0. Then there exist C, c > 0

such that for all λ,µ ≥ 1 and all k ∈ N, we have

‖f1,λ(Da/µ)f2(Da/µ)‖H k(Rn)→H k(Rn) ≤ Ce
−cλ,

‖f1,λ(Da/µ)f2,λ(Da/µ)‖H k(Rn)→H k(Rn) ≤ Ce
−cλ.

Proof. We have

|f1,λ(xa, xb)| ≤ Cλ
na/2‖f1‖L∞

∫
ya∈suppxa f1(·,xb)

e−
λ
4 |ya−xa |

2
dya .
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Moreover, for all xb ∈ Rnb we have

distRna
(
suppxa f1(·, xb), suppxa f2(·, xb)

)
≥ dist(supp f1, supp f2) ≥ d,

so that for all x = (xa, xb) ∈ supp f2, we have |ya − xa| ≥ d in the above integral. As a
consequence, for all x = (xa, xb) ∈ supp f2,

|f1,λ(xa, xb)| ≤ Cλ
na/2‖f1‖L∞

∫
|ya−xa |≥d

e−
λ
4 |ya−xa |

2
dya

≤ C‖f1‖L∞λ
na/2

∫
|ya |≥d

e−
λ
4 |ya |

2
dya ≤ Ce

−cλ
‖f1‖L∞ ,

which provides the first estimate in (1).
The second estimate is obtained by decomposing

f1,λf2,λ = f1,λf2,λ1Nhd(supp f2,d/3) + f1,λf2,λ1Nhd(supp f2,d/3)c ,

and applying the previous result to f1,λ1Nhd(supp f2,d/3) and f2,λ1Nhd(supp f2,d/3)c , where
all the supports are disjoint as required.

(2) is proved by induction on k ∈ N. For k = 0, it is precisely the first estimate
of (1). Now assume that it holds for k − 1 and write ‖f1,λf2u‖H k ≤ ‖f1,λf2u‖H k−1 +

‖∇(f1,λf2u)‖H k−1 . It remains to estimate ‖∇(f1,λf2u)‖H k−1 : for this, it suffices to write

∇(f1,λf2u) = (∇f1)λf2u+ f1,λ∇(f2)u+ f1,λf2∇(u),

where all functions have the appropriate support properties to apply the case k − 1. This
finally yields ‖∇(f1,λf2u)‖H k−1 ≤ Ce−cλ‖u‖H k−1 + Ce−cλ‖∇u‖H k−1 proving (2).

The proof of (3) only relies on the fact that for any k ∈ N,

‖f1,λ(Da/µ)f2(Da/µ)‖H k(Rn)→H k(Rn) = ‖f1,λ(ξa/µ)f2(ξa/µ)‖L∞ = ‖f1,λf2‖L∞

(and similarly for the other term), and on the use of (1). ut

Similarly, we have the following variant.

Lemma 2.4. Let f2 ∈ C
∞(Rn) with all derivatives bounded, and d > 0. Then for every

k ∈ N, there exist C, c > 0 such that for all f1 ∈ H
k(Rn) with dist(supp f1, supp f2)

≥ d and all λ ≥ 0, we have

‖f1,λf2‖H k ≤ Ce
−cλ
‖f1‖H k .

Proof. We have

f1,λf2(xa, xb) =

(
λ

4π

)na/2 ∫
Rna

f2(xa, xb)f1(ya, xb)e
−
λ
4 |xa−ya |

2
dya,
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so that

|f1,λf2|(xa, xb) ≤

(
λ

4π

)na/2 ∫
|xa−ya |≥d

|f2(xa, xb)f1(ya, xb)|e
−
λ
4 |xa−ya |

2
dya

≤ ‖f2‖L∞(Rn)

(
λ

4π

)na/2(
1|·|≥de

−
λ
4 |·|

2
∗Rna |f1|(·, xb)

)
(xa).

As a consequence, using the Young inequality, we have

‖f1,λf2‖L2 ≤ ‖f2‖L∞(Rn)

(
λ

4π

)na/2
‖1|·|≥de

−
λ
4 |·|

2
‖L1(Rna )‖f1‖L2(Rn),

and by (2.5) (with λ〈1/λ〉 = 〈λ〉),

‖f1,λf2‖L2 ≤ C〈λ〉
na/2e−λd

2/4
‖f2‖L∞(Rn)‖f1‖L2(Rn),

which implies the result in the case k = 0. We obtain the case k > 0 by differentiating
and applying the same result (see e.g. the proof of Lemma 2.3). ut

Lemma 2.5. Let ψ : Rn→ R be a C∞ function, f1 ∈ C
∞(R) with bounded derivatives

and f2 ∈ C
∞

0 (R
n) such that dist(supp f1 ◦ ψ, supp f2) > 0 . Then, for all k ∈ N, there

exist C, c > 0 such that for all λ > 0, we have

‖f1,λ(ψ)f2‖H k(Rn)→H k(Rn) ≤ Ce
−cλ.

Proof. We prove ‖f1,λ(ψ)f2‖L∞(Rn) ≤ Ce−cλ, which implies the result for k = 0. We
obtain the case k > 0 by differentiating and applying the same result (see e.g. the proof
of Lemma 2.3).

Since f2 ∈ C
∞

0 (R
n), the set K := ψ(supp f2) is a compact subset of R. More-

over, the assumption dist(supp f1(ψ), supp f2) > 0 implies that dist(supp f1,K) > 0.
Indeed, otherwise supp f1 ∩ψ(supp f2) 6= ∅; taking t in this intersection, there would be
x ∈ supp f2 such that ψ(x) = t ∈ supp f1, i.e. x ∈ supp f1(ψ), which contradicts the
assumption. Now, note that x ∈ supp f2 implies ψ(x) ∈ K , so that we have the pointwise
estimate |f2| ≤ ‖f2‖L∞1K ◦ ψ on Rn. As a consequence,

‖f1,λ(ψ)f2‖L∞(Rn) ≤ C‖f1,λ(ψ)1K(ψ)‖L∞(Rn) ≤ C‖f1,λ1K‖L∞(R) ≤ Ce
−cλ,

where we have used Lemma 2.3 together with dist(supp f1,K) > 0. ut

Lemma 2.6. Let f1, f2 ∈ C
∞

0 (R
n) with f1 = 1 in a neighborhood of supp f2. Then for

all k ∈ N there exist C, c > 0 such that for all λ > 0 and all u ∈ H k(Rn), we have

‖f2,λ∂
αu‖0 ≤ C‖f1,λu‖k + Ce

−cλ
‖u‖k for |α| ≤ k,

‖f2,λu‖k ≤ C‖f1,λu‖k + Ce
−cλ
‖u‖k.
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Proof. Let d = dist(supp f2, supp(1− f1)) > 0. Thanks to Lemma 2.3(1), we have

‖f2,λ1Nhd(supp f2,d/3)c∂
αu‖0 ≤ Ce

−cλ
‖u‖k.

Concerning the other term, we use again Lemma 2.3 applied to 1Nhd(supp f2,d/3) and some
∂α(1− f1) (using ∂α(f1,λ) = (∂

αf1)λ) to obtain

‖f2,λ1Nhd(supp f2,d/3)∂
αu‖0 ≤ ‖f2,λ1Nhd(supp f2,d/3)∂

α(f1,λu)‖0

+ ‖f2,λ1Nhd(supp f2,d/3)∂
α((1− f1,λ)u)‖0

≤ ‖f2,λ1Nhd(supp f2,d/3)∂
α(f1,λu)‖0 + Ce

−cλ
‖u‖k.

Writing then

‖f2,λ1Nhd(supp f2,d/3)∂
α(f1,λu)‖0 ≤ C‖∂

α(f1,λu)‖0 ≤ C‖f1,λu‖k

concludes the proof of the first estimate of the lemma.
The second inequality follows by noticing that ∂α(f2,λu) is a sum of terms of the form

(∂βf2)λ∂
α−βu to which we can apply the first part of the lemma. ut

Lemma 2.7. Assume m1, m2 ∈ L
∞(Rna ) are bounded by 1, and satisfy

dist(suppm1, suppm2) ≥ d > 0.

Then there exists C > 0 such that for all f ∈ L∞(Rnb ;L∞(Rna )) satisfying Fa(f ) ∈
L∞(Rnb ;L1(Rna )) and all µ, λ > 0, we have

‖m1,λ(Da/µ)f (x)m2,λ(Da/µ)‖L2(Rn)→L2(Rn)

≤ ‖Fa(f )‖L∞xbL1(|ξa |≥dµ/3) + Ce
−cλ
‖Fa(f )‖L∞(Rnb ;L1(Rna )),

and the same estimate with m2 in place of m2,λ.

Proof. We begin with the first estimate, the second being simpler to handle. We denote
m
µ
j,λ(ξa) = mj,λ(ξa/µ) for j = 1, 2, and, to lighten notation, set f̂ = Fa(f ). We set
fL = 1|Da |≤dµ/3f (that is, f̂L(ξa) = 1|ξa |≤dµ/3f̂ (ξa)) and fH = 1|Da |≥dµ/3f . We first
have

‖m
µ
1,λ(Da)fH (x)m

µ
2,λ(Da)‖L2→L2 ≤ ‖fH‖L∞(Rn) ≤ ‖f̂H‖L∞(Rnb ;L1(Rna ))

≤ ‖f̂ ‖L∞xbL
1(|ξa |≥dµ/3).

It remains to estimate ‖mµ1,λ(Da)fL(x)m
µ
2,λ(Da)‖L2→L2 . We work in the Fourier domain:

for u ∈ L2(Rn), we have

Fa(mµ1,λ(Da)fL(x)m
µ
2,λ(Da)u)(ξa, xb) = m

µ
1,λ(ξa)

[
f̂L(ξa, xb) ∗ [m

µ
2,λ(ξa)û(ξa, xb)]

]
,

where ∗ denotes convolution in the variable ξa only. Now, we set m̃1 = 1Nhd(suppm1,d/3)
and m̃2 = 1Nhd(suppm2,d/3), which satisfy ‖m̃j‖L∞ ≤ 1 together with

dist(supp m̃1, supp m̃2) ≥ d/3.
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We write

m
µ
1,λ(ξa)

[
f̂L(ξa, xb) ∗

(
m
µ
2,λ(ξa)û(ξa, xb)

)]
= Y1 + Y2 + Y3,

with

Y1 = m̃
µ
1m

µ
1,λ(ξa)

[
f̂L(ξa, xb) ∗

(
m̃
µ
2m

µ
2,λ(ξa)û(ξa, xb)

)]
,

Y2 = (1− m̃1,µ)m
µ
1,λ(ξa)

[
f̂L(ξa, xb) ∗

(
m̃
µ
2m

µ
2,λ(ξa)û(ξa, xb)

)]
,

Y3 = m
µ
1,λ(ξa)

[
f̂L(ξa, xb) ∗

(
(1− m̃µ2 )m

µ
2,λ(ξa)û(ξa, xb)

)]
.

The term Y1 vanishes since m̃µ2m
µ
2,λ(ξa)u(ξa, xb) is supported in the set where ξa/µ ∈

Nhd(suppm2, d/3); hence, as supp f̂L ⊂ {|ξa|/µ ≤ d/3}, the convolution

f̂L(ξa, xb) ∗
(
m̃
µ
2m

µ
2,λ(ξa)u(ξa, xb)

)
is supported in ξa/µ ∈ Nhd(suppm2, 2d/3) which does not intersect the support (in
ξa/µ) of m̃µ1 , that is, Nhd(suppm1, d/3).

Concerning Y2, Lemma 2.3 implies ‖(1− m̃µ1 )m
µ
1,λ‖L∞ξa

≤ Ce−cλ. This, together with

the Young inequality in ξa and the uniform boundedness of m̃µ2m
µ
2,λ, yields∥∥(1− m̃µ1 )mµ1,λ(ξa)[f̂L(ξa, xb) ∗ (m̃µ2mµ2,λ(ξa)û(ξa, xb))]∥∥L2(Rn)

≤ ‖(1− m̃µ1 )m
µ
1,λ‖L∞ξa

‖f̂L‖L∞xbL
1
ξa
‖Fa(u)‖L2(Rna×Rnb ) ≤ Ce

−cλ
‖f̂ ‖L∞xbL

1
ξa
‖u‖L2(Rn).

The term Y3 is treated similarly and the proof of the first estimate is complete.
The second estimate has the same proof and is actually simpler because the term

(1− m̃µ2 )m
µ
2 is zero. ut

Lemma 2.8. Assume f1, f2 ∈ L
∞(Rn) are bounded by 1 and satisfy

dist(supp f1, supp f2) ≥ d > 0.

Then there exists C > 0 such that for all m ∈ L∞(Rna ) satisfying m̂ ∈ L1(Rna ) and all
λ > 0, we have

‖f1,λ(x)m(Da)f2,λ(x)‖L2(Rn)→L2(Rn) ≤ ‖m̂‖L1(|ηa |≥d/3) + Ce
−cλ
‖m̂‖L1(Rna ),

and the same estimate with f2,λ replaced by f2.

Proof. This is essentially the same proof as for the previous lemma except that we have
to take care of the fact that the functions fi depend on all variables, whilem only depends
on xa ∈ Rna . Again, we set mL = 1|Da |≤d/3m (that is, m̂L(ηa) = 1|ηa |≤d/3m̂(ηa)) and
mH = 1|Da |≥d/3m. First, we have

‖f1,λ(x)mH (Da)f2,λ(x)‖L2(Rn)→L2(Rn) ≤ ‖mH (Da)‖L2(Rn)→L2(Rn) ≤ ‖mH‖L∞(Rna )

≤ ‖m̂H‖L1(Rna ) ≤ ‖m̂‖L1(|ηa |≥d/3).
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Concerning the second term, and denoting m̌L = F−1
a (mL), i.e. m̌L(ηa) =

(2π)−na m̂L(−ηa), we have

f1,λ(x)mL(Da)f2,λ(x)u = f1,λ(x)m̌L ∗Rna
(
f2,λ(·, xb)u(·, xb)

)
.

Now we can finish the proof as in the previous lemma: introducing f̃j := 1Nhd(supp fj ,d/3),
j = 1, 2, we notice that

supp(m̌L ∗Rna [f̃2f2,λu]) ⊂ Nhd(supp f2, d/3)+ {(xa, 0) : |xa| ≤ d/3}
⊂ Nhd(supp f2, 2d/3).

Moreover, Lemma 2.3 still yields

‖(1− f̃j )fj,λ‖L∞(Rn) ≤ Ce−cλ, j = 1, 2,

so that the proof then follows exactly that of Lemma 2.7. We obtain the second inequality
similarly. ut

Lemma 2.9. Let k ∈ N and f ∈ C∞0 (R
n). Then there exist C, c such that, for any

λ,µ > 0, we have

‖M
µ
λ fλ(1−M

2µ
λ )‖H k(Rn)→H k(Rn) ≤ Ce

−cµ2/λ
+ Ce−cλ,

‖(1−M2µ
λ )fλM

µ
λ ‖H k(Rn)→H k(Rn) ≤ Ce

−cµ2/λ
+ Ce−cλ.

Recall that the Fourier multipliers Mµ
λ are defined in Section 2.3.2.

Proof. Note first that Fa(∂αxa∂
β
xbfλ)(ξa, xb) = (iξa)

αe−|ξa |
2/λ∂

β
xbFa(f )(ξa, xb). Hence,

for k = 0, the result is a direct consequence of (the first estimate in) Lemma 2.7 since
suppm ⊂ {|ξa| ≤ 1} and supp(1−m(·/2)) ⊂ {|ξa| ≥ 3/2}. Note that we also use the fact
that (1−m)λ = 1−mλ.

For k ≥ 1, we proceed by induction, noticing that

∇[(1−M2µ
λ )fλM

µ
λ u] = (1−M

2µ
λ )(∇f )λM

µ
λ u+ (1−M

2µ
λ )fλM

µ
λ ∇u

(see e.g. the proof of Lemma 2.3). ut

Lemma 2.10. Let f1, f2 ∈ C
∞(Rn) be bounded together with all their derivatives, with

dist(supp f1, supp f2) ≥ d > 0. Then for every k ∈ N, there exist C, c > 0 such that for
all µ, λ > 0, we have

‖f1,λM
µ
λ f2,λ‖H k(Rn)→H k(Rn) ≤ Ce

−cµ2/λ
+ Ce−cλ,

‖f1,λM
µ
λ f2‖H k(Rn)→H k(Rn) ≤ Ce

−cµ2/λ
+ Ce−cλ.

Proof. We first prove both estimates for k = 0, by using Lemma 2.8 with m replaced by
mb = mλ(·/µ). The Fourier transform of mb is given by

m̂b(ηa) = µ
naFa(mλ)(µηa) = µnae−|ηa |

2µ2/λm̂(µηa).
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As a consequence,

‖m̂b‖L1(|ηa |≥d/3) ≤ e
−
d2µ2

9λ ‖m̂‖L1(Rna )

and ‖m̂b‖L1(Rna ) ≤ ‖m̂‖L1(Rna ), so that

‖m̂b‖L1(|ηa |≥d/3) + Ce
−cλ
‖m̂b‖L1(Rna ) ≤ Ce

−
d2µ2

9λ + Ce−cλ.

Lemma 2.8 then yields the sought result for k = 0.
Again, for k ≥ 1, we argue by induction noticing that

∇[f1,λM
µ
λ f2,λu] = (∇f1)λM

µ
λ f2,λu+ f1,λM

µ
λ (∇f2)λu+ f1,λM

µ
λ f2,λ∇u,

and using the fact that the relevant support properties of ∇fi are preserved (see e.g. the
proof of Lemma 2.3). ut

Lemma 2.11. Let k ∈ N and f ∈ C∞0 (R
n). Then there exist C, c > 0 such that for all

µ, λ > 0 and u ∈ H k(Rn), we have

‖M
µ
λ fλu‖k ≤ ‖fλM

2µ
λ u‖k + C

(
e−cµ

2/λ
+ e−cλ

)
‖u‖k. (2.11)

Moreover, for any f1 ∈ C
∞(Rn) bounded together with all its derivatives, such that

f1 = 1 on a neighborhood of supp f , for any k ∈ N, there exist C, c > 0 such that for
all µ, λ > 0 and u ∈ H k(Rn), we have

‖fλM
µ
λ u‖k ≤ C‖M

µ
λ f1,λu‖k + C

(
e−cµ

2/λ
+ e−cλ

)
‖u‖k. (2.12)

Proof. We write

‖M
µ
λ fλu‖k ≤ ‖M

µ
λ fλM

2µ
λ u‖k + ‖M

µ
λ fλ(1−M

2µ
λ )u‖k.

According to Lemma 2.9, we have ‖Mµ
λ fλ(1−M

2µ
λ )u‖k ≤ C

(
e−cµ

2/λ
+e−cλ

)
‖u‖k . The

first term above is simply estimated by ‖Mµ
λ fλM

2µ
λ u‖k ≤ ‖fλM

2µ
λ u‖k , which proves

(2.11).
Concerning the “moreover” part, we write

‖fλM
µ
λ u‖k ≤ ‖fλM

µ
λ f1,λu‖k + ‖fλM

µ
λ (1− f1)λu‖k.

For the first term, we only have to remark that ‖fλM
µ
λ f1,λu‖k ≤ C‖M

µ
λ f1,λu‖k uni-

formly in λ. Then, since dist(supp f, supp 1− f1) > 0, Lemma 2.10 yields

‖fλM
µ
λ (1− f1)λu‖k ≤ C

(
e−cµ

2/λ
+ e−cλ

)
‖u‖k,

which eventually proves (2.12). ut
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Lemma 2.12. Let k ∈ N and f ∈ C∞0 (R
n). Assume supp f ⊂

⋃
i∈I Ui where (Ui)i∈I is

a finite family of bounded open sets. Let bi ∈ C∞0 (R
n) with bi = 1 on a neighborhood

of Ui . Then, for any k ∈ N, there exist C, c > 0 such that for all µ, λ > 0 and u ∈
H k(Rn), we have

‖M
µ
λ fλu‖k ≤ C

∑
i∈I

‖M
2µ
λ (bi)λu‖k + C

(
e−cµ

2/λ
+ e−cλ

)
‖u‖k.

Proof. Applying the first statement of Lemma 2.11 to f , we obtain

‖M
µ
λ fλu‖k ≤ ‖fλM

2µ
λ u‖k + C

(
e−cµ

2/λ
+ e−cλ

)
‖u‖k. (2.13)

Let now (fi)i∈I be a smooth partition of unity such that∑
i∈I

fi = 1 in a neighborhood of supp f, supp fi ⊂ Ui, 0 ≤ fi ≤ 1.

Note that in particular bi = 1 in a neighborhood of supp fi . Using the second estimate of
Lemma 2.6, we have

‖fλM
2µ
λ u‖k ≤ C

∥∥∥∑
i

(fi)λM
2µ
λ u

∥∥∥
k
+ Ce−cλ‖M

2µ
λ u‖k

≤ C
∑
i

‖(fi)λM
2µ
λ u‖k + Ce

−cλ
‖u‖k. (2.14)

Using the second estimate in Lemma 2.11, we then obtain

‖(fi)λM
2µ
λ u‖k ≤ C‖M

2µ
λ (bi)λu‖k + C

(
e−cµ

2/λ
+ e−cλ

)
‖u‖k,

which, combined with (2.13) and (2.14) concludes the proof of the lemma. ut

Lemma 2.13. There exists C > 0 such that for all D ∈ R and χ̃ ∈ L∞(R) such that
supp χ̃ ⊂ (−∞,D], and all λ, τ > 0, we have

|eτzχ̃λ(z)| ≤ C‖χ̃‖L∞(R)〈λ〉
1/2e

λ
4 |Im z|2eDτ eτ

2/λ for all z ∈ C,

‖eτψ χ̃λ(ψ)‖L∞(Rn) ≤ C‖χ̃‖L∞(R)〈λ〉
1/2eDτ eτ

2/λ for all ψ ∈ C0(Rn;R).
Proof. First, according to (2.9), we have the estimate

|χ̃λ(z)| ≤ C‖χ̃‖L∞(R)〈λ〉
1/2e

λ
4 |Im z|2e−

λ
4 dist(Re z,supp χ̃)2 for all z ∈ C.

Now, if Re z ≤ D, we use the bound |eτz| ≤ eDτ , which yields

|eτzχ̃λ(z)| ≤ C‖χ̃‖L∞(R)〈λ〉
1/2e

λ
4 |Im z|2eDτ .

Next, for Re z ≥ D, we have dist(Re z, supp χ̃) ≥ Re z−D ≥ 0, and

|eτzχ̃λ(z)| ≤ e
τ Re zC‖χ̃‖L∞(R)〈λ〉

1/2e
λ
4 |Im z|2e−

λ
4 (Re z−D)2

≤ C‖χ̃‖L∞(R)〈λ〉
1/2e

λ
4 |Im z|2 sup

s≥D

eτse−
λ
4 (D−s)

2
.
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Finally,

sup
s≥D

eτse−
λ
4 (D−s)

2
= sup

t≥0
eτ(D+t)e−

λ
4 t

2
= eτD sup

t≥0
et (τ−λt/4) = eDτ eτ

2/λ,

which concludes the proof of the first estimate of the lemma. The second estimate follows
from the first for z = s ∈ R combined with

‖eτψ χ̃λ(ψ)‖L∞(Rn) ≤ ‖e
τs χ̃λ(s)‖L∞(R). ut

Lemma 2.14. There exist C, c such that, for any ε, τ, λ, µ > 0 and any k ∈ N, we have∥∥e− ε|Da |22τ (1−Mµ
λ )
∥∥
H k(Rn)→H k(Rn) ≤ e

−
εµ2
8τ + Ce−cλ.

Proof. Since the operator e−
ε|Da |

2
2τ (1−Mµ

λ ) is a Fourier multiplier, it suffices to estimate

supξa∈Rna
∣∣e− ε|ξa |22τ (1−mλ(ξa/µ))

∣∣. Recall that m ∈ C∞0 (R
na ; [0, 1]) is a radial function

that we identify with a function m = m(s) ∈ C∞0 (R+) satisfying suppm ⊂ [0, 1) and
m = 1 on [0, 3/4). We distinguish the following two cases:

• if |s| ≤ µ/2, Lemma 2.3 applied with f1 = 1 − m (and hence f1,λ(s) = 1 − mλ(s))
and f2 = 1|s|≤1/2 implies |1|s|≤µ/2(1 − mλ(s/µ))| ≤ Ce−cλ uniformly with respect
to λ,µ > 0;

• if |s| ≥ µ/2, we simply have
∣∣1|s|≥µ/2e− ε|s|22τ (1−mλ(s/µ))

∣∣ ≤ e− εµ2
8τ .

Combining these two estimates concludes the proof. ut

2.4.2. Some more involved preliminary estimates. We will need the estimate of the fol-
lowing lemma.

Lemma 2.15. Let ψ be a smooth real valued function on Rn, which is a quadratic poly-
nomial in xa ∈ Rna , let Rσ > 0, and σ ∈ C∞0 (BRn(0, Rσ )). Let χ ∈ C∞0 (R) with
suppχ ⊂ (−∞, 1), and χ̃ ∈ C∞(R) with χ̃ = 1 on a neighborhood of (−∞, 3/2) and
supp χ̃ ⊂ (−∞, 2). Define χδ(s) := χ(s/δ), χ̃δ(s) := χ̃(s/δ). Let f ∈ C∞0 (R

n) be real
analytic in the variable xa in a neighborhood of BRn(0, Rσ ) and set

g := eτψχδ,λ(ψ)χ̃δ(ψ)f σλ ∈ C
∞

0 (R
n).

Then there exist c0, c1 > 0 such that for all N ∈ N and β ∈ Nnb , there exists C > 0 such
that for all δ > 0, there is ε0 > 0 such that for any λ ≥ 1, τ > 0, and 0 < ε < ε0, we
have

|∂βxbFa(g)(ξa, xb)| ≤ C〈ξa〉
−N (τ + δ−1

+ 1)N+|β|λ(na+1)/2eδτ

×
(
eτ

2/λec1ε
2λe−c0ε|ξa | + eτ

2/λe−c0λ + ec1λε
2
eδτ e−c0δ

2λ
)
.

In particular, for all δ > 0, N ∈ N, β ∈ Nnb , there are C, c, ε0 > 0 such that for any
λ, τ ≥ 1 and 0 < ε < ε0, we have

|∂βxbFa(g)(ξa, xb)| ≤ C〈ξa〉
−NτN+|β|λ(na+1)/2eδτ eτ

2/λ
(
eCε

2λe−cε|ξa | + eδτ e−cλ
)
.
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Proof. First, we prove the result for N = 0 and β = 0 (the other cases will be obtained
by differentiating g).

Also, we notice that since the regularization of σ only occurs in the variable xa , we
have supp g ⊂ supp σλ ⊂ Rna × BRnb (0, Rσ ). Hence, estimates are only needed in the
region xb ∈ Kb := BRnb (0, Rσ ).

Since f is real analytic in xa in a neighborhood of the compact set BRn(0, Rσ ), there
exists Rf > 0 such that f can be extended in an analytic way in a neighborhood of za ∈
BRna (0, Ra(xb))+ iBRna (0, Rf ), uniformly for xb ∈ Kb, where we have set Ra(xb)2 =
(Rσ + Rf )

2
− |xb|

2. Note that za denotes the complex variable associated to xa .
Notice also that we can extend χ̃ by 1 (hence analytically) on a neighborhood of

(−∞, 3/2)+ iR. Moreover, since ψ is quadratic in xa , there exists ε0 = ε0(δ) > 0 such
that(
ψ(Re za, xb) ≤ 4

3δ <
3
2δ, |Im za| ≤ ε0Rf , xb ∈ Kb

)
⇒ Reψ(za, xb) ≤ 3

2δ, (2.15)(
ψ(Re za, xb) = 4

3δ, |Im za| ≤ ε0Rf , xb ∈ Kb
)
⇒ Reψ(za, xb) ≥ 5

4δ. (2.16)

In particular, χ̃(ψ(za, xb)) = 1 on(
ψ(Re za, xb) ≤ 4

3δ <
3
2δ, |Im za| ≤ ε0Rf , xb ∈ Kb

)
.

As a consequence, given xb ∈ Kb, the function

za 7→ χδ,λ(ψ(za, xb))χ̃δ(ψ(za, xb))

is analytic on a neighborhood of
{
xa ∈ Rna : ψ(xa, xb) ≤ 4

3δ
}
+ iBRna (0, ε0Rf ). Hence,

for xb ∈ Kb, za 7→ g(za, xb) is holomorphic in a neighborhood of

Axb (ε0) :=
({
ψ(xa, xb) ≤

4
3δ
}
∩ BRna (0, Ra(xb))

)
+ iBRna (0, ε0Rf ).

The plan of the proof is to first estimate g in the complex domain, and then bound its
Fourier transform using a complex deformation. We use the analyticity inside of Axb (ε0)

and the smallness elsewhere on the real domain.

Step 1: uniform estimates of g. We separately estimate the functions f σλ and
eτψχδ,λ(ψ)χ̃δ(ψ), and then deduce estimates for g.

According to the basic estimate (2.10) for σλ, we have, uniformly for xb ∈ Kb,

|(f σλ)(za, xb)| ≤ Cλ
na/2e

λ
4 |Im za |

2
e−

λ
4 dist(Re za ,supp σ(·,xb))2 ,

za ∈ BRna (0, Ra(xb))+ iBRna (0, Rf ),

where the constant C depends only on ‖f ‖L∞ (on the previous complex domain)
and ‖σ‖L∞ .

In particular, for any ε ∈ [0, 1], uniformly for xb ∈ Kb,

|(f σλ)(za, xb)| ≤ Cλ
na/2e

λ
4 ε

2R2
f , za ∈ BRna (0, Ra(xb))+ iBRna (0, εRf ). (2.17)
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We now notice that

dist(xa, supp σ(·, xb)) ≥ dist((xa, xb), B(0, Rσ )) ≥ Rf for |xa| ≥ Ra(xb). (2.18)

As a first consequence, dist(xa, supp σ(·, xb)) ≥ Rf if |xa| = Ra(xb), so that for any
ε ∈ [0, 1] we obtain, uniformly for xb ∈ Kb,

|(f σλ)(za, xb)| ≤ Cλ
na/2e

λ
4 ε

2R2
f 4e−

λ
4R

2
f ≤ Cλna/2e

λ
4 (ε

2
−1)R2

f ,

|Im za| ≤ εRf , |Re za| = Ra(xb). (2.19)

Using now estimate (2.10) for σλ on the real domain, together with the boundedness of f
and (2.18), we obtain, uniformly for xb ∈ Kb,

|(f σλ)(xa, xb)| ≤ Cλ
na/2e−

λ
4 dist(xa ,supp σ(·,xb))2

≤ Cλna/2e
−
λ
4R

2
f , xa ∈ Rna , |xa| ≥ Ra(xb). (2.20)

We now estimate the term eτψχδ,λ(ψ)χ̃δ(ψ) in parts of the complex domain.
First, on the real domain, we have

|eτsχδ,λ(s)χ̃δ(s)| ≤ e
2δτ
|χδ,λ(s)χ̃δ(s)| ≤ Cλ

1/2e2δτ e−cδ
2λ, s ≥ 4

3δ,

after having used (2.6), where c is a numerical constant. As a consequence,

|eτψ(xa ,xb)χδ,λ(ψ(xa, xb))χ̃δ(ψ(za, xb))| ≤ Cλ
1/2e2δτ e−cδ

2λ if ψ(xa, xb) ≥ 4
3δ.

(2.21)

Next, for z ∈ C, by Lemma 2.13, there is C > 0 such that for all δ ∈ R and all λ ≥ 1,
τ > 0, we have

|eτzχδ,λ(z)| ≤ Cλ
1/2e

λ
4 (Im z)2eδτ eτ

2/λ for all z ∈ C. (2.22)

Since ψ is a quadratic polynomial in xa with real coefficients, we have

|Imψ(za, xb)| ≤ C|Re za| |Im za| + C(Kb)|Im za|, (za, xb) ∈ Cna ×Kb,

where we have used the fact that Kb is compact. As a consequence, there is a constant
C0 = C0(ψ,Rσ , Rf ) > 0 such that

|Imψ(za, xb)| ≤ εC0 for za ∈ BRna (0, Ra(xb))+ iBRna (0, εRf ), xb ∈ Kb.

