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Abstract. In this article, we first prove quantitative estimates associated to the unique continuation
theorems for operators with partially analytic coefficients of Tataru [Tat95, Tat99b], Robbiano—
Zuily [RZ98] and Hormander [Ho6r97]. We provide local stability estimates that can be propagated,
leading to global ones.

Then, we specify those results to the wave operator on a Riemannian manifold M with bound-
ary. For this operator, we also prove Carleman estimates and local quantitative unique continuation
from and up to the boundary 3. M. This allows us to obtain a global stability estimate from any open
subset I' of M or M, with the optimal time and dependence on the observation.

As a first application, we compute a sharp lower estimate of the intensity of waves in the shadow
of an obstacle.

We also provide the cost of approximate controllability on the compact manifold M: for any

T > 2sup, pq dist(x, I'), we can drive any Hé x L? data in time T to an e-neighborhood of zero

in L2 x Hfl, with a control located in I, at cost eCle.
We finally obtain related results for the Schrodinger equation.
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1. Introduction and main results

In this article, we are interested in the quantification of global unique continuation results
of the following form: given a differential operator P on an open set 2 C R”, and given
a small subset U of 2, we have

[Pu=0inQ, uly =0] = u =0ong. (1.1)

More generally, in cases where (1.1) is known to hold, we are interested in proving a
quantitative version of

[Pu smallin 2, u small in U] = u small in Q.

A more tractable problem than (1.1) is the so called local unique continuation problem:
given x” € R” and an oriented local hypersurface S containing x°, do we have the fol-
lowing implication:

there is a neighborhood €2 of x% such that
[Pu=0inQ, ulgns- =0] = x° ¢ suppu, (1.2)

where S~ denotes one side of S? It turns out that proving (1.2) for a suitable class of
hypersurfaces (with regard to the operator P) is in general a key step in the proof of
properties of the type (1.1). The first general unique continuation result of the form (1.2) is
the Holmgren theorem (due to Holmgren [HolO1] in a special case, and to John [Joh49] in
the general case), stating that, for operators with analytic coefficients, unique continuation
holds across any noncharacteristic hypersurface S (see e.g. [H6r90, Theorem 8.6.5] for a
precise statement). This local unique continuation result enjoys a global version proved
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by John [Joh49], where uniqueness is propagated through a family of noncharateristic
hypersurfaces.

For operators with (only) smooth (C°°) coefficients, the most general result was
proved by Hormander [Hor63, Chapter VIII], [Hor94, Chapter XXVIII]. Uniqueness
across a hypersurface holds under a strict pseudoconvexity condition (see e.g. Defini-
tion 1.7 below). This result uses as a key tool Carleman estimates, which were introduced
in [Car39] and developed at first for elliptic operators in [Cal58]. We also refer to [Zui83]
for a general presentation of these problems.

A particular motivation comes from geoseismics [Sym83] and control theory [Lio88a,
Lio88b]: in these contexts, one is interested in recovering the data/energy of a wave from
the observation on a small part of the domain along a time interval. As well, unique con-
tinuation results for waves have been useful tools to solve inverse problems, for instance
using the boundary control method [Bel87] (see also the review article [Bel07] and the
book [KKLOI1]).

More precisely, consider the wave operator P = 8? —AgonQ = (=T,T) x M,
where (M, g) is a Riemannian manifold (with or without boundary) and A, the associ-
ated (negative) Laplace—Beltrami operator. A central question raised by the above appli-
cations is that of global unique continuation from sets of the form (-7, T) x w, where
® C M (resp. w C 9 M) is an observation region.

In this setting and in the context of control theory, the unique continuation prop-
erty (1.1) is equivalent to approximate controllability (from (—7, T') x w); and an associ-
ated quantitative estimate (as proved in the present paper) is equivalent to estimating the
cost of approximate controls.

If M is analytic (and connected), the above-mentioned Holmgren theorem applies,
which together with the argument of John [Joh49] allows one to prove unique continua-
tion from (—7, T) X w for any nonempty open set w as soon as T > L(M, w), where,
for E C M, we have set

L(M, E) := sup dist(x, E), dist(x, E) = inf dist(x, y), (1.3)
xeM yeE

with

dist(x, y) = inf {length(y) : y € C'([0, 1]; M), y(0) = x, y(1) = y},

1
length(y) = /O S oGO, 7@ dt.

Due to finite speed of propagation, it is also not hard to prove that unique continuation
from (=T, T) x w does not hold if T < L(M, w) (see also [Rus71a, Rus71b]), so that
the result is sharp. Unique continuation from (—7, T)) X » may even fail in critical time
T = L(M, w) in certain situations [Rus71b, Theorem 5].

Removing the analyticity condition on M has led to considerable difficulties, since
Hormander’s general uniqueness result does not apply in this setting: time-like surfaces,
as {x; = 0}, do not satisfy the pseudoconvexity assumption for the wave operator. The
local unique continuation can even fail after adding some smooth lower order terms to the
wave operator, as proved by Alinhac—-Baouendi [AB79, Ali83, AB95].
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This uniqueness problem in the C* setting was first solved by Rauch—Taylor [RT73]
and Lerner [Ler88] in the case T = oo and M = R? (under different assumptions
at infinity). Then, Robbiano [Rob91] managed to prove that unique continuation from
(=T,T) x o holds in any domain M as soon as w # ¥ and T > CoL(M, w), with
Cy sufficiently large. Hormander [H6r92] improved this result to T > /27/23 L(M, w).
That these two results fail to hold in time £ translates the fact that the local uniqueness
results of these two authors are not valid across any noncharacteristic surface.

The local uniqueness theorem across any noncharacteristic surface for 3t2 — Ag was
proved by Tataru [Tat95], leading to the global unique continuation result in optimal time
T > L(M, w). The result of Tataru was not restricted to the wave operator: he considered
operators with coefficients that are analytic in part of the variables, interpolating between
the Holmgren theorem and the Hormander theorem. The technical assumptions of that
article were successively removed by Robbiano—Zuily [RZ98], Hérmander [H6r97] and
Tataru [Tat99b], leading to a very general local unique continuation result for operators
with partially analytic coefficients (containing as particular cases both the Holmgren and
Hormander theorems).

Concerning quantitative estimates of unique continuation, when (1.1) holds, one may
expect to have an estimate of the form

lulle < Ke(lully, 1Pullg, llullg)
with ¢(a, b, c) — 0 when (a, b) — 0 with ¢ bounded, (1.4)

where U C © C  are nonempty, K is a constant, and for appropriate norms. In this
context, much less seems to be known. Two additional difficulties arise: one needs first
to quantify the local unique continuation property (1.2), and then to “propagate” the local
estimates obtained to a global one.

In the setting of the Holmgren theorem, local estimates of unique continua-
tion of the form (1.4) were proved by John [Joh60]: they are of Holder type, i.e.
o(a,b,c) = (a+ b)‘scl_‘s, in case P is elliptic, and of logarithmic type, i.e. ¢(a, b, ¢) =
c(log(1 + ﬁ))fl, in the general case.

In the situation of the Hormander theorem, it was proved by Bahouri [Bah87] that
Holder stability always holds locally. Such local estimates were propagated, leading to
global ones (in the case of elliptic operators P of order 2 with appropriate boundary con-
ditions, even with low regularity assumptions) by Lebeau and Robbiano [Rob95, LR95].
They can also be improved to ¢(a, b, c) = a + b if boundary conditions are added to
close the estimates [Rob95, LR95].

The global problem for the wave operator in the analytic setting was tackled by
Lebeau [Leb92]. For @ = Q@ = (=T, T) x Mand U = (-T,T) x  withw C M
(or more precisely I' C 9. M), he proved that the stability estimate (1.4) with ¢(a, b, ¢) =
c(log(1 + ﬁ))_l holds for any 7' > L(M, w). He also proved that this inequality is
optimal if there exists a ray of geometric optics that does not intersect (—7', T') x  (and
only has transverse intersection with 9. M). Under this assumption the (stronger) linear
observability estimate (i.e. (1.4) with ¢(a, b, ¢) = a + b) of the Bardos—Lebeau—Rauch—
Taylor theorem [RT74, BLR92] is not satisfied. In the C° situation for this problem, the
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first result is due to Robbiano [Rob95], who proved estimate (1.4) for T sufficiently large
with ¢(a, b, c) = c(log(l + ﬁ))_l/z. This result was improved by Phung [Phul0] to

p(a,b,c) = c(log(1+ ﬁ))_(l_s) (still in large time, for any & > 0, with the constant
K in (1.4) depending on ¢). In his unpublished lecture notes [Tat99a], Tataru proposes

a strategy to obtain estimates of the form (1.4) with ¢, = c(log(l + ﬁ))_(l_g) in the
general context of uniqueness theorems for operators with partially analytic coefficients.

In this article, we develop a systematic approach both to quantifying the local unique-
ness theorem of Tataru, Robbiano—Zuily and Hérmander, and to propagating the quan-
titative local uniqueness results to a global one, with an optimal dependence ¢ =
c(log( 1+ Cﬁ))_l . When doing so, we face both difficulties of producing quantitative and
global estimates. Then, we specify the results to the wave operator on M. For this opera-
tor, we also prove appropriate Carleman estimates and local quantitative unique continu-
ation results from and up to the boundary d M. This allows us to obtain a global stability
estimate from any open subset of M or d M, with the optimal time (T > £L(M, w)) and
dependence on the observation. This generalizes the result of Lebeau [Leb92] to nonan-
alytic manifolds, and provides the cost of approximate controllability. We also treat the
case of the Schrodinger operator.

In the present introduction, we first discuss the case of the wave and Schrodinger
equations; in these particular settings, the results are more precise and simpler to state.
Moreover, in this context, we are able to deal with the boundary value problem as well.
Second, we state a general quantitative uniqueness result for operators with partially an-
alytic coefficients in the setting of Tataru [Tat95, Tat99b], Robbiano—Zuily [RZ98] and
Hormander [Hor97] (used in the proof for the wave and Schrodinger equations).

1.1. The wave and Schrodinger equations

In this section, we describe the motivating applications of our main result, i.e. to the
wave equation with Dirichlet boundary conditions. In this very particular setting, we are
also able to tackle the boundary value problem. We finally state a related result for the
Schrodinger equation.

When dealing with a manifold M with boundary, we will always assume that the
manifold, the boundary and the metric are smooth. Moreover, Int(M) will denote the set
of points in M which have a neighborhood homeomorphic to an open subset of R”. The
boundary of M, denoted by d.M, is the complement of Int(M) in M. All manifolds
considered will be assumed to be connected.

Theorem 1.1 (Quantitative unique continuation for waves). Let M be a compact Rie-
mannian manifold with (or without) boundary. For any nonempty open subset w of M
andany T > 2L(M, w), there exist C, k, 1o > 0 such that for any (ug, u1) € HO1 (M) x
L?*(M) and u the solution of

d2u — Agu =0 in (0, T) x Int(M),
u=0 in (0, T) x IM, (1.5)
(Ms at“)lt:O = (M07 ul) ln Int(M)v
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we have, for any p > o,

1
o, u)llp2x -1 < C€KN||M||L2((0,T);H1(Q))) + ;”(MO, Ul w2

If OM # W and T is a nonempty open subset of oM, then for any T > 2L(M, T") there
exist C, ik, uo > 0 such that for any (ug, u1) € HO1 (M) x L2(M) and u the solution
of (1.5), we have

1
(o, uDllp2x -1 < Cek“llauulle((o,mr) + ;ll(um Ul g2

Theorem 1.1 remains valid if Ag is perturbed by lower order terms that are analytic in time
but may have low regularity in space. In the special case where they are time-independent,
the constants in the previous estimates may be chosen uniformly with respect to these
perturbations (in appropriate norms). We refer to Theorem 6.1 for a precise statement.
Note also that the statement of Theorem 1.1 remains valid for all & > 0 (not only p >
10), the estimate for 1 bounded being trivial (see Lemma A.3). However, we preferred to
keep the formulation with ;& > g to stress that only large values of u are of interest. This
result can also be formulated in the following way, closer to (1.4) (see again Lemma A.3).
We only give the boundary observation case, the internal observation case being similar.

Corollary 1.2. Assume 0M # @ and T is a nonempty open subset of 9 M. Then, for any
T > 2L(M,T), there exists C > 0 such that for any (ug, u1) € H& (M) x L>(M) \
{(0, 0)} and u the solution of (1.5), we have

||(MO,M1)||Hle2
l@o,u)ll 1,2

ullp2¢0.7yx1)

||(I/t0, ul)”szH—l S C

’

||(uo,u])|lyle2
Il (uo, u1)||szH—1

o, uD) g1z < CeSM Bvull 20 1ywry  With A =

In the first estimate, the function on the right hand side is to be understood as being
(log(1 + 1/x))~! for x > 0 and 0 for x = 0.

In the second estimate, A has to be considered as the typical frequency of the ini-
tial data. So, the estimate states the cost of observability of the order of an exponential
of the typical frequency. As an illustration, taking for initial data (ug,u;) = (¥, 0)
with 1, a normalized eigenfunction of the Laplace—Dirichlet operator on M, associated
to the eigenvalue A, one has A ~ +/A and Corollary 1.2 recovers the tunneling estimate
10,9l 2y = C~1e V™ (see [LRIS)).

As proved by Lebeau [Leb92] in the analytic context, this exponential dependence is
sharp in general. More precisely, the form of the estimates in Theorem 1.1 and Corol-
lary 1.2 is optimal as soon as there is a ray of geometric optics (traveling at speed 1)
which does not intersect the region " (resp. @ in the internal observation case) in the
time interval [0, 7] (and only has transverse intersection with the boundary). See [Leb92,
Section 2, pp. 5 and 6].
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As a consequence of the previous theorem, we can obtain approximate controllability
results. For brevity, we only state the case of boundary control.