Hence, using (2.22), we obtain, for all ε ∈ (0, ε0),

|eτψ(za ,xb)χδ,λ(ψ(za, xb))χ̃δ(ψ(za, xb))| ≤ Cλ
1/2eλC

2
0ε

2/4eδτ eτ
2/λ,

xb ∈ Kb, za ∈ Axb (ε). (2.23)
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According to (2.9), we also have

|χδ,λ(z)| ≤ Cλ
1/2e

λ
4 |Im z|2e−

λ
4 dist(Re z,suppχδ)2

≤ Cλ1/2e
λ
4 |Im z|2e−cδ

2λ on Re z ≥ 5
4δ,

where c is a numerical constant. Using (2.16) yields

|χδ,λ(ψ(za, xb))| ≤ Cλ
1/2eC

2
0ε

2λ/4e−cδ
2λ,

xb ∈ Kb, za ∈ Axb (ε), ψ(Re za, xb) = 4
3δ,

and, with (2.15), this implies

|eτψ(za ,xb)χδ,λ(ψ(za, xb))χ̃δ(ψ(za, xb))| ≤ Cλ
1/2eC

2
0ε

2λ/4e3δτ/2e−cδ
2λ,

xb ∈ Kb, za ∈ Axb (ε), ψ(Re za, xb) = 4
3δ. (2.24)

Let us finally gather all estimates obtained on the function g. Multiplying (2.23) by
(2.17) and (2.19), we find that there is a constant C1 > 0 independent of λ, µ, τ , δ, ε such
that, for any ε ∈ (0, ε0),

|g(za, xb)| ≤ Cλ
(na+1)/2eC1λε

2
eδτ eτ

2/λ, xb ∈ Kb, za ∈ Axb (ε), (2.25)

|g(za, xb)| ≤ Cλ
(na+1)/2e

λ(−R2
f /4+C1ε

2)
eδτ eτ

2/λ,

xb ∈ Kb, za ∈ Axb (ε), |Re za| = Ra(xb). (2.26)

Next, multiplying (2.24) and (2.17) we also have

|g(za, xb)| ≤ Cλ
(na+1)/2eC1ε

2λe3δτ/2e−cδ
2λ,

xb ∈ Kb, za ∈ Axb (ε), ψ(Re za, xb) = 4
3δ. (2.27)

Combining (2.20) with (2.22), and rewriting (2.21), we also have on the real domain

|g(xa, xb)| ≤ Cλ
(na+1)/2eδτ eτ

2/λe
−
λ
4R

2
f , xa ∈ Rna , |xa| ≥ Ra(xb), xb ∈ Kb,

(2.28)

|g(xa, xb)| ≤ Cλ
1/2e2δτ e−cδ

2λ, xa ∈ Rna , xb ∈ Rnb , ψ(xa, xb) ≥ 4
3δ. (2.29)

Step 2: estimating the Fourier transform using a deformation of contour in the com-
plex domain. We now want to estimate Fa(g)(ξa, xb) uniformly with respect to xb. We
split the integral as

Fa(g)(ξa, xb) =
∫
Rna

e−ixa ·ξag(xa, xb) dxa = I0 + I1 + I2

with Ij = Ij (ξa, xb) defined by

I0 :=

∫
|xa |≤Ra(xb), ψ(xa ,xb)≤

4
3 δ
, I1 :=

∫
|xa |≤Ra(xb), ψ(xa ,xb)>

4
3 δ
, I2 :=

∫
|xa |>Ra(xb)

.
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Using (2.28) together with the compactness of supp g ⊂ supp f , we obtain, for all
δ, τ > 0 and λ > 1,

|I2| ≤ Cλ
(na+1)/2eδτ eτ

2/λe
−R2

f λ/4. (2.30)

Using (2.29), we obtain, for all δ, τ > 0 and λ > 1,

|I1| ≤ Cλ
1/2e2δτ e−cδ

2λ. (2.31)

We now want to estimate the integral I0(ξa, xb): for ξa ∈ Rna \ {0}, we write xa =
x1

ξa
|ξa |
+ x′a for x1 = xa ·

ξa
|ξa |

and x′a such that x′a · ξa = 0 and make the (ξa-dependent)
orthogonal change of coordinates to (x1, x

′
a) (preserving the ball BRna (0, Ra(xb))). This

yields

I0(ξa, xb) =

∫
BRna (0,Ra(xb))∩{ψ(·,xb)≥

4
3 δ}
e−ix1|ξa |g(x1, x

′
a) dx

′
a dx1

=

∫
BRna−1 (0,Ra(xb))

Iξa ,xb (x
′
a) dx

′
a,

with

Iξa ,xb (x
′
a) =

∫
|x1|2≤Ra(xb)2−|x′a |

2, ψ(x1,x′a ,xb)≤
4
3 δ
e−ix1|ξa |g(x1, x

′
a) dx1,

so that
|I0(ξa, xb)| ≤ C sup

x′a∈BRna−1 (0,Ra(xb))
|Iξa ,xb (x

′
a)|.

Hence, it only remains to estimate |Iξa ,xb (x′a)| uniformly. Now, g being analytic in a
neighborhood of Axb (ε0), and given any x′a ∈ BRna−1(0, Ra(xb)), the function z1 7→

e−iz1|ξa |g(z1, x
′
a) is holomorphic in a neighborhood of the set

|Re z1|
2
≤ Ra(xb)

2
− |x′a|

2, ψ(Re z1, x
′
a, xb) ≤

4
3δ, |Im z1| ≤ εRf ,

for ε ∈ (0, ε0).
Now, we have{
x1 ∈ R : |x1|

2
≤ Ra(xb)

2
− |x′a|

2, ψ(x1, x
′
a, xb) ≤

4
3δ
}
=

⋃
k∈J

[α1
k , α

2
k ], (2.32)

where J = J (x′a, xb) has 0, 1 or 2 elements since ψ is quadratic. Moreover,

either |αik|
2
+ |x′a|

2
= Ra(xb)

2, or ψ(αik, x
′
a, xb) =

4
3δ (2.33)

for k ∈ J and i = 1, 2, together with

Iξa ,xb (x
′
a) =

∑
k∈J

∫
[α1
k ,α

2
k ]

e−ix1|ξa |g(x1, x
′
a) dx1.
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To estimate Iξa ,xb (x′a), we now make a change of contour in the complex variable z1 as
follows: ∫

[α1
k ,α

2
k ]

e−ix1|ξa |g(x1, x
′
a) dx1 = IL + IT + IR,

where

I? =

∫
γ?

e−iz1|ξa |g(z1, x
′
a) dz1 for ? = L, T ,R,

and

γL = [α
1
k , α

1
k − iεRf ],

γT = [α
1
k − iεRf , α

2
k − iεRf ],

γR = [α
2
k − iεRf , α

2
k ]

are three oriented segments in C (see Figure 2). We have

|I?| ≤

∫
γ?

eIm(z1)|ξa ||g(z1, x
′
a)| dz1 for ? = L, T ,R.

α1
k
− iεRf

γR

Im z1

α2
k
− iεRf

Re z1

α1
k

γT

α2
k

γL

0

Fig. 2. Oriented contours.

On γL and γR , using (2.33) and Im z1 ≤ 0, we can use either estimate (2.26) or (2.27)
and obtain, uniformly in x′a, ξa, xb, δ, τ > 0, λ > 1, and ε ∈ (0, ε0(δ)),

|IL| + |IR| ≤ Cελ
(na+1)/2eC1λε

2(
eδτ e

−λR2
f /4eτ

2/λ
+ e3δτ/2e−cδ

2λ
)
.

On γT , we have (z1, x
′
a) ∈ Axb (ε) and Im z1 = −εRf , and thus using (2.25) we obtain,

uniformly in x′a, ξa, xb, δ, τ > 0, λ > 1, and ε ∈ (0, ε0(δ)),

|IT | ≤ Cλ
(na+1)/2eC1λε

2
eδτ eτ

2/λe−εRf |ξa |.

Combining the estimates on IL, IR, IT now proves that there is C > 0 such that for any
ξa ∈ Rna \ {0} (and, by continuity, for all ξa ∈ Rna ), xb ∈ Rnb , δ, τ > 0, λ > 1, and
ε ≤ min

(
ε0(δ),

Rf

2
√

2C1

)
,

|I0| ≤ Cλ
(na+1)/2eδτ eτ

2/λ
(
eC1λε

2
e−εRf |ξa | + e

−R2
f λ/8

)
+ Cλ(na+1)/2eC1λε

2
e3δτ/2e−cδ

2λ,

which, in view of estimates (2.30) and (2.31), implies the result for N = 0 and α = 0.
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To obtain the result for N ∈ N and β ∈ Nnb , we notice that the functions gα,β =
∂αxa∂

β
xbg can be written as a finite sum of terms that have the same form as in one of the

assumptions of the theorem with some different f , b and χδ (with the same support and
analyticity properties) and with powers of τα

′

δ−β
′

for |α′|+|β ′| ≤ |α|+|β|. The constants
in the exponentials do not depend on α, β since they are functions of ψ,Rσ , Rf ,Kb only.
Noting that (iξa)α∂

β
xbFa(g)(ξa, xb) = Fa(∂αxa∂

β
xbg)(ξa, xb) concludes the proof. ut

Remark 2.16. It is likely that the above lemma works as well if ψ is any real val-
ued function, analytic (or at least polynomial) in the variable xa (and not only polyno-
mial of degree 2). The main point is to have uniform bounds of the form ψ(za, xb) =

ψ(Re za, xb) + O(ε) for (Re za, xb) in a compact set, and |Im za| ≤ εRf . This could
be done by Taylor expansion. Moreover, the decomposition (2.32) in a finite number of
intervals should still be possible using analyticity in xa . This generalization is however
not needed below since all weight functions ψ will be quadratic polynomials in xa (and,
most of the time, in all variables).

As a consequence of the previous result, we now have the following lemma.

Lemma 2.17. Under the assumptions of Lemma 2.15, for all k ∈ N, δ > 0, there exist
N ∈ N and C, c0, ε0 > 0 such that for any λ,µ, τ ≥ 1 and 0 < ε < ε0, we have

‖M
µ/2
λ g(1−Mµ

λ )‖H k(Rn)→H k(Rn) ≤ Cτ
Nλ(na+1)/2eδτ eτ

2/λ
(
eCε

2λe−c0εµ + eδτ e−c0λ
)
,

‖(1−Mµ
λ )gM

µ/2
λ ‖H k(Rn)→H k(Rn) ≤ Cτ

Nλ(na+1)/2eδτ eτ
2/λ
(
eCε

2λe−c0εµ + eδτ e−c0λ
)
.

The estimates of this lemma will only be used in a weaker form: for all c, δ > 0 and
k ∈ N, there exist c0, C,N > 0 such that for any τ, µ ≥ 1 and c−1µ ≤ λ ≤ cµ, we have

‖M
µ/2
λ g(1−Mµ

λ )‖H k(Rn)→H k(Rn) ≤ Cτ
Neτ

2/λe2δτ e−c0µ, (2.34)

with the same estimate for the second term. This form is obtained by taking ε sufficiently
small in the regime c−1µ ≤ λ ≤ cµ.

Proof of Lemma 2.17. The two estimates are proved the same way, so we only prove the
first one. First, sinceMµ

λ is a Fourier multiplier, hence commutes with differentiation, for
any α with |α| ≤ k, the derivative ∂α[Mµ/2

λ g(1 −Mµ
λ )u] is a sum of terms of the form

M
µ/2
λ (∂βg)(1−Mµ

λ )(∂
γ u) with |β| + |γ | = |α| ≤ k. Hence, Lemma 2.7 gives

‖M
µ/2
λ g(1−Mµ

λ )‖H k(Rn)→H k(Rn) ≤ C
∑

|α|+|β|≤k

‖ξαa ∂
β
xb
Fa(g)‖L∞xbL1(|ξa |≥dµ/3)

+ Ce−cλ‖ξαa ∂
β
xb
Fa(g)‖L∞(Rnb ;L1(Rna )).

Next, Lemma 2.15 with N ∈ N so large that 〈ξa〉−(N+k) is integrable on Rna yields

‖M
µ/2
λ g(1−Mµ

λ )‖H k(Rn)→H k(Rn)

≤ CτN+kλ(na+1)/2eδτ eτ
2/λ
(
ec1ε

2λe−c0εµ + eδτ e−c0λ
)
,

which concludes the proof. ut
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3. The local estimate

The aim of this section is to prove the local quantitative uniqueness result, (analytically)
localized in frequency in the analytic variables.

In the following, for any R > 0, we shall denote

σR(x) := σ(R
−1
|x − x0

|) with σ ∈ C∞(R) such that
σ = 1 in a neighborhood of (−∞, 1], and σ = 0 in a neighborhood of [2,+∞).

(3.1)

Our main local theorem is the following. See Figure 3 for the geometry of the theorem.
An important feature of this local result is that it can be iterated and hence propagated.

x0

{φ = 0}
∇φ

{φ = 2ρ}

B(x0, 3R)

B(x0, 4R)

∇φ(x0)

B(x0, r)

Fig. 3. Geometry of the local uniqueness result. The blue (darker) striped region is the observation
region (i.e. where ϑ = 1). The red (lighter) striped region is the observed region (i.e. where σr = 1).

Theorem 3.1. Let x0
∈ � ⊂ Rna ×Rnb and P be a partial differential operator on � of

order m. Assume that
• P is analytically principally normal in {ξa = 0} inside � (in the sense of Defini-

tion 1.6);
• there is a function φ defined in a neighborhood of x0 such that φ(x0) = 0, and {φ = 0}

is a C2 strongly pseudoconvex oriented surface in {ξa = 0} at x0 for P (in the sense of
Definition 1.7).

Then there exists R0 > 0 such that for any R ∈ (0, R0) there exist r, ρ, τ̃0 > 0 such that
for any ϑ ∈ C∞0 (R

n) with ϑ(x) = 1 on a neighborhood of {φ ≥ 2ρ} ∩B(x0, 3R), for all
c1, κ > 0 there exist C, κ ′, β0 > 0 such that for all β ≤ β0, we have

‖Mβµ
c1µ
σr,c1µu‖m−1 ≤ Ce

κµ
(
‖Mµ

c1µ
ϑc1µu‖m−1 + ‖Pu‖L2(B(x0,4R))

)
+ Ce−κ

′µ
‖u‖m−1

for all µ ≥ τ̃0/β and u ∈ C∞0 (R
n).



994 Camille Laurent, Matthieu Léautaud

Note that this local result contains in particular the unique continuation result for opera-
tors with partially analytic coefficients [Tat95, RZ98, Hör97, Tat99b] (which it is aimed
to quantify). The latter is proved by letting µ → +∞ in the estimate (and controlling
some error terms), yielding: [Pu = 0 on B(x0, 4R)), u = 0 on suppϑ] ⇒ u = 0 on
B(x0, r) ⊂ {σr = 1}.

This theorem allows one to systematically quantify this local unique continuation re-
sult under partial analyticity conditions (in a way that can be iterated/propagated). As
such, it also allows one in particular to systematically quantify both the Hörmander and
the Holmgren theorems (again, in a way that can be iterated/propagated). Let us briefly
comment on these two extreme situations: na = 0 (Hörmander case) and na = n (Holm-
gren case).

Remark 3.2. If na = 0, this inequality takes the form (see also (1.13) in the introduction
and the associated discussion):

‖σru‖m−1 ≤ Ce
κµ
(
‖ϑu‖m−1 + ‖Pu‖L2(B(x0,4R))

)
+ Ce−κ

′µ
‖u‖m−1 for all µ ≥ µ0,

or equivalently

‖σru‖m−1 ≤ C
1

εκ/κ
′

(
‖ϑu‖m−1 + ‖Pu‖L2(B(x0,4R))

)
+ Cε‖u‖m−1 for all ε ≤ ε0,

‖σru‖m−1 ≤ C
(
‖ϑu‖m−1 + ‖Pu‖L2(B(x0,4R))

)δ
‖u‖1−δm−1 for some δ ∈ (0, 1).

This last estimate is an interpolation inequality of Lebeau–Robbiano type [Rob95, LR95],
and, as such, propagates well. Here it quantifies the general situation of the Hörmander
theorem (see also [Bah87]).

If na = n, we here describe a systematic way to quantify the Holmgren theorem,
which propagates well. See also [Joh60] for a local result and [Leb92] for a global result
for waves.

Remark 3.3. The inequality of Theorem 3.1 can be written in the following way: For all
(D,µ, u) ∈ R+ × [τ̃0/β,+∞)×H

m−1(Rn) satisfying

‖Mµ
c1µ
ϑc1µu‖m−1 ≤ e

−(κ+κ ′)µD, ‖Pu‖L2(B(x0,4R)) ≤ e
−(κ+κ ′)µD,

we have
‖Mβµ

c1µ
σr,c1µu‖m−1 ≤ C

′e−κ
′µ(D + ‖u‖m−1).

This could certainly be written in the framework of propagation of (semiclassical, par-
tially analytic) microsupport with respect to the variable xa (see [Sjö82] or [Mar02, Sec-
tion 3.2]). If na = n, it seems related to microlocal proofs of the Holmgren theorem and
the propagation of the analytic wavefront set (see [Sjö82]).

The proof of Theorem 3.1 is divided into three steps, given in Sections 3.1–3.3 respec-
tively.
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3.1. Step 1: Geometric setting

The following lemma is a refined version of [RZ98, Lemma 4.1, p. 514] or [Hör97, Lem-
mata 4.3 and 4.4]. Its proof essentially follows that of [RZ98, Lemma 4.1]. We state the
geometric part for balls that are not necessarily Euclidean. This will be useful in Section 5,
where we study the boundary value problem and need to make changes of variable.

Lemma 3.4. Let P be analytically principally normal in {ξa = 0} inside � ⊂ Rn, of
order m and with principal symbol p. Let φ ∈ C2(�;R) and S = {φ = 0} be a C2

oriented hypersurface in �. Let x0
∈ S ∩� with ∇φ(x0) 6= 0. Assume that S is strongly

pseudoconvex in � × {ξa = 0} at x0 for P (in the sense of Definition 1.7). Then there
exists A > 0 such that the function

ψ(x) := (x−x0)·∇φ(x0)+A((x−x0)·∇xφ(x
0))2+

1
2
φ′′(x0)(x−x0, x−x0)−

1
A
|x−x0

|
2

satisfies:

(1) ψ(x0) = 0 , ∇xψ(x0) = ∇xφ(x
0);

(2) ψ is strongly pseudoconvex in�∩{ξa = 0} at x0 for P (in the sense of Definition 2.1);
(3) let N be a distance function locally equivalent to the Euclidean distance; then there

exists R0 > 0 such that for any R ∈ (0, R0), there exists η0 > 0 and for any 0 < η

< η0 and any η1, η2 > 0 there exist ρ, r > 0 such that(
{φ ≤ ρ} ∩ {ψ ≥ −η} ∩ BN (x

0, R)
)
⊂ BN (x

0, R/8), (3.2)(
{ψ ≥ η1} ∩ BN (x

0, R)
)
⊂ {φ > ρ}, (3.3)

BN (x
0, r) ⊂ {−η2 < ψ < η2}. (3.4)

In this statement, the BN stand for balls with respect to the distance N . Conditions (3.2)–
(3.4) are illustrated in Figure 4.

{ψ = η1}

x0

B(x0, R/8)

{φ = ρ}
{ψ = −η}{φ = 0}

B(x0, r)

∇φ(x0) = ∇ψ(x0)

∇φ
{ψ = 0}

Fig. 4. Local geometry of the level sets of the convexified function ψ (in case N is the Euclidean
distance).
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Proof of Lemma 3.4. (1) directly follows from the definition of ψ as a second order
perturbation of the Taylor expansion of φ at x0.

The proof of the pseudoconvexity in (2) is very similar to that of [RZ98, Lemma 4.1]
or [Hör97, Lemma 7.4]. We sketch it for completeness.

Let us compute

Re {p, {p,ψ}} = Re
(
∂2p

∂ξ∂x

[
∂p̄

∂ξ
; ∇ψ

]
+ ψ ′′xx

[
∂p̄

∂ξ
;
∂p

∂ξ

]
−
∂2p

∂ξ2

[
∂p̄

∂x
; ∇ψ

])
.

Since ∇ψ(x0) = ∇φ(x0), we have

Re {p, {p,ψ}}(x0, ξ) = Re {p, {p, φ}}(x0, ξ)

+ 2A
∣∣∣∣∇xφ(x0) ·

∂p

∂ξ
(x0, ξ)

∣∣∣∣2 − 2
A

∣∣∣∣∂p∂ξ (x0, ξ)

∣∣∣∣2.
In this identity, all terms are homogeneous of degree 2m − 2 in the variable ξ , so it is
enough to prove the estimate for ξ ∈ Sn−1. Hence, applying Lemma A.1 below on the
compact set K = {ξ ∈ Sn−1

: ξa = 0, p(x0, ξ) = 0}, together with the first part of the
pseudoconvexity assumption, yields, for A large enough,

Re {p, {p,ψ}}(x0, ξ) > 0 if p(x0, ξ) = 0 and ξa = 0, ξb 6= 0. (3.5)

For the second estimate, we compute

1
i
{pφ, pφ}(x, ξ)

=
1
i

(
∂p̄

∂ξ
(x, ξ−iτ∇φ)

∂p

∂x
(x, ξ+iτ∇φ)+iτφ′′xx

[
∂p̄

∂ξ
(x, ξ−iτ∇φ);

∂p

∂ξ
(x, ξ+iτ∇φ)

])
−

1
i

(
∂p̄

∂x
(x, ξ−iτ∇φ)

∂p

∂ξ
(x, ξ+iτ∇φ)−iτφ′′xx

[
∂p̄

∂ξ
(x, ξ−iτ∇φ);

∂p

∂ξ
(x, ξ+iτ∇φ)

])
= Cτ,φ,1(x, ξ)+Cτ,φ,2(x, ξ)

with

Cτ,φ,1(x, ξ) :=
1
i

(
∂p̄

∂ξ
(x, ζ̄ )

∂p

∂x
(x, ζ )−

∂p̄

∂x
(x, ζ̄ )

∂p

∂ξ
(x, ζ )

)
,

Cτ,φ,2(x, ξ) := 2τφ′′xx

[
∂p̄

∂ξ
(x, ζ̄ );

∂p

∂ξ
(x, ζ )

]
,

where we have denoted ζ = ξ + iτ∇φ(x). But we notice that for fixed (x, ξ) (and when
φ varies), Cτ,φ,1(x, ξ) only depends on ∇φ(x), while Cτ,φ,2(x, ξ) is linear in φ′′xx(x

0)

once ∇φ(x0) is fixed. So, since ψ(x0) = 0 , ∇ψ(x0) = ∇φ(x0) and

ψ ′′xx(x
0) = φ′′xx(x

0)+ 2At∇φ(x0)∇φ(x0)−
2
A

Id,
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we have Cτ,φ,1(x0, ξ) = Cτ,ψ,1(x
0, ξ), i.e.

1
i
{pψ , pψ }(x

0, ξ) = Cτ,φ,1(x
0, ξ)+ 4Aτ

∣∣∣∣∇xφ(x0) ·
∂p

∂ξ
(x0, ζ )

∣∣∣∣2 − 4τ
A

∣∣∣∣∂p∂ξ (x0, ζ )

∣∣∣∣2.
(3.6)

In identity (3.6), all terms are homogeneous of degree 2m − 1 in the variables (τ, ξ), so
it is enough to prove the estimate for (τ, ξ) ∈ Sn, τ > 0. We now want this to be positive
on the set {(τ, ξ) ∈ Sn : τ > 0, ξa = 0, pφ(x0, ξ) = 0} = {(τ, ξ) ∈ Sn : τ > 0, ξa = 0,
pψ (x

0, ξ) = 0}.

For this, notice first that ∂
∂τ

1
i
{pφ, pφ}

∣∣∣
τ=0
= 2 Re {p, {p, φ}}. Hence, we can write

1
i
{pφ, pφ} =

1
i
{p, p} + 2τ Re {p, {p, φ}} +O(τ 2), τ → 0+, (3.7)

with O(τ 2) uniform in (τ, ξ) ∈ Sn.
Moreover, by the Taylor formula, we have pφ = p + iτ∇φ ·

∂p
∂ξ
+ O(τ 2) =

p + iτ {p, φ} + O(τ 2), with O(τ 2) uniform in (τ, ξ) ∈ Sn. Hence, on the compact set
{(τ, ξ) ∈ Sn : ξa = 0, pφ(x0, ξ) = 0}, we have p = −iτ {p, φ} +O(τ 2). But since P is
analytically principally normal, (1.9) holds and we have {p, p} = O(p) on the compact
set {(τ, ξ) ∈ Sn : ξa = 0}.

In particular, there is a constant C such that
∣∣ 1
iτ
{p, p}

∣∣ ≤ C(|{p, φ}| + |τ |) on
{(τ, ξ) ∈ Sn : ξa = 0, pφ(x0, ξ) = 0, τ 6= 0}. Coming back to (3.7), on this set we
have ∣∣∣∣ 1

iτ
{pφ, pφ} − 2 Re {p, {p, φ}}

∣∣∣∣ ≤ C(|{p, φ}| + |τ |). (3.8)

Moreover, the first pseudoconvexity assumption (1.10) and Lemma A.1 below provide
C1, C2 > 0 such that, on the set {ξa = 0} ∩ {|ξ |2 = 1}, we have

2 Re {p, {p, φ}} + C1(|p|
2
+ |{p, φ}|2) ≥ C2.

This is also true by homogeneity for |ξ | close to 1 with a different constant. Hence, on the
set {(τ, ξ) ∈ Sn : ξa = 0, pφ(x0, ξ) = 0, τ 6= 0}, there exist constants C̃, C > 0 such
that |{p, φ}| ≤ ε and |τ | ≤ ε imply

1
iτ
{pφ, pφ} ≥ C2 − C̃

(
|p|2 + |{p, φ}|2 + |{p, φ}| + |τ |

)
≥ C2 − Cε

where we have used |p| ≤ C|τ | ≤ Cε on this set.
Therefore, there exist ε, C3 > 0 such that in {(τ, ξ) ∈ Sn : ξa = 0, pφ(x0, ξ) = 0,

τ 6= 0}, we have

[|{p, φ}| ≤ ε, |τ | ≤ ε] ⇒
1
iτ
{pφ, pφ} ≥ C3.
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We now extend 1
iτ
{pφ, pφ} to the compact set Kε={(τ, ξ) ∈ Sn : ξa=0, pφ(x0, ξ)=0,

0 ≤ τ ≤ ε}, by giving any positive value when τ = 0. We are in a position to apply
Lemma A.2 with g = 1

iτ
{pφ, pφ} (its extension), f = |{p, φ}|2 and h =

∣∣ ∂p
∂ξ
(x0, ζ )

∣∣2.

This yields 1
iτ
{pψ , pψ }(x

0, ξ) > C on Kε.
The case τ ≥ ε is easier since 1

iτ
{pφ, pφ} is continuous. We apply directly Lem-

ma A.1 using the second pseudoconvexity assumption (1.11).
So, at this stage, we have proved that there exists C such that for A large enough,

1
iτ
{pψ , pψ }(x

0, ξ) > C on {(τ, ξ) ∈ Sn : ξa = 0, pφ(x0, ξ) = 0, τ > 0}. Since
pψ (x

0, ξ) = pφ(x
0, ξ), this yields

1
i
{pψ , pψ }(x

0, ξ) > 0 if pψ (x0, ξ) = 0 and ξa = 0, τ > 0. (3.9)

Combining (3.5) and (3.9) implies that ψ is a strongly pseudoconvex function in
� ∩ {ξa = 0} at x0 for P .

Let us now prove the geometrical part of the lemma, i.e. (3). From now on, the pa-
rameter A is fixed. To simplify notation, we set x0

= 0 and assume that 0 ≤ ρ ≤ η. We
also take a positive constant CN such that 1

CN
N(x, 0) ≤ |x| ≤ CNN(x, 0).

Let us first prove (3.2). We have

1
A
|x|2 = −ψ(x)+ x · ∇φ(0)+ A(x · ∇φ(0))2 +

1
2
φ′′(0)(x, x),

which implies

1
A
|x|2 ≤ η + x · ∇φ(0)+ A(x · ∇φ(0))2 +

1
2
φ′′(0)(x, x)

on the set {ψ ≥ −η}. Moreover, the Taylor expansion of φ yields x ·∇φ(0)+ 1
2φ
′′(0)(x, x)

= φ(x) + f (x) with |f (x)| ≤ ε(|x|)|x|2, where ε : R+ → R+ is increasing and
ε(s)→ 0+ as s → 0+. For x ∈ {ψ ≥ −η} ∩ {φ ≤ ρ}, we thus obtain

1
A
|x|2 ≤ η+ρ+A(x ·∇φ(0))2+ε(|x|)|x|2 ≤ 2η+A(x ·∇φ(0))2+ε(|x|)|x|2. (3.10)

Moreover, for x ∈ {ψ ≥ −η}, the definition of ψ gives

x · ∇φ(0) = ψ(x)− A(x · ∇φ(0))2 −
1
2
φ′′(0)(x, x)+

1
A
|x|2

≥ −η − (AC2
0 + C0/2)|x|2 +

1
A
|x|2

≥ −η − (AC2
0 + C0/2)|x|2

for C0 = max(|∇φ(0)|,maxx∈B(0,R0) |φ
′′(x)|). Also, for x ∈ {φ ≤ ρ}, we have

x · ∇φ(0) ≤ φ(x)+ C0|x|
2/2 ≤ ρ + C0|x|

2/2 ≤ η + C0|x|
2/2.
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Combining the last two inequalities, we obtain, for x ∈ {φ ≤ ρ} ∩ {ψ ≥ −η},

|x · ∇φ(0)| ≤ η + (AC2
0 + C0/2)|x|2,

and hence

|x · ∇φ(0)|2 ≤ η2
+ 2η(AC2

0 + C0/2)|x|2 + (AC2
0 + C0/2)2|x|4.

Coming back to (3.10) yields, for x ∈ {φ ≤ ρ} ∩ {ψ > −η},

1
A
|x|2 ≤ 2η + Aη2

+ 2Aη(AC2
0 + C0/2)|x|2 + A(AC2

0 + C0/2)2|x|4 + ε(|x|)|x|2.

For x ∈ {φ ≤ ρ} ∩ {ψ ≥ −η} ∩ BN (0, R), this implies

1
A
|x|2 ≤ 2η + Aη2

+ 2Aη(AC2
0 + C0/2)|x|2 + A(AC2

0 + C0/2)2(CNR)2|x|2

+ ε(CNR)|x|
2.

Taking R ≤ R0 with R0 = R0(A,C0) sufficiently small such that

A(AC2
0 + C0/2)2(CNR)2 + ε(CNR) <

1
4A
,

and η < η0 sufficiently small such that

2Aη(AC2
0 + C0/2) <

1
4A
,

we have by absorption

|x|2 ≤ 2A(2η + Aη2).

This gives N(x, 0) < R/8 as soon as η < η0 for η0 = η0(A,C0, R) sufficiently small.
This concludes the proof of (3.2) for the chosen constants as long as 0 ≤ ρ ≤ η.

Let us now prove (3.3). Note that performing exactly the same computation as before
with ρ = η = 0 and the same R, we obtain

{φ ≤ 0} ∩ {ψ ≥ 0} ∩ BN (0, R) = {0}. (3.11)

Assume that the compact set {ψ ≥ η1} ∩ BN (0, R) is nonempty (otherwise (3.3) is
trivial). The minimum of φ on that set is reached at some point xm. We necessarily have
φ(xm) > 0: otherwise, (3.11) implies xm = 0, which is impossible since η1 > 0 and
ψ(0) = 0. So, in particular, x ∈ {ψ ≥ η1} ∩ BN (0, R) implies φ(x) ≥ φ(xm) > 0. This
is (3.3) with some appropriate 0 < ρ < min(φ(xm), η).

Finally, (3.4) is just a matter of continuity. Since ψ(0) = 0, there exists r > 0 such
that N(x, 0) ≤ r implies |ψ(x)| ≤ η2. ut
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Remark 3.5. Note that the estimate (3.8) implies in particular that 2 Re {p, {p, φ}} is the
limit as τ → 0 of 1

iτ
{pφ, pφ} on the subset{

(τ, ξ) ∈ Sn : ξa = 0, pφ(x0, ξ) = {pφ, φ}(x
0, ξ) = 0, τ 6= 0

}
.

However, this is not used directly in the above proof.

Now, thanks to Lemma 3.4 and the Carleman estimate of Theorem 2.2, we have the fol-
lowing result.

Corollary 3.6. Let x0
∈ � = �a × �b ⊂ Rna × Rnb and P be a partial differential

operator on � of order m. Assume that

• P is analytically principally normal on {ξa = 0} inside � (in the sense of Defini-
tion 1.6);
• there is a function φ defined in a neighborhood of x0 such that φ(x0) = 0 and {φ = 0}

is a C2 strongly pseudoconvex oriented surface in the sense of Definition 1.7.