Theorem 1.3 (Cost of boundary approximate control). For any T > 2L(M, '), there
exist C, ¢ > 0 such that for any ¢ > 0 and any (ug, u1) € H(} (M) x L*(M), there exists
g € L?((0, T) x I') with

gl 220, 7yx) < Ce/* l (wo, U g My xL2(M)
such that the solution of

@ —ANu=0 in (0, T) x Int(M),
u=1rg in(0,T) x oM,
(u, 0u) =0 = (uo, u1) in Int(M),

satisfies || (u, 910)1e=T | L2 My -1 (M) = €l (1o, “1)”H0‘(/\/l)xL2(M)'

That this result is a consequence of Theorem 1.1 is proved in [Rob95, proof of Theorem 2,
Section 3]. The solution of the nonhomogeneous boundary value problem is defined in
the sense of transposition [Lio88a].

Another application of Theorem 1.1, given in [LL16] and which was at the origin
of the present work, is concerned with the exact observability/controllability problem.
This property was completely characterized (with optimal geometric conditions) in the
seminal paper [BLR92]. The proof there proceeds in two steps: first dealing with high
frequencies (propagation of wavefront sets), and then reducing the low frequency prob-
lem to a unique continuation property. Both steps are nonconstructive (i.e. rely e.g. on
contradiction arguments). In [LL16], we explain how Theorem 1.1 allows one to give a
completely constructive proof of the second step. We also provide a constructive proof of
the first step on a compact manifold. As an application, we estimate the dependence of the
observability constant on the observation time 7 or on the addition of a potential V (x) in
the wave operator.

The estimates of Theorem 1.1 and Corollary 1.2 can actually be stated more locally, and
interpreted in a different physical context (motivated by [RT73]). The following theorem
shows that they are independent of the global geometry, and in particular do not require
that M is compact if one only wants to recover data supported in a given compact set.

Theorem 1.4 (Penetration into shadow for waves). Let M be a complete Riemannian
manifold with (possibly empty) compact boundary M. Let wy be an open subset of M
and w1 a compact subset of M. Then, for any

T > L(wy, wp) := sup dist(x, wp),
XEW]

there exists C > 0 such that for any (ug, u1) € HO1 (M) x LZ(M) \ {(0, 0)} supported in
w1 and u the solution of (1.5) (taken on the time interval (—T, T) instead of (0, T)), we
have

||(u07141)||1-11xL2
||(u0,u1)||szH71

||(I/t0, Ml) ||H1 x L2 < CECA ”””LZ((—T,T);Hl(wO)) with A =
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Roughly speaking, the theorem describes the following physical situation: take a noise
creating an initial data compactly supported in w1, and suppose an observer is located in
a zone wyg. Then, by observing during the time interval (—L (w1, wg) — &, L(w1, wp) + €),
e > 0, the observer will be able to recover at least a proportion of the initial energy of
the order e~¢4 where A is the typical frequency of the data. This result is particularly
interesting if the zone w; is in the “shadow” of an obstacle when seen from wy, that is,
no rays of geometric optics starting from w; ever reach wp. In that case, the classical
geometric optics approximation would predict that the observer does not receive any in-
formation. We refer to [RT73] for a qualitative result in infinite time; here, Theorem 1.4
provides a quantitative result in finite time, which is optimal with respect to the time and
the form of the estimate if w; is indeed in the “shadow” region when observed from wy.
More precisely, [Leb92, Section 2] implies that the eCA s optimal as soon as there is
a ray of geometric optics (having only transverse intersections with d M) starting from
the interior of w; at time zero and not intersecting wq during the time interval [—T, T'].
Such an estimate in the shadow region is reminiscent of the tunneling effect for waves
(see e.g. [Leb96, LR97, Bur98]). It is of course also related to the tunneling effect in
semiclassical analysis [Zwo12, Chapter 7].

Note that it could be desirable to make the observation in positive time only, that is,
on the interval (0, 7). This can be easily seen to be impossible in general, for instance
in dimension one by looking at solutions of the form u(x + ). Yet, a classical parity
argument in the time variable allows one to obtain (in any dimension) a similar result with
observation on (0, T), T > L(wy, wp), for all initial data of the form (i, 0) or (0, u;).

We also obtain related results for the Schrodinger equation. We only state here the
counterpart of Theorem 1.1 in this setting.

Theorem 1.5. Let M be a compact Riemannian manifold with (or without) boundary.
For any nonempty open subset w of M and any T > 0, there exist C, k, g > 0 such that
for any ug € H> N H(} and u the solution of

idu+ Agu =0 in(0,T) x Int(M),

u=0 in (0, T) x oM, (1.6)

u(0) = ug in Int(M),

we have, for any (L > Lo,

1
luoll L2 < Ce* ™ ull2¢0.7): 1! (@) + ;”uO”H%

If oM # @ and T is a nonempty open subset of dM, then for any T > 0, there exist
C. k, o > 0 such that for any ug € H* N HO1 and u the solution of (1.6), we have

1
luoll 2 < Ce* lovull 2¢0.1yxr) + ;”MO”HZ-

This result still holds with some lower order perturbations, analytic in #; see Theorem 6.6
for a more precise statement. Note that some related results have already been proven in

the internal case by Phung [PhuO1] with ¢*“* replaced by e e,



Quantitative unique continuation and approximate control 965

1.2. Quantitative unique continuation for operators with partially analytic coefficients

Let us now turn to the general stability result and present the class of partial differential
operators we will be dealing with. We consider domains Q C R” = R" x R", where
ng + np = n. We denote by x = (x4, xp) the global variables and by & = (&,, &)
the associated dual variables. The variables x, will be those with respect to which the
operator considered is analytic.

Given a bounded domain Q C R" = R" x R", we say that a smooth function
f : Q — Cis analytic with respect to x, if, for any x0 = (xg, x,g)) € Q, thereise > 0
such that f extends as a holomorphic function in the variable x, for x = (x4, xp) €
(B(x2, &) +iB(0, ¢)) x B(x), e).

The following definition is due to Tataru [Tat99b, Definition 2.2].

Definition 1.6 (Analytically principally normal operators). Let P be a partial differen-
tial operator on an open set 2 C R x R, of order m € N*, with smooth coefficients
and principal symbol p(x,, xp, &4, Ep). We say that P is an analytically principally nor-
mal operator in {§, = 0} inside 2 if the coefficients of P are real-analytic in the variable
X4 and for any x0 €  there exist ©, C R and €, C R™ such that x° € , x Q5 C
and there exists a complex neighborhood Qg of Q, in C" and a constant C > 0 such
that for all z,, Z, € Qg and all (xp, &) € Qp x R™ &, # 0, we have

{p(za, 0.), pGa, - 0, )}, &) + |{P(za, - 0.), pGa, - 0, )} (xp. &) |
< Clp(zas X5, 0, &)1 181" 1, (1.7)
|8Zap(zav Xb 07 Eb)' S C|p(zaﬂ Xb, 07 Eb)"

Note that in this definition, the Poisson brackets are taken only with respect to the (xp, &)
variables. Yet, the combination of the two conditions (1.7) and (1.8) implies that such
operators are in particular principally normal in {§, = 0} in the following more usual
sense (see [RZ98], [Hor97] or [Tat99b, Definition 2.1]). Given a closed conic subset I" of
T*Q, one says that P is principally normal in T" if

(P, py(x, )l < Clp(x, )| |E"™" forall (x, &) €T, (1.9)

where (as opposed to (1.7)—(1.8)) {p, p} is computed with respect to all variables.