Then there exists a quadratic polynomial ψ : �→ R and R0 > 0 such that B(x0, 4R0)

⊂ �, and for any R ∈ (0, R0] there exist ε, δ, ρ, r, d, τ0, C > 0 such that δ ≤ d/8 and

(1) the Carleman estimate

τ‖Qψ
ε,τu‖

2
m−1,τ ≤ C

(
‖Qψ

ε,τPu‖
2
0 + ‖e

τ(ψ−d)Pu‖20 + ‖e
τ(ψ−d)u‖2m−1,τ

)
(3.12)

holds for all τ ≥ τ0 and all u ∈ C∞0 (B(x
0, 4R));

(2) we have(
B(x0, 5R/2) \ B(x0, R/2)

)
∩ {−9δ ≤ ψ ≤ 2δ} b {φ > 2ρ} ∩ B(x0, 3R), (3.13)

{δ/4 ≤ ψ ≤ 2δ} ∩ B(x0, 5R/2) b {φ > 2ρ} ∩ B(x0, 3R), (3.14)

B(x0, 2r) b {−δ/2 ≤ ψ ≤ δ/2} ∩ B(x0, R). (3.15)

Proof. First, Lemma 3.4 furnishes the function ψ for some A (large enough in its proof)
and R0 > 0. Once ψ is fixed, Theorem 2.2 yields the Carleman estimate (3.12) for
some constants R, d, τ0, ε, C. Then, we take any R < min(R/4, R0/3) (with R0 given
by Lemma 3.4) and δ < min(d/8, η0/9). Finally, the conclusion of Lemma 3.4 with
η = 9δ, η1 = δ/4, η2 = δ/2 implies (3.13)–(3.15), with possibly different constants,
which concludes the proof. ut

3.2. Step 2: Using the Carleman estimate

From now on, we let�, x0, P and φ be as in Corollary 3.6. The function ψ and constants
R0, R := R0 (that we fix now) and δ, ρ, r are provided by Corollary 3.6, as also are the
constants d, τ0, C of the Carleman estimate (3.12). We shall moreover assume that there
exists C > 0 such that

1
C
µ ≤ λ ≤ Cµ. (3.16)
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Actually, at the end of the proof, we will take λ = c1µ, but we believe that to keep the
notation λmakes the presentation more readable by making a difference betweenµwhich
is the frequency and λ which is the regularization parameter. All the constants appearing
in the following may depend upon the above ones.

Before going further, we need to introduce some cutoff functions that will be used
all along the proof. We first let χ(s) be a smooth function supported in (−8, 1) such that
χ(s) = 1 for s ∈ [−7, 1/2], and set

χδ(s) := χ(s/δ). (3.17)

Hence, χδ(s) is a smooth function supported in (−8δ, δ) such that χδ(s) = 1 for s ∈
[−7δ, δ/2]. We also define χ̃ so that χ̃ = 1 on (−∞, 3/2) and supported in s ≤ 2,
and denote as well χ̃δ(s) := χ̃(s/δ). We finally recall that the functions σR and σ2R are
defined in (3.1).

In this part of the proof, we want to apply the Carleman estimate (3.12) (with weightψ
and constants d, τ0, C given by Corollary 3.6) to the functions σ2RσR,λχ̃δ(ψ)χδ,λ(ψ)u

(for any u ∈ C∞0 (R
n)), which is indeed compactly supported in B(x0, 4R) (according to

the definition of σ2R as in (3.1)). We first need to estimate the term

‖Qψ
ε,τPσ2RσR,λχ̃δ(ψ)χδ,λ(ψ)u‖0,

which will appear on the right hand side of the inequality. Using suppχδ ⊂ (−∞, δ) with
Lemma 2.13, together with (3.16), we first have

‖Qψ
ε,τPσ2RσR,λχ̃δ(ψ)χδ,λ(ψ)u‖0 ≤ ‖Q

ψ
ε,τσ2RσR,λχ̃δ(ψ)χδ,λ(ψ)Pu‖0

+ ‖Qψ
ε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), P ]u‖0

≤ Cµ1/2eCτ
2/µeδτ‖Pu‖B(x0,4R)

+ ‖Qψ
ε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), P ]u‖0. (3.18)

The main task now consists in estimating the term containing the commutator, which we
do in the following lemma.

Lemma 3.7. With the above notations and assumptions, for any ϑ ∈ C∞0 (R
n) such that

ϑ(x) = 1 on a neighborhood of {φ ≥ 2ρ} ∩ B(x0, 3R), there exist C, c > 0 and N > 0
such that

‖Qψ
ε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), P ]u‖0 ≤ Ce

2δτ
‖M

2µ
λ ϑλu‖m−1

+ Cµ1/2τN
(
e−8δτ

+ e−
εµ2
8τ + e−cµeδτ

)
eCτ

2/µeδτ‖u‖m−1 (3.19)

for any u ∈ C∞0 (R
n), µ ≥ 1, λ such that (3.16) holds and τ ≥ 1.

We stress that all geometric constants are now fixed (see the beginning of Section 3.2).
Hence, all constants appearing in the estimates may depend on them. In particular, the
constant C in (3.19) depends on δ.
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Proof of Lemma 3.7. The operator P can be written P =
∑
|α|≤m pα(x)∂

α , with pα
smooth and analytic in xa in a neighborhood of B(x0, 4R) ⊂ �. By the Leibniz rule,

pα(x)∂
α(σ2RσR,λχ̃δ(ψ)χδ,λ(ψ)u)

= pα(x)
∑

α1+α2+α3+α4+α5=α

C(αi )∂
α1(χδ,λ(ψ))∂

α2(σ2R)∂
α3(σR,λ)∂

α4(χ̃δ(ψ))∂
α5u.

The commutator [χ̃δ(ψ)χδ,λ(ψ)σ2RσR,λ, P ] consists of all terms in the sum where at
least one of the αi is nonzero, for i = 1, 2, 3 or 4. Hence, we can split it into a sum of
differential operators of order m− 1 as

[P, σ2RσR,λχ̃δ(ψ)χδ,λ(ψ)] = B1 + B2 + B3 + B4,

where

1. B1 contains the terms with α1 6= 0 and α2 = α4 = 0;
2. B2 contains some terms with α2 6= 0;
3. B3 contains the terms with α3 6= 0 and α1 = α2 = α4 = 0;
4. B4 contains some terms with α4 6= 0.

Note that some terms could belong to several categories, and that all terms are supported
in {ψ ≤ 2δ} ∩ B(x0, 4R). More precisely:

1. B1 consists of terms where there is at least one derivative on χδ,λ(ψ) and none on σ2R
and χ̃δ(ψ). According to the definition of χ and (3.17), there are only two possibilities
for the localization of a derivative of χδ . Since χ ′δ,λ =

1
δ
(χ ′)δ,λ, ∂α1(χδ,λ(ψ)) with

α1 6= 0 can be decomposed into two categories of terms: we shall use the notation
χ−δ,λ for those terms supported in [−8δ,−7δ] and χ+δ,λ for those supported in [δ/2, δ].
Hence, B1 is a sum of generic terms of the form

B± = b±(x)∂
γ
= f σ2R∂

β(σR,λ)χ
±

δ,λ(ψ)χ̃δ(ψ)∂
γ ,

where |β|, |γ | ≤ m − 1, f ∈ C∞0 (R
n) is analytic in xa in B(x0, 4R), and χ±δ is a

derivative of χδ (with the above convention for the superscript ±). The function f
actually contains some terms coming from pα and some derivatives of ψ . Notice that
in the absence of regularization (i.e. the subscript λ), B+ would be supported in(

{δ/2 ≤ ψ ≤ δ} ∩ B(x0, 2R)
)
⊂
(
{φ > 2ρ} ∩ {ψ ≤ δ} ∩ B(x0, 2R)

)
,

and B− in {−8δ ≤ ψ ≤ −7δ} ∩ B(x0, 2R).
2. B2 consists of terms where there is at least one derivative on σ2R . Hence, B2 is a sum

of generic terms of the form

B̌2 = b2(x)∂
γ
= b̃∂β(σR,λ)(χ

(k))δ,λ(ψ)∂
γ ,

where k, |β|, |γ | ≤ m−1, the function b̃ is smooth supported inB(x0, 4R)\B(x0, 2R)
and b̃ contains derivatives of σ2R , some terms of pα(x), and possibly some derivatives
of ψ or χ̃δ(ψ).
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3. B3 consists of terms where there is at least one derivative on σR,λ and none on χδ,λ(ψ),
χ̃δ(ψ) or σ2R . Hence, B3 is a sum of generic terms of the form

B̌3 = b3(x)∂
γ
= f σ2R∂

β(σR,λ)χδ,λ(ψ)χ̃δ(ψ)∂
γ ,

where f is smooth in (xa, xb), analytic in xa in a neighborhood of B(x0, 4R), |β| ≥ 1
and |β|, |γ | ≤ m − 1. Notice also that in the absence of regularization (i.e. the sub-
script λ), B̌3 would be supported in(
{−8δ ≤ ψ ≤ δ} ∩ B(x0, 2R) \ B(x0, R)

)
⊂
(
{φ > 2ρ} ∩ {ψ ≤ δ} ∩ B(x0, 2R)

)
.

4. B4 consists of terms where there is at least one derivative on χ̃δ(ψ). Hence, B4 is a
sum of generic terms of the form

B̌4 = b4(x)∂
γ
= b̃∂β(σR,λ)(χ

(k))δ,λ(ψ)∂
γ

where k, |β|, |γ | ≤ m − 1 and the function b̃ is smooth supported in B(x0, 4R) ∩
{ψ ∈ [3δ/2, 2δ]} and b̃ contains derivatives of σ2R , some terms from pα(x), and some
derivatives of ψ or χ̃δ(ψ).

Now, proving an estimate of the last term in (3.18) consists in estimating successively
the associated expressions with the generic terms B±, B̌2, B̌3, B̌4; the final estimate then
follows as the LHS of (3.19) is bounded by a finite sum of such terms. Recall that δ is
fixed, so that Cδ = C in the estimates below.

Estimating B−. Using Lemma 2.13 applied to χ−δ , we have

‖Qψ
ε,τB−u‖0 ≤ ‖e

τψB−u‖0 ≤ Cδλ
1/2e−7δτ eτ

2/λ
‖u‖m−1 ≤ Cµ

1/2e−7δτ eCτ
2/µ
‖u‖m−1.

(3.20)

Estimating B2. We use Lemma 2.13 applied to χ (k)δ and Lemma 2.3 applied to b̃ and
∂β(σR) where supp b̃ ∩ supp σR = ∅. This yields

‖Qψ
ε,τB2u‖0 ≤ ‖e

τψB2u‖0 ≤ Cδλ
1/2eδτ eτ

2/λe−cλ‖u‖m−1

≤ Cµ1/2eδτ eCτ
2/µe−cµ‖u‖m−1. (3.21)

Estimating B4. We use eτψ ≤ e2δτ and |(χ (k))δ,λ(ψ)| ≤ Ce−cλ on {ψ ∈ [3δ/2, 2δ]}
thanks to Lemma 2.3 applied to χ (k) and 1[3δ/2,2δ]. This yields

‖Qψ
ε,τB4u‖0 ≤ ‖e

τψB4u‖0 ≤ Cδe
2δτ e−cλ‖u‖m−1 ≤ Ce

2δτ e−cµ‖u‖m−1. (3.22)

First estimates on B+ and B3. With ? = + or 3, we have∥∥Qψ
ε,τB?u

∥∥
0 =

∥∥e−ε |Da |22τ eτψB?u
∥∥

0

≤
∥∥e−ε |Da |22τ M

µ
λ e

τψB?u
∥∥

0 +
∥∥e−ε |Da |22τ (1−Mµ

λ )e
τψB?u

∥∥
0

≤ ‖M
µ
λ e

τψB?u‖0 + C
(
e−

εµ2
8τ + e−cµ

)
‖eτψB?u‖0

≤ ‖M
µ
λ e

τψB?u‖0 + Cλ
1/2(e− εµ2

8τ + e−cµ
)
eCτ

2/µeδτ‖u‖m−1,
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where the second inequality comes from the application of Lemma 2.14 and the third
from Lemma 2.13.

Next, concerning the term with ‖Mµ
λ e

τψB?u‖0, we have B? = b?∂γ where ? is either
+ or 3. So, we can estimate

‖M
µ
λ e

τψB?u‖0 ≤ ‖M
µ
λ e

τψb?(1−M
2µ
λ )∂γ u‖0 + ‖M

µ
λ e

τψb?M
2µ
λ ∂γ u‖0,

where
‖M

µ
λ e

τψb?(1−M
2µ
λ )∂γ u‖0 ≤ Cτ

NeCτ
2/µe2δτ−cµ

‖u‖m−1,

according to Lemma 2.17 applied in the specific case of (2.34). Note that we use the
fact that f σ2R = f in a neighborhood of B(x0, 2R) ⊃ supp σR , and f σ2R is therefore
analytic in xa on a neighborhood of this set. Next,

‖M
µ
λ e

τψb?M
2µ
λ ∂γ u‖0 ≤ ‖e

τψb?M
2µ
λ ∂γ u‖0.

Combining the above four estimates, we now have

‖Qψ
ε,τB?u‖0 ≤ ‖e

τψb?M
2µ
λ ∂γ u‖0 + Cµ

1/2τN
(
e−

εµ2
8τ + eδτ e−cµ

)
eCτ

2/µeδτ‖u‖m−1.

(3.23)

Now, to estimate the first term of the RHS, we will distinguish whether ? = + or 3, using
the geometry of the “almost” location of each b?.

Estimating B+. We have to treat terms of the form

B+ = b+∂
γ
= f

˜̃
bλχ

+

δ,λ(ψ)χ̃δ(ψ)∂
γ ,

where ˜̃b = ∂β(σR), |β| ≤ m − 1, is supported in B(x0, 2R) and f ∈ C∞0 (R
n). We

decompose Rn as Rn = O1 ∪O2 ∪O3 with

O1 = {ψ /∈ [δ/4, 2δ]} ∩ B(x0, 5R/2),

O2 = B(x
0, 5R/2)c,

O3 = {ψ ∈ [δ/4, 2δ]} ∩ B(x0, 5R/2).

On O1, since χ+δ is supported in [δ/2, δ] and using Lemma 2.3 with f2 = 1[δ/4,2δ]c , we
have |χ+δ,λ(ψ)| ≤ e

−cλ. Moreover, eτψ ≤ e2δτ on the support of χ̃δ . Hence,

‖eτψb+M
2µ
λ ∂γ u‖L2(O1)

≤ Ce−cλe2δτ
‖u‖m−1 ≤ Ce

−cµe2δτ
‖u‖m−1.

On O2, using Lemma 2.3 with f2 = 1O2 and f1 =
˜̃
b and then Lemma 2.13, we get

‖eτψb+M
2µ
λ ∂γ u‖L2(O2)

≤ Cλ1/2e−cλeδτ eτ
2/λ
‖u‖m−1 ≤ Cµ

1/2e−cµeδτ eCτ
2/µ
‖u‖m−1.
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Using (3.14), we can find a smooth cutoff function ϑ̃ such that ϑ̃ = 1 on a neigh-
borhood of O3 and supported in {φ > 2ρ} ∩ B(x0, 3R). So, for λ large enough, we have
ϑ̃λ ≥ 1/2 on O3. Moreover, |eτψ | ≤ e2δτ on O3, and thus

‖eτψb+M
2µ
λ ∂γ u‖L2(O3)

≤ e2δτ
‖b+M

2µ
λ ∂γ u‖L2(O3)

≤ Ce2δτ
‖M

2µ
λ ∂γ u‖L2(O3)

≤ Ce2δτ
‖ϑ̃λM

2µ
λ ∂γ u‖L2(O3)

≤ Ce2δτ
‖ϑ̃λM

2µ
λ ∂γ u‖L2 .

Let ˜̃ϑ ∈ C∞0 be such that ˜̃ϑ = 1 on a neighborhood of supp ϑ̃ and supported in
{φ > 2ρ} ∩ B(x0, 3R). This is possible since supp ϑ̃ ⊂ {φ > 2ρ} ∩ B(x0, 3R). In
particular, since ϑ = 1 on {φ > 2ρ} ∩ B(x0, 3R) by assumption, we have ϑ = 1 in a
neighborhood of supp ˜̃ϑ . Then, according to Lemma 2.6 and the properties of ˜̃ϑ , we have

‖ϑ̃λM
2µ
λ ∂γ u‖L2 ≤ ‖

˜̃
ϑλM

2µ
λ u‖m−1 + e

−cλ
‖u‖m−1,

and then

‖
˜̃
ϑλM

2µ
λ u‖m−1 ≤ ‖M

2µ
λ ϑλu‖m−1 + Ce

−cµ
‖u‖m−1,

according to Lemma 2.11.
Combining the previous estimates with (3.23), we have obtained

‖Qψ
ε,τB+u‖0 ≤ Ce

2δτ
‖M

2µ
λ ϑλu‖m−1

+ Cµ1/2τN
(
e−

εµ2
8τ + e−cµeδτ

)
eCτ

2/µeδτ‖u‖m−1. (3.24)

Estimating B3. We now treat terms of the form

B3 = b3∂
γ
= f

˜̃
bλχδ,λ(ψ)χ̃δ(ψ)∂

γ ,

where˜̃b = ∂β(σR), with |β| ≥ 1, is supported in B(x0, 2R)\B(x0, R) and f ∈ C∞0 (R
n).

We decompose Rn as Rn = O ′1 ∪O
′

2 ∪O
′

3 with

O ′1 =
{
ψ /∈ [−9δ, 2δ] ∩ {|x − x0

| ∈ [R/2, 5R/2]}
}
,

O ′2 = {|x − x
0
| /∈ [R/2, 5R/2]},

O ′3 =
{
ψ ∈ [−9δ, 2δ] ∩ {|x − x0

| ∈ [R/2, 5R/2]}
}
.

On O ′1 ∩ supp χ̃δ(ψ), we have eτψ |χδ,λ(ψ)| ≤ e−cλe2δτ as a consequence of Lemma 2.3
with f2 = 1[−9δ,2δ]c , since χδ is supported in [−8δ, δ]. We thus obtain

‖eτψb3M
2µ
λ ∂γ u‖L2(O ′1)

≤ Ce−cλe2δτ
‖u‖m−1 ≤ Ce

−cµe2δτ
‖u‖m−1.

On O ′2, using Lemma 2.3 with f2 = 1O ′2
and f1 =

˜̃
b and using the support of χ̃δ(ψ), we

get

‖eτψb3M
2µ
λ ∂γ u‖L2(O ′2)

≤ Ce−cλe2δτ
‖u‖m−1 ≤ Ce

−cµe2δτ
‖u‖m−1.
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Using (3.13), we can find a function ϑ̃ such that ϑ̃ = 1 on a neighborhood of O ′3 and
supported in {φ > 2ρ} ∩ B(x0, 3R). So, for λ large enough, we have ϑ̃λ ≥ 1/2 on O ′3.
Moreover, |eτψ | ≤ e2δτ on O ′3. This yields

‖eτψb3M
2µ
λ ∂γ u‖L2(O ′3)

≤ e2δτ
‖b3M

2µ
λ ∂γ u‖L2(O ′3)

≤ Ce2δτ
‖M

2µ
λ ∂γ u‖L2(O ′3)

≤ Ce2δτ
‖ϑ̃λM

2µ
λ ∂γ u‖L2(O ′3)

.

We can then finish the estimates for B3 just as for B+ to obtain, combining the above
estimates with (3.23),

‖Qψ
ε,τB3u‖0 ≤ Ce

2δτ
‖M

2µ
λ ϑλu‖m−1 + Cµ

1/2τN
(
e−

εµ2
8τ + eδτ e−cµ

)
eCτ

2/µeδτ‖u‖m−1.

(3.25)

Combining (3.20), (3.21), (3.22), (3.24) and (3.25) concludes the estimate of the com-
mutator (3.19) and the proof of Lemma 3.7. ut

Remark 3.8. In the special case of terms of the form pα(xb)∂
α , that is, with coefficients

independent of xa , we can obtain better estimates, uniform in the size of pα , since

‖Qψ
ε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), pα(xb)∂

α
]u‖0

= ‖pα(xb)Q
ψ
ε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), ∂

α
]u‖0

≤ ‖pα‖L∞‖Q
ψ
ε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), ∂

α
]u‖0.

Also, for α = 0, that is, for a potential V (xb), we have [σ2RσR,λχδ,λ(ψ)χ̃δ(ψ), V ] = 0,
so this term does not give any contribution.

This will be useful in Section 6 below, when we want estimates that are uniform
with respect to lower order perturbations. We also refer to the paper [LL16], where these
uniform estimates are used.

Moreover, if pα is only analytic in xa and bounded in xb, all estimates of the commu-
tator remain valid. Indeed, we only use Lemma 2.17 for k = 0, which remains true in that
setting.

Now, we are ready to apply the Carleman estimate (3.12) to obtain the estimate of the
following lemma.

Lemma 3.9. With the previous notations and assumptions, for any ϑ ∈ C∞0 (R
n) such

that ϑ(x) = 1 on a neighborhood of {φ > 2ρ} ∩ B(x0, 3R), there exist µ0, C, c,N > 0
such that

τ‖Qψ
ε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖m−1,τ

≤ Cµ1/2eCτ
2/λeδτ‖Pu‖B(x0,4R) + Ce

2δτ
‖M

2µ
λ ϑλu‖m−1

+ Cµ1/2τN
(
e−8δτ

+ e−
εµ2
8τ + eδτ−cµ

)
eCτ

2/µeδτ‖u‖m−1 (3.26)

for any u ∈ C∞0 (R
n), µ ≥ µ0, λ such that (3.16) holds and τ ≥ τ0.
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Proof. We only need to estimate the last two terms on the RHS of the Carleman esti-
mate (3.12) (the first term being estimated in (3.18) and Lemma 3.7). Since we have cho-
sen δ ≤ d/8, we have δ ≤ d−7δ, so that the support of χδ gives, using again Lemma 2.13
for τ ≥ τ0, 1

Cµ ≤ λ ≤ Cµ,

‖eτ(ψ−d)σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖m−1,τ ≤ Cλ
1/2τm−1e−7δτ eτ

2/λ
‖u‖m−1

≤ Cµ1/2τm−1e−7δτ eCτ
2/µ
‖u‖m−1. (3.27)

We also need to estimate

‖eτ(ψ−d)Pσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖0

≤ ‖eτ(ψ−d)σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)Pu‖0

+ ‖eτ(ψ−d)[σ2RσR,λχδ,λ(ψ)χ̃δ(ψ), P ]u‖0

≤ Ce−τdλ1/2eδτ eτ
2/λ(‖Pu‖L2(B(x0,4R)) + ‖u‖m−1)

≤ Cµ1/2e−7δτ eCτ
2/µ(‖Pu‖L2(B(x0,4R)) + ‖u‖m−1) (3.28)

where we have applied several times Lemma 2.13 to χδ,λ(ψ) or some of its derivatives of
order less thanm−1. So, the Carleman estimate (3.12) applied to σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u

together with (3.18), (3.19), (3.27) and (3.28) gives (3.26) for all τ0 ≤ τ , µ large enough,
and λ such that (3.16) holds. ut

3.3. Step 3: A complex analysis argument

The purpose of this part is to transfer the information given by the Carleman estimate to
some estimates on the low frequencies of the function and conclude the proof of The-
orem 3.1. The presence of the nonlocal regularizing term e−ε|Da |

2/(2τ) makes this task
more intricate than in the usual case and imposes working by duality. As in [Tat95, Hör97,
Tat99b, Tat99a], the idea is to proceed in the following three steps:

1. We make a kind of foliation along the level sets of ψ : if we want to measure u, we
rather define the distribution hf = ψ∗(f u) by

〈hf , w〉E′(R),C∞(R) = 〈f u,w(ψ)〉E′(Rn),C∞(Rn),

and estimate it for any test function f . Heuristically, hf (s) is the integral of f u on the
level set {ψ(x) = s}.

2. We notice that the Fourier transform of hf is ĥf (ζ ) = 〈f u, e−iζψ 〉 and can be ex-
tended to the complex domain if u is compactly supported. In particular, on the imag-
inary axis, ĥf (iτ ) = 〈f, ueτψ 〉. Since the Carleman estimate gives information on the
norm of eτψu for τ large, this can be translated into some information on ĥf on the
upper imaginary axis. A Phragmén–Lindelöf type argument allows one to transfer this
estimate to the (almost) whole upper half-plane.

3. Finally, by using a change of contour, this information can be transferred to the real
axis where we can estimate the real Fourier transform ĥf .
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Note that in the problem of (qualitative) unique continuation, the third step is replaced by
a Paley–Wiener type argument: a bound of exponential type for |ĥf (ζ )| on C implies some
conditions on the support of hf . Roughly speaking, if ψ(x) = x1, the problem is to trans-
fer information on the Laplace transform (with respect to the x1 variable)

∫
x1≥C

eτx1f u

(given by the Carleman estimate) to information on the Fourier transform using com-
plex analysis. Moreover, since the Carleman estimate only gives some information on
e−ε|Da |

2/(2τ)eτψu, we need to add some cutoff in frequency to this reasoning.
More precisely, let us define

η ∈ C∞0 ((−4, 1)), η = 1 in [−1/2, 1/2] and ηδ(s) := η(s/δ).

We first prove Lemma 3.10 below. We then complete the proof of Theorem 3.1, by esti-
mating from below the left hand side of the inequality appearing in the lemma.

Lemma 3.10. Under the above assumptions, there is τ̃0 = (‖ψ‖L∞(B(x0,4R)) + 9δ)1/2τ0
> 0 such that for any κ, c1 > 0, there exist β0, C, c > 0 (depending on δ, ψ, d, τ0, κ, c1,

ε, R and all the cutoff functions) such that for any 0 < β < β0, for all µ ≥ τ̃0/β and
u ∈ C∞0 (R

n), we have

‖Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u‖m−1 ≤ Ce
−cµ(D + ‖u‖m−1)

with
D = eκµ(‖M

2µ
λ ϑλu‖m−1 + ‖Pu‖B(x0,4R)), λ = 2c1µ.

Proof. We now follow [Hör97, Proposition 2.1]. For any test function f ∈ S(Rn), we
define the following distribution (with β > 0 to be chosen later):

〈hf , w〉E′(R),C∞(R) := 〈(M
βµf )σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u,w(ψ)〉E′(Rn),C∞(Rn).

We choose the particular test functions w = ηδ,λ, and want to estimate the quantity

〈hf , ηδ,λ〉E′(R),C∞(R) = 〈(M
βµf )σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, ηδ,λ(ψ)〉E′(Rn),C∞(Rn)

= 〈Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u, f 〉S′(Rn),S(Rn),

uniformly with respect to f to finally obtain an estimate on

‖Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u‖m−1.

Being the Fourier transform of a compactly supported distribution, ĥf is an entire function
satisfying

ĥf (ζ ) = 〈(M
βµf )σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, e

−iζψ
〉E′(Rn),C∞(Rn)

= 〈σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, e
−iζψ (Mβµf )〉E′(Rn),C∞(Rn)

= 〈e−iζψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, (M
βµf )〉E′(Rn),C∞(Rn), ζ ∈ C.
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Using supp σ2R ⊂ B(x
0, 4R), we have the a priori estimate

|ĥf (ζ )| = |〈e
−iζψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, (M

βµf )〉E′(Rn),C∞(Rn)|

≤ ‖e−iζψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖m−1‖(M
βµf )‖1−m

≤ C〈|ζ |〉m−1e
|Im ζ | ‖ψ‖

L∞(B(x0,4R))‖u‖m−1‖f ‖1−m, ζ ∈ C. (3.29)

It will be in particular useful for ζ ∈ R, in which case the exponential vanishes.
Finally, for ζ = iτ with τ > 0, we have

|ĥf (iτ )| = |〈(M
βµf ), eτψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u〉C∞(Rn),E′(Rn)|

=
∣∣〈e ε

2τ |Da |
2
(Mβµf ), e−

ε
2τ |Da |

2
eτψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u

〉
S(Rn),S′(Rn)

∣∣
≤
∥∥e ε

2τ |Da |
2
Mβµf

∥∥
1−m

∥∥e− ε
2τ |Da |

2
eτψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u

∥∥
m−1

≤ e
ε

2τ β
2µ2
‖f ‖1−m‖Q

ψ
ε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖m−1,

asMβµ
= m

(
Da
βµ

)
, with |ξa| ≤ βµ on suppm

(
·

βµ

)
. Using (3.26) we obtain, for all τ ≥ τ0,

µ ≥ 1, 1
Cµ ≤ λ ≤ Cµ,

|ĥf (iτ )| ≤ Ce
ε

2τ β
2µ2
‖f ‖1−m

(
µ1/2eCτ

2/µeδτ‖Pu‖B(x0,4R) + e
2δτ
‖M

2µ
λ ϑλu‖m−1

+ Cµ1/2τN
(
e−8δτ

+ e−
εµ2
8τ + eδτ−cµ

)
eCτ

2/µeδτ‖u‖m−1
)
.

Now, we choose
λ = 2c1µ,

and to simplify notation we write, for κ > 0,

D = eκµ(‖M
2µ
λ ϑλu‖m−1 + ‖Pu‖B(x0,4R)).

With this notation, we have

|ĥf (iτ )| ≤ Ce
ε

2τ β
2µ2
‖f ‖1−m

(
µ1/2eCτ

2/µeδτ e−κµD + e2δτ e−κµD

+ µ1/2τN
(
e−8δτ

+ e−
εµ2
8τ + eδτ−cµ

)
eCτ

2/µeδτ‖u‖m−1
)

≤ Cµ1/2τNe
ε

2τ β
2µ2
eCτ

2/µe2δτ (D + ‖u‖m−1)‖f ‖1−m
(
e−cµ + e−

εµ2
8τ + e−9δτ ),

(3.30)

where the new constant c > 0 may depend on κ .
We now come back to the quantity we want to estimate:

〈Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u, f 〉S′(Rn),S(Rn) = 〈hf , ηδ,λ〉E′(R),C∞(R)

=
1

2π

∫
R
ĥf (ζ )η̂δ,λ(−ζ ) dζ.
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As ηδ ∈ C∞0 (−4δ, δ), the Paley–Wiener theorem implies that the function η̂δ is holomor-
phic in the lower complex half-plane together with the estimate

|η̂δ(ζ )| ≤ Ce
−4δ Im ζ for Im ζ ≤ 0,

that is, for Im ζ ≥ 0,

|η̂δ(−ζ )| ≤ Ce
4δ Im ζ , (3.31)

|η̂δ,λ(−ζ )| = |e
−ζ 2/λη̂δ(−ζ )| ≤ Ce

(Im ζ )2−(Re ζ )2
λ e4δ Im ζ . (3.32)

For a constant 0 < d ≤ 1 (beware that this d is not the d appearing in the Carleman
estimate) to be chosen later, we split the integral into three parts:∫

R
ĥf (ζ )η̂δ,λ(−ζ ) dζ =: I− + I0 + I+

with I− :=
∫
−dµ

−∞
ĥf (ζ )η̂δ,λ(−ζ ) dζ , I0 :=

∫ dµ
−dµ

ĥf (ζ )η̂δ,λ(−ζ ) dζ , I+ :=∫
+∞

dµ
ĥf (ζ )η̂δ,λ(−ζ ) dζ . According to (3.29) for ζ ∈ R and (3.32), we have, for µ ≥ 1,

λ = 2c1µ,

|I±| ≤ C

∫
+∞

dµ

e−|ζ |
2/λ
〈ζ 〉m−1

‖u‖m−1‖f ‖1−m dζ ≤ Cµ
2me−d

2µ2/λ
‖u‖m−1‖f ‖1−m

≤ Cde
−cd2µ

‖u‖m−1‖f ‖1−m. (3.33)

So the main problem is to estimate I0. For this, let us define

H(ζ ) = µ−1/2(ζ + i)−Nei2δζ ĥf (ζ ).

From (3.30), we have the estimate on the imaginary axis for all τ ≥ τ0, for µ ≥ 1,
λ = 2c1µ,

|H(iτ )| ≤ Ce
ε

2τ β
2µ2
eCτ

2/µ(D + ‖u‖m−1)‖f ‖1−m
(
e−cµ + e−

εµ2
8τ + e−9δτ ).

Moreover, (3.29) implies (we can assume N ≥ m− 1 without loss of generality)

|H(ζ )| ≤ Ce|Im ζ | ‖ψ‖
L∞(B(x0,4R))‖u‖m−1‖f ‖1−m, ζ ∈ C, Im ζ ≥ 0.

Next, we define H := H/c0 with

c0 = C(D + ‖u‖m−1)‖f ‖1−m, (3.34)

and apply Lemma 3.11 below to the function H . This lemma implies the existence of
d0 > 0 (depending only on δ, κ, ‖ψ‖L∞(B(x0,4R)), ε and the constants C, c appearing in
the exponents of the estimates of H(iτ )) such that for any d < d0, there exists β0 > 0
(depending on the same parameters together with d) such that for any 0 < β < β0, for all
µ ≥ τ̃0/β := τ0(‖ψ‖L∞(B(x0,4R)) + 9δ)1/2/β, we have

|H(ζ )| ≤ c0e
−8δ Im ζ on Q1 ∩ {dµ/4 ≤ |ζ | ≤ 2dµ}
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whereQ1 = R∗++ iR∗+. The same procedure leads to the same estimate ifQ1 is replaced
by R∗− + iR∗+, and hence, by the whole C+ = {ζ ∈ C : Im ζ ≥ 0}. Coming back to ĥf ,
we obtain

|ĥf (ζ )| ≤ c0µ
1/2
〈|ζ |〉Ne−6δ Im ζ

≤ c0µ
N+1/2e−6δ Im ζ

on C+ ∩ {dµ/4 ≤ |ζ | ≤ 2dµ}. (3.35)

where c0 is defined in (3.34).
We now come back to I0. The function ĥf (ζ )η̂δ,λ(−ζ ) being holomorphic in C+, we

make the following change of contour in the complex plane:

I0 =

∫
0V+

ĥf (ζ )η̂δ,λ(−ζ ) dζ +

∫
0H
ĥf (ζ )η̂δ,λ(−ζ ) dζ +

∫
0V−

ĥf (ζ )η̂δ,λ(−ζ ) dζ,

where the contours (oriented counterclockwise, see Figure 5) are defined by

0V± = {Re ζ = ±dµ, 0 ≤ Im ζ ≤ dµ/2},

0H = {−dµ ≤ Re ζ ≤ dµ, Im ζ = dµ/2},

with d ∈ (0, d0) still to be chosen later on.

dµ 2dµ
Re ζ

dµ
2

dµ
4

Im ζ

−dµ

0H

0V
+

0

0V
−

Fig. 5. Contours of integration.

Since 0V+ ∪ 0
H
∪ 0V− ⊂ C+ ∩ {dµ/4 ≤ |ζ | ≤ 2dµ} and λ = c1µ, estimates (3.32)

and (3.35) imply

|ĥf (ζ )η̂δ,λ(−ζ )| ≤ c0µ
N+1/2e−6δ Im ζ e

(Im ζ )2−(Re ζ )2
2c1µ e4δ Im ζ

≤ c0µ
N+1/2e−2δ Im ζ e

(Im ζ )2−(Re ζ )2
2c1µ , ζ ∈ 0V+ ∪ 0

H
∪ 0V− .

Using 3d2µ2/4 ≤ (Re ζ )2 − (Im ζ )2 ≤ d2µ2 for ζ ∈ 0V+ ∪ 0
V
− we now obtain

|ĥf (ζ )η̂δ,λ(−ζ )| ≤ c0µ
N+1/2e−2δ Im ζ e

−
3d2µ
8c1 , ζ ∈ 0V+ ∪ 0

V
− .
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On 0H , we have Im ζ = dµ/2, so that

|ĥf (ζ )η̂δ,λ(−ζ )| ≤ c0µ
N+1/2e−δdµe

d2
8c1
µ
, ζ ∈ 0H .

Now, we can fix 0 < d ≤ min(4c1δ, d0) so that e−δdµe
d2
8c1
µ
≤ Ce−cµ (for some 0 < c ≤

2c1δ
2). As a consequence,

|I0| =

∣∣∣∣∫
0V+∪0

H∪0V−

ĥf (ζ )η̂δ,λ(−ζ ) dζ

∣∣∣∣ ≤ c0µ
N+1/2

|0V+ ∪ 0
H
∪ 0V− |e

−cµ

≤ Ce−cµ(D + ‖u‖m−1)‖f ‖1−m (3.36)

for any 0 < β < β0 and all µ ≥ max(C, τ̃0/β) (as |0V+ ∪ 0
H
∪ 0V− | = Cdµ).

This together with (3.33) yields, for any 0 < β < β0 and all µ ≥ τ̃0/β,

|〈Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u, f 〉S′(Rn),S(Rn)| = (2π)−1
∣∣∣∣∫

R
ĥf (ζ )η̂δ,λ(−ζ ) dζ

∣∣∣∣
≤ Ce−cµ(D + ‖u‖m−1)‖f ‖1−m.

The constants being uniform with respect to f ∈ S(Rn), this provides by duality

‖Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u‖m−1 ≤ Ce
−cµ(D + ‖u‖m−1),

which concludes the proof of the lemma. ut

With Lemma 3.10, we can now conclude the proof of the local estimate of Theorem 3.1.
Lemma 3.11 and its proof are postponed to the end of the section.

End of the proof of Theorem 3.1. Using Lemma 2.3 with m(2 ·) and 1−m(·), we get

‖M
βµ/2
λ (1−Mβµ)‖Hm−1(Rn)→Hm−1(Rn) ≤ Ce

−cλ.

Hence, Lemma 3.10 yields, for any 0 < β < β0 and all µ ≥ τ̃0/β and λ = 2c1µ,

‖M
βµ/2
λ σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u‖m−1

≤ ‖M
βµ/2
λ (1−Mβµ)σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u‖m−1

+ ‖M
βµ/2
λ Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u‖m−1

≤ Ce−cµ(D + ‖u‖m−1). (3.37)

Using Lemma 2.11, estimate (3.37) and the definition of r in Corollary 3.6, we get, for
any 0 < β < β0 and all µ ≥ τ̃0/β and λ = 2c1µ,

‖M
βµ/4
λ σr,λu‖m−1 ≤ ‖σr,λM

βµ/2
λ u‖m−1 + Ce

−cµ
‖u‖m−1

≤ ‖σr,λM
βµ/2
λ σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u‖m−1

+
∥∥σr,λMβµ/2

λ

(
1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
u
∥∥
m−1 + Ce

−cµ
‖u‖m−1

≤ Ce−cµ(D + ‖u‖m−1)+
∥∥σr,λMβµ/2

λ

(
1− σ2RσR,λχδ,λ(ψ)ηδ,λ(ψ)

)
u
∥∥
m−1. (3.38)
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We know that σR = χδ(ψ) = χ̃δ(ψ) = ηδ(ψ) = 1 on a neighborhood of supp σr
according to (3.15) and the properties of χ , χ̃δ and η. So, we can select 5 ∈ C∞0 (R

n)

such that 5 = 1 on a neighborhood of supp σr and such that σ2R = σR = χδ(ψ) =

χ̃δ(ψ) = ηδ(ψ) = 1 on a neighborhood of supp5. Now, we have∥∥σr,λMβµ/2
λ

(
1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
u
∥∥
m−1

≤
∥∥σr,λMβµ/2

λ

(
1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
(1−5)u

∥∥
m−1

+
∥∥σr,λMβµ/2

λ

(
1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
5u
∥∥
m−1. (3.39)

To estimate the first term, we use Lemma 2.10 to obtain ‖σr,λM
βµ/2
λ (1−5)‖Hm−1→Hm−1

≤ Ce−cµ. Concerning the second term, we have∥∥σr,λMβµ/2
λ

(
1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
5u
∥∥
m−1

≤ C
∥∥(1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
5u
∥∥
m−1 ≤ Ce

−cµ
‖u‖m−1 (3.40)

where in the last inequality we have decomposed

1−σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ) = (1−σ2R)+σ2R(1−σR,λ)+σ2RσR,λ(1−χδ,λ(ψ))
+σ2RσR,λχδ,λ(ψ)(1− χ̃δ(ψ))
+σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)(1−ηδ,λ(ψ))

and used Lemmata 2.3 and 2.5; these can be applied thanks to the geometric fact that

dist(supp5, {x ∈ Rn : σ2R(x) 6= 1}) > 0,

and the same is true with σ2R replaced by σR , χδ(ψ), χ̃δ(ψ) or ηδ(ψ). We now have the
existence of τ̃0 > 0 such that for any κ, c1 > 0, there exist β0, C, c > 0 such that for any
0 < β < β0, µ ≥ τ̃0/β and λ = 2c1µ, the following estimate holds:

‖M
βµ/4
λ σr,λu‖m−1≤Ce

−cµ(D+‖u‖m−1), D=eκµ(‖M
2µ
λ ϑλu‖m−1+‖Pu‖B(x0,4R)).

This concludes the proof of Theorem 3.1 with κ ′ = c, after replacing µ and µ0 by µ/2
and µ0/2 respectively. ut

It only remains to prove Lemma 3.11 below.

Lemma 3.11. Let δ, κ, R0, C1, ε, τ0 > 0. Then there exists d0 = d0(δ, κ, R0, C1, ε) such
that for any d < d0, there exists β0(δ, κ, R0, c1, ε, d) such that for any 0 < β < β0
and all µ ≥ τ0(R0 + 9δ)1/2/β, the following holds: for every holomorphic function H in
Q1 = R∗+ + iR∗+, continuous on Q1 and satisfying

|H(iτ)| ≤ eε
β2
2τ µ

2
eC1τ

2/µ max
(
e−κµ, e−

εµ2
8τ , e−9δτ ) for τ ∈ [τ0,+∞), (3.41)

|H(ζ)| ≤ eR0 Im ζ on Q1, (3.42)

we have

|H(ζ)| ≤ e−8δ Im ζ on Q1 ∩ {dµ/4 ≤ |ζ | ≤ 2dµ}. (3.43)
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The proof of Lemma 3.11 essentially consists in performing a scaling argument to get rid
of the parameter µ, and then using complex analysis arguments: construction of an ap-
propriate harmonic function and application of a quantitative maximum principle. These
technical arguments are given in Lemmata B.1, B.2 (construction of the harmonic func-
tion, and associated estimates) and B.4 (maximum principle), and are postponed to Ap-
pendix B for the sake of readability.

Proof of Lemma 3.11. The function H is holomorphic in Q1 and z 7→ log |z| is subhar-
monic on C∗. As a consequence, the function

gµ : ζ 7→ µ−1 log |H(µζ)|

is subharmonic onQ1 (which is invariant by dilations). Assumption (3.41) (used for τµ ∈
[τ0,+∞)) yields

gµ(iτ ) ≤ C1τ
2
+
εβ2

τ
+max

(
−κ,−9δτ,−

ε

8τ

)
for τ ∈ [τ0/µ,+∞), (3.44)

and assumption (3.42) yields

gµ(ζ ) ≤ R0 Im ζ on Q1. (3.45)

Now, we set, for y ∈ R+,

f
µ
1 (y) = R0y1[0,τ0/µ)(y)

+ 1[τ0/µ,+∞)(y)min
{
R0y,max

(
−κ,−9δy,−

ε

8y

)
+ C1y

2
+
εβ2

y

}
. (3.46)

According to Lemma B.2, there exists d0 = d0(δ, κ, R0, ε, C1) such that for every
d < d0, there exists β0(δ, κ, R0, d, ε, C1) such that for any 0 < β < β0 and any
µ ≥ τ0(R0 + 9δ)1/2/β, the function f µ1 is continuous and the associated function f µ

given by Lemma B.1 with f0 = 0 and f1 = f
µ
1 satisfies

f µ ∈ C0(Q1), 1f µ = 0 in Q1, |f µ(x, y)| ≤ Cµ(1+ |(x, y)|) in Q1,

f µ = f
µ
1 on iR+, f µ = 0 on R+,

together with
f µ(ζ ) ≤ −8δ Im ζ on Q1 ∩ {d/4 ≤ |ζ | ≤ 2d}.

This yields

f µ(ζ/µ) ≤ −8δ(Im ζ )/µ on Q1 ∩ {dµ/4 ≤ |ζ | ≤ 2dµ}. (3.47)

Now, as gµ is subharmonic and f µ is harmonic, the function

hµ(ζ ) := gµ(ζ )− f µ(ζ )

is subharmonic too. As a consequence of (3.44)–(3.46), we have

hµ(ζ ) ≤ 0 on R+ ∪ iR+.
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Moreover, (3.45) and |f µ(ζ )| ≤ C(1+ |ζ |) also yield

hµ(ζ ) ≤ Cµ + (Cµ + R0)|ζ |.

According to Lemma B.4, this implies

hµ(ζ ) ≤ 0 on Q1,

and hence

|H(µζ)| = eµg
µ(ζ )
≤ eµf

µ(ζ ) on Q1.

Finally, coming back to (3.47), we obtain

|H(ζ)| ≤ e−8δ Im ζ on Q1 ∩ {dµ/4 ≤ |ζ | ≤ 2dµ},

which concludes the proof of the lemma. ut

4. Semiglobal estimates

4.1. Some tools for propagating information

The local estimate of Theorem 3.1 only provides information on the low frequency part
of the function. Iterating this result allows us to propagate the low frequency information.
In this section, we define some tools that will be useful for this iterative procedure. They
are aimed at describing how information on the low frequency part of the solution can be
deduced from one subregion to another one.

Definition 4.1. Fix an open subset � of Rn = Rna × Rnb , a differential operator P of
orderm defined in�, and two finite collections (Vj )j∈J and (Ui)i∈I of bounded open sets
in Rn. We say that (Vj )j∈J is under the dependence of (Ui)i∈I , denoted

(Vj )j∈J E (Ui)i∈I ,

if for any ϑi ∈ C∞0 (R
n) such that ϑi(x) = 1 on a neighborhood of Ui , for any ϑ̃j ∈

C∞0 (Vj ) and for all κ, α > 0, there exist C, κ ′, β, µ0 > 0 such that for all (µ, u) ∈
[µ0,+∞)× C

∞

0 (R
n), we have∑

j∈J

‖Mβµ
µ ϑ̃j,µu‖m−1 ≤ Ce

κµ
(∑
i∈I

‖Mαµ
µ ϑi,µu‖m−1 + ‖Pu‖L2(�)

)
+ Ce−κ

′µ
‖u‖m−1.

If the cardinality of I is 1, and U is the only set of the family (Ui)i∈I , we simply write
(Vj )j∈J E U . We use the same convention if the cardinality of J is 1.

Recall that the norm ‖ · ‖m−1 is always taken in the whole Rn.
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Remark 4.2. The relationE actually depends on the splitting Rn = Rna×Rnb , the set�
and the operator P . However, in the main part of this work, Rn = Rna×Rnb ,� and P will
be fixed, so it should not lead to confusion (in particular in applications). The dependence
of E upon these objects will be mentioned when needed.

For applications, it is important that the functions u are not necessarily supported
in �.

In the following, we will only need to use the relation E in appropriate coordinate
charts. However, it will not be a problem for what we want to prove, even on a compact
manifold. Indeed, we will fix some coordinate chart on an open set � ⊂ Rn close to a
point or close to a trajectory. Then, we will use the relation E relative to � to finally
obtain estimates which will be invariant by changes of coordinates.

Now, we list some general properties of the relationE, which actually hold without using
any assumption on the set � or the operator P .

Proposition 4.3. (1) If (Vj )j∈J E (Ui)i∈I with Ui = U for all i ∈ I , then (Vj )j∈J E U .
(2) If (Vj )j∈J E (Ui)i∈I with Ui ⊂ Wi for all i ∈ I , then (Vj )j∈J E (Wi)i∈I .
(3) If V ⊂ U , then V E U . In particular, U E U .
(4)

⋃
i∈I Ui E (Ui)i∈I .

(5) If Vi E Ui for any i ∈ I , then (Vi)i∈I E (Ui)i∈I . In particular, (Ui)i∈I E (Ui)i∈I .

Proof. Property (1) is obvious from the definition, and (2) is also immediate since ϑi(x)
= 1 on a neighborhood of Wi implies ϑi(x) = 1 on a neighborhood of Ui ⊂ Wi .

Property (3) is a consequence of Lemma 2.11 applied with αµ/2 instead of µ, λ = µ,
f1 = ϑ and f = ϑ̃ . The assumptions on ϑ and ϑ̃ ensure that f1 = 1 on a uniform
neighborhood of supp f . This gives the result with β = α/2.

Property (4) is a consequence of Lemma 2.12 with the same parameters as for (3), but
with bi = ϑi .

Property (5) is almost a consequence of the definition. Actually, the only difference is
that a priori, we have one βi for each i ∈ I . Taking the worst of the constants C, κ ′, µ0
given by the application of the definition for any i gives∑
i∈I

‖Mβiµ
µ ϑ̃i,µu‖m−1 ≤ Ce

κµ
(∑
i∈I

‖Mαµ
µ ϑi,µu‖m−1 + ‖Pu‖L2(�)

)
+ Ce−κ

′µ
‖u‖m−1

with ϑi = 1 on Ui and ϑ̃i ∈ C∞0 (Vi). But taking 2β = min{βi : i ∈ I }, we have

‖Mβµ
µ ϑ̃i,µu‖m−1 ≤ ‖M

βiµ
µ Mβµ

µ ϑ̃i,µu‖m−1 + ‖M
βµ
µ (1−Mβiµ

µ )ϑ̃i,µu‖m−1

≤ ‖Mβiµ
µ ϑ̃i,µu‖m−1 + Ce

−cµ
‖u‖m−1,

where we have used Lemma 2.3 and the properties of the support of m(·/β) and
1 − m(·/βi) for the last estimate. The second part comes from the first, together with
Ui E Ui for all i ∈ I . ut

The relation is not transitive but we have the following weaker but sufficient property:
if (Vj )j∈J E (Ũi)i∈I and Ũi b Ui (that is, Ũ i ⊂ Ui) and (Ui)i∈I E (Wk)k∈K , then
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(Vj )j∈J E (Wk)k∈K (this is proved by introducing functions fi ∈ C∞0 (Ui) equal to 1 on
Ũi : see the proof of Proposition 4.5(6) below).

For this reason, it is convenient to introduce the following stronger property.

Definition 4.4. Given an open set � in Rn = Rna × Rnb , a differential operator P of
order m defined in �, and two finite collections (Vj )j∈J and (Ui)i∈I of bounded open
sets in Rn, we say that (Vj )j∈J is under the strong dependence of (Ui)i∈I if there exist
Ũi b Ui such that (Vj )j∈J E (Ũi)i∈I . In that case, we write

(Vj )j∈J C (Ui)i∈I .

This makes the relation transitive, but it becomes more strict in the sense that we do not
always have U C U . We again summarize the properties of this relation.

Proposition 4.5. (1) (Vj )j∈J C (Ui)i∈I implies (Vj )j∈J E (Ui)i∈I .
(2) If (Vj )j∈J C (Ui)i∈I with Ui = U for all i ∈ I , then (Vj )j∈J C U .
(3) If Vi b Ui for any i ∈ I , then (Vi)i∈I C (Ui)i∈I .
(4) If Vi b Ui for any i ∈ I , then

⋃
i∈I Vi C (Ui)i∈I .

(5) If Vi C Ui for any i ∈ I , then (Vi)i∈I C (Ui)i∈I . In particular, if Ui C U for any
i ∈ I , then (Ui)i∈I C U .

(6) The relation is transitive, that is,

[(Vj )j∈J C (Ui)i∈I and (Ui)i∈I C (Wk)k∈K ] ⇒ (Vj )j∈J C (Wk)k∈K .

Proof. Property (1) is obvious. For (2), the assumption gives some (Ũi)i∈I with (Vj )j∈JE

(Ũi)i∈I and Ũi b U for all i ∈ I . Since Ũi ⊂ U for all i ∈ I and I is finite, we have⋃
i∈I Ũi =

⋃
i∈I Ũi ⊂ U . Denote W =

⋃
i∈I Ũi . We have Ũi ⊂ W for all i ∈ I , so

property (2) and then Proposition 4.3(1) give (Vj )j∈J EW , which implies (Vj )j∈J C U
since W b U .

For (3), we use (Vi)i∈I E (Vi)i∈I from Proposition 4.3(5) and Vi b Ui .
For (4), we use Proposition 4.3(4), which gives

⋃
i≤I Vi E (Vi)i∈I . This means⋃

i≤I Vi C (Ui)i∈I by the definition of C.
For (5), assume ViEŨi with Ũi b Ui . Then Proposition 4.3(5) gives (Vi)i∈IE(Ũi)i∈I ,

which yields (Vi)i∈I C (Ui)i∈I by definition. The second part is direct by combining
with (2).

For (6), the assumptions give the existence of Ũi b Ui and W̃k b Wk such that

(Vj )j∈J E (Ũi)i∈I and (Ui)i∈I E (W̃k)k∈K .

Since Ũi b Ui , we can pick χi ∈ C∞0 (Ui) such that χi = 1 in a neighborhood of Ũi . Let
α, κ > 0, and take ϑk ∈ C∞0 (R

n) (for all k ∈ K) such that ϑk = 1 on a neighborhood of

W̃k , and ϑ̃j ∈ C∞0 (Vj ) (for all j ∈ J ). Since (Ui)i∈I E (W̃k)k∈K and χi ∈ C∞0 (Ui), there
exist C, κ ′, β, µ0 > 0 such that∑
i∈I

‖Mβµ
µ χi,µu‖m−1 ≤ Ce

κµ/2
(∑
k∈K

‖Mαµ
µ ϑk,µu‖m−1+‖Pu‖L2(�)

)
+Ce−κ

′µ
‖u‖m−1.
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Now, we apply the relation given by (Vj )j∈J E (Ũi)i∈I with α replaced by the above β
and κ replaced by κ1 = min(κ ′, κ)/2 > 0. Since χi = 1 in a neighborhood of Ũi and
ϑ̃j ∈ C

∞

0 (Vj ), there exist C′, κ ′′, β ′, µ′0 > 0 such that∑
j∈J

‖Mβ ′µ
µ ϑ̃j,µu‖m−1 ≤ C

′eκ1µ
(∑
i∈I

‖Mβµ
µ χi,µu‖m−1+‖Pu‖L2(�)

)
+C′e−κ

′′µ
‖u‖m−1.

Combining the above two estimates now yields∑
j∈J

‖Mβ ′µ
µ ϑ̃j,µu‖m−1

≤ CC′e(κ/2+κ1)µ
∑
k∈K

‖Mαµ
µ ϑk,µu‖m−1 + C

′eκ1µ(1+ Ceκµ/2)‖Pu‖L2(�)

+ (C′e−κ
′′µ
+ CC′e(κ1−κ

′)µ)‖u‖m−1.

Since κ/2+κ1 ≤ κ and κ1−κ
′ < κ ′/2−κ ′ = −κ ′/2 < 0, this gives (Vj )j∈J E (W̃k)k∈K ,

which implies the result since W̃k b Wk .
Note that in the proofs above, we have not mentioned the restriction µ ≥ µ0 each

time. Yet, all the estimates have to be taken with that restriction, taking the worst constant
µ0 when several restrictions are involved. ut

Corollary 4.6. Under the assumptions of Theorem 3.1, there exists R0 > 0 such that for
any R ∈ (0, R0), there exist r , ρ > 0 such that

B(x0, r)E {φ > 2ρ} ∩ B(x0, 3R), B(x0, r)C {φ > ρ} ∩ B(x0, 4R).

Proof. First, we restrict R0 so that B(x0, 4R0) ⊂ �. Theorem 3.1 gives the existence of
constants R, r , ρ, τ̃0 > 0.

Let κ , α > 0. We apply the result with µ = αµ′, c1 = 1/α and κ replaced by κ/α to
obtain, uniformly for µ′ ≥ τ̃0/(αβ),

‖M
βαµ′

µ′
σr,µ′u‖m−1 ≤ Ce

κµ′(‖M
αµ′

µ′
ϑµ′u‖m−1 + ‖Pu‖L2(B(x0,4R)))+ Ce

−ακ ′µ′
‖u‖m−1.

Now, let ϑ̃ ∈ C∞0 (B(x
0, r)). Since σr = 1 on B(x0, r), Lemma 2.11 gives

‖M
βαµ′/2
µ′

ϑ̃µ′u‖m−1 ≤ ‖M
βαµ′

µ′
σr,µ′u‖m−1 + Ce

−cµ′
‖u‖m−1,

which implies the first statement. The second one comes directly from the compact inclu-
sion of {φ > 2ρ} ∩ B(x0, 3R) into {φ > ρ} ∩ B(x0, 4R). ut

4.2. Semiglobal estimates along foliation by graphs

This section is devoted to the proof of Theorem 1.11. Actually, this result is a corollary
of the following stronger theorem, stated here in the context of zones of dependence.
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Theorem 4.7. Under the assumptions of Theorem 1.11, for any open neighborhood ω̂
of S0, there exists an open neighborhood U of K such that U C ω̂.

In the present section, we first prove that Theorem 4.7 implies Theorem 1.11, and then
prove Theorem 4.7.

Proof that Theorem 4.7 implies Theorem 1.11. We first apply Theorem 4.7 for a neigh-
borhood ω̂ of S0 such that ω̂ b ω̃, where ω̃ is as in the statement of Theorem 1.11. We
obtain U C ω̂. Take χ ∈ C∞0 (U) such that χ = 1 on a neighborhood Uχ of K , and
ϕ ∈ C∞0 (ω̃) such that ϕ = 1 on a neighborhood of ω̂. We find that for any κ > 0, there
exist C, β, κ ′, µ0 > 0 such that for µ ≥ µ0,

‖Mβµ
µ χµu‖m−1 ≤ Ce

κµ
(
‖Mµ

µϕµu‖m−1 + ‖Pu‖L2(�)

)
+ Ce−κ

′µ
‖u‖m−1. (4.1)

But since ϕ ∈ C∞0 (ω̃), taking again ϕ̃ ∈ C∞0 (ω̃)with ϕ̃ = 1 on a neighborhood of suppϕ,
we get, thanks to Lemma 2.3,

‖Mµ
µϕµu‖m−1 ≤ ‖M

µ
µ ϕ̃ϕµu‖m−1 + ‖(1− ϕ̃)ϕµu‖m−1

≤

∑
|α|+|β|≤m−1

‖DαaM
µ
µ (D

β
b ϕ̃ϕµu)‖0 + Ce

−cµ
‖u‖m−1.

Next,

‖DαaM
µ
µf ‖0 ≤ ‖ξ

α
a mµ(ξa/µ)‖L∞(Rna )‖f ‖0

≤ µ|α|‖ξαa mµ(ξa)‖L∞(Rna )‖f ‖0 ≤ Cµ
|α|
‖f ‖0,

since ξa 7→ ξαa mµ(ξa) is uniformly bounded on Rna for µ ≥ 1. As a consequence,

‖Mµ
µϕµu‖m−1 ≤ C

∑
|α|+|β|≤m−1

µ|α|‖D
β
b (ϕ̃ϕµu)‖0 + Ce

−cµ
‖u‖m−1

≤ Cµm−1
∑
|β|≤m−1

‖D
β
b u‖L2(ω̃) + Ce

−cµ
‖u‖m−1

≤ Cµm−1
‖u‖

Hm−1
b (ω̃)

+ Ce−cµ‖u‖m−1.

In the particular case where na = n, we slightly change the estimate:

‖Mµ
µϕµu‖m−1 ≤ ‖M

2µMµ
µϕµu‖m−1 + ‖(1−M2µ)Mµ

µϕµu‖m−1

≤ Cµs+m−1
‖ϕµu‖−s + Ce

−cµ
‖u‖m−1

≤ Cµs+m−1
‖ϕ̃ϕµu‖−s + Cµ

s+m−1
‖(1− ϕ̃)ϕµu‖−s + Ce−cµ‖u‖m−1

≤ Cµs+m−1
‖ϕ̃u‖H−s + Ce

−cµ
‖u‖m−1.

In (4.1), the constant κ > 0 is arbitrary (all other constants in that estimate depending
on it): imposing κ < c/2 and noticing that µm−1

≤ Cme
κµ, we obtain, with c′ :=

min(c/2, κ ′),

‖Mβµ
µ χµu‖m−1 ≤ Ce

2κµ(
‖u‖

Hm−1
b (ω̃)

+ ‖Pu‖L2(�)

)
+ Ce−c

′µ
‖u‖m−1. (4.2)
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In the analytic case, na = n, using µs+m−1
≤ Cse

κµ we have similarly

‖Mβµ
µ χµu‖m−1 ≤ Ce

2κµ(
‖ϕ̃u‖H−s + ‖Pu‖L2(�)

)
+ Ce−c

′µ
‖u‖m−1.

Now, let χ̃ ∈ C∞0 (Uχ ) be such that χ̃ = 1 in a neighborhood of K . We have, using again
Lemma 2.3,

‖χ̃u‖0 ≤ ‖χ̃χµu‖0 + ‖(1− χµ)χ̃u‖0 ≤ C‖χµu‖0 + Ce−cµ‖u‖m−1

≤ C‖Mβµ
µ χµu‖0 + C‖(1−Mβµ

µ )χµu‖0 + Ce
−cµ
‖u‖m−1. (4.3)

For the second term on the right hand side, we write

‖(1−Mβµ
µ )χµu‖0 ≤ C sup

(ξa ,ξb)∈Rna+nb

∣∣∣∣ (1−mµ)
(
ξa
βµ

)
|ξa|m−1 + 〈ξb〉m−1

∣∣∣∣‖χµu‖m−1.

In the range |ξa| ≥ βµ/2 with µ ≥ µ0, we have the loose estimate∣∣∣∣ (1−mµ)
(
ξa
βµ

)
|ξa|m−1 + 〈ξb〉m−1

∣∣∣∣ ≤ C

µm−1 . (4.4)

In the range |ξa| ≤ βµ/2, using dist
(
supp(1−m(·/β)), {|ξa| ≤ β/2}

)
> 0, we have∣∣∣∣(1−mµ)( ξaβµ

)∣∣∣∣ ≤ Ce−cµ,
in view of Lemma 2.3. In this range of ξa , this yields∣∣∣∣ (1−mµ)

(
ξa
βµ

)
|ξa|m−1 + 〈ξb〉m−1

∣∣∣∣ ≤ Ce−cµ,
so that (4.4) holds for all ξa ∈ Rna and µ ≥ µ0. This yields

‖(1−Mβµ
µ )χµu‖0 ≤

C

µm−1 ‖χµu‖m−1,

which, combined with (4.2) and (4.3), gives, for µ ≥ µ0,

‖χ̃u‖0 ≤ Ce
2κµ(
‖u‖

Hm−1
b (ω̃)

+ ‖Pu‖L2(�)

)
+

C

µm−1 ‖u‖m−1.

Similarly, in the analytic case na = n, we have

‖χ̃u‖0 ≤ Ce
2κµ(
‖ϕ̃u‖H−s + ‖Pu‖L2(�)

)
+

C

µm−1 ‖u‖m−1.

Note also that in order to prove the precise statement in this case (for all ϕ̃ such that...),
we first fix ϕ̃, and then ω̂ and ϕ, having the above support properties. The rest of the proof
remains unchanged.
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Finally, the case na = 0 is a direct consequence of (4.1) since there is no regulariza-
tion.

Now, we notice that the previous estimates are true for any neighborhood � of K
(with constants and open subsets depending on�). Denoting now by� the neighborhood
of K given by the assumptions of the theorem, we can apply the previous estimates to an
open neighborhood �̃ of K with �̃ b �. This shows that for any neighborhood ω̃ ⊂ �̃
of S0, there exists an open neighborhood Ũ ofK (that we can require to be included in �̃)
so that

‖u‖L2(Ũ) ≤ Ce
2κµ(
‖u‖

Hm−1
b (ω̃)

+ ‖Pu‖L2(�̃)

)
+

C

µm−1 ‖u‖m−1. (4.5)

Take χ0 supported in � and such that χ0 = 1 in �̃. In particular, ‖P(χ0u)‖L2(�̃) =

‖Pu‖L2(�̃) ≤ ‖Pu‖L2(�), ‖χ0u‖L2(Ũ) = ‖u‖L2(Ũ), ‖χ0u‖Hm−1
b (ω̃)

= ‖u‖
Hm−1
b (ω̃)

and
‖χ0u‖m−1 ≤ C‖u‖Hm−1(�). Applying inequality (4.5) to χ0u gives

‖u‖L2(Ũ) ≤ Ce
2κµ(
‖u‖

Hm−1
b (ω̃)

+ ‖Pu‖L2(�)

)
+

C

µm−1 ‖u‖Hm−1(�).

This concludes the proof of Theorem 1.11 in the general case. The end of the proof in the
cases na = n and na = 0 is similar. ut

Now, we come to the proof of the main result of this section, namely Theorem 4.7. This
proof consists in two main steps: first, to define the adapted geometrical context, and
second, to iterate the local result in this geometric context, using an induction argument.

Proof of Theorem 4.7. To begin with, we choose ω1 b ω2 b ω̂ where ω1 is another open
neighborhood of S0 (see Figure 1). We fix R small enough such that

2R < min
(
dist(K,�c), dist(ωc1, S0)

)
, (4.6)

define the set
KR
=

⋃
x∈K

B(x, 2R),

and pick a cutoff function

χK ∈ C
∞

0 (�), χK = 1 on KR, suppχK ∩ {xn ≤ 0} ⊂ ω1. (4.7)

Given any point x ∈ K , there exists ε > 0 such that x ∈ Sε. We denote by R0 > 0 the
constant given by Theorem 3.1 associated to the point x and the function φε. Next, we set

Rx := min(R0/2, R/4), (4.8)

and then
rx := min(r/2, 3Rx), ρx = ρ,

where r, ρ > 0 are the constants given by Theorem 3.1 (and Corollary 4.6) associated to
x, φε and Rx .
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For any ε ∈ (0, 1] and x ∈ Sε, we have φε(x) = 0. So, we can write

Sε ⊂
⋃
x∈Sε

B(x, rx),

and, since Sε is compact, we can extract a finite covering, i.e. there is a finite set Iε of
indices and a finite family (xεi )i∈Iε of points such that

Sε ⊂
⋃
i∈Iε

B(xεi , rxεi ), xεi ∈ Sε.