Two interesting cases of operators P being analytically principally normal in {£, =0},
considered in [RZ98] and [H6r97], are operators with analytic coefficients in x, satisfying
one of the following two assumptions:

(E) transversal ellipticity: p (x4, xp, 0, &) > c|&p|™ for (x4, xp) € 2, & € R,
(H) principal normality and invariance with respect to the null bicharacteristic flow in

{2 = O}:
|{ﬁ7 p}(xa5'xb50’ éb)l S C|p(xa»xb’ 07 Eb)llgblm_l and ax,,[’(xa»xb’oa Eb) =0

We now formulate the definition of strongly pseudoconvex surfaces for an operator P
(see [Hor94, Definition 28.3.1], [Tat99b, Definitions 2.3 and 2.4] and [Tat99a, Sec-
tion 1.2]).
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Definition 1.7 (Strongly pseudoconvex oriented surface). Let 2 C R”, I be a closed
conic subset of 7%, and P be principally normal in I" inside 2 (in the sense of (1.9))
with principal symbol p. Let S be a C? oriented hypersurface of Q and x° € SN Q. We
say that S is strongly pseudoconvex in T' at x0 for P if there exists ¢ € C%(£2; R) such
that S = {¢ = 0}, Vo (x?) # 0, and

Re {7, (p. o}1(x%, &) >0 if p(x°, &) = {p, p}(x°, &) =0and & € [',0, & # 0,
(1.10)

1
—{Pgr Pp}",8) > 0 if pp(x”, &) = (pg, $}x", §) =0and § € [0, 7 > 0,
(L.11)

where py(x, &) = p(x, & +itVe).

Note that this is a property of the oriented surface S solely, and not of the defining func-
tion ¢ (see [Hor94, beginning of Section 28.3]). If ' = T*<, it is the usual condition
of the Hormander theorem (see [Ho6r94, Section 28.3]), that is, under which uniqueness
holds for P at x° across the hypersurface S, i.e. from ¢ > 0to ¢ < 0.

Below, this condition will always be used for I' = {£, = 0}. In this case, and using
the homogeneity of p in &, assumption (1.11) may be rephrased as

1
lf{ﬁ(x,é —iV$), p(x, E +iVP(x°,0,8) >0 if p(() ={p, $}({) =0, & € R™,

where ¢ = (x°, iV, (x9), & + iV (). An important feature of this definition is that
it is invariant by changes of coordinates.

Note also that in the case I' = {£, = 0}, condition (1.10) is the limit as T — 0T of
(1.11) on the subset

(e (x°, &) = {pg, p}(x°, &) =0} N T,0,

thanks to the principal normality assumption (1.9) (see Remark 3.5 below).
Before stating our main result, let us discuss some cases of operators of particular
interest.

Remark 1.8 (Hormander case). If n, = 0, there is no analytic variable. In this case,
Definition 1.6 coincides with the definition of principally normal operators [H6r94, Chap-
ter XXVIII] and Definition 1.7 with ' = T*Q of strongly pseudoconvex functions.
The unique continuation result under consideration is the classical Hormander theo-
rem [H6r94, Chapter XX VIII].

Remark 1.9 (Holmgren case). If n, = n, that is, the operator is analytic in all the vari-
ables, we have x, = x, &, = &, and hence ' = Q x {§, = 0} = Q x {& = 0}. In this
situation, conditions (1.7), (1.8) are empty since all the terms vanish.

Next, concerning the conditions on the surface {¢ = 0}, notice that (1.10) is also
empty since [''o N {§ # 0} = . For (1.11), if £ € TI' o0, that is, £ = 0, we have
p¢(x0, &) = p(xo, irVd)(xO)) = (ir)mp(xo, V¢(x0)): any noncharacteristic surface
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at x¥ (i.e. satisfying p(x?, Vo (x°)) # 0) is a strongly pseudoconvex oriented surface.
The unique continuation result under consideration is the classical Holmgren theorem.

Note that, in the case n, = n, the results presented here hold under condition (1.11),
namely

p(x% Vo) = (p, ¢} (x°, Vo () =0

1
= ~(P(x, & —iV9), plx,& + iVe)}(x°,0) > 0,

which is weaker than the noncharacteristicity condition p(x%, Vo(x%) # 0 of the
Holmgren theorem.

Remark 1.10 (Wave type and Schrodinger type operators). Let us now consider the case
of operators P with principal symbol of the form py(x,&) = Oy (§), where Qy is a
smooth x-family of real quadratic forms in & such that Q, (0, &) is positive (or negative)
definite on R">. This is the case of the wave operator or Schrodinger type operators. We
remark first that for such operators:

e condition (E) is fulfilled thanks to the positive definiteness of Q, (0, &),
e condition (H) is also fulfilled in case the (real-valued) coefficients of Q, are indepen-
dent of x,.

Then, assumption (1.10) holds (uniformly with respect to x € €2) again according to the
positive definiteness of O (0, &). It is indeed empty since p>(x, (0, &)) does not vanish
for &, # 0. Moreover, {p2, ¢} (x, &) = 20, (&, Vo), where Q is the polar form of Q,
and

(P2, ) (x, & +iVP) =20,(5, Vo) +2i 0, (Vo).

As a consequence (Q being real), Im{p>, ¢}(x,& +iVep) = 20,(V¢) so that (1.11) is
also empty (and thus satisfied) for any noncharacteristic hypersurface.

In conclusion, for real quadratic forms which are positive (or negative) definite on R"?
at £, = 0, any noncharacteristic hypersurface is strongly pseudoconvex in the sense of
Definition 1.7. In the case n, = 1, this includes the following operators of particular
interest:

e P=DI — Zl”;ll oij (x)Dx[{ D,; + L.o.t. (wave operator) with
p =820k i (0ELE,

e P=D,, — Zl”;il ajj (x)ng ng + £.0.t. (Schrodinger operator) with
p ==X e 0)E]5)

where the quadratic form with coefficients «; ; is positive definite.

We are now prepared to formulate our main result in the general framework. We first
describe the geometric context and then state the theorem.