For xεi ∈ Sε, we rename the associated radii, setting

Rεi := Rxεi , rεi := rxεi , ρεi := ρxεi ,

and define
ρε := min

i∈Iε
ρεi > 0.

Since φε = 0 on Sε, we still have

Sε ⊂
(⋃
i∈Iε

B(xεi , r
ε
i )
)
∩ {φε < ρε} =: Uε.

The definition of Uε is illustrated in Figure 6. Therefore, for ε ∈ (0, 1], Uε is an open
neighborhood of the compact surface Sε. Since G is C1, we claim that we can find
g(ε) > 0 such that

Vε :=
⋃

ε′∈(ε−g(ε),ε+g(ε))

Sε′ ⊂ Uε (4.9)

(the definition of Vε is illustrated in Figure 7). Indeed, since G ∈ C1(D̄× (0, 1]), we can
find C > 0 such that

|G(x′, ε)−G(x′, ε′)| ≤ C|ε − ε′|,

B(xε4 , r
ε
4 )

Sε = {φε = 0}
{φε = ρε}

B(xε2 , r
ε
2 )

B(xε3 , r
ε
3 )

B(xε1 , r
ε
1 ) B(xε6 , r

ε
6 )

B(xε5 , r
ε
5 )

Fig. 6. Definition of the set Uε , striped in blue.
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B(xε2 , r
ε
2 )

B(xε3 , r
ε
3 )

B(xε1 , r
ε
1 )

B(xε6 , r
ε
6 )

B(xε5 , r
ε
5 )

B(xε4 , r
ε
4 )

{φε = ρε}
Sε = {φε = 0}

Sε+g(ε)

Sε−g(ε)
Vε

Fig. 7. Definition of the set Vε , striped in blue.

uniformly for x′ ∈ D. In particular, if |ε − ε′| ≤ 1
2C dist(Sε,Ucε ) with dist(Sε,Ucε ) > 0,

we have

dist[(x′,G(x′, ε′)), Sε] ≤ dist[(x′,G(x′, ε)), (x′,G(x′, ε′))] ≤ |G(x′, ε)−G(x′, ε′)|
≤ dist(Sε,Ucε )/2.

This holds for any x′ ∈ D, so that Sε′ is contained in a neighborhood of Sε of size
dist(Sε,Ucε )/2, and hence contained in Uε. This proves (4.9) with

g(ε) = dist(Sε,Ucε )/(2C) > 0.

As a consequence of (4.9), we have in particular, for any ε ∈ (0, 1],

Vε ⊂ Uε ⊂ {φε < ρε}. (4.10)

Now, we also have

K ⊂
(
S0 ∪

⋃
ε∈(0,1]

Vε
)
⊂

(
ω1 ∪

⋃
ε∈(0,1]

Vε
)
.

The same argument as above using the fact that ω1 is a neighborhood of S0 shows that
there exists ε0 such that

V0 :=
⋃

ε∈[0,ε0)

Sε ⊂ ω1.

As a consequence,

K ⊂
(
V0 ∪

⋃
ε∈[ε0,1]

Vε
)
, V0 ⊂ ω1.

From the covering [ε0, 1] ⊂
⋃
ε∈[ε0,1](ε−g(ε), ε+g(ε)), we now extract a finite covering

[ε0, 1] ⊂
⋃
j∈J (εj − g(εj ), εj + g(εj )), where J is a finite set of indices. In particular,

this yields a finite covering

[0, 1] ⊂ [0, ε0) ∪
⋃
i∈J

(εj − g(εj ), εj + g(εj )). (4.11)
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As a consequence (with Vεj defined in (4.9)),

K ⊂ ω1 ∪
⋃
j∈J

Vεj
(
⊂ ω1 ∪

⋃
j∈J

⋃
i∈Iεj

(B(x
εj
i , r

εj
i ) ∩ {φεj < ρεj })

)
. (4.12)

Now, we reorder the set J by increasing order of εj − g(εj ), that is,

J = J1, NK with εj − g(εj ) ≤ εj+1 − g(εj+1) for all j ∈ J1, N − 1K. (4.13)

Note that if εj−g(εj ) = εj+1−g(εj+1), we can suppress the Vεj associated to the smaller
εj + g(εj ), and the covering property remains true. We will also need to check that

εk+1 − g(εk+1) < max
1≤j≤k

(εj + g(εj )). (4.14)

Indeed, if this is not the case, then εk+1 − g(εk+1) ≥ max0≤j≤k(εj + g(εj )). In par-
ticular, for j ≤ k, we have εj + g(εj ) ≤ εk+1 − g(εk+1) and εk+1 − g(εk+1) /∈

(εj − g(εj ), εj + g(εj )). But for j ≥ k + 1, by increasing choice (4.13), we have
εk+1−g(εk+1) ≤ εj −g(εj ), and in particular εk+1−g(εk+1) /∈ (εj −g(εj ), εj +g(εj )).
Hence εk+1 − g(εk+1) /∈

⋃
j∈J (εj − g(εj ), εj + g(εj )). Moreover, εk+1 − g(εk+1) ≥

max1≤j≤k(εj + g(εj )) ≥ ε0 as εj ≥ ε0 for j ≥ 1 and hence εk+1 − g(εk+1) /∈ [0, ε0).
This contradicts (4.11) and proves (4.14).

The preparatory definitions were made to state the following geometrical lemma to be
proved later.

Lemma 4.8. With the notation of the proof of Theorem 4.7, for any k ∈ J0, N − 1K and
i ∈ Iεk+1 we have

{φεk+1 > ρεk+1} ∩ B(x
εk+1
i , 4Rεk+1

i ) b
[
ω1 ∪

⋃
j∈J1,kK

⋃
`∈Iεj

B(x
εj
` , r

εj
` )
]
,

where we consider the union
⋃
j∈J1,kK to be empty if k = 0.

Now, we are going to use an abstract iteration argument, so we set the following notations
for j ∈ J1, NK and i ∈ Iεj :

Ij = Iεj , Ui,j = B(x
εj
i , 2r

εj
i ), ωi,j = B(x

εj
i , r

εj
i ),

Vi,j = {φεj > ρεj } ∩ B(x
εj
i , 4R

εj
i ), V0 = ω̂, U0 = ω1.

The choice of the r
εj
i and ρ

εj
i ≤ ρεj according to Corollary 4.6 implies

Ui,j C Vi,j .

Moreover, we have ωi,j b Ui,j , and Lemma 4.8 can be written as

Vi,k+1 b
[
U0 ∪

⋃
j∈J1,kK

⋃
i∈Ij

ωi,j

]
.

Now, we are in a position to apply the following iteration proposition, to be proved
later.
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Proposition 4.9. Assume that there exist open sets U0, Ui,j , ωi,j b Ui,j , with j ∈ J1, NK
and i ∈ Ij (Ij finite), such that

Ui,j C Vi,j and ωi,j b Ui,j for all j ∈ J1, NK and i ∈ Ij ;

Vi,k+1 b
[
U0 ∪

⋃
j∈J1,kK

⋃
`∈Ij

ω`,j

]
for k ∈ J0, N − 1K and i ∈ Ik+1,

where we consider the union
⋃
j∈J1,kK to be empty if k = 0. Then[
U0 ∪

⋃
j∈J1,NK

⋃
`∈Ij

ω`,j

]
C V0

for any open set V0 such that U0 b V0.

Now, we always have ω2 C ω̂, as a consequence of properties (5) (second part) and (6)
of Proposition 4.5. Hence, with U := ω1 ∪

⋃
j∈J1,NK

⋃
`∈Iεj

B(x
εj
` , r

εj
` ), Proposition 4.9

yields U C ω̂. Since U is a neighborhood of K by the covering property (4.12), this
concludes the proof of Theorem 4.7, up to the proofs of Lemma 4.8 and Proposition 4.9.

ut

4.2.1. Proof of Lemma 4.8. We first prove, for later use, that for any x′ ∈ D and any
ε ∈ (0, 1], we have

G(x′, ε − g(ε)) ≥ G(x′, ε)− ρε. (4.15)

Indeed, let x ∈ Vε, so x ∈ Sε′ for some ε′ ∈ (ε − g(ε), ε + g(ε)). That is, xn =
G(x′, ε′). Using (4.10), we have φε(x) < ρε, that is,G(x′, ε)−xn < ρε and soG(x′, ε)−
G(x′, ε′) < ρε. This is true for any point x = (x′,G(x′, ε′)) for ε′ ∈ (ε−g(ε), ε+g(ε)).
Letting ε′→ε−g(ε) and using the continuity ofG, we getG(x′, ε)−G(x′, ε−g(ε))≤ρε,
which is (4.15).

We now come back to the proof of the lemma. As a consequence of the definitions of
Uε and Vε ⊂ Uε and of (4.12), for all k ∈ J0, NK we have[

V0 ∪
⋃

j∈J1,kK
Vεj
]
b
[
ω1 ∪

⋃
j∈J1,kK

⋃
`∈Iεj

B(x
εj
` , r

εj
` )
]
. (4.16)

By (4.16), it is sufficient to prove, for any k ∈ J0, N − 1K and all i ∈ Iεk+1 ,(
{φεk+1 ≥ ρεk+1} ∩ B(x

εk+1
i , 4Rεk+1

i )
)
⊂

(
ω1 ∪

⋃
j∈J1,kK

Vεj
)
,

which will follow from the following two inclusions:(
{φεk+1 ≥ ρεk+1} ∩K

)
⊂

(
ω1 ∪

⋃
j∈J1,kK

Vεj
)
, (4.17)

(
{φεk+1 ≥ ρεk+1} ∩K

c
)
∩ B(x

εk+1
i , 4Rεk+1

i ) ⊂ ω1. (4.18)
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Let us first prove (4.17). Since K ⊂ ω1 ∪
⋃
j∈J1,NK Vεj by (4.12), we have

(
{φεk+1 ≥ ρεk+1} ∩K

)
⊂

(
ω1 ∪

⋃
j∈J1,NK

(Vεj ∩ {φεk+1 ≥ ρεk+1})
)
. (4.19)

Moreover, using (4.10), we get

Vεk+1 ⊂ {φεk+1 < ρεk+1}.

Now, we will use the fact that G is increasing in ε to prove that also

Vεj ⊂ {φεk+1 < ρεk+1} for j ≥ k + 1. (4.20)

Actually, for x ∈ Vεj with j ≥ k + 1, we have xn = G(x′, ε) for some ε > εj − g(εj ) ≥

εk+1 − g(εk+1) (it is here that we use the fact that the εj ’s are ordered as in (4.13)).
But since G is strictly increasing in ε, this implies xn > G(x′, εk+1 − g(εk+1)). Using
the inequality (4.15), true for any ε ∈ (0, 1], we obtain xn > G(x′, εk+1) − ρεk+1 . This
gives φεk+1(x

′, xn) < ρεk+1 and therefore (4.20). As a consequence, on the right hand side
of (4.19) only the terms for j ≤ k are nonempty, which implies (4.17).

We now prove (4.18). Since xεk+1
i ∈ K and 4Rεk+1

i ≤ R, it is sufficient to prove

{φεk+1 ≥ 0} ∩Kc
∩KR

⊂ ω1.

We first notice that, according to the definition of K , we have

Kc
= {xn < 0} ∪ {xn > G(x′, 1)}.

In addition, since for x′ ∈ D, G is increasing in ε, we have

{φεk+1 ≥ 0} ∩ {x′ ∈ D} = {xn ≤ G(x′, εk+1), x
′
∈ D} ⊂ {xn ≤ G(x

′, 1)}.

But for x′ /∈ D, we have G(x′, εk+1) < 0 and hence

{φεk+1 ≥ 0} ∩ {x′ /∈ D} = {xn ≤ G(x′, εk+1), x
′ /∈ D} ⊂ {xn < 0}.

As a consequence, {φεk+1 ≥ 0} ∩Kc
⊂ {xn < 0}. We are thus left with proving(

{xn < 0} ∩KR
)
⊂ ω1.

This is direct thanks to (4.6) since dist(x,K) = dist(x, S0) for xn < 0. This concludes
the proof of (4.18).

We finally check that the proof works the same way for the degenerate case k = 0,
which corresponds to the same proof with ∅ instead of

⋃
j∈J1,kK. This concludes the proof

of Lemma 4.8. ut
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Remark 4.10. In this process, we can also require that the points x
εj
i be far from {xn=0},

by forcing B(x
εj
i , 4R

εj
i ) ∩ {xn = 0} = ∅.

Indeed, if B(x
εj
i , 4R

εj
i ) ∩ {xn = 0} 6= ∅, we have necessarily dist(x

εj
i , S0) < 4R

εj
i

because dist(x
εj
i , {xn = 0}) is necessarily reached at a point in S0 = D × {0xn}, since

x
εj
i ∈ Sεj ⊂ D × Rxn . But in the process (see (4.6) and (4.8)) we have chosen R

εj
i ≤

dist(ωc1, S0)/8. This implies dist(x
εj
i , ω

c
1) ≥ dist(ωc1, S0) − dist(x

εj
i , S0) > 8R

εj
i − 4R

εj
i

and soB(x
εj
i , 4R

εj
i ) ⊂ ω1. In particular, these points x

εj
i can be removed without affecting

the set
ω1 ∪

⋃
j∈J1,kK

⋃
i∈Iεj

B(x
εj
i , r

εj
i ),

for any k.
This fact was not used here but it will be useful later in the presence of boundary.

4.2.2. Semiglobal estimates by iteration: proof of Proposition 4.9. To prove Proposi-
tion 4.9, we use induction on k ∈ J1, NK. We make the following induction assumption
at step k:

For any j ∈ J1, kK and i ∈ Ij , we have Ui,j C V0. (IAk)

We first explain why this proves Proposition 4.9, and then perform the induction argu-
ment. Note that using Proposition 4.5(4) and since we can selectW0 with U0 b W0 b V0
and ωi,j b Ui,j , we have[

U0 ∪
⋃

j∈J1,kK

⋃
`∈Ij

ω`,j

]
C (W0, Ui,j )j∈J1,kK, i∈Ij .

So, since W0 C V0, with the use of properties (5) (second part) and (6) of Proposi-
tion 4.5, (IAk) directly implies[

U0 ∪
⋃

j∈J1,kK

⋃
`∈Ij

ω`,j

]
C V0. (4.21)

In particular, (IAN ) implies (4.21) for k = N , which is the result of the proposition,
namely

U :=
[
U0 ∪

⋃
j∈J1,NK

⋃
`∈Ij

ω`,j

]
C V0. (4.22)

We now come to the proof of (IAk) by induction.
For k = 1, we need to prove Ui,1CV0 for i ∈ I1. But the assumption with k = 0 gives

Vi,1 b U0, which implies Vi,1 C U0. Since Ui,1 C Vi,1 by assumption, we get Ui,1 C U0
by transitivity. Since also U0 C V0, we obtain Ui,1 C V0 for all i ∈ I1 as desired.

We now prove (IAk)⇒ (IAk+1) for k ∈ J1, N−1K. The assumption of the proposition
gives

Vi,k+1 b
[
U0 ∪

⋃
j∈J1,kK

⋃
`∈Ij

ω`,j

]
for all i ∈ Ik+1.
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Combined with Proposition 4.5(3), this yields

Vi,k+1 C
[
U0 ∪

⋃
j∈J1,kK

⋃
`∈Ij

ω`,j

]
for all i ∈ Ik+1.

Using (4.21) for k since (IA)k is true, together with the transitivity of C, we get

Vi,k+1 C V0 for all i ∈ Ik+1.

Since Ui,j C Vi,j , the transitivity property gives again Ui,k+1 C V0 for all i ∈ Ik+1. This
implies (IAk+1) and thus proves the induction property for k ∈ J1, N−1K. This concludes
the proof of Proposition 4.9. ut

4.3. Semiglobal estimates along foliation by hypersurfaces

The previous framework, where we define hypersurfaces by graphs, may look a bit rigid
for applications. Having defined hypersurfaces by graphs was mainly convenient to make
the foliation more effective and order the hypersurfaces more easily.

Now, we give a slight variant of Theorem 4.7, more adapted to some possible changes
of variables.

Theorem 4.11. Let � ⊂ Rn = Rna × Rnb and let P be a smooth differential operator
of order m on �, analytically principally normal in {ξa = 0}. Let 8 be a diffeomorphism
of class C2 from � to �̃ = 8(�). Assume that the geometric setting of Theorem 1.11
is satisfied for some D, G, K , φε on �̃ (and not on �). Assume further that for any
ε ∈ [0, 1 + η), the oriented surface {φε ◦ 8 = 0} = 8−1(Sε) (well defined on �) is
strongly pseudoconvex with respect to P on 8−1(Sε).

Then, for any neighborhood ω of8−1(S0), there exists an open neighborhood U ⊂ �
of 8−1(K) such that U Cω, where C = C�,P is related to the operator P defined on �
(see Remark 4.2).
Proof. The proof is exactly the same as that of Theorem 1.11/4.7 except that the local
uniqueness estimates are performed in �. So, for any x ∈ 8−1(Sε), it furnishes some rx ,
Rx and ρx such that

B�(x, rx)C�,P
(
{φε ◦8 > ρx} ∩ B�(x, 4Rx)

)
.

But since 8 is a homeomorphism, this implies the existence of r̃x and R̃x (that can still
be chosen small enough) such that

8−1
[B�̃(8(x), r̃x)] b B�(x, rx) and B�(x, 4Rx) b 8−1

[B�̃(8(x), 4R̃x)],

and hence

8−1
[B�̃(8(x), r̃x)]C�,P

(
{φε ◦8 > ρx} ∩8

−1
[B�̃(8(x), 4R̃x)]

)
.

where B� (resp. B�̃) denote balls in � (resp. �̃).
The geometric part of the proof of Theorem 1.11/4.7 is then exactly the same, per-

formed in �̃, i.e. replacing rx , Rx by r̃x , R̃x . Once the geometric part is done, the itera-
tion process, performed in�, is exactly the same by replacing each geometric term by the
preimage in � (for instance 8−1

[B�̃(8(x
εk
i ), 4R̃

x
εk
i
)] replaces B(xεki , 4R

x
εk
i
) etc.). ut
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5. The Dirichlet problem for some second order operators

In this section, we shall consider a particular class of operators as described in Re-
mark 1.10, that is, with symbols of the form p2(x, ξ) = Qx(ξ) where Qx is a smooth
family of real quadratic forms. Assuming that the variables xa are tangent to the bound-
ary, and that the functions satisfy Dirichlet boundary conditions, we prove a counterpart
of the local estimate of Theorem 3.1 for this boundary value problem. For this, the main
goal to achieve is to prove a Carleman estimate adapted to this boundary value problem.
All local, semiglobal and global results will then follow.

This situation is of particular interest for the wave equation for which xa is the time
variable, which is always tangent to the boundary of cylindrical domains.

For simplicity, we shall further assume that the principal symbol of the operator P is
independent of the xa variable. More precisely, in Theorem 5.2 below, we first assume
that no coefficient of P depends on xa . This is then relaxed in Corollary 5.4, where we
explain how to include lower order terms that are analytic in xa . It would be in principle
possible to allow the principal part of P to depend analytically on xa , but it would require
some additional technicalities in the (already rather technical) proofs.

5.1. Some notation

Here, we shall always assume that the analytic variables are tangential to the boundary,
that is,

x = (xa, xb) ∈ Rna × Rnb+ with Rnb+ = Rnb−1
× R+, xb = (x

′

b, x
n
b ).

When the distinction between analytic and nonanalytic variables is not essential, we shall
split the variables according to

x = (x′, xn) ∈ Rn+ = Rn−1
× R+ with x′ = (xa, x

′

b) ∈ Rna+nb−1, xn = x
n
b ∈ R+.

We also denote by ξ ′ = (ξa, ξ
′

b) ∈ Rn−1 the cotangential variables and ξn = ξnb the
conormal variable, byD′ = (Da,Dx′b ) =

1
i
(∂xa , ∂x′b

) the associated tangential derivations

and by Dn = Dxnb =
1
i
∂xn the normal derivation.

For any r0 > 0, we define

Kr0 = {x ∈ Rn+ : |xa| ≤ r0, |xb| ≤ r0} = BRna (0, r0)×BRnb (0, r0)∩{xn ≥ 0}. (5.1)

We denote by C∞0 (R
n
+) the space of restrictions to Rn+ of functions in C∞0 (R

n), and
by C∞0 (Kr0) the space of C∞0 (R

n
+) functions supported in Kr0 . The trace of a function

f ∈ C∞0 (R
n
+) at xn = 0 is denoted by f|xn=0.

We denote by (f, g) =
∫
Rn+
f g and ‖f ‖20,+ = (f, f ) the L2(Rn+) inner product and

norm. For k ∈ N, ‖ · ‖k,+ will denote the classical Sobolev norm on Rn+ and ‖ · ‖k,+,τ the
associated weighted norms, that is,

‖f ‖2k,+,τ =
∑

j+|α|≤k

τ 2j
‖∂αf ‖20,+, τ ≥ 1. (5.2)
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We also define the tangential Sobolev norms by

|f |2k,τ = ‖(|D
′
| + τ)kf ‖20,+ ∼

∑
j+|α|≤k

τ 2j
‖∂αx′f ‖

2
0,+, τ ≥ 1.

For f, g ∈ C∞0 (R
n
+), we shall also use (f, g)0 =

∫
Rn−1 f|xn=0(x

′)g|xn=0(x
′) dx′.

Finally, for j ∈ N, we denote by Dk
τ the space of tangential differential operators, i.e.

operators of the form

P(x,D′, τ ) =
∑

j+|α|≤k

aj,α(x)τ
jD′α,

and by
σ(P ) = p(x, ξ ′, τ ) =

∑
j+|α|=k

aj,α(x)τ
j ξ ′α

their principal symbols.

Remark 5.1. Denote by T the restriction operator from D′(Rn) to D′(Rn+). We write
H k(Rn+) = T (H k(Rn)) with the restriction Sobolev norms

‖u‖k,+ := inf {‖v‖k : v ∈ H k(Rn), T v = u in D′(Rn+)}
= inf {‖v‖k : v ∈ H k(Rn), v = u a.e. on Rn+}.

We have the property

‖u‖k,+ ≈ sup
|α|≤k

‖∂αu‖L2(Rn+)

(see [Hör85, Corollary B.2.5] with different notations H (k,0)(Rn+)). Moreover, the set
C∞0 (R

n
+) = T (C∞0 (R

n)) of restrictions of smooth functions is dense in H k(Rn+) (see
[Hör85, Theorem B.2.1]). As a conclusion, if L is a linear operator from H k(Rn) to
H l(Rn) of norm C that sends ker(T ) ∩ H k into ker(T ) ∩ H l , then L extends to a linear
operator from H k(Rn+) to H l(Rn+) and we have

‖Lu‖l,+ ≤ C‖u‖k,+.

In particular, this will be the case for all “tangential” operators.

5.2. The Carleman estimate

In this section, we state and prove the counterpart of the Carleman estimate (2.4) as-
sociated to the Dirichlet problem for some second order operators (including the wave
operator). Recall that the operatorQψ

ε,τ is defined in (2.3) and acts in the variable xa only,
and hence is tangential to the boundary.
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Theorem 5.2 (Local Carleman estimate). Let r0 > 0 and P = D2
xnb
+ r(xb,Dxa ,Dx′b

)

be a differential operator of order 2 on a neighborhood of Kr0 , with real principal part,
where r(xb,Dxa ,Dx′b ) does not depend on xa and is a smooth xnb family of second order
operators in the (tangential) variable (xa, x′b).

Let ψ be a quadratic polynomial such that ψ ′
xnb
6= 0 on Kr0 and

{p, {p,ψ}}(x, ξ) > 0 if p(x, ξ) = 0, x ∈ Kr0 and ξa = 0, ξ 6= 0, (5.3)
1
iτ
{pψ , pψ }(x, ξ) > 0 if pψ (x, ξ) = 0, x ∈ Kr0 and ξa = 0, τ > 0, (5.4)

where pψ (x, ξ) = p(x, ξ + iτ∇ψ).
Then there exist ε, d, C, τ0 > 0 such that for any τ > τ0 all u ∈ C∞0 (Kr0/4) we have

τ‖Qψ
ε,τu‖

2
1,+,τ ≤ C

(
‖Qψ

ε,τPu‖
2
0,+ + e

−dτ
‖eτψu‖21,+,τ + τ

3
|(Qψ

ε,τu)|xn=0|
2
0

+ e−dτ |eτψu|xn=0|
2
0 + τ |(D(Q

ψ
ε,τu))|xn=0|

2
0 + e

−dτ
|eτψDu|xn=0|

2
0
)
. (5.5)

If moreover ψ ′xn > 0 for (x′, xn = 0) ∈ Kr0 , then for all u ∈ C∞0 (Kr0/4) such that
u|xn=0 = 0, we have

τ‖Qψ
ε,τu‖

2
1,+,τ ≤ C

(
‖Qψ

ε,τPu‖
2
0,+ + e

−dτ
‖eτψu‖21,+,τ

)
. (5.6)

Note that the operators P considered here satisfy in particular assumption (H) (i.e. have
a real valued principal symbol independent of xa).

The proof of this theorem relies on a Carleman estimate interpolating between the
“boundary elliptic Carleman estimates” of Lebeau and Robbiano [LR95] and the “par-
tially analytic Carleman estimates” of Tataru [Tat95] (see also [Hör97]).

Let us first state two corollaries that explain how to deal with lower order terms, and
then prove Theorem 5.2.

Corollary 5.3. Under the assumptions of Theorem 5.2, there exist ε, d, C, τ0 > 0
such that for any V ∈ L∞(Kr0), W ∈ L∞(Kr0;Rn), independent of xa and any
τ > τ0 max{1, ‖V ‖2/3L∞ , ‖W‖

2
L∞}, the Carleman estimates (5.5) or (5.6) are satisfied with

P replaced by PV,W = P +W · ∇ + V .

Here the constant C does not depend on the lower order terms V or W · ∇ (that are
independent of xa).

Proof of Corollary 5.3. Applying the Carleman estimates (5.5) or (5.6) for P = PV,W −
iW ·D − V , we need to estimate the term

Qψ
ε,τPu = Q

ψ
ε,τPV,Wu− iW ·Q

ψ
ε,τ (Du)− VQ

ψ
ε,τu

where V = V (xb), W = W(xb). Notice first that

C‖VQψ
ε,τu‖

2
0,+ ≤ C‖V ‖

2
L∞‖Q

ψ
ε,τu‖

2
0,+ ≤

1
4τ

3
‖Qψ

ε,τu‖
2
0,+ ≤

1
4τ‖Q

ψ
ε,τu‖

2
1,+,τ
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as soon as τ 3/(4C) ≥ ‖V ‖2L∞ (recall the definition of τ -depending norms in (5.2)). Next,
we recall how Q

ψ
ε,τ commutes with differentiation (using the fact that ψ is a quadratic

polynomial):
Qψ
ε,τ (Du) = (D − εψ

′′
x,xa

Da + iτψ
′)Qψ

ε,τu

(see e.g. (5.7)–(5.8) below), and consequently

C‖iW ·Qψ
ε,τ (Du)‖

2
0,+ ≤ C

′
‖W‖2L∞‖Q

ψ
ε,τu‖

2
1,+,τ ≤

1
4τ‖Q

ψ
ε,τu‖

2
1,+,τ

as soon as τ/(4C′) ≥ ‖W‖2L∞ . For such τ , these two terms may hence be absorbed in the
left hand side of the inequality. This concludes the proof. ut

Corollary 5.4. Under the assumptions of Theorem 5.2, let R(x,D) be a differential
operator of order 1 with coefficients which can be extended to bounded functions in
{(za, xb) ∈ Cna × Rnb : |za| < 5r0, |xb| < 5r0} and are analytic with respect to za
for fixed xb. Then there exist ε, d, C, τ0 > 0 such that for any any τ > τ0, the Carleman
estimates (5.5) or (5.6) are satisfied with P replaced by PR = P + R.

Proof. Lemma 4.8 of [Hör97] yields

‖Qψ
ε,τR(x,D)u‖0,+ ≤ C‖Q

ψ
ε,τu‖1,+,τ + Ce

−τd
‖eτψu‖1,+,τ

for all u ∈ C∞0 (Kr0/4). Actually, it is stated for the interior case, with the norm ‖ · ‖1,+,τ
replaced by ‖ · ‖1,τ . Yet, the estimates used for the proof, [Hör97, (3.13), (3.14)], are
actually made first in the variable xa and then integrated in xb. Since the variable xa is
tangential, the same proof gives the expected result.

As in Corollary 5.3, we can absorb the term C‖Q
ψ
ε,τu‖1,+,τ for τ large enough. The

second term has the same form as the right hand side of the Carleman estimate, up to
changing d. ut

Remark 5.5. This theorem, as well as its consequences, may be extended with some
modification to the Neumann case following Lebeau–Robbiano [LR97]. It could also be
generalized to a larger class of operators and boundary conditions (satisfying a Lopatin-
skii condition) following Tataru [Tat96] and Bellassoued–Le Rousseau [BLR15].

We now turn to the proof of Theorem 5.2. For this, we define the conjugated operator
Pψ = eτψPe−τψ = P(x,D + iτψ ′), and also let Pψ,ε be the conjugate of Pψ with
respect to e−

ε
2τ |Da |

2
, that is,

e−
ε

2τ |Da |
2
Pψw = Pψ,εe

−
ε

2τ |Da |
2
w for all w, (5.7)

or equivalently

Qψ
ε,τPu = Pψ,εQ

ψ
ε,τu for all u,

with, as usual, Qψ
ε,τ = e

−
ε

2τ eτψ . Since P is independent of xa , we have

Pψ,ε = P(x,D − εψ
′′
x,xa

Da + iτψ
′), (5.8)
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whereψ ′′x,xaDa = ψ
′′
xx((Da, 0)) (with the notation of [Hör97]); recall thatψ is a quadratic

polynomial such that ψ ′′xx is a constant symmetric matrix with real coefficients.
When proving the theorem, we shall drop the index+ in the norms to lighten notation;

of course, all inner norms and integrals are meant on Rn+. We first need the following
proposition.

Proposition 5.6. Under the assumptions of Theorem 5.2, there exist C, τ0 > 0 such that
for any τ > τ0 and f ∈ C∞0 (Kr0), we have

τ‖f ‖21,τ ≤ C
(
‖Pψ,εf ‖

2
0 + τ‖Daf ‖

2
0 + τ

3
|f|xn=0|

2
0 + τ |Df|xn=0|

2
0
)
. (5.9)

If moreover ψ ′xn > 0 for (x′, xn = 0) ∈ Kr0 , then

τ‖f ‖21,τ ≤ C
(
‖Pψ,εf ‖

2
0 + τ‖Daf ‖

2
0
)

for all f ∈ C∞0 (Kr0) such that f|xn=0 = 0.
(5.10)

Remark 5.7. As stated, ε is fixed and all constants may depend on it. It is likely that
one could perform uniform estimates in the limit ε → 0+, so as to recover the estimate
in the case ε = 0, i.e. get rid of the term τ‖Daf ‖

2
0 on the right hand sides. This would

require some additional work (in particular, the introduction of a uniform metric on the
phase space, see e.g. [Hör97, (5.7)]), and is not needed in the applications we have in
mind here.

Proof of Proposition 5.6. Defining Q̃ε
2 =

1
2 (Pψ,ε + P

∗
ψ,ε) and Q̃ε

1 =
1

2iτ (Pψ,ε − P
∗
ψ,ε),

we have
Pψ,ε = Q̃

ε
2 + iτ Q̃

ε
1.

We also denote by pεψ the principal symbol of Pψ,ε and by q̃εj that of Q̃ε
j , j = 1, 2 (which

is real valued), so that
pεψ = q̃

ε
2 + iτ q̃

ε
1 .

We have {
Q̃ε

2 = D
2
n − 2εψ ′′xn,xa (Dn;Da)+Q

ε
2,

Q̃ε
1 = Dnψ

′
xn
+ ψ ′xnDn + 2Qε

1,
(5.11)

and hence {
q̃ε2 = ξ

2
n − 2εψ ′′xn,xa (ξn; ξa)+ q

ε
2 ,

q̃ε1 = 2ξnψ ′xn + 2qε1 .
(5.12)

In these expressions, the operators Qε
2 ∈ D2

τ and Qε
1 ∈ D1

τ have principal symbols

qε2 = ε
2(ψ ′′xn,xaξa)

2
− τ 2(ψ ′xn)

2
+ r(x, ξ ′ − εψ ′′x′,xaξa)− τ

2r(x, ψ ′x′),

qε1 = −εψ
′′
xn,xa

(ψ ′xn; ξa)+ r̃(xb, ξ
′
− εψ ′′x′,xaξa, ψ

′

x′),

where r̃ is the bilinear form associated with the quadratic form r . Note that even if this
does not appear in notation, all these operators depend upon the parameter τ .
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With this notation, we hence have pψ = q̃0
2 + iτ q̃

0
1 , so that 1

iτ
{pψ , pψ } = 2{q̃0

2 , q̃
0
1 }.