Geometric setting (see Figure 1). We first fix two splittings R"” = RZ,‘I x Ry, and R" =
RY x Ry’, possibly in two different bases. We let D be a bounded open subset of RA1
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Xn

Fig. 1. Geometric setting of Theorem 1.11.

with smooth boundary and G = G(x’, &) a C? function defined in a neighborhood of
D x [0, 1] such that
forall ¢ € (0, 1], we have {x’ e R*"! : G(x', ¢) > 0} = D;
for all x” € D, the function ¢ = G(x/, &) is strictly increasing;
forall e € (0, 1], we have {x’ e R" ! : G(x', &) =0} = aD;
G(',0)=0.
We set, So = D x {0} and, for ¢ € (0, 1],
Se ={(x",x;) €R" : x, = 0and G(x', &) = x,,}
= (D xR)N{(x',x,) e R": G(x', &) = x,),
K=xeR":0<x, <G, D}

Theorem 1.11. In the above geometric setting, let 2 be a bounded open neighborhood
of K, and P be a differential operator of order m, which is analytically principally normal
on Qin {&, = 0}. Assume also that, for any ¢ € [0, 1 + n), the oriented surfaces S =
{pe = 0} with ¢p.(x', x,) := G(x', &) — x,, are strongly pseudoconvex in {&, = 0} for P
on the whole S, in the sense of Definition 1.7.

Then, for any open neighborhood & C 2 of So, there exists a neighborhood U of K
and constants k, C, o > 0 such that for all u > po and u € C3°(R"), we have

o
lull L2y < Ce"l"(“uHHl;n—l(d)) + 1 Pull2q) + = il gm—1

where we have denoted ||M||H[;n—l(d-)) = ZIﬂISm—l ||D£u||Lz(5,).

If ny = n (Holmgren case), then, for any ¢ € C3°(&) with ¢ = 1 on a neighbor-
hood of So, and for any s € R, there exist k, C, uo > 0 such that for all p > o and
u € C°(R"), we have

~ C
”"‘”LZ(U) < CEKM(”QD””H—S(R") + ”Pu”LZ(Q)) + F”M”Hmfl(sz)-

If ng, = 0 (Hormander case), there are c, k, C, ug > 0 such that for all © > o and
u € C°(R"), we have

||I/l ”H’"’I(U) S CEKM(”M ”Hm—l(d‘)) + || PM”LZ(Q)) + Ce_cu ”I/l”Hm—l(Q)
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Note that in the first two cases, we obtain a result of the type (1.4) with a logarithmic
function ¢, whereas in the framework of the Hormander theorem, we obtain the stronger
Holder type dependence (see [Bah87, Rob95, LR9S, LRL12]):

il sy < C (Nl gmer ) + 1Pl 2) Nl 1
for some § € (0, 1).

The formulation of the above result using a foliation by hypersurfaces is inspired by
that of [Joh49, Theorem, p. 224] in the context of the Holmgren theorem. The statement
describing the hypersurfaces by graphs could look rigid. We will give later, in Theo-
rem 4.11, a slight variant where the partial analyticity and the foliation by graphs can
be described in different coordinates: the linear change of coordinates between the two
different splittings R" = R~ I'x R,, and R" = R" x R"» may be replaced by a dif-
feomorphism. We have chosen not to present this more general result here for the sake
of exposition. Most of the global theorems for the wave and Schrédinger equations on a
manifold are proved in the setting of Theorem 1.11, after some suitable change of coordi-
nates. In a forthcoming paper [LL17], we apply the more invariant result of Theorem 4.11
to the case of the hypoelliptic wave operator, for which we are not able to construct ap-
propriate coordinates to apply Theorem 1.11 directly.

1.3. Idea of the proof

As already mentioned, unique continuation theorems (e.g. the Héormander theorem) are
often proved with Carleman estimates, that is, weighted L2 estimates of the form

le™ullz2 < Clle®” Pul g2, (1.12)

where 7 is a large parameter and ¢ a weight function having level sets appropriately
situated with respect to the surface S. Such inequalities are already quantitative, and hence
furnish a good starting point towards local quantitative unique continuation results. This
strategy has already been followed in [Rob95, LR95] in the case of elliptic operators
(see also [Bah87]). Starting from the Carleman inequality (1.12), the idea is to apply the
estimates to some function x (x)u where x is a cutoff function according to the level
sets of 1. The exponential weight ™V in (1.12) (giving an exponentially large/small
strength to the large/small values of /) naturally leads to inequalities of the form

lullv, < e““lully, + [I1Pullv;) + e “llully,, (1.13)

uniformly for u© > po and for small open sets Vi C V> C V3 depending on the local
geometry (namely, on the cutoff function yx, the support of [ P, x], and hence on the level
sets of ). By optimizing in u (see [Rob95] or [LRL12, Lemma 5.2]) this can then be
written as an interpolation estimate

8y 1=
lullv, < (lullvy + [1Pullvy)® llully,

for some 6 € (0, 1). The interest of these interpolation estimates (or directly of estimates
like (1.13)) is that they can be easily iterated, leading to some global ones. This procedure
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ends up with a Holder type dependence, i.e. (1.4) with ¢ = (a + b)’c!~%. We refer for
instance to the survey article [LRL12] for a description of these estimates in the elliptic
case, with application to spectral estimates and control results for the heat equation.

Yet, in the context of the unique continuation theorem for partially analytic operators,
the Carleman estimates proved in [Tat95, RZ98, Hor97, Tat99b] contain a “microlocal”
weight of the form e~ 37104l oTV (™) jnstead of ¢V ™). Whereas the usual eV is still here
to give strength to the level sets of 1/, the additional term e~ 57104 is now aimed at lo-
calizing in the low frequencies in the variable x,. In this context, the proof of unique
continuation proceeds via a (qualitative) complex-analytic argument (maximum princi-
ple). Here, this additional argument in the proof of unique continuation also requires to
be quantified. As in [Rob95], this procedure naturally leads to local logarithmic (instead
of Holder) stability estimates. The main issue one has to face when quantifying unique
continuation is that such estimates cannot be iterated (or would yield dependence esti-
mates of the type (1.4) with a function ¢ being a composition of as many “log” as steps
needed in the iteration).

One idea to overcome this difficulty, proposed by Tataru in his unpublished lecture
notes [Tat99a], was to propagate some low frequency estimates of the form

{ b |l gm-1 =1 }:> Hm(&>o(f)u
[m(5e)o (%) Pul = e o o \r
for functions u supported in {¢p < ¢(xg)}, for appropriate compactly supported cutoff
functions ¢ and m (&) of Gevrey class 1/a, @ < 1, and for some r < R. Such estimates
could be propagated and would lead to some global stability estimates of the form (1.4)
with e (a, b, ¢) = c(log(1 + 7%5)) .

The loss 1 — ¢ in the power of log is due to the use of functions of Gevrey class 1/
with compact support. The optimal case « = 1 would correspond to analytic functions.
Yet, analytic functions cannot have compact support, which is a key ingredient in the
usual application of Carleman estimates.

Let us now explain our strategy to solve this problem.

<e ', Vr <cu”,
Hm-1

1.3.1. Obtaining local information at low frequency. Part of the proof of the present
paper is inspired by this idea of propagating only low frequency estimates (in the analytic
variable x,). However, we replace the Gevrey cutoff functions by some analytic “almost
cutoff” functions of the form

2
1. = e 1Pal" /Ay (1.14)

where x is smooth with the expected compact support, being convolved/regularized with
a heat kernel in the variable x,, hence analytic in this variable. It turns out that the right
choice of the regularization parameter X is A = Cu where w is the frequency where we
want to measure our solution. That such functions are not compactly supported makes all
commutator estimates (e.g. when applying the Carleman estimate to functions like x,u
instead of xu, as explained above) much more intricate and requires a careful study of the
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dependence on the regularization parameter A, the local frequency p and the parameter ©
in the Carleman inequality. All estimates are carried out up to an exponentially small
remainder (in terms of these parameters).