Assumptions (5.3) and (5.4) then translate respectively into

{q̃0
2 , q̃

0
1 }(x, ξ) > 0 if p(x, ξ) = 0, x ∈ Kr0 and ξa = 0, τ = 0, (5.13)

{q̃0
2 , q̃

0
1 }(x, ξ) > 0 if pψ (x, ξ) = 0, x ∈ Kr0 and ξa = 0, τ > 0, (5.14)

where the second assertion is a direct consequence of (5.4), and the first one follows
from (5.3) together with the fact that, as p is real, we have

lim
τ→0+

1
iτ
{pψ , pψ } =

∂

∂τ

1
i
{pψ , pψ }

∣∣∣∣
τ=0
= 2{p, {p,ψ}}.

Next, we have the integration by parts formulæ:{
(g, Q̃ε

2f ) = (Q̃
ε
2g, f )− i[(g,Dnf )0 + (Dng, f )0 − 2ε(g, ψ ′′xn,xaDaf )0],

(g, Q̃ε
1f ) = (Q̃

ε
1g, f )− 2i(ψ ′xng, f )0.

(5.15)

So, for f ∈ C∞0 (Kr0) we have

‖Pψ,εf ‖
2
0 = ‖Q̃

ε
2f ‖

2
0 + τ

2
‖Q̃ε

1f ‖
2
0 + iτ [(Q̃

ε
1f, Q̃

ε
2f )− (Q̃

ε
2f, Q̃

ε
1f )]. (5.16)

Hence, by the integration by parts formulæ (5.15),

‖Pψ,εf ‖
2
0 = ‖Q̃

ε
2f ‖

2
0 + τ

2
‖Q̃ε

1f ‖
2
0 + iτ ([Q̃

ε
2, Q̃

ε
1]f, f )+ τB

ε(f ) (5.17)

with the boundary term

Bε(f ) = [(Q̃ε
1f,Dnf )0 + (DnQ̃

ε
1f, f )0 − 2ε(Q̃ε

1f,ψ
′′
xn,xa

Daf )0] − 2(ψ ′xnQ̃
ε
2f, f )0

= 2(ψ ′xnDnf,Dnf )0 + (M
ε
1f,Dnf )0 + (M

′ε
1 Dnf, f )0 + (M

ε
2f, f )0 (5.18)

for some tangential operator Mε
1 of order 1 (in (ξ ′, τ )) (note that terms of order 2 in Dn

cancel).
Now that we have made the exact computations, we will make some estimates on

the symbols of the interior part of the commutator. The idea is to transfer the positivity
assumption on the full symbol to some positivity of a tangential symbol, which will then
allow one to apply the tangential Gårding inequality.

The first step is to perform a factorization of [Q̃ε
2, Q̃

ε
1] with respect to Q̃ε

1 and Q̃ε
2 to

obtain a tangential remainder. Since [Q̃ε
2, Q̃

ε
1] is of order 2, it can be written i[Q̃ε

2, Q̃
ε
1] =

C2 + C1Dn + C0D
2
n where Ci ∈ Di

τ . But using (5.11), and ψ ′xn 6= 0 on Kr0 , we can
replace Dn = 1

2ψ ′xn
Q̃ε

1 +D1
τ and D2

n = Q̃
ε
2 + 2εψ ′′xn,xa (Dn;Da)−Q

ε
2. So, in particular,

we can write

i[Q̃ε
2, Q̃

ε
1] = B

ε
0Q̃

ε
2 + B

ε
1Q̃

ε
1 + B

ε
2 , (5.19)

where Bεi ∈ Di
τ with real symbol bεi . Now, we need to

• use the assumption to get some positivity of the symbol {pψ , pψ }—this is Lemma 5.8;
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• transfer this positivity to {pεψ , p
ε
ψ } for ε small enough by approximation—this is Lem-

ma 5.9;
• transfer this information to tangential information on the symbol—this is Lemma 5.10.

Lemma 5.8. There exist C1, C2 > 0 such that for all (x, ξ) ∈ Kr0 × Rn and τ > 0, we
have

|ξ |2 + τ 2
≤ C1{q̃

0
2 , q̃

0
1 }(x, ξ)+ C2

[
|pψ (x, ξ)|

2

|ξ |2 + τ 2 + |ξa|
2
]
.

Proof. All the terms are homogeneous of degree 2 in (ξ, τ ) and continuous on the com-
pact setKr0 ×{(ξ, τ ) ∈ Rn×R+ : |ξ |2+ τ 2

= 1}. Thus, on this set, the result is a conse-
quence of (5.13), (5.14) and Lemma A.1 applied to f = |pψ (x, ξ)|2/(|ξ |2 + τ 2)+|ξa|

2
≥

0, g = {q̃0
2 , q̃

0
1 } and h = 0. The result on the whole Kr0 × Rn × R+ follows by homo-

geneity. ut

Lemma 5.9. There exists ε0 such that for all ε ∈ (0, ε0), there exist C1, C2 > 0 such that
for all (x, ξ) ∈ Kr0 × Rn and τ > 0, we have

|ξ |2 + τ 2
≤ C1{q̃

ε
2 , q̃

ε
1}(x, ξ)+ C2

[
|pεψ (x, ξ)|

2

|ξ |2 + τ 2 + |ξa|
2
]
.

Proof. By the same argument, we may restrict to the compact setKr0×{(ξ, τ )∈Rn×R+ :
|ξ |2 + τ 2

= 1}. There, the inequality follows from Lemma 5.8 and the continuity of the
maps ε 7→ qεj , j = 1, 2, from R to C1(V ), where V is a neighborhood ofKr0 ×{(ξ, τ ) ∈
Rn × R+ : |ξ |2 + τ 2

= 1} in Rn × Rn × R+. ut

Now, we set

µε(x, ξ ′) = (qε1)
2
+ 2εqε1ψ

′′
xn,xa

(ψ ′xn; ξa)+ (ψ
′
xn
)2qε2 .

For τ > 0, the symbol µε(x, ξ ′) has the property that µε(x, ξ ′) = 0 if and only if there
exists ξn real such that pεψ (x, ξ

′, ξn) = 0. This can be seen by noticing that τ Impεψ =

q̃ε1 = 0 if and only if ξn = −qε1/ψ
′
xn

(see (5.12)), as a function of τ, x, ξ ′. Note that given
τ, x, ξ ′, the formula

pεψ (x, ξ
′, ξn) = Repεψ (x, ξ

′, ξn) = q̃
ε
2(x, ξ

′, ξn) = (ψ
′
xn
)−2µε(x, ξ ′) for ξn = −

qε1
ψ ′xn

always holds (even if τ = 0). Notice also that µε(x, ξ ′) is a tangential symbol of order 2.

Lemma 5.10. There exists ε0 such that for all ε ∈ (0, ε0), there exist C1, C2 > 0 such
that for all (x, ξ ′) ∈ Kr0 × Rn−1 and τ > 0, we have

|ξ ′|2 + τ 2
≤ C1b

ε
2 + C2

[
[µε(x, ξ ′)]2

|ξ ′|2 + τ 2 + |ξa|
2
]
. (5.20)
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Proof. Note first that for any (x, ξ ′, ξn) with ξn = −q1(x, ξ
′)/ψ ′xn , we have q̃ε1(x, ξ

′, ξn)

= 0 and
pεψ (x, ξ

′, ξn) = q̃
ε
2(x, ξ

′, ξn) = (ψ
′
xn
)−2µε(x, ξ ′).

Now, assume µε(x, ξ ′) = 0 and ξa = 0. Setting ξn = −q1(x, ξ
′)/ψ ′xn , we have

pεψ (x, ξ
′, ξn) = 0. Using Lemma 5.9, we have {q̃ε2 , q̃

ε
1}(x, ξ

′, ξn) > 0. According to
the definition of Bε2 in (5.19), we have bε2(x, ξ

′) > 0. As a consequence,

[µε(x, ξ ′) = 0 and ξa = 0] ⇒ bε2(x, ξ
′) > 0.

Moreover, all terms in (5.20) are homogeneous of degree 2 in (ξ ′, τ ) and continuous on
(ξ ′, τ ) 6= (0, 0). Hence, applying Lemma A.1 below on the compact set Kr0 × {(ξ

′, τ ) ∈

Rn−1
× R+ : |ξ ′|2 + τ 2

= 1, ξa = 0} yields (5.20) on that set. The conclusion follows
by homogeneity. ut

Let us now come back to the proof of Proposition 5.6. Taking the real part of (5.17) and
using (5.19), we obtain

‖Pψ,εf ‖
2
0 − τ ReBε(f ) = ‖Q̃ε

2f ‖
2
0 + τ

2
‖Q̃ε

1f ‖
2
0 + τ Re (Bε2f, f )

+ τ Re
(
(Bε0Q̃

ε
2 + B

ε
1Q̃

ε
1)f, f

)
. (5.21)

Concerning the remainder term, we have

τ
∣∣Re

(
(Bε0Q̃

ε
2 + B

ε
1Q̃

ε
1)f, f

)∣∣ ≤ τ‖f ‖0‖Q̃ε
2f ‖0 + τ |f |1‖Q̃

ε
1f ‖0

≤ τ−1/2(τ |f |21,τ + ‖Q̃
ε
2f ‖

2
0 + τ

2
‖Q̃ε

1f ‖
2
0). (5.22)

We now define the tangential differential operator

6 = (Qε
1)

2
+ 2εQε

1ψ
′′
xn,xa

(ψ ′xn;Da)+ (ψ
′
xn
)2Qε

2,

having principal symbol µε. We also let G be a tangential pseudodifferential operator
with principal symbol µ

ε(x,ξ ′)

|ξ ′|2+τ 2 . The operator

C1B
ε
2 + C2(G

∗6 +D2
a)

lies in the tangential class S
(
(|ξ ′| + τ)2, |dx′|2 +

|dξ ′|2

(|ξ ′|+τ)2

)
(see [Hör85, Chapter XVIII]

or [Ler10]), in which symbols are allowed to depend smoothly upon the variable xn. Ac-
cording to Lemma 5.10, it is elliptic in this class, so that the tangential Gårding inequality
yields, for τ sufficiently large,

|f |21,τ ≤ C Re
(
(Bε2f, f )+ Re (6f,Gf )+ ‖Daf ‖20

)
. (5.23)

Writing ψ ′xnDn =
1
2 (Q̃

ε
1 − [Dn, ψ

′
xn
]) − Qε

1 (where ψ ′xn does not vanish) allows us to
estimate the full norm ‖f ‖1,τ according to

‖f ‖1,τ ≤ C(‖Q̃
ε
1f ‖0 + |f |1,τ ). (5.24)
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Recalling the definitions of Q̃ε
i in terms of Qε

i in (5.11), i = 1, 2, we also have

6 =
(
ψ ′xnDn −

1
2 (Q̃

ε
1 − [Dn, ψ

′
xn
])
)2
+ 2εQε

1ψ
′′
xn,xa

(ψ ′xn;Da)

+ (ψ ′xn)
2(Q̃ε

2 −D
2
n + 2εψ ′′xn,xa (Dn;Da)

)
=
(
ψ ′xnDn −

1
2 (Q̃

ε
1 − [Dn, ψ

′
xn
])
)
ψ ′xnDn +

1
2Q1(Q̃

ε
1 − [Dn, ψ

′
xn
])

+ 2εQε
1ψ
′′
xn,xa

(ψ ′xn;Da)+ (ψ
′
xn
)2
(
Q̃ε

2 −D
2
n + 2εψ ′′xn,xa (Dn;Da)

)
. (5.25)

In this expression, notice that second order derivatives in xn, namely the terms (ψ ′xn)
2D2

n,
cancel. Hence, we obtain

6 ∈ (ψ ′xn)
2Q̃ε

2−
1
2ψ
′
xn
DnQ̃

ε
1+2εψ ′′xn,xa ((ψ

′
xn
)2Dn+Q

ε
1ψ
′
xn
;Da)+D1

τ Q̃
ε
1+D

1
τ+D0

τDn.

We now want to estimate the term Re (6f,Gf ) in (5.23). For this, integrating by parts
in the tangential direction xa , we have

|(ψ ′′xn,xa ((ψ
′
xn
)2Dn +Q

ε
1ψ
′
xn
;Da)f,Gf )| ≤ C‖〈Da〉f ‖ ‖f ‖1,τ .

This yields

|(6f,Gf )| ≤ C‖Q̃ε
2f ‖0‖f ‖0 +

∣∣∣∣( 1
2i
ψ ′xnQ̃

ε
1f,Gf

)
0

∣∣∣∣
+ ‖Q̃ε

1f ‖0‖f ‖1,τ + ‖f ‖0‖f ‖1,τ + C‖〈Da〉f ‖ ‖f ‖1,τ

≤

∣∣∣∣( 1
2i
ψ ′xnQ̃

ε
1f,Gf

)
0

∣∣∣∣
+ C‖f ‖1,τ

(
τ−1
‖Q̃ε

2f ‖0 + ‖Q̃
ε
1f ‖0 + τ

−1
‖f ‖1,τ + ‖Daf ‖0

)
. (5.26)

According to (5.23), (5.24) and (5.26), this now implies

‖f ‖21,τ . Re (Bε2f, f )+ ‖Q̃
ε
1f ‖

2
0 +

∣∣∣∣( 1
2i
ψ ′xnQ̃

ε
1f,Gf

)
0

∣∣∣∣+ τ−2
‖Q̃ε

2f ‖
2
0 + ‖Daf ‖

2
0.

Coming back to (5.21), we obtain, for τ large enough,

τ‖f ‖21,τ . ‖Pψ,εf ‖
2
0 − τ ReBε(f )− ‖Q̃ε

2f ‖
2
0 − τ

2
‖Q̃ε

1f ‖
2
0 + τ‖Daf ‖

2
0

+ τ

∣∣∣∣( 1
2i
ψ ′xnQ̃

ε
1f,Gf

)
0

∣∣∣∣
. ‖Pψ,εf ‖

2
0 − τ ReBε(f )+ τ‖Daf ‖20 + τ

∣∣∣∣( 1
2i
ψ ′xnQ̃

ε
1f,Gf

)
0

∣∣∣∣.
Recalling the definition of Q̃ε

1 in (5.11), we have ψ ′xnQ̃
ε
1 = 2(ψ ′xn)

2Dn + G1, where
G1 ∈ D1

τ is a differential operator of order 1 (in (τ,D′)), we finally have

τ‖f ‖21,τ . ‖Pψ,εf ‖
2
0 − τ ReBε(f )+ τ‖Daf ‖20 + τ |(Dnf +G1f,Gf )0|, (5.27)
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where G a tangential pseudodifferential operator of order zero. Recalling the form of
Bε(f ) in (5.18) gives the bound |Bε(f )| ≤ τ 2

|f|xn=0|
2
0 + |Df|xn=0|

2
0, which concludes

the proof of (5.9).
Now if f|xn=0 = 0, all tangential derivatives vanish. With (5.27) and the form of

Bε(f ) in (5.18), this yields

τ‖f ‖21,τ . ‖Pψ,εf ‖
2
0 − 2τ(ψ ′xnDnf,Dnf )0 + τ‖Daf ‖

2
0,

which proves (5.10) since ψ ′xn > 0 for (x′, xn = 0) ∈ K . This concludes the proof of
Proposition 5.6. ut

We now turn to the proof of Theorem 5.2.

Proof of Theorem 5.2. In the proof, we consider functions u ∈ C∞0 (Kr0/4) where Kr is
defined in (5.1). Let χ ∈ C∞0 (BRna (0, r0)) be such that χ = 1 on BRna (0, r0/2). Setting

v = Qψ
ε,τu = e

−
ε

2τ |Da |
2
(eτψu) and f = χ(xa)v(x),

we have supp f ⊂ Kr0 so that we may apply Proposition 5.6 to f . We have

v − f = (1− χ)Qψ
ε,τu = (1− χ)e

−
ε

2τ |Da |
2
(χ̌eτψu)

for some χ̌ ∈ C∞0 (BRna (0, r0/3)) with χ̌ = 1 in a neighborhood of BRna (0, r0/4). As a
consequence of Lemma 2.4, we have, for τ ≥ τ0,

‖v‖1,τ ≤ ‖f ‖1,τ + Ce
−Cτ/ε

‖eτψu‖1,τ . (5.28)

Now, it remains to estimate the terms on the RHS of Proposition 5.6 in terms of v. Notice
first that the same reasoning as for Lemma 2.4 (using that Da is tangential) allows us to
estimate the boundary terms as

|f|xn=0|0 ≤ |v|xn=0|0 + Ce
−Cτ/ε

|eτψu|xn=0|0, (5.29)

and, with Dv −Df = D((1− χ)e−
ε

2τ |Da |
2
(χ̌eτψu)),

|Df|xn=0|0 ≤ |Dv|xn=0|0 + Ce
−Cτ/ε

|eτψu|xn=0|0 + Ce
−Cτ/ε

|eτψ (τψ ′ +D)u|xn=0|0

+ Ce−Cτ/ε|eτψDu|xn=0|0

≤ |Dv|xn=0|0 + Cτe
−Cτ/ε

|eτψu|xn=0|0 + Ce
−Cτ/ε

|eτψDu|xn=0|0. (5.30)

Second, we estimate ‖Pψ,εf ‖0 = ‖Pψ,εχv‖0 = ‖χPψ,εv‖0 + ‖[Pψ,ε, χ]v‖0. For the
commutator, we write

[Pψ,ε, χ]v = [Pψ,ε, χ]e
−

ε
2τ |Da |

2
χ̌eτψu.

We notice that [Pψ,ε, χ] is a differential operator of order 1 in (D, τ) with coefficients
supported in suppχ ′xa , that is, away from supp χ̌ . In particular, Lemma 2.4 implies
‖[Pψ,ε, χ]v‖0 ≤ Ce

−cτ/ε
‖eτψu‖1,τ . This yields

‖Pψ,εf ‖0 ≤ ‖Pψ,εv‖0 + Ce
−cτ/ε
‖eτψu‖1,τ . (5.31)
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Now, it remains to treat the term ‖Daf ‖0. We find similarly that

‖Daf ‖0 = ‖Da(χv)‖0 ≤ ‖χDav‖0 +
∥∥χ ′xae− ε

2τ |Da |
2
χ̌eτψu

∥∥
0

≤ ‖Dav‖0 + Ce
−cτ/ε
‖eτψu‖0, (5.32)

where we have again used Lemma 2.4.
Let ς be a small constant to be fixed later. We distinguish between frequencies of size

smaller and larger than ςτ . For τ ≥ 1/(ς2ε) large enough (so that
√
τ/ε ≥ ςτ and the

function s 7→ se−
ε

2τ s
2

is decreasing on s ≥
√
τ/ε) we get

‖Dav‖0 = ‖Dae
−

ε
2τ |Da |

2
eτψu‖0 ≤ ‖Da1|Da |≤ςτv‖0 +

∥∥Da1|Da |≥ςτ e− ε
2τ |Da |

2
eτψu

∥∥
0

≤ ςτ‖v‖0 + ςτe
−τς2ε/2

‖eτψu‖0. (5.33)

We may now apply Proposition 5.6 to f . Combining the Carleman estimate (5.9) with
(5.29)–(5.33), we obtain, for some C1 > 0 and τ ≥ τ0 with τ0 (depending also on ς, ε)
sufficiently large,

C1τ‖v‖
2
1,τ ≤ ‖Pψ,εv‖

2
0 + e

−2cτ/ε
‖eτψu‖21,τ + ς

2τ 3
‖v‖20 + ς

2τ 3e−τς
2ε
‖eτψu‖20

+ τ 3
|v|xn=0|

2
0 + τ

3e−2cτ/ε
|eτψu|xn=0|

2
0 + τ |Dv|xn=0|

2
0 + τe

−2cτ/ε
|eτψDu|xn=0|

2
0.

For fixed ς ≤
√
C1/2 this yields, for some d > 0 (ε is already fixed) and τ ≥ τ0,

1
2C1τ‖v‖

2
1,τ ≤ ‖Pψ,εv‖

2
0 + e

−dτ
‖eτψu‖21,τ + τ

3
|v|xn=0|

2
0 + e

−dτ
|eτψu|xn=0|

2
0

+ τ |Dv|xn=0|
2
0 + e

−dτ
|eτψDu|xn=0|

2
0. (5.34)

Similarly, if moreover ψ ′xn > 0 for (x′, xn = 0) ∈ Kr0 , then (5.10) yields, for all u ∈
C∞0 (Kr0/4) such that u|xn=0 = 0,

C1τ‖v‖
2
1,τ ≤ ‖Pψ,εv‖

2
0 + e

−2cτ/ε
‖eτψu‖21,τ + ς

2τ 3
‖v‖20 + ς

2τ 3e−τς
2ε
‖eτψu‖20,

and hence

1
2C1τ‖v‖

2
1,τ ≤ ‖Pψ,εv‖

2
0 + e

−dτ
‖eτψu‖21,τ . (5.35)

Rewriting (5.34)–(5.35) in terms of u concludes the proof of Theorem 5.2. ut

5.3. The local quantitative uniqueness result

The Carleman estimates of the previous section have been proved when P has a very
specific form. Before proving the local quantitative uniqueness result, we first state them
in a more invariant way that can be obtained by change of coordinates in xb. When doing
so, we strengthen the assumptions made on the operator P , still encompassing the cases
of wave and Schrödinger operators (or more generally of the form of Remark 1.10).
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From now on, and until the end of the section, P will have the following property:

Assumption 5.1. P is a differential operator on Rna × Rnb+ , of order 2, with coefficients
analytic in xa . Moreover, P has principal symbol independent of xa of the form p(x, ξ) =

qxb (ξa) + q̃xb (ξb), where qxb , q̃xb are smooth xb-families of real quadratic forms on Rna
and Rnb respectively.

Moreover, given V ∈ L∞(Rnb+ ) and W ∈ L∞(Rnb+ ;Rn), independent of xa , we set
PV,W = P +W · ∇ + V .

Note that operators P satisfying Assumption 5.1 also satisfy assumption (H).
The proof of the local quantitative uniqueness result will then be essentially the same

as in the boundaryless case. The following proposition is the counterpart, in the boundary
case, of the end of the first step in Section 3 (hence containing the geometrical part of the
proof of the local uniqueness result).

Proposition 5.11. Let x0
∈ {xn = 0} and let P satisfy Assumption 5.1. Assume that

{xn = 0} is noncharacteristic with respect to P . Let φ be a function defined in a neigh-
borhood of x0 in Rn such that φ(x0) = 0, and {φ = 0} is a C2 strongly pseudoconvex
oriented surface at x0 in the sense of Definition 1.7.

Then there exists R0 > 0 and a smooth function ψ : B(x0, 4R0) → R which is a
quadratic polynomial with respect to xa ∈ Rna , such that for any R ∈ (0, R0], there exist
ε, δ, ρ, r, d, τ0, C > 0 such that

(1) δ ≤ d/8 and (3.13)–(3.15) hold,
(2) for any τ ≥ τ0, the Carleman estimate (5.5) holds for P , for all u ∈ C∞0 (R

n
+) with

supp u ⊂ B(x0, 4R).

If moreover φ′xn(x
0) > 0, then the Carleman estimate (5.6) holds for P for all u ∈

C∞0 (R
n
+) with supp u ⊂ B(x0, 4R) and u|xn=0 = 0.

The estimates can also be made uniform for τ > τ0 max{1, ‖V ‖2/3L∞ , ‖W‖
2
L∞} if P is

replaced by PV,W , as in Corollary 5.3.

Proof. First, by noncharacteristicity, we have q̃xb (ξb) 6= 0 for xb = (x′b, 0) and ξ ′b = 0,
ξnb = 1. We may thus reason in normal geodesic coordinates for q̃xb in Rnb , in a suf-
ficiently small neighborhood of {xn = 0}. More precisely (see [Hör85, Appendix C.5])
there exists a local diffeomorphism 9b from a neighborhood of x0

b in Rnb+ to a neigh-
borhood of 0 in Rnb+ such that, for 9 := IdRna ⊗ 9b, the principal part of P9 :=
(9−1)∗P9∗ takes the form ±(ξnb )

2
+ r(xb, ξa, ξ

′

b). From the function φ ◦ 9−1 (still
defining a strongly pseudoconvex surface for P9 since this property is invariant), we
can construct a quadratic polynomial ψ̃ exactly as in Lemma 3.4/Corollary 3.6 such that
the Carleman estimates (5.5)–(5.6) hold for P9 and ψ̃ . Note also that the constructions
imply that if φ′xn(x

0) > 0, then the same property holds for φ ◦ 9−1 and then ψ̃ . We
then use Corollary 5.4 and next Corollary 5.3 to allow, first, lower order terms analytic
in xa and next lower order terms independent of xa with the right estimates (note that
both properties are invariant by our change of coordinates in xb). Applying then the
diffeomorphism 9 to come back to the original setting yields the sought estimate with
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ψ = ψ̃ ◦9, which remains a quadratic polynomial with respect to the variable xa (only)
since 9 := IdRna ⊗9b. This proves (2).

Finally, the geometric assertion of (1) comes from the application of Lemma 3.4 in
geodesic coordinates. There, using the distance N(x, y) = |9−1(x)−9−1(y)| allows us
to obtain (3.13)–(3.15) with Euclidean balls as claimed in (1). ut

The aim is now to prove the following two local results, namely local quantitative unique-
ness up to and from the boundary.

Theorem 5.12 (Local quantitative uniqueness up to the boundary). Let x0
∈ {xn = 0}

and let P satisfy Assumption 5.1. Assume that {xn = 0} is noncharacteristic with respect
to P . Assume that there is a function φ defined in a neighborhood of x0 in Rn such that
φ(x0) = 0, and {φ = 0} is a C2 strongly pseudoconvex oriented surface at x0 in the
sense of Definition 1.7 and such that φ′xn(x

0) > 0.
Then there exists R0 > 0 such that for any R ∈ (0, R0), there exist r, ρ > 0 such that

for any ϑ ∈ C∞0 (R
n) with ϑ(x) = 1 on a neighborhood of {φ ≥ 2ρ} ∩B(x0, 3R), for all

c1, κ > 0 there exist C, κ ′, β, τ̃0 > 0 such that

‖Mβµ
c1µ
σr,c1µu‖1,+ ≤ Ce

κµ
(
‖Mµ

c1µ
ϑc1µu‖1,+ + ‖Pu‖L2(B(x0,4R)∩Rn+)

)
+ Ce−κ

′µ
‖u‖1,+

for all µ ≥ τ̃0 and u ∈ C∞0 (R
n
+) such that u|xn=0 = 0.

Moreover, under the same assumptions, there exist C0, κ
′, β, τ̃0 > 0 such that for all

V ∈ L∞(Rnb ), W ∈ L∞(Rnb ;Rn) the previous estimate is still true with P replaced by
PV,W = P +W · ∇ + V with C replaced by C0 max{1, ‖W‖L∞}, and uniformly for all
µ ≥ τ̃0 max{1, ‖V ‖2/3L∞ , ‖W‖

2
L∞}.

This theorem is proved similarly to the case without boundary. See the details in the proof
of the related Theorem 5.13 below.

Theorem 5.13 (Local quantitative uniqueness from the boundary). Let x0 and P satisfy
Assumption 5.1. Assume that {xn = 0} is noncharacteristic with respect to P , and the
function φ(x) = −xn satisfies the property of Definition 1.7 at x0.

Then there exists R0 > 0 such that for any R ∈ (0, R0), there exists r > 0 such that
for all c1, κ > 0 there exist C, κ ′, β, τ̃0 > 0 such that

‖Mβµ
c1µ
σr,c1µu‖1,+

≤ Ceκµ
(
‖Dnu‖L2(B(x0,4R)∩{xn=0} + ‖Pu‖L2(B(x0,4R)∩Rn+)

)
+ Ce−κ

′µ
‖u‖1,+

for all µ ≥ τ̃0 and u ∈ C∞0 (R
n
+) such that u|xn=0 = 0.

The same dependence of the constants holds if P is replaced by PV,W as in Theo-
rem 5.12.

Proof. The proof is very similar to the proof of Theorem 3.1 in Section 3, using the
Carleman estimate (5.5) of Theorem 5.2 . We only sketch it and underline the differences
from the boundaryless case. We moreover add the lower order terms V and W · ∇; we
need to check that all estimates can be carried out uniformly with respect to these terms.
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Step 1: The geometric setting. We start by choosing φ = −xn. The surface {φ = 0}
= {−xn = 0} is noncharacteristic by assumption, and according to Remark 1.10, is hence
a strongly pseudoconvex oriented surface for P . Proposition 5.11 furnishes an appropriate
convexified ψ , polynomial of degree two in the variable xa , that satisfies the desired
geometric conditions, together with the Carleman estimate (5.5). We now follow the proof
of the boundaryless case.

Step 2: Using the Carleman estimate. The point is to use the Carleman esti-
mate (5.5) with weight ψ , applied to the (compactly supported) function w =

σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u.
Similarly, using the same support property suppχδ ⊂ (−8δ, δ), and Lemma 2.13, we

write

‖Qψ
ε,τPV,Ww‖0,+ ≤ ‖Q

ψ
ε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)PV,Wu‖0,+

+ ‖Qψ
ε,τ [σ2RσR,λχδ,λ(ψ)χ̃δ(ψ), PV,W ]u‖0,+

≤ eτ
2/λeδτ‖PV,Wu‖L2(B(x0,4R)∩{xn≥0})

+ ‖Qψ
ε,τ [σ2RσR,λχδ,λ(ψ)χ̃δ(ψ), PV,W ]u‖0,+.

Next, Lemma 3.7 still holds in Rn+ since xa is a tangential variable (see Remark 5.1).
Hence, the commutator term is bounded by

‖Qψ
ε,τ [σ2RσR,λχδ,λ(ψ)χ̃δ(ψ), P ]u‖0,+

≤ Ce2δτ
‖M

2µ
λ ϑλu‖1,+ + Cλ

1/2τN
(
e−

εµ2
4τ + e−8δτ

+ eδτ−cµ
)
eτ

2/λeδτ‖u‖1,+,

with some ϑ (equal to 1 in a neighborhood of {φ ≥ 2ρ} ∩ B(x0, 3R)) supported in
{φ > ρ} = {xn < −ρ}.

Moreover, following Remark 3.8, we can get uniform estimates for the commutator
of PV,W by replacing C by C0 max{1, ‖W‖L∞(Rnb )}. We will not write it any more for
clarity but it appears multiplicatively in all the estimates.

Since the operator Mµ
c1µ only applies in the tangential variable xa , we have

‖Mµ
c1µ
ϑc1µu‖1,+ ≤ ‖ϑc1µu‖1,+.

Moreover, since ϑ is supported in {xn < −ρ} and ϑc1µ = e
−
|Da |

2
c1µ ϑ is a regularization

in the variable xa , ϑc1µ is also supported in {xn < −ρ} and ϑc1µ(x) = 0 if xn ≥ 0. In
particular, ‖ϑc1µu‖1,+ = 0. That is,

‖Qψ
ε,τPV,Ww‖0,+ ≤ Ce

τ 2/λeδτ‖PV,Wu‖L2(B(x0,4R)∩Rn+)

+ Cλ1/2τN
(
e−εµ

2/4τ
+ e−8δτ

+ eδτ−cµ
)
eτ

2/λeδτ‖u‖1,+.

The other terms in the Carleman estimate that we have to check are

τ |(D(Qψ
ε,τw))|xn=0|

2
0 + e

−dτ
|eτψDw|xn=0|

2
0 ≤ Cτ |e

τψDnw|xn=0|
2
0, (5.36)

where we have used u|xn=0 = w|xn=0 = 0. This also implies

Dnw|xn=0 = (σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)Dnu)|xn=0.
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Since ‖eτψχδ,λ(ψ)‖L∞ ≤ Cλ1/2eδτ eτ
2/λ thanks to Lemma 2.13, the left hand side of

(5.36) is bounded by Cλe2δτ e2τ 2/λτ |Dnu|
2
L2(B(x0,4R)∩{xn=0}).

So, combining the Carleman estimate of Corollary 5.3 and the previous bounds, we
have proved for all τ ≥ τ0 max{1, ‖V ‖2/3L∞ , ‖W‖

2
L∞}, µ ≥ 1, 1

C
µ ≤ λ ≤ Cµ,

τ 1/2
‖Qψ

ε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖1,+,τ

≤ Ceτ
2/λeδτ‖PV,Wu‖L2(B(x0,4R)∩Rn+)

+ Cλ1/2τ 1/2eδτ eτ
2/λ
|Dnu|L2(B(x0,4R)∩{xn=0})

+ Cλ1/2τN
(
e−

εµ2
4τ + τe−8δτ

+ eδτ−cµ
)
eτ

2/λeδτ‖u‖1,+.

So, denotingD = eκµ(‖Dnu‖L2(B(x0,4R)∩{xn=0})+‖Pu‖L2(B(x0,4R)∩Rn+)), we can rewrite
it as

‖Qψ
ε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖1,+,τ ≤ Cµ

1/2eδτ eCτ
2/µe−κµD

+ Cµ1/2τN
(
e−

εµ2
4τ + τe−8δτ

+ eδτ−cµ
)
eCτ

2/λeδτ‖u‖1,+.

Step 3: A complex analysis argument. We now proceed exactly as in the boundaryless
case. For any test function f ∈ C∞0 (R

n
+), we define the distribution hf (with β > 0 to be

chosen later) by

〈hf , w〉E′(R),C∞(R) := 〈σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)w(ψ)u, (M
βµf )〉H 1

0 (R
n
+),H

−1(Rn+)
.

We proceed similarly, noticing at the end that C∞0 (R
n
+) is dense in the dual space

H−1(Rn+) and that all operations are tangential. The analogue of Lemma 3.10 is proved
with the same complex analysis argument (which does not involve the x-space, but only
complexifies the Carleman large parameter τ ), using Lemma 3.11. This yields the analo-
gous result for µ ≥ Cτ0 max{1, ‖V ‖2/3L∞ , ‖W‖

2
L∞}.

Finally, it remains to transfer the estimate of ‖Qψ
ε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖1,+,τ to

an estimate of ‖Mβµ
c1µσr,c1µu‖1,+. The computations of the end of Section 3.3 remain valid

in the present context for the following two reasons: (a) the operatorsMβµ
c1µ are tangential

and the associated estimates of Section 2.4.1 still hold; (b) these computations only rely
on the geometric fact that σR = χδ(ψ) = χ̃δ(ψ) = ηδ(ψ) = 1 on a neighborhood of
supp σr , which now follows from Proposition 5.11. ut

5.4. The semiglobal estimate with boundary

In this section, we prove a version of Theorem 1.11/4.7 adapted to the boundary value
problem. More precisely, the following result considers, under the assumptions of the
above uniqueness results, the Dirichlet boundary condition at the bottom and the top of
the graph, with an observation at the bottom.

Recall that in the present context, the analytic variable is supposed to be tangential to
the boundary. In the following results (as opposed to the boundaryless case), this translates
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into the fact that we assume that, in the splittings x = (x′, xn) ∈ Rn−1
× [0, `0] and

x = (xa, xb) ∈ Rna × Rnb , the variable xn = xnb always belongs to the xb variables.
In Theorem 5.14 below, we state the semiglobal estimate with an observation from

the boundary (i.e. the first hypersurface S0 is a Dirichlet boundary) and when the last
hypersurface S1 touches a (Dirichlet) boundary. This is the most intricate situation. The
proof is the same in the cases where the last hypersurface does not touch the boundary, or
if we have an internal observation around the first surface. We do not state these cases for
the sake of concision.

Theorem 5.14. Let D be a bounded open subset of Rn−1 with smooth boundary. Let
G = G(x′, ε) be a C2 function defined in a neighborhood of D × [0, 1] such that

• for all ε ∈ (0, 1], we have {x′ ∈ Rn−1
: G(x′, ε) ≥ 0} = D,

• for all x′ ∈ D, the function ε 7→ G(x′, ε) is strictly increasing,
• for all ε ∈ (0, 1], we have {x′ ∈ Rn−1

: G(x′, ε) = 0} = ∂D.

Set
`0 = max

x′∈D

G(x′, 1), G(x′, 0) = 0, S0 = D × {xn = 0},

and, for ε ∈ (0, 1],

Sε = {(x
′, xn) ∈ Rn : xn ≥ 0 and G(x′, ε) = xn}

= (D × R) ∩ {(x′, xn) ∈ Rn : G(x′, ε) = xn},
K = {x ∈ Rn : 0 ≤ xn ≤ G(x′, 1)}.

Let � be a neighborhood of K in Rn−1
× [0, `0] and D̃ a neighborhood of D in Rn−1.

Let P satisfy Assumption 5.1. Assume that {xn = 0} and {xn = `0} are noncharacteristic
with respect to P . Assume also that for any ε ∈ [0, 1], the function

φε(x
′, xn) := G(x

′, ε)− xn

is strongly pseudoconvex in {ξa = 0} with respect to P on the whole Sε.
Then there exist a neighborhood U of K and constants κ, C,µ0 > 0 such that for all

u ∈ C∞0 (R
n−1
× [0, `0]) satisfying

u|xn=0 = u|xn=`0 = 0 on D̃,

we have

‖u‖L2(U) ≤ Ce
κµ(‖Dnu|xn=0‖L2(D̃) + ‖Pu‖L2(�))+

C

µ
‖u‖H 1(Rn−1×[0,`0])

for all µ ≥ µ0.
Moreover, under the same assumptions, there exist C0, κ

′, β, τ̃0 > 0 such that for all
V ∈ L∞(Rnb ), W ∈ L∞(Rnb ;Rn) the previous estimate is still true with P replaced by
PV,W = P +W · ∇ + V , with C replaced by C0 max{1, ‖W‖L∞}, and uniformly for all
µ ≥ τ̃0 max{1, ‖V ‖2/3L∞ , ‖W‖

2
L∞}.
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Proof. For simplicity, we first argue for V = 0,W = 0, and we will check the depen-
dence on V,W at the end.

We will use the same scheme of proof as for Theorem 4.7. We first note that the
notion of C can be extended to the case when there is a boundary and the variables ξa
are tangential to the boundary. Then, the local uniqueness results of Corollary 4.6, and
Theorem 5.12, can be written as

B(x0, r)C
[
{φ > ρ} ∩ B(x0, 4R)

]
(5.37)

as long as B(x0, 4R) ∩ {xn = 0} = ∅. Indeed, in (5.37), the case where B(x0, 4R) ∩
{xn = `0} = ∅ follows from the internal quantitative uniqueness result (e.g. Corol-
lary 4.6), whereas the case “up to the boundary” B(x0, 4R) ∩ {xn = `0} 6= ∅ follows
from Theorem 5.12. To apply this theorem in this context, one needs to make the change
of variables xn 7→ `0 − xn, which transforms {xn ≤ `0} into Rn+ and φε = G(x′, ε)− xn
to φ̃ε := G(x′, ε) − (`0 − xn). The condition ∂xn φ̃ε = −∂xnφε = 1 > 0 is satisfied,
the surface {xn = 0} (new coordinates) remains noncharacteristic; the pseudoconvexity
assumption is invariant as well.

Claim. For any open neighborhood ω̃ of S0 = D × {xn = 0}, there exists an open
neighborhood U of K ( for the topology of Rn−1

× [0, `0]) such that

U C ω̃.

The claim can be proved with almost the same proof as that of Theorem 4.7, but using
in addition Theorem 5.12 instead of only Theorem 3.1. So, we have to ensure that in the
proof, we only apply Theorem 5.12 for some points x

εj
i withB(x

εj
i , 4R

εj
i )∩{xn = 0} = ∅.

This is the point of Remark 4.10, which then allows us to prove the Claim as in Theo-
rem 4.7.

Now, let x0
∈ D × {xn = 0}. We apply Theorem 5.13 with Rx small enough that

Rn−1
×{xn = 0} ∩B(x,Rx) ⊂ {xn = 0}× D̃ and B(x,Rx) ⊂ �. This gives rx such that

for some β, κ, C, κ ′, µ0 > 0,

‖Mβµ
c1µ
σ x

0

r,c1µ
u‖1,+ ≤ Ce

κµ
(
‖Dnu|xn=0‖L2(D̃) + ‖Pu‖L2(�)

)
+ Ce−κ

′µ
‖u‖1,+.

where σ x
0

r is centered at x0. By compactness of D, we can cover it by a finite number of
such balls (B(xi, r i))i∈I . Pick ϑ ∈ C∞0 (R

n−1
× [0, `0]) with suppϑ ⊂

⋃
i∈I B(x

i, r i)

so that ϑ = 1 in a neighborhood ω̃ of S0. Lemma 2.12 gives, for functions σ x
i

r i
equal to 1

on B(xi, r i), the estimate

‖M2βµ
µ ϑµu‖m−1 ≤

∑
i∈I

‖Mβµ
c1µ
σ x

i

r i ,c1µ
u‖1,+ + Ce

−cµ
‖u‖1,+.

Now, apply the Claim with the selected ω̃ and for some ϑ̃ ∈ C∞0 (U ∩ Rn−1
× [0, `0])

equal to 1 in a neighborhood of K . For some κ1 < min(c/2, κ ′), there exist C1, κ
′

1 > 0
such that

‖Mαµ
µ ϑ̃µu‖1,+ ≤ Ce

κ1µ
(
‖M2βµ

µ ϑµu‖m−1 + ‖Pu‖L2(�)

)
+ Ce−κ

′

1µ‖u‖1,+.
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This implies, for some κ2, κ
′

2, C > 0,

‖Mαµ
µ ϑ̃µu‖1,+ ≤ Ce

κ2µ
(
‖Dnu|xn=0‖L2(D̃) + ‖Pu‖L2(�)

)
+ Ce−κ

′

2µ‖u‖1,+.

We finish the proof as in Theorem 1.11 once Theorem 4.7 is proved, taking into account
Remark 5.1.

Now, if P is replaced by PV,W , we want to obtain uniformity with respect to the size
of V and W . It is clear that the proof of the theorem involves a finite number of appli-
cations of Theorems 5.12 and 5.13. Indeed, the scheme of proof of Theorem 4.7 only
involves a finite number of applications of the geometric propagation of the property C.
They can be divided into two categories: the general ones described in Proposition 4.5 that
are completely independent of the operator P (so the constants will be independent of V
and W ), and those using Theorems 5.12 and 5.13 where the dependence of the constants
µ0 and C is explicitly described. Note also that all properties (propagation, transitivity,
simplification...) that we prove about the relationsC andE in Propositions 4.3 and 4.5 sat-
isfy the following: once κ is fixed, the associated µ0 provided byC andE is always trans-
formed into some linear combination (with universal constants) of the µ0 corresponding
to the previous ones. The same holds for the constants C involved in C and E. Finally,
a finite number of applications of these rules will always conclude with the restriction of
the form µ ≥ τ̃0 max{1, ‖V ‖2/3L∞ , ‖W‖

2
L∞} and C of the form C0 max{1, ‖W‖L∞}, once

κ is fixed. ut

6. Applications

We now give applications of the above main results, namely Theorem 1.11 and, in the case
with boundary, Theorem 5.14, to the wave and Schrödinger operators. In these applica-
tions, we study an evolution equation in the analytic variable. We thus have na = 1,
nb = n − 1 = dim(M) and we denote accordingly by t = xa the time variable
and by x = xb the space variable. In this section, we prove general versions of Theo-
rems 1.1 and 1.5: we add (complex valued) lower order terms that are analytic in time.
We also provide uniform estimates with respect to these lower order terms if they are
time-independent. The proof consists each time in

• first applying the quantitative estimates of Theorem 5.14;
• then using energy estimates to relate time-spaceH 1 norms of the solution to the energy

of the initial data and the norm of the source term.

Note that the first step, the quantitative unique continuation itself, does not involve the
lower order terms. For instance, Theorem 6.7 below is equally valid for the Schrödinger
operator i∂t +1g , the heat operator ∂t −1g , Ginzburg–Landau operators eiθ∂t +1g , etc.
The second step however uses the well-posedness properties of the evolution problem
(conservation of energies...), and is not so well-adapted to dissipative equations.
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6.1. The wave equation

Our result for the wave equation can be formulated as follows. We recall that the geomet-
ric constant L(M, ω) is introduced in (1.3).

Theorem 6.1. Let M be a compact Riemannian manifold with (or without) boundary,
1g the Laplace–Beltrami operator on M, and

P = ∂2
t −1g +W0∂t +W1 · ∇ + V

withV,W0,W1, div(W1) bounded and depending analytically on the variable t ∈(−T , T )
(see Remark 6.4).

For any nonempty open subset ω of M and any T > L(M, ω), there exist C, κ, µ0
> 0 such that for any (u0, u1) ∈ H 1

0 (M) × L2(M), f ∈ L2((−T , T ) ×M) and
associated solution u ofPu = f in (−T , T )× Int(M),

u = 0 in (−T , T )× ∂M,

(u, ∂tu)|t=0 = (u0, u1) in Int(M),

(6.1)

we have, for any µ ≥ µ0,

‖(u0, u1)‖L2×H−1

≤ Ceκµ
(
‖u‖L2((−T ,T );H 1(ω)) + ‖f ‖L2((−T ,T )×M)

)
+
C

µ
‖(u0, u1)‖H 1×L2 . (6.2)

If moreover ∂M = ∅ and all coefficients of P are analytic in both t and x (i.e. the
manifold M, the metric g and the lower order terms W0,W1, V are analytic), then there
exists ϕ̃ ∈ C∞0 ((−T , T )× ω) such that for any s ∈ R, we have

‖(u0, u1)‖L2×H−1

≤ Ceκµ
(
‖ϕ̃u‖H−s ((−T ,T )×M) + ‖f ‖L2((−T ,T )×M)

)
+
C

µ
‖(u0, u1)‖H 1×L2 .

If ∂M 6= ∅ and 0 is a nonempty open subset of ∂M, for any T > L(M, 0) there exist
C, κ, µ0 > 0 such that for any (u0, u1) ∈ H

1
0 (M) × L2(M), f ∈ L2((−T , T ) ×M)

and associated solution u of (6.1), we have

‖(u0, u1)‖L2×H−1

≤ Ceκµ
(
‖∂νu‖L2((−T ,T )×0) + ‖f ‖L2((−T ,T )×M)

)
+
C

µ
‖(u0, u1)‖H 1×L2 . (6.3)

Finally, if V , W0 and W1 are time-independent then we have the following stronger
result. There exist C0, κ, µ0 > 0 such that for any V,W0,W1, div(W1) bounded (all
independent of t), for any (u0, u1) ∈ H 1

0 (M) × L2(M), f ∈ L2((−T , T ) ×M)

and u the solution of (6.1), estimates (6.2) and (6.3) hold uniformly for all µ ≥
µ0 max{1, ‖V ‖2/3L∞ , ‖W0‖

2
L∞ , ‖W1‖

2
L∞} with constant

C = C0 exp
(
C0 max{‖V ‖L∞(M), ‖W0‖L∞(M), ‖W1‖L∞(M), ‖div(W1)‖L∞(M)}

)
.

(6.4)



1048 Camille Laurent, Matthieu Léautaud

Remark 6.2. Using Lemma A.3 and the admissibility condition ‖∂νu‖L2((−T ,T )×0) ≤

C‖(u0, u1)‖H 1×L2 , we can write the previous estimates as in Corollary 1.2 with some
constants depending explicitly on the norms of the lower order terms.

Note that refinements of the rough energy estimates made in the proof of Theorem 6.1
lead to improved dependences of the constant in (6.4) (see e.g. [LL16, Section 3]).

Theorem 6.1 above is a consequence of the following result, together with basic en-
ergy estimates for solutions to the wave equation.

Theorem 6.3. Let M be a compact Riemannian manifold with (or without) boundary,
1g the Laplace–Beltrami operator on M, and P = ∂2

t −1g+R with R = R(t, x, ∂t , ∂x)
a differential operator of order 1 on (−T , T )×M, with coefficients bounded and depend-
ing analytically on the variable t ∈ (−T , T ) (see Remark 6.4 below).

For any nonempty open subset ω of M and any T > L(M, ω), there exist
ε, C, κ, µ0 > 0 such that for any u ∈ H 1((−T , T ) ×M) and f ∈ L2((−T , T ) ×M)

solving {
Pu = f in (−T , T )× Int(M),

u = 0 in (−T , T )× ∂M,
(6.5)

we have, for any µ ≥ µ0,

‖u‖L2((−ε,ε)×M)

≤ Ceκµ
(
‖u‖L2((−T ,T );H 1(ω)) + ‖f ‖L2((−T ,T )×M)

)
+
C

µ
‖u‖H 1((−T ,T )×M).

If moreover M, the metric g and the lower order terms R are analytic, and ∂M = ∅,
then there exists ϕ̃ ∈ C∞0 ((−T , T )× ω) such that for any s ∈ R, we have

‖u‖L2((−ε,ε)×M)

≤ Ceκµ
(
‖ϕ̃u‖H−s ((−T ,T )×M) + ‖f ‖L2((−T ,T )×M)

)
+
C

µ
‖u‖H 1((−T ,T )×M).

If ∂M 6= ∅ and 0 is a nonempty open subset of ∂M, then for any T > L(M, 0) there
exist ε, C, κ, µ0 > 0 such that for any u ∈ H 1((−T , T )×M) and f ∈ L2((−T , T )×M)

solving (6.5), we have

‖u‖L2((−ε,ε)×M)

≤ Ceκµ
(
‖∂νu‖L2((−T ,T )×0) + ‖f ‖L2((−T ,T )×M)

)
+
C

µ
‖u‖H 1((−T ,T )×M).

Finally, if all lower order terms are time-independent, that is,R = W0∂t+W1 ·∇+V does
not depend on t , then we have the following stronger result. There exist ε, C0, κ, µ0 > 0
that such for any V,W0 ∈ L

∞(M) and W1 an L∞ vector field on M, for any u ∈
H 1((−T , T ) ×M) and f ∈ L2((−T , T ) ×M) solving (6.5) all the above estimates
hold uniformly for all µ ≥ µ0 max{1, ‖V ‖2/3L∞ , ‖W0‖

2
L∞ , ‖W1‖

2
L∞} and C replaced by

C0 max{1, ‖W0‖L∞ , ‖W1‖L∞}.
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Remark 6.4. In the above theorems, a function is said to be “bounded and depending
analytically on the variable t ∈ (−T , T )” if it is bounded in N ×M where N is a
complex neighborhood of (−T , T ), and depending analytically on the variable t ∈ N for
almost every x ∈M.

We first prove Theorem 6.3 and then conclude with the proof of Theorem 6.1.

Proof of Theorem 6.3. We only prove here the more complicated case of the bound-
ary observation. The internal observation case is simpler and follows the same proof. To
transport information from one point x0 to another point x1, the idea is to build nice
coordinates in a neighborhood of a path between x0 and x1. In these coordinates, we
construct an appropriate foliation in order to apply our semiglobal estimate. To construct
these coordinates, we follow the presentation of Lebeau [Leb92, pp. 21–22].

We fix a point x1
∈ M. We can find x0

∈ 0 and a smooth path γ : [0, 1] → M
of length `0 with L(M, 0) < `0 < T (see the definition of L(M, 0) in (1.3)) so that
γ (0) = x0 and γ (1) = x1. Moreover, we can require that

γ does not have self-intersections,
γ (s) ∈ Int(M) for s ∈ (0, 1),
γ̇ (0) is orthogonal to ∂M,

γ̇ (1) is orthogonal to ∂M in case γ (1) = x1
∈ ∂M.

According to Lemma 6.5 below, we can find local coordinates (w, xn) near γ in which
M is defined by 0 ≤ xn ≤ `0, the path γ by γ (s) = (0, s`0) and the (co)metric is given
by the matrix m(w, xn) ∈ Mn(R) with

m(w, xn) =

(
m′(xn) 0

0 1

)
+OMn(R)(|w|) for w ∈ BRn−1(0, δ), δ > 0, (6.6)

with m′(xn) ∈ Mn−1(R) symmetric and (uniformly) positive definite. With these coor-
dinates in the space variable, and still using the straight time variable, the symbol of the
wave operator is given by

p(t, w, xn, τ, ξw, ξn) = p(w, xn, τ, ξw, ξn) = −τ
2
+ 〈m(w, xn)ξ, ξ〉, ξ = (ξw, ξn),

(6.7)

where we have used τ for the dual of the time variable and ξw, ξn for the duals to w ∈
BRn−1(0, δ) and xn ∈ [0, `0].

We now aim to apply Theorem 5.14. Pick again t0 with `0 < t0 < T . For b < δ small,
to be fixed later, we define

xn = l, x′ = (t, w), D =

{
(t, w) :

(
w

b

)2

+

(
t

t0

)2

< 1
}
,

G(t, w, ε) = ε`0θ

(√(
w

b

)2

+

(
t

t0

)2)
, φε(t, w, xn) := G(t,w, ε)− xn, ε ∈ [0, 1],
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where θ is such that, for some η0, η1 > 0,

θ : [−1− η0, 1+ η0] → [−η1, 1], smooth and even, θ(±1) = 0, θ(0) = 1,
θ(s) ≥ 0 if and only if s ∈ [−1, 1], |θ ′| ≤ α on [−1− η0, 1+ η0],

with 1 < α < t0/`0. This is possible since t0/`0 > 1.
Note also that the point (t = 0, w = 0, xn = `0) corresponding in the local coordi-

nates to x1 belongs to {φ1 = 0}. We have

dφε(t, w, xn)

= ε`0

((
w

b

)2

+

(
t

t0

)2)−1/2

θ ′
(√(

w

b

)2

+

(
t

t0

)2)(
tdt

t20
+
wdw

b2

)
− dxn.

Given the form of the principal symbol of the wave operator in these coordinates (see
(6.6)–(6.7)), we obtain

p(w, xn, dφε(t, w, xn)) = −ε
2`2

0
t2

t40

((
w

b

)2

+

(
t

t0

)2)−1

|θ ′|2

+ `2
0
ε2

b4 〈m
′(xn)w,w〉

((
w

b

)2

+

(
t

t0

)2)−1

|θ ′|2 + 1

+O(|w|2)

(
1+

ε2`2
0

b4 |w|
2
((

w

b

)2

+

(
t

t0

)2)−1

|θ ′|2
)
,

where |θ ′|2 is taken at the point
√
(w/b)2 + (t/t0)2. Now, since α < t0/`0 and m′(xn) is

uniformly (for xn ∈ [0, `0]) positive definite, there is η > 0 such that for |w| ≤ b small
enough, we have

1+O(|w|2) ≥ α2 `
2
0

t20
+ η,

〈m′(xn)w,w〉 +O(|w|
2)|w|2 ≥ 1

2 〈m
′(xn)w,w〉 ≥ 0.

Hence, there is a sufficiently small neighborhood (taking again b small enough) of the
path (i.e. ofw = 0), in which we have, for any ε ∈ [0, 1] and any (t, w, xn) ∈ D×[0, `0],

p(w, xn, dφε(t, w, xn)) ≥ −
ε2

t20
`2

0

(
t

t0

)2((
w

b

)2

+

(
t

t0

)2)−1

|θ ′|2 + α2 `
2
0

t20
+ η

≥ −
`2

0

t20
|θ ′|2 + α2 `

2
0

t20
+ η ≥ η.

So, the surface {φε = 0} is noncharacteristic for any ε ∈ [0, 1], and therefore strongly
pseudoconvex with respect to the wave operator (see Remark 1.10).

Moreover, since b can be chosen arbitrarily small and 0 open with x0
∈ 0, we can

select b small enough so that in the chosen coordinates, we have D ⊂ [−t0, t0] × 0.
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Therefore, applying Theorem 5.14 (in case x1
∈ ∂M; see the remark preceding Theo-

rem 5.14 in case x1 /∈ ∂M) in the chosen coordinates and writing (with a slight abuse of
notation) the final result in an invariant way, we get

‖u‖L2(U) ≤ Ce
κµ
(
‖∂νu‖L2((−T ,T )×0) + ‖Pu‖L2((−T ,T )×M)

)
+
C

µ
‖u‖H 1((−T ,T )×M),

(6.8)

where U is a neighborhood (in the local coordinates) of {φ1 = 0} and in partic-
ular a neighborhood of x1 (in the global coordinates). Note that we actually apply
the theorem to χu with χ ∈ C∞((−T , T ) × M) so that in the coordinate charts,
χu ∈ C∞0 ([0, `0] × Rn−1) and χ = 1 on a neighborhood of the � defined in Theo-
rem 5.14. We have therefore ‖Pχu‖L2(�) = ‖Pu‖L2(�) ≤ C‖Pu‖L2((−T ,T )×M) and
‖χu‖H 1([0,`0]×Rn−1) ≤ ‖u‖H 1((−T ,T )×M) (where we have switched from some coordi-
nate set to another with a slight abuse of notation).

Since the previous property is true for any x1
∈ M, we deduce by compactness

(taking the worst of all the constants κ , C, µ0), using this estimate only a finite number
of times, that there exists ε > 0 such that

‖u‖L2((−ε,ε)×M)

≤ Ceκµ
(
‖∂νu‖L2((−T ,T )×0) + ‖Pu‖L2((−T ,T )×M)

)
+
C

µ
‖u‖H 1((−T ,T )×M).

This concludes the proof of the theorem in the general (boundary) case.
For the last analytic case, we apply the same reasoning as before using the case na = n

of Theorem 1.11 and taking care about having some analytic change of coordinates. For
instance, we need to have an analytic path. So, this leads to an observation term ‖ϕu‖H−s
where ϕ = 1 on all the cutoff functions obtained by the theorem.

The lower order terms depending analytically on time are treated using Corollary 5.4
and Remark 3.8.

The uniform dependence with respect to time-independent lower order terms follows
from the fact that we only use Theorem 5.14 a finite number of times. ut

With Theorem 6.3, we now conclude the proof of Theorem 6.1, using energy esti-
mates to relate ‖(u0, u1)‖H 1

0×L
2(M) to ‖u‖H 1((−T ,T )×M), and ‖(u0, u1)‖L2×H−1(M) to

‖u‖L2((−T ,T )×M). These estimates are very classical in the selfadjoint case (which we
omit here) and need a little care in the general case. They can be refined in various ways
(see e.g. [LL16, Section 3]).

Proof of Theorem 6.1. We consider a perturbation of order 1, R(t, x, ∂t , ∂x)u =
V (t, x)u + W0(t, x)∂tu + W1(t, x) · ∇u, and perform the energy estimates. For s ∈
[−T , T ], we have the pointwise-in-time estimate

‖R(s)u(s)‖L2 ≤ CR
(
‖u(s)‖H 1(M) + ‖∂tu(s)‖L2(M)

)
with

CR = ‖V ‖L∞([−T ,T ]×M) + ‖W0‖L∞([−T ,T ]×M) + ‖W1‖L∞([−T ,T ]×M).
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Using the Duhamel formula and the Gronwall lemma gives

‖(u, ∂tu)(t)‖H 1×L2(M) ≤ Ce
CCR

(
‖(u0, u1)‖H 1×L2(M) + ‖f ‖L1([−T ,T ];L2(M))

)
,

and in particular, after integrating in time,

‖u‖H 1((−T ,T )×M) ≤ Ce
CCR

(
‖(u0, u1)‖H 1×L2(M) + ‖f ‖L1([−T ,T ];L2(M))

)
. (6.9)

Let R∗(t, x, ∂t ,Dx)u = V (t, x)u−∂t (W0(t, x)u)−div(W1(t, x)u) be the formal (space-
time) adjoint of R (we take the real duality for simplicity).

If (v0, v1) ∈ H
1
× L2, let v be the associated solution of �v + R∗v = 0. We have

‖R∗(s)v(s)‖L2 ≤ CR∗
(
‖v(s)‖H 1(M) + ‖∂tv(s)‖L2(M)

)
for s ∈ [0, ε], with

CR∗ = ‖V ‖L∞([0,ε]×M) + ‖W0‖W 1,∞([0,ε];L∞(M)) + ‖W1‖L∞([0,ε]×M)

+ ‖div(W1)‖L∞([0,ε]×M).

Similar energy estimates applied to v give

‖v‖H 1((0,ε)×M) ≤ Ce
CεCR∗ ‖(v0, v1)‖H 1×L2(M). (6.10)

We now choose χ ∈ C∞([0, ε]) such that χ(0) = 1, χ̇(0) = 0, χ(ε) = 0, and
χ̇(ε) = 0. Then w = χ(t)v is the solution of

�w + R∗w = 2χ̇(t)∂tv + χ̇(t)W0v + χ̈(t)v =: g,

w|∂M = 0,
(w, ∂tw)|t=0 = (v0, v1).

Thus, g is a (trivial) control that drives (v0, v1) to zero, i.e. (w, ∂tw)|t=ε = (0, 0), with,
according to (6.10), ‖g‖L2((0,ε)×M) ≤ Ce

CCR∗ ‖(v0, v1)‖H 1×L2 . So, the usual computa-
tion yields, after integrating by parts,∫

(0,ε)×M
ug =

∫
(0,ε)×M

u(�+ R∗)w

=

∫
M
u1v0 −

∫
M
u0v1 −

∫
M
W0(0, x)u0v0 +

∫
(0,ε)×M

fw,

and in particular

〈(u0, u1), (−v1, v0)〉

≤ C‖u‖L2((0,ε)×M)‖g‖L2((0,ε)×M) + C‖f ‖L2((0,ε)×M)‖w‖L2((0,ε)×M)

≤ CeCR
∗

‖(v0, v1)‖H 1×L2
(
‖u‖L2((0,ε)×M) + ‖f ‖L2((0,ε)×M)

)
,

where 〈·, ·〉 is the twisted duality 〈(u0, u1), (v1, v0)〉L2×H−1,L2×H 1 =
∫
M u1v0 −∫

M u0v1 −
∫
MW0(0, x)u0v0.
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By specifying to v0 = 0 and ‖v1‖L2 = 1, this gives first by duality

‖u0‖L2 = sup
‖v1‖L2=1

∫
M
u0v1 ≤ Ce

C∗R
(
‖u‖L2((0,ε)×M) + ‖f ‖L2((0,ε)×M)

)
.

Then, with v1 = 0 and ‖v0‖H 1 = 1, we obtain

‖u1‖H−1 = sup
‖v0‖H1=1

∫
M
u1v0

≤ sup
‖v0‖H1=1

∫
M

(
u1v0 −

∫
M
W0(0, x)u0v0 +

∫
M
W0(0, x)u0v0

)
≤ sup
‖v0‖H1=1

〈(u0, u1), (0, v0)〉L2×H−1,L2×H 1 + sup
‖v0‖H1=1

∫
M
W0(0, x)u0v0

≤ CeC
∗
R
(
‖u‖L2((0,ε)×M) + ‖f ‖L2((0,ε)×M)

)
+ C‖W0‖L∞‖u0‖L2 .

So, finally, we have

‖(u0, u1)‖L2×H−1 ≤ Ce
C∗R
(
‖u‖L2((0,ε)×M) + ‖f ‖L2((0,ε)×M)

)
. (6.11)

In the particular case where the perturbation is independent of time, we have

CR + CR∗ ≤ Cmax{‖V ‖L∞(M), ‖W0‖L∞(M), ‖W1‖L∞(M), ‖div(W1)‖L∞(M)}.

The combination of Theorem 6.3 with (6.9) and (6.11) gives the sought result. ut

We now give a brief proof of Theorem 1.4 (so-called “penetration into shadow for
waves”), which is very close to that of Theorem 6.3.

Proof of Theorem 1.4. Following exactly the same proof as for Theorem 6.3 but stopping
at estimate (6.8) and using the internal observation instead, we find that for any x1 ∈ ω1,
there exist ε > 0 and C, κ, µ0 such that

‖u‖L2((−ε,ε)×B(x1,ε))
≤ Ceκµ‖u‖L2((−T ,T );H 1(ω0))

+
C

µ
‖u‖H 1((−T ,T )×M), (6.12)

uniformly for µ ≥ µ0. Since ω1 is compact, we can cover it by a finite number of such
balls, ω1 b

⋃N
i=1 B(xi, εi). In particular, we can find ε̃ > 0 small such that ε̃ < εi for

any 1 ≤ i ≤ N and Nhd(ω1, ε̃) ⊂
⋃N
i=1 B(xi, εi). This gives ‖u‖L2((−̃ε,̃ε)×Nhd(ω1 ,̃ε))

≤

C
∑N
i=1 ‖u‖L2((−εi ,εi )×B(xi ,εi ))

.
Note then that the wave equation with Dirichlet boundary conditions is well-posed

under the assumptions of Theorem 1.4 (that the operator (−1g , Dirichlet) is essentially
selfadjoint on L2(M) follows e.g. from an adaptation of [Str83]). This allows one to
perform energy estimates as in the compact case. Hence, since (u0, u1) are supported
in ω1, the finite speed of propagation implies that u(t) is supported in Nhd(ω1, ε̃) for
|t | < ε̃ (where we use the distance coming from the Riemannian metric to define balls).
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That is, ‖u‖L2((−̃ε,̃ε)×Nhd(ω1 ,̃ε))
= ‖u‖L2((−̃ε,̃ε)×M). Now, we conclude as before us-

ing the inequalities ‖u‖L2((−̃ε,̃ε)×M) ≥ C‖(u0, u1)‖L2×H−1 and ‖u‖H 1((−T ,T )×M) ≤

C‖(u0, u1)‖H 1×L2 which only rely on energy estimates and duality. ut

The following lemma is contained in [Leb92, p. 22] (see also [ABB12, Lemma 11.38,
p. 221]. We give the proof for completeness.