When following this procedure, the local estimate we prove (which we are in addition
able to propagate) is a generalization of (1.13), but truncated at low frequencies in the
analytic variable x,. In a neighborhood of a point x?, it is of the form

D D
Hmu<—a>){2,uu mu<—a))(1,ﬂu + 1Pull2(po R))>
ﬁM M Hm—1 ’

+ Ce ™ M lull gm-t, (1.15)
uniformly for u > . See the beginning of Section 3 for a more precise statement and
remarks on this result. Here, x; and x» are some cutoff functions in the physical space
that localize respectively to the place where the information is taken (locally in {¢p > 0})
and where it is propagated to (a small neighborhood of x°). These functions respectively
correspond to 1y, and 1y, in (1.13). The Fourier multiplier m, cuts off (analytically)
the &, frequencies (m has to be thought of as 1 g, (0,1)). All these cutoff functions are
used only with their analytic regularization according to (1.14) with A = w. They never
localize exactly. Using such regularized cutoff functions and Fourier multipliers follows
the spirit of analytic semiclassical analysis [Sj682] (see also [Mar02]). However, we do
not make use of that theory and rather construct the relevant mollifiers by hand, making
the proof self-contained in this respect.

The proof of estimates like (1.15), stated more precisely in Theorem 3.1, is the object
of Section 3. It proceeds in three steps. First, as in the usual proofs of unique continu-
ation results, starting from the hypersurface {¢ = 0}, one needs to construct a weight
function ¢ with two properties:

< Ce'”‘(

Hm-1

e satisfying the assumptions required to apply the Carleman estimate (¢ should be a
strongly pseudoconvex function in the sense of Definition 2.1 below);

e having level sets appropriately located with respect to those of ¢ (so that propagating
uniqueness across level sets of ¥ still corresponds to propagating zero locally from
¢ >0top <O0).

This corresponds to the so called “convexification process” [Hor94, Chapter XX VIII].

Second, we apply as a black box the Carleman estimates of [Tat95, RZ98, Hor97,
Tat99b] (or some similar ones that we prove in the presence of boundary) to xu, where x
is a particular cutoff function (localizing near the point of interest, and according to level
sets of y), containing both rough cutoffs and mollified ones. We then need to estimate all
terms arising from the commutator e*%walze“/’[P, x 1, which are either well localized
or yield an exponentially small contribution.

Finally, we need to transfer the information given by the Carleman inequality to some
estimate like (1.15) on the low frequencies of the function. This is done through a com-
plex analysis argument, the Carleman parameter t playing the role of complex variable, as
in [Tat95]. If ¢ is the complex variable, the Carleman estimate corresponds to an estimate
for ¢ =it € iR4. Combined with a priori estimates, a Phragmén—Lindelof type theorem
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allows us to extend this estimate to part of the real domain, where it corresponds to esti-
mating Hm( g—;) Xu H . To obtain estimates that are uniform with respect to the frequency
(and regularization) parameter w, we also need, following [Tat99a], a scaling argument,
replacing T by 7/u.

1.3.2. Propagating local information to global one. Once the local estimates are proved,
we need to iterate them to obtain a global estimate. This is the object of Section 4. At
first, we define some tools that will allow propagating our local estimate (1.15) easily in
an abstract way. Estimate (1.15) says essentially that, for a solution of Pu = 0, infor-
mation can be transferred from the support of x; to the support of x». We formalize that
with the notion of zone of dependence. Roughly speaking, we say that an open set Oy
depends on O if (1.15) holds for every x; equal to 1 on Op and any x» supported in
0. This part allows formulating the proof of Theorem 1.11 as a completely geometric
one. Even if quite different in definition, it is close in spirit to the interpolation theory
developed by Lebeau [Leb92] to propagate globally the local information obtained by the
Cauchy—Kowalevski theorem. Moreover, it should adapt to some more general kinds of
foliations. Note that at each step of this propagation argument, we have a loss in the range
of frequency: from information on frequencies < p, we obtain from (1.15) information
on frequencies < Bu, with B small. This is overcome by the fact that we only have a
finite number of steps in this iterative procedure.

Once this propagation result is obtained, we are left with low frequency information
on the solution u#. Since we have no information about the high frequency part, the only
thing to do is to use some trivial bound of the type

()

This is actually much worse than the negative exponential that we already had. But it
turns out to be the best we can do without any more information.

In Section 6, we specify our general result to the case of the wave and Schrodinger
equations. The main task is to construct appropriate noncharacteristic hypersurfaces that
fit in the geometric setting of Theorem 1.11. This part is quite classical and was already
present for instance in [Leb92]. We recall the argument in the present context.

<

12 ,um—l

llellm—1-

1.3.3. Carleman estimates for the Dirichlet boundary value problem. Finally, to prove
the results of Section 1.1, it remains to deal with the boundary value problem. This is
the object of Section 5. As far as (qualitative) unique continuation is concerned, there
is no need to prove quantitative estimates up to the boundary. As a consequence, we
need here to carry over the analysis of [Tat95, RZ98, H6r97, Tat99b] at the boundary. In
this context, we consider only a particular class of operators and a particular boundary
condition. We assume that the operator belongs to the class described in Remark 1.10
(hence encompassing wave and Schrodinger type operators), that is, with symbols of the
form py(x, &) = Q4 (&) where Q is a smooth family of real quadratic forms. We further
assume that the analytic variables x, are tangent to the boundary, and that the functions
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satisfy Dirichlet boundary conditions. Recall that this situation is of particular interest
for the wave/Schrédinger equations, for which x, is the time variable, which is always
tangent to the boundary of the cylindrical domain ]R}Ca X My, .

The proofs of the quantitative unique continuation results up to and from the bound-
ary rely on Carleman estimates for these operators at the boundary. As such, the es-
timates interpolate between the “boundary elliptic Carleman estimates” of Lebeau and
Robbiano [LR95], and the “partially analytic Carleman estimates” of Tataru [Tat95] (see
also [RZ98, Hor97]). Then, we obtain the counterpart of the local estimate of Theorem 3.1
for this boundary value problem. All local, semiglobal and global results will then follow
as in the boundaryless case. We only need to be careful when performing changes of
variables.

2. Preliminaries

The preliminary results presented in this section are mainly used in Section 3 for the local
estimate. Some are also used independently in Section 4 for the semiglobal estimate. They
concern:

o the Carleman estimate adapted to operators with partially analytic coefficients, as stated
in [Tat95, RZ98, Hor97, Tat99b];

e the regularization procedure for cutoff functions and Fourier multipliers (which is a
key part in the proofs);

e some preliminary commutator-type estimates.

2.1. Notation

First, let us recall basic notation, used all along the article.

Throughout, dist stands for the Euclidean distance in R”, R or R"<, or the Riemannian
distance on (M, g). For K C R” (resp. R, R") and d > 0, we define the d-neighborhood
of K by

Nhd(K, d) := |_J B(x. d).
xekK
where the balls are taken according to the distance dist. For open sets U, U’, we write
U € U'if U is compactand U C U’.

We denote by F the Fourier transform in all variables, and by F, that in the variables
X4 € R" only. When no confusion is possible, we shall write & = F, (u) or it = F(u).

We write (£) = (1 4 |£]*)!/2, and denote by || - ||, the classical H” norm on R”:
lltllm := 11(€)™ F @)l L2(gny- Similarly,

ltllm,e = 2m)"2|(2* + D™ ullo = I1(x + 1™ Fw)llo

will denote the weighted (semiclassical) H” norm for t > 1. In the main part of this
article, T will be a large parameter. Finally, we use the notation || || g«_, g¢ for the operator
norm from H¥(R") to HY(R").
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2.2. The Carleman estimate

Before stating the Carleman estimate used in the main part of paper, we need to introduce
appropriate weight functions .

Definition 2.1 (Strongly pseudoconvex function). Let T" be a closed conic subset of
T*<, and let P be a principally normal operator in I" (in the sense of (1.9)), with principal
symbol p. Let ¥ € C?(22; R) and let x* € Q. We say that v is strongly pseudoconvex
in T at x° for P if

Re (P, {p, v}, &) >0 if p(x®, &) =0and & e Mo, & #£0, .1

1
— Py, py}x%,8) >0 ifpy(x°,E) =0and§ €Ty, T >0,  (22)
1T

where py (x,§) = p(x, & +itVy).

Note that in the case I' = T*Q, this property is the usual one for proving a Carleman esti-
mate with weight function 1. It is classical that a strongly pseudoconvex surface S (in the
sense of Definition 1.7) is a level surface for some strongly pseudoconvex function in the
sense of Definition 2.1 (see e.g. [H6r94, Proposition 28.3.3] or [Tat99a, Theorem 1.5]),
and that both definitions are stable with respect to small C? perturbations. In what fol-
lows, a more precise link (adapted to our needs) between these two notions will be made
in Section 3.1.

In this paper (just as in [Tat95, RZ98, Hor97, Tat99b]), Definitions 1.7 and 2.1 will
always be used with I' = Q x {§, = 0}.

For ¢, T > 0 we define the operator

0f u = e wIPal (T y), 2.3)

introduced in [Tat95].

The following result is due to Tataru [Tat99b, Theorem 2]. A proof in cases (E) and
(H) can be found in [H6197, (5.15), and the last equation before Section 7]. Some closely
related estimates are also proved in [RZ98, Proposition 4.6].

In Section 5, when studying the boundary value problem for wave equations, we in-
clude a proof of this result in case (H) assuming that P has a real principal part, is of
order m = 2, and under the additional assumption that the coefficients of P do not de-
pend on x,.

Theorem 2.2. Let x° € Q@ = Q, x Q, C R™% x R™ and P be a partial differential
operator on 2 of order m. Assume that

e P is analytically principally normal in {§, = 0} inside Q2 (in the sense of Defini-
tion 1.6);

e  is a quadratic polynomial in x = (x,, xp), strongly pseudoconvex in Q2 x {§, = 0}
at x° for P (in the sense of Definition 2.1).
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Then there exist ¢, R, d, C, ty > 0 such that B(x°, R) C and for any t > 19, we have

QY ul? . < CUQY Puld + 1"V VPuld + 1"V Dul2 1) @4

m—1,1
foranyu € CgO(B(xO, R)).

Note that, compared to usual Carleman estimates of the form (1.12), there are two ad-
ditional remainder terms in (2.4) due to the introduction of the frequency localization
operator e~ % Da |2. Moreover, most Carleman estimates in [Tat95, RZ98, Hor97, Tat99b]
do not contain the term ||ef(‘/’_d) Pu ||% on the right hand side. Also, this result was stated
in [Tat99b] under the assumption that pseudoconvexity holds on all of Q. Yet, pseudo-
convexity at one point implies pseudoconvexity in a small neighborhood (see [Tat99b,
Lemmata 2.5 and 2.6]), so it implies the local Carleman estimate for functions supported
close to x©.

2.3. Regularization of cutoff functions and Fourier multipliers

All along the paper, we shall use several cutoff functions and need to regularize them.
Here, we explain the regularization procedure we use, give some of its basic properties,
and define some (appropriately regularized) Fourier multipliers.

2.3.1. Regularization of functions. Before describing the regularization operators, let us
collect some basic facts about Gaussian integrals. Note first that (differentiate with respect
to z or see e.g. [Le72, (2.1.7), p. 17]), for z > 0,

2 2.2
+00 2 e % +00 e~ s /T _p2
e ds = 3 ds < —e™* .
z V7T Jo 1+s 2

As a consequence,

+o00 +00
/ e—sz/t ds < g\/}e—rz/l’ / <S>me—S2/ldS < Cm (r)m<t>(m+l)/26—r2/t
r r

forallr > 0,¢ > 0, m € N, where the second estimate is obtained by iterated integration
by parts. Hence,

/ el gy, < Cp (r)e Ny 2e T forallr > 0, 1> 0. (2.5)
xq€R"a | |x,4|>r
Moreover, for any measurable set £ C R"¢, any x, € R", and any ¢ > 0,

Ly 2 Ly 2
/ e ,|Xa Yal dya < / e ,|Xa Yal dya — (n.t)na/z'
E R7a
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In addition, according to (2.5), there exists C,,, > 0 such that for any closed set E C R",
any x, ¢ E, and any ¢t > 0, we obtain

2 2
/ e~ Xa=Yal*/1 dy, < / ¢~ 1Xa=al /'dya
E B(xg . dist(xq, E))°

< Cp, (dist(x,, E)>na—1 (I)na/2e—dist(x,,,E)2/t

Hence there exists C,, > 0 such that for any closed set E C R"¢, any x, € R"<, and any
t > 0, we have

/ e—lxa—yalz/t dya S Cna (dist(xg, E))"la—l<t>na/26—dist(xavE)2/t' (26)
E

We are now prepared to define the appropriate regularization process, used all along
the article. We shall use f to denote

o foi=e PP/ ffor f e L¥(R);
e or (more often)

fo = e 1Dl /2 g
for f € L°°(R"), and a fortiori for f € L°°(R"4).

We hope that this will not be confusing. We now discuss in more detail the basic properties
of this regularization process in the second case only (the first case can be seen as the
particular situation n, = 1, np, = 0).