Lemma 6.5. Let γ : [0, 1] →M be a smooth path without self-intersections, of length
`0, such that 

γ (s) ∈ Int(M) for s ∈ (0, 1),
γ (0) and γ (1) belong to ∂M,

γ̇ (0) and γ̇ (1) are orthogonal to ∂M.

Then there are some coordinates (w, l) ∈ BRn−1(0, ε) × [0, `0] in an open neighbor-
hood U near γ ([0, 1]) such that

• γ ([0, 1]) = {w = 0} × [0, `0],
• the metric g is of the form m(l,w) =

( 1 0
0 m′(l)

)
+OMn(R)(|w|),

• in coordinates, we have M ∩ U = BRn−1(0, ε)× [0, `0] for some ε > 0.

Proof. The path γ is of length `0, so we can reparametrize it by γ : [0, `0] →M such
that γ is unitary (that is, gγ (s)(γ̇ (s), γ̇ (s)) = 1 for all s ∈ [0, `0]). Moreover, since γ
does not have self-intersections, there exist a neighborhood U (in the topology of M)
of γ and a diffeomorphism 9 (in the structure of M) such that

• 9(U) ⊂ {(x, y) ∈ Rn : x ∈ [−ε, `0 + ε], |y| ≤ ε},
• 9(γ (s)) = (s, 0),
• 9(U) = {(x, y) ∈ Rn : f1(y) ≤ x ≤ f2(y), x ∈ [−ε, `0 + ε], |y| ≤ ε} for some

smooth functions fi locally defined.

Up to making the change of variable (x, y) 7→ (x − f1(y), y), we can moreover require
f1 = 0 and change f2 to f2 − f1.

Then, we make some change of variable to diagonalize the metric on γ . By unitarity
of the coordinates, the metric on γ has the form

m(x, 0) =
(

1 l(x)
t l(x) G(x)

)
,

where l is a row vector and G is a positive definite matrix. We perform the change of
variable 8 : (x, y) 7→ (̃x, ỹ) = (x − a(x) · y, y). In y = 0, we have D8(x, 0) =( 1 −a(x)

0 Id

)
with tD8(x, 0) =

( 1 0
−
ta(x) Id

)
(in particular, the change of variable is valid for

small y) and D8(x, 0)−1
=
( 1 a(x)

0 Id

)
with tD8(x, 0)−1

=
( 1 0
ta(x) Id

)
. Moreover, in the

new coordinates, the set is {ỹ = 0} and the metric there is given by

tD8(x, 0)−1m(x, 0)D8(x, 0)−1
=

(
1 l(x)+ a(x)

t l(x)+ ta(x) ∗

)
.
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So, we choose a(x) = −l(x) so that in these new coordinates

m(x, 0) =
(

1 0
0 ∗

)
. (6.13)

We notice that since γ̇ (0) is orthogonal to ∂M which is defined locally by {x = 0}, we
have l(0) = 0 (since γ̇ (0) = (1, 0), this implies t (0, y)m(0, 0)γ̇ (0) = t l(0)y for all y).
In particular, 8 restricted to {x = 0} is the identity.

This implies that in these new coordinates, M is still defined near γ by 0 ≤ x ≤ f2(y)

(now, we still write (x, y) for (x̃, ỹ)). We still have f2(0) = `0. Morever, since γ̇ (`0) =

(1, 0) is orthogonal to ∂M which is defined locally by {x = f2(y)}, and using the fact
that m(x, 0) is of the form (6.13), we get df2(0) = 0.

Finally, making the change of variable (x, y) 7→ (`0/f2(y)x, y), which is the identity
on γ , we see that M is given by 0 ≤ x ≤ `0. Moreover, since df2(0) = 0, the metric is
unchanged on γ .

The expected property of m is then obtained by the mean value theorem using the
diagonal form (6.13) on γ . ut

6.2. The Schrödinger equation

Now, we turn to the Schrödinger equation. The results are quite similar to those for the
wave equation except for two facts.

The first one is that there is no minimal time. This is quite natural with the infinite
speed of propagation. In the proof, this appears in the fact that the principal symbol of
the Schrödinger operator i∂t + 1g is |ξ |2g . Therefore, the hypersurface {ϕ(t, x) = 0} is
noncharacteristic if ∇xϕ 6= 0, without any assumption on the time derivative.

The second difference is that the remainder term involving the H 1((−T , T ) ×M)

norm involves some derivatives in time and space which do not have the same weight.
Hence, since ∂tu = i1gu, this term will actually count for two derivatives in space.

Theorem 6.6. Let M be a compact Riemannian manifold with (or without) boundary,
1g the Laplace–Beltrami operator on M, and

P = i∂t +1g + V,

with V bounded and depending analytically on the variable t ∈ (−T , T ) (see Remark
6.4). Assume moreover that V ∈ L∞((−T , T );W 2,∞(M)).

For any nonempty open subset ω of M and any T > 0, there exist C, κ, µ0 > 0 such
that for any u0 ∈ H

2
∩H 1

0 (M), f ∈ L2((−T , T );H 2(M)) and u the solution of
i∂tu+1gu+ V u = f in (−T , T )× Int(M),

u = 0 in (T , T )× ∂M,

u(0) = u0 in Int(M),

(6.14)

we have, for any µ ≥ µ0,

‖u0‖L2 ≤ Ce
κµ
(
‖u‖L2((−T ,T );H 1(ω)) + ‖f ‖L2((−T ,T );H 2(M))

)
+
C

µ
‖u0‖H 2 . (6.15)
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If moreover ∂M = ∅ and all coefficients of P are analytic in both t and x (i.e. the
manifold M, the metric g and the lower order terms W0,W1, V are analytic), then there
exists ϕ̃ ∈ C∞0 ((−T , T )× ω) such that for any s ∈ R, we have

‖u0‖L2 ≤ Ce
κµ
(
‖ϕu‖H−s ((−T ,T )×M) + ‖f ‖L2((−T ,T );H 2(M))

)
+
C

µ
‖u0‖H 2 . (6.16)

If ∂M 6= ∅ and 0 is a nonempty open subset of ∂M, then for any T > 0, there exist
C, κ, µ0 > 0 such that for any u0 ∈ H

2
∩H 1

0 (M), and u the solution of (6.14), we have,
for any µ ≥ µ0,

‖u0‖L2 ≤ Ce
κµ
(
‖∂νu‖L2((−T ,T )×0) + ‖f ‖L2((−T ,T );H 2(M))

)
+
C

µ
‖u0‖H 2 . (6.17)

Finally, if V is time-independent then we have the following stronger result. There ex-
ist C0, κ, µ0 > 0 such that for any V bounded, for any u0 ∈ H 2

∩ H 1
0 (M), f ∈

L2((−T , T ) ×M) and u the solution of (6.14), estimates (6.15) and (6.17) hold uni-
formly for all µ ≥ µ0 max{1, ‖V ‖2/3L∞} with constant

C = C0 exp(C0‖V ‖W 2,∞(M)).

As in the case of the wave equation, the above theorem is a combination of the theorem
below and energy estimates for the Schrödinger equation.

Theorem 6.7. Let M be a compact Riemannian manifold with (or without) boundary,
1g the Laplace–Beltrami operator on M, and P = 1g + R with R = R(t, x, ∂t , ∂x)

is a differential operator of order 1 on (−T , T ) ×M, with coefficients bounded and
depending analytically on the variable t ∈ (−T , T ) (see Remark 6.4).

For any nonempty open subset ω of M and any T > 0, there exist ε, C, κ, µ0 > 0
such that for any u ∈ H 1((−T , T )×M) and f ∈ L2((−T , T )×M) solving{

Pu = f in (−T , T )× Int(M),

u = 0 in (−T , T )× ∂M,
(6.18)

the same three estimates as in Theorem 6.3 hold.
In the case that R = W0∂t +W1 · ∇ +V does not depend on t , the dependence on the

size of the coefficients of R remains the same as in Theorem 6.3.

Proof. The proof is quite similar to the one for the wave equation, so we only sketch the
main steps. The main difference will be that T can be chosen arbitrary. Pick t0 arbitrary
with t0 < T , this time without any relation to `0.

We use the same coordinate charts as defined in the proof of Theorem 6.1 for the wave
equation. Then the principal symbol of the Schrödinger operator will be

p(w, xn, τ, ξw, ξn) = −〈m(w, xn)ξ, ξ〉, ξ = (ξw, ξn).
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Therefore, p is a quadratic form with real coefficients that is definite on the set
{τ = 0}. Remark 1.10 implies that any noncharacteristic hypersurface is strongly pseu-
doconvex. So, with the same definition of φε, we obtain

p(w, xn, dφε(t, w, xn)) = −`
2
0
ε2

b4 〈m
′(xn)w,w〉

((
w

b

)2

+

(
t

t0

)2)−1

|θ ′|2 − 1

+O(|w|2)

(
1+

ε2`2
0

b4 |w|
2
((

w

b

)2

+

(
t

t0

)2)−1

|θ ′|2
)
.

But, for w small enough, we still have

−1+O(|w|2) ≤ −1/2, −〈m′(xn)w,w〉 +O(|w|
2)|w|2 ≤ 0.

In particular, with the same notations as for the wave equation, there exists b small enough
such that for any ε ∈ [0, 1], and any (t, w, xn) ∈ D × [0, `0], we have

p(w, xn, dφε(t, w, xn)) ≤ −1/2.

So, applying the same reasoning as for the wave equation, we obtain the existence of
some κ , C, µ0, η > 0 such that

‖u‖L2((−η,η)×M) ≤ Ce
κµ
‖∂νu‖L2((−T ,T )×0) +

C

µ
‖u‖H 1((−T ,T )×M)

for any µ ≥ µ0.
The dependence on the lower order term R follows as for the wave equation. ut

Proof of Theorem 6.6. Since multiplication by V acts on H 1
0 and H 2 if V ∈ W 2,∞(M),

using the Duhamel formula and a Gronwall argument yields, for s ∈ [−T , T ],

‖u0‖L2(M) ≤ Ce
C‖V ‖L∞(M)

(
‖u(s)‖L2(M) + ‖f ‖L2((−T ,T )×M)

)
,

‖u(s)‖H 2(M) ≤ Ce
C‖V ‖

W2,∞(M)
(
‖u0‖H 2 + ‖f ‖L2((−T ,T );H 2(M))

)
.

Integrating in time gives

‖u0‖L2(M) ≤ Ce
C‖V ‖L∞(M)

(
‖u‖L2((−ε,ε)×M) + ‖f ‖L2((−T ,T )×M)

)
‖u‖L2((−T ,T );H 2(M)) ≤ Ce

C‖V ‖
W2,∞

(
‖u0‖H 2 + ‖f ‖L2((−T ,T );H 2(M))

)
.

To estimate ∂tu, we notice that ∂tu = i(1+V )u−if . Therefore, we only need to estimate
‖1gu‖L2 . We have

‖∂tu‖L2((−T ,T )×M) ≤ C‖u‖L2((−T ,T );H 2) + C‖V ‖L∞(M)‖u‖L2((−T ,T )×M)

+ ‖f ‖L2((−T ,T )×M)

≤ Ce
C‖V ‖

W2,∞(M)
(
‖u0‖H 2 + ‖f ‖L2((−T ,T );H 2(M))

)
.

Hence,

‖u‖H 1((−T ,T )×M) ≤ Ce
C‖V ‖

W2,∞(M)
(
‖u0‖H 2 + ‖f ‖L2((−T ,T );H 2(M))

)
.

When combined with Theorem 6.7, this gives the estimates of the theorem. ut



1058 Camille Laurent, Matthieu Léautaud

Appendix A. Two elementary technical lemmata

In the above proof, we used the following elementary lemma (see e.g. [LRL12]).

Lemma A.1. Let K be a compact set and f, g, h three continuous real valued functions
on K . Assume that f ≥ 0 on K , and g > 0 on {f = 0}. Then there exist A0, C > 0 such
that for all A ≥ A0, we have g + Af − 1

A
h ≥ C on K .

Lemma A.1 is a consequence of the following variant.

Lemma A.2. Let K be a compact set and f a continuous real valued function on K . Let
g and h be two bounded functions defined on K . Assume that f ≥ 0 on K , and there
exists an open neighborhood V of {f = 0} in K such that g > c on V for some constant
c > 0. Then there exist A0, C > 0 such that for all A ≥ A0, we have g + Af − 1

A
h ≥ C

on K .

We also used the following classical result.

Lemma A.3. Consider the following three assertions, for C1, C2, α,D1,D2 > 0 and
a, b, c > 0:

b ≤ C2c, a ≤ c, and a ≤ eC1µb + c/µα for all µ ≥ µ0, (A.1)

a ≤
D1

log(c/b + 1)α
c, (A.2)

c ≤ eD2(c/a)
1/α
b. (A.3)

Then:

• for any C1, C2, α > 0, there exists K ≥ 1 such that for all µ0 > 0, (A.1) implies (A.2)
with D1 = (2C1)

α max{K,µα0 };
• (A.2) implies (A.3) with D2 = D

1/α
1 ;

• (A.3) together with a ≤ c and b ≤ C2c implies (A.1) with µ0 = 0 (and all µ > 0) and
C1 = D2.

Note in particular that (A.1) for some large µ0 implies (A.1) for µ0 = 0, but with a loss
in the exponent (namely C1 replaced by 2C1 max{K1/α, µ0}).

Proof of Lemma A.2. Let us prove the first two statements, namely (A.1)⇒(A.2)⇒(A.3)
with appropriate constants. Dividing all inequalities by c, and setting y = a/c > 0 and
x = b/c > 0, it suffices to prove[

x ≤ C2, y ≤ 1, y ≤ eC1µx + µ−α for all µ ≥ µ0
]

⇒ y ≤
D1

log(1/x + 1)α
⇒

1
x
≤ e(D1/y)

1/α
.

Note that the second implication is straightforward since the second assertion is equivalent
to 1/x ≤ e(D1/y)

1/α
− 1. To prove the first implication, we set

µ(x) :=
1

2C1
log
(

1
x
+ 1

)
,
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so that eC1µ(x)x = (1/x+1)1/2x = (1+x)1/2x1/2. Denoting now C3 = C3(C1, C2, α) =

supx≤C2
(1+ x)1/2x1/2µ(x)α < +∞, we have eC1µ(x)x ≤ C3/µ(x)

α . As a consequence,
if µ(x) ≥ µ0, then y ≤ (C3 + 1)/µ(x)α , which is the sought estimate.

If now µ(x) ≤ µ0, that is, 1
2C1

log(1/x + 1) ≤ µ0, we have 1 ≤
( 2C1µ0

log(1/x+1)

)α . Then

the assumption y ≤ 1 directly implies y ≤
( 2C1µ0

log(1/x+1)

)α . This concludes the proof of the
first two statements of the lemma for D1 = (2C1)

α max{C3 + 1, µα0 }.
To prove the last statement, fix µ > 0.Then either c/a ≤ µα , in which case, according

to (A.3), a ≤ c ≤ eD2µb, or c/a ≥ µα , in which case a ≤ c/µα . In any case, a ≤
eD2µb + c/µα , which proves (A.1). ut

Appendix B. Elementary complex analysis

We recall that we identify C and R2 with z = x + iy = (x, y) and denote

Q1 = {z ∈ C : Re z > 0, Im z > 0} = R∗+ + iR
∗
+.

Lemma B.1. Let f0, f1 ∈ W
1,∞
loc (R+) be such that |f ′0(x)|, |f

′

1(x)| ≤ C for some C > 0
and almost all x ∈ R+. Then the function defined for (x, y) ∈ Q1 by

f (x, y) =
4xy
π

∫
∞

0

ξf0(ξ)

((x − ξ)2 + y2)((x + ξ)2 + y2)
dξ

+
4xy
π

∫
∞

0

ηf1(η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη (B.1)

satisfies |f (z)| ≤ 2C(1+ |z|) in Q1 together with

1f = 0 in Q1, f (x, 0) = f0(x), f (0, y) = f1(y), x, y ∈ R∗+.

If moreover f0(0) = f1(0), then f is continuous on Q1.

Note that this theorem provides an existence result for the Poisson problem on Q1 as-
sociated to Lipschitz boundary conditions. The Phragmén–Lindelöf theorem B.4 below
provides an associated uniqueness result in the class of functions having a subquadratic
growth at infinity.

The next lemma is a key point in the proof of the local estimate (see Section 3.3).

Lemma B.2. Let R, δ, κ, ε, c1 > 0. Then there exists d0 = d0(δ, κ, R, ε, c1) such that
for any d < d0, there exists β0(δ, κ, R, ε, c1, d) such that for any 0 < β < β0, the
following two assertions hold:

• the function

f1(y) = Ry1[0,γ )(y)+ 1[γ,+∞)(y)min{Ry,max(−κ,−9δy,−ε/y)+ c1y
2
+ β2/y}

is continuous for all γ ≤ β/(R + 9δ)1/2 (in the application γ = τ0/µ),
• the function f given by Lemma B.1 associated to f1 and f0 = 0 satisfies

f (x, y) ≤ −8δy for d/4 ≤ |(x, y)| ≤ 2d.
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Proof of Lemma B.1. Let us first justify the form (B.1) of the solution. From the Green
function GC(z, z′) = (2π)−1 log |z′ − z| in C, we first construct a Green function in Q1
using the so-called “image points” z̄, −z and −z̄. This yields

GQ1(z, z
′) :=

1
2π

log |z′ − z| −
1

2π
log |z′ − z̄| −

1
2π

log |z′ + z̄| +
1

2π
log |z′ + z|,

that is, with z = (x, y) and z′ = (ξ, η),

GQ1((x, y), (ξ, η)) :=
1

4π
log((ξ − x)2 + (η− y)2)−

1
4π

log((ξ − x)2 + (η+ y)2)

−
1

4π
log((ξ + x)2 + (η− y)2)+

1
4π

log((ξ + x)2 + (η+ y)2).

For fixed z ∈ Q1, the last three terms are smooth in z′ ∈ Q1 so that −1z′GQ1(z, z
′)

= δz′=z. Moreover, for z′ = (ξ, η) ∈ ∂Q1, either ξ = 0 or η = 0, so that GQ1 = 0 for
z′ ∈ ∂Q1.

Now we compute

∂GQ1

∂ξ

∣∣∣∣
ξ=0
= −

4xy
π

η

(x2 + (y + η)2)(x2 + (y − η)2)
,

∂GQ1

∂η

∣∣∣∣
η=0
= −

4xy
π

ξ

((x − ξ)2 + y2)((x + ξ)2 + y2)
.

The representation formula for solutions of 1f = 0 in Q1 and f |∂Q1 = f̃ reads

f (z) =

∫
∂Q1

∂GQ1

∂ν∂Q1

(z, z′)

∣∣∣∣
z′∈∂Q1

f̃ (z′) dz′,

which justifies (B.1).
Let us now estimate for (x, y) ∈ Q1 the term∣∣∣∣4xyπ

∫
∞

0

ηf1(η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

∣∣∣∣
≤

4xy
π

∫
∞

0

ηC(1+ η)
(x2 + (y + η)2)(x2 + (y − η)2)

dη

≤ C((2/π) arctan(y/x)+ y)
≤ C(1+ y),

where we have used Lemma B.3 in the second inequality. The other term containing f0
can be estimated as well in Q1 by C(1+ x), so that

|f (z)| ≤ C(2+ x + y) ≤ 2C(1+ |z|), z = (x, y) ∈ Q1.

That 1f = 0 follows from the definition of GQ1 as a Green function, and it only
remains to check the boundary values of f . For this, by symmetry, it suffices to prove that
for all x0, y0 > 0, we have

lim
(x,y)→(x0,0)

(Tf1)(x, y) = 0, lim
(x,y)→(0,y0)

(Tf1)(x, y) = f1(y0), (B.2)
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with

(Tf1)(x, y) :=
4xy
π

∫
∞

0

ηf1(η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη.

Since f ′1 ∈ L
∞(R+), we have

|f1(η)| ≤ |f1(0)| + η‖f ′1‖L∞ .

Hence, according to the definition of T , we obtain

|Tf1| ≤ |f1(0)|T (1)+ ‖f ′1‖L∞T (η). (B.3)

In view of Lemma B.3, this implies

|(Tf1)(x, y)| ≤ |f1(0)|(2/π) arctan(y/x)+ ‖f ′1‖L∞y,

and thus (Tf1)(x, y)→ 0 as (x, y)→ (x0, 0), which yields the first part of (B.2).
To prove the second part of (B.2), we write

|f1(η)− f1(y0)| ≤ |η − y0| ‖f
′

1‖L∞ .

This implies

|Tf1(x, y)− (2/π) arctan(y/x)f1(y0)| = |Tf1 − T (f1(y0))|(x, y)

≤ ‖f ′1‖L∞T (|η − y0|)(x, y). (B.4)

We now study the term

T (|η − y0|)(x, y) =
4xy
π

∫
∞

0

η|η − y0|

(x2 + (y + η)2)(x2 + (y − η)2)
dη

=
4xy
π

∫ y0

0

η(y0 − η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

+
4xy
π

∫
∞

y0

η(η − y0)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

= 2
4xy
π

∫ y0

0

η(y0 − η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

+
4xy
π

∫
∞

0

η(η − y0)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

= 2
4xy
π

∫ y0

0

η(y0 − η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη + T (η − y0)(x, y).

With Lemma B.3, we have T (η−y0)(x, y) = y− (2/π) arctan(y/x)y0 → 0 as (x, y)→
(0, y0). Moreover, we have

4xy
π

∫ y0

0

η(y0 − η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

=
1
π

∫ y0

0

(
−

x(y0 − η)

x2 + (y + η)2
+

x(y0 − η)

x2 + (y − η)2

)
dη
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(see the proof of Lemma B.3). The term
∫ y0

0
x(y0−η)

x2+(y+η)2
dη vanishes when (x, y) →

(0, y0). Concerning the second term, we have

1
π

∫ y0

0

x(y0 − η)

x2 + (y − η)2
dη =

1
π

∫ (y0−y)/x

−y/x

(y0 − y − xs)
ds

1+ s2

=
y0 − y

π

(
arctan

(
y0 − y

x

)
+ arctan

(
y

x

))
−

x

2π
log
(
x2
+ (y0 − y)

2

x2 + y2

)
,

which vanishes when (x, y)→ (0, y0). The last three estimates prove T (|η − y0|)(x, y)

→ 0 as (x, y)→ (0, y0). In view of (B.4), this implies

lim
(x,y)→(0,y0)

|Tf1(x, y)− (2/π) arctan(y/x)f1(y0)| = 0,

which is the second part of (B.2).
For the continuity, by symmetry and translation by a constant, it is sufficient to prove

that if f1(0) = 0, then Tf1(x, y) converges to zero as (x, y) converges to zero. This is
implied by (B.3). This concludes the proof of the lemma. ut

Proof of Lemma B.2. Let us define

Iβ :=

[
β

√
4
δ
,min

(
δ

4c1
,
κ

9δ
,

√
ε

3
√
δ

)]
,

and notice that Iβ 6= ∅ for β ≤ β0 with β0 = β0(δ, κ, c1, ε) sufficiently small. We first
prove that for all γ ≤ β

√
4/δ, we have

f1(y) = −9δy + c1y
2
+ β2/y on Iβ , (B.5)

and

Iβ ⊂ {f1 ≤ −8.5δy}, (B.6)

and a fortiori for γ ≤ β/(R + 9δ)1/2 ≤ β
√

4/δ.
For this, notice that y ∈ Iβ implies y ≤ δ/(4c1) and y ≥ β

√
4/δ, which yields

−δy2/2+ c1y
3
≤ −δy2/4 ≤ −β2.

As a consequence, for y ∈ Iβ , we have

−δy/2+ c1y
2
+ β2/y ≤ 0, and so −9δy + c1y

2
+ β2/y ≤ −8.5δy ≤ 0 ≤ Ry.

(B.7)

In particular, (B.5) implies (B.6). Moreover, for y ∈ Iβ , we have −κ ≤ −9δy together
with −ε/y ≤ −9δy, so that max(−κ,−9δy,−ε/y) = −9δy. This proves (B.5) with the
help of (B.7).

Let us now check the continuity of f1. First we remark that both

y 7→ Ry and y 7→ min
{
Ry,max

(
−κ,−9δy,−ε/(4y)

)
+ c1y

2
+ β2/y

}
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are continuous. Second, we prove that both functions coincide for y ≤ γ , which provides
the continuity of f1. For 0 ≤ y ≤ γ ≤ β/((R + 9δ)1/2), we have (9δ+R− c1y)y

2
≤ β2

and we obtain Ry ≤ −9δy + c1y
2
+ β2/y. For β ≤ β0 we have Iβ 6= ∅ so that

y ≤ β
√

4/δ ≤ min
(
κ
9δ ,
√
ε

3
√
δ

)
, and max(−κ,−9δy,−ε/y) = −9δy for y ≤ γ . As a

consequence, we have

Ry = min
{
Ry,max(−κ,−9δy,−ε/y)+ c1y

2
+ β2/y

}
for 0 ≤ y ≤ γ,

and f1 is continuous for all β ≤ β0 and γ ≤ β/(R + 9δ)1/2.
Since f1 is continuous, piecewise smooth, and linear at infinity, it is globally Lip-

schitz. Hence, it satisfies all assumptions of Lemma B.1 (and f0 = 0), so that we can
define f by

f (x, y) =
4xy
π

∫
∞

0

ηf1(η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη.

Setting f̃ = f + 8.5δy, we now prove an upper bound for f̃ . Using the second formula
of Lemma B.3, we have

f̃ (x, y) =
4xy
π

∫
∞

0

η(f1(η)+ 8.5δη)
(x2 + (y + η)2)(x2 + (y − η)2)

dη

=
4xy
π

∫
R+\Iβ

· · · dη +
4xy
π

∫
Iβ

· · · dη.

According to (B.6), we have

4xy
π

∫
Iβ

η(f1(η)+ 8.5δη)
(x2 + (y + η)2)(x2 + (y − η)2)

dη ≤ 0. (B.8)

Next, for small β, we have R+ \ Iβ = [0,Dβ ] ∪ [D,+∞], with Dβ := β
√

4/δ < D :=

min
(
δ

4c1
, κ9δ ,

√
ε

3
√
δ

)
. Since f1(y) ≤ Ry, we have

4xy
π

∫
∞

D

· · · ≤
4xy
π

∫
∞

D

(R + 8.5δ)η2

(x2 + (y + η)2)(x2 + (y − η)2)
dη.

If 0 ≤ y ≤ D/2 and η ≥ D, we have (y − η)2 ≥ (η −D/2)2 and (y + η)2 ≥ η2, so

4xy
π

∫
∞

D

· · · ≤
16xy
π

∫
∞

D

(R + 8.5δ)η2

η2(η −D/2)2
dη = C(δ, κ, R, ε, c1)xy.

Hence, if x ≤ νD and y ≤ D/2, this implies

4xy
π

∫
∞

D

· · · ≤ νC(δ, κ, R, ε, c1)D(δ, κ, ε, c1)y ≤ δy/4 (B.9)

as soon as ν ≤ δ/(4CD). Now we fix 2d0 := 2d0(δ, κ, R, ε, c1) = min{νD,D/2}. For
any d ≤ d0, we have (B.9) for all (x, y) such that |(x, y)| ≤ 2d .
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Finally, we study the term (4xy/π)
∫ Dβ

0 · · · dη. For β sufficiently small (namely β ≤
d
√
δ/16), we have d/4−Dβ ≥ d/8 (recall Dβ = β

√
4/δ). As a consequence, for (x, y)

such that d/4 ≤ |(x, y)| ≤ 2d, and for all η ∈ [0,Dβ ], the triangle inequality yields

(x2
+ (y + η)2) ≥ (d/4−Dβ)2 ≥ d2/82, (x2

+ (y − η)2) ≥ (d/4−Dβ)2 ≥ d2/82.

Still using f1(y) ≤ Ry, we have

4xy
π

∫ Dβ

0
· · · ≤

4xy
π

∫ Dβ

0

(R + 8.5δ)η2

(x2 + (y + η)2)(x2 + (y − η)2)
dη

≤
4xy
π

(
8
d

)4

(R + 8.5δ)
∫ Dβ

0
η2 dη

≤
4xy
π

(
8
d

)4

(R + 8.5δ)
D3
β

3
≤ C′(R, δ, d)β3y.

Now, for all β ≤
(

δ
4C′(R,δ,d)

)1/3 this is less than δy/4.

This together with (B.8) and (B.9) implies that f̃ (x, y) ≤ δy/2 for (x, y) such that
d/4 ≤ |(x, y)| ≤ 2d, that is,

f (x, y) ≤ −8δy for d/4 ≤ |(x, y)| ≤ 2d.

This concludes the proof of the lemma. ut

Lemma B.3. For all x, y > 0, we have

4xy
π

∫
∞

0

η

(x2 + (y + η)2)(x2 + (y − η)2)
dη = (2/π) arctan(y/x),

4xy
π

∫
∞

0

η2

(x2 + (y + η)2)(x2 + (y − η)2)
dη = y.

Proof. First notice that

4xyη
(x2 + (y + η)2)(x2 + (y − η)2)

= −
x

x2 + (y + η)2
+

x

x2 + (y − η)2
.

Hence, we obtain

4xy
∫ N

0

η

(x2 + (y + η)2)(x2 + (y − η)2)
dη

=

∫ N

0

(
−

x

x2 + (y + η)2
+

x

x2 + (y − η)2

)
dη

= −

∫ (N+y)/x

y/x

1
1+ s2 ds +

∫ y/x

(y−N)/x

1
1+ s2 ds

= − arctan((N + y)/x))+ arctan(y/x)+ arctan(y/x)− arctan((y −N)/x))
→ 2 arctan(y/x) as N →∞,

since x, y > 0.



Quantitative unique continuation and approximate control 1065

Concerning the second equation, we have∫ N

0

4xyη2

(x2 + (y + η)2)(x2 + (y − η)2)
dη =

∫ N

0

(
−

xη

x2 + (y + η)2
+

xη

x2 + (y − η)2

)
dη

= −

∫ N

−N

xη

x2 + (y + η)2
dη = −

∫ N+y

−N+y

x(s − y)

x2 + s2 ds

= −

∫ N+y

−N+y

xs

x2 + s2 ds +

∫ N+y

−N+y

xy

x2 + s2 ds.

The integrand of the first term is an odd function, so that∫ N+y

−N+y

xs

x2 + s2 ds = −

∫
−N+y

−N−y

xs

x2 + s2 ds,

which converges to zero as N →∞. Moreover, the second term satisfies∫ N+y

−N+y

xy

x2 + s2 ds = y

∫ (N+y)/x

(−N+y)/x

1
1+ s2 ds → πy as N →∞,

which concludes the proof of the lemma. ut

The following is a version of the Phragmén–Lindelöf principle for subharmonic functions
in a sector of the complex plane. We prove it as a consequence of the maximum principle
for subharmonic functions in bounded domains. Note that the usual Phragmén–Lindelöf
theorem (see [PL08] or [SS03, Theorem 3.4]) can be deduced from this one.

Lemma B.4. Let φ be a subharmonic function in Q1, continuous in Q1. Assume that
there exist ε, C > 0 such that

φ(z) ≤ C(1+ |z|2−ε), z ∈ Q1,

φ(z) ≤ 0, z ∈ ∂Q1 = R+ ∪ iR+.

Then φ(z) ≤ 0 for all z ∈ Q1.

Note that the power 2− ε with ε > 0 is sharp: the result is false for ε = 0, as showed by
the harmonic function (x, y) 7→ xy.

Proof of Lemma B.4. First note that the sector Q1 can be rotated, say to the quadrant

Q = {z ∈ C : arg z ∈ [−π/4, π/4]}.

We set v := Re z2−ε/2 (with the principal determination of the logarithm) which is har-
monic inQ. We have v(r, θ) = r2−ε/2 cos((2− ε/2)θ) ≥ r2−ε/2 cos((2− ε/2)π/4) with
cos((2− ε/2)π/4) > 0. Let

uδ(z) = φ(z)− δv(z),
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which is also subharmonic in Q. We have lim supz∈Q, |z|→∞ u(z) = −∞. As a conse-
quence, there exists R > 0 such that uδ(z) < 0 on {|z| ≥ R} ∩Q. Now, on the bounded
set QR

= Q ∩ {|z| ≤ R}, we apply the maximum principle to the function uδ , satisfying
uδ ≤ 0 on ∂QR . This yields uδ ≤ 0 onQR and hence uδ ≤ 0 onQ. Finally, letting δ tend
to zero, we obtain the sought result. ut
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