The definition can be rewritten as

A na/2 A2
Fo(xa, xp) = (E) (e sgna £, xp)) (%)

A \"e/? A 2
= (—) f Qas xp)e eyl gy,
4 Rra

Note that similar smoothing of functions is used systematically in analytic microlo-
cal analysis (see [Sjo82] or [Mar02]). In this context, it is related to the Fourier—Bros—
Iagolnitzer transform. In applications to unique continuation, it has been used in [RT73,
Ler88, Rob91, H6r92, Leb92, Rob95, Tat95, RZ98, Hor97, Tat99b]. In particular, the op-
erator Q}it defined in (2.3) contains such a regularization (the regularizing parameter A
being linked to the Carleman large parameter 7).

Several times in the proofs we will use

_ 1.2
Il 2@y < @m) "2l e™ | oo uay | Fa () Ear x0) 2y = I fl 2y (227)

and

A ng/2 a2
I fillLe < (E) le™ T 1 gy 1 F ooy = 11 e oy (2.8)
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Notice also that
fz0= fi=0, andhence f=>=g = fi=gr
Moreover, the function f) may be extended as an entire function in the variable x, by

A

ng/2 ,

2

fiZa, xp) = <E) / f Qs xp)e” 1G9 gy, 7, € C, xp € R,
R"a

(where {612 =4+ Ca = |Rey)? — |Imgy|? 4 2i Re &, - Im g, is the real inner product) with
the uniform bound

ng/2 . ,
| f3(za, xp)| < | = | £l 2o e~ 5G| gy,
4
T Ya€supp f (-, xp)

A\ Slimz, 2 —4IRe za—yal?
<\|\—= [| fllLoce Mz e”#RCtaTNl gy,
4 Ya€supp f (-,xp)

< CY" 2| fllgedmer

x (dist(Re 24, Supp f (-, xp)))a~ e~ ¥ distRezasupp f(.x))* (5 )

where the last estimate comes from (2.6) applied with =4/ (observe that L (1 /1) =(})).
Note that supp f (-, xp) is well-defined for every x;, € R™ if f is a continuous function;
however, strictly speaking, this is not the case if f is only in L°(R"). In this situation,
supp f (-, xp) in (2.9) can simply be replaced by

Sr(xp) :={xq € R" : (x4, xp) € supp f} C R",

where supp f C R” is the support of f (in the distributional sense). In case f is contin-
uous, supp f (-, xp) C Sy(xp) and both statements are correct (the first one being slightly
more precise). We will not discuss this subtlety anymore and will continue to write some
expressions similar to (2.9). The estimate then makes sense by taking an element of L
that is zero outside of supp f and is bounded by || f]| 1.

For functions compactly supported in the x, variable, we have the simpler estimate

| Fo(ar Xp)| < CA" 72| f|| oo |supp £ (-, xp)|e /M al’ =5 distRezasupp Fm) (3 1)

2.3.2. Fourier multipliers. Finally, we also need to introduce frequency localization
functions, i.e. appropriately smoothed Fourier multipliers. Let m(§,) be a smooth radial
function (i.e. depending only on |&,|), compactly supported (in |§,] < 1) with values
in [0, 1] and such that m(&,) = 1 for |§,] < 3/4. We shall denote by M* the Fourier
multiplier M*u = m(D,/1)u, that is,

(M"u)(xq, xp) = Fy ' (m(Ea/ 1) Fa W) (Ea, b)) (xa),
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where F, denotes the Fourier transform in the variable x, only. Given A, u > 0, we
shall denote by M )’f the Fourier multiplier of symbol mi‘ &) = my&/n), ie. M f =
m; (Dq/p) or

(M) w) (xa, xp) = Fy H(maa/ ) Fa @) Eas X)) (Xa),

with, according to the above notation for the subscript A,

A ng/2 e 2
mi. (&) = (E) /R m(ng)e” 35l qn,.

Note that in this definition, the symbol is first regularized and then dilated. We hope
the notation (with the subscript for regularization and the exponent for dilation) will not
be confusing. Note also that these Fourier multipliers only act in the variable x,,.

2.4. Some preliminary estimates

In this section, we state several technical lemmata of commutator type, needed to prove
the main local result formulated in Theorem 3.1. The proofs can certainly be omitted by
the hurried reader. The spirit is that all the estimates that we would expect for exact cutoff
functions remain true for their analytically regularized version, up to some exponentially
small remainders in terms of A. So, the important fact in all the estimates below is the
uniformity with respect to A and w as large parameters.

2.4.1. Some basic preliminary estimates

Lemma 2.3. (1) Foranyd > 0, there exist C, ¢ > 0 such that for any f1, f» € L>°(R")
such that dist(supp f1, supp f2) > d and all A > 0, we have

I fisfolinee < Ce M| fillzell fallzee, I fiaforllie < Ce | fillioe |l fall poe-

(2) If moreover fi, fo € C®(R") have bounded derivatives, then for all k € N, there
exist C, ¢ > 0 such that for all A > 1, we have

||f1,kf2”Hk(RH)HHk(Rn) < Ce_”)‘.
(3) Let f1, f» € L®(R") with dist(su 1, su 2) > 0. Then there exist C,c > 0
1YY PP
such that for all ., ;u > 1 and all k € N, we have
I f1,0(Da/ ) f2(Da /) gk ey — Hk ey < Ce™,
I £1..(Da/ ) f2.1(Da/ 1)\l gty gt ny < Ce™ .
Proof. We have

Ay 2
|fl,k(xa, xb)l < C)»na/znfl”Loc/ e 4|}’a Xal dya~
Ya€suppy, f1(,xp)
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Moreover, for all x;, € R" we have

distrna (suppxa J1(C, xp), suppy, f2(, xb)) > dist(supp f1, supp f2) > d,

so that for all x = (x4, xp) € supp f2, we have |y, — x,| > d in the above integral. As a
consequence, for all x = (x4, xp,) € supp fa,

Ay 2
[ /1.2 (Xa, xp)| < CA"ﬂ/2||f1||Loo/ e iba=xal’ gy

[Ya—xXal>d

2 — X1y ? —ch
< Cllfi g/ / il gy, < CemoM il s
|)’a|2d

which provides the first estimate in (1).
The second estimate is obtained by decomposing

Sraf2n = fraf2,0.INndesupp fo.d/3) + S1.0 f2.0 INndGupp f2,d/3)¢ s

and applying the previous result to f1 3 INnd(supp f,d/3) and f2,3 INnd(supp f2,d/3)c» Where
all the supports are disjoint as required.

(2) is proved by induction on k € N. For k = 0, it is precisely the first estimate
of (1). Now assume that it holds for k — 1 and write || f1, faull g < |l f1. faull ge-1 +
IV (f1,5 fau)|l ge—1. It remains to estimate ||V (f1,5 fau) || gr—1: for this, it suffices to write

V(fifou) = (VfOrfou + f1iV(2u + firfaV(w),

where all functions have the appropriate support properties to apply the case k — 1. This
finally yields [ V(fi.5. fou)ll i1 < Ce™lull gt + Ce*| V|l gt proving (2).
The proof of (3) only relies on the fact that for any k € N,

If1.2(Da/ 1) f2(Da/ ) gt gy ey = 1 f1,2.6a/1) f2(Ea/ )L = Il f1a f2ll Lo

(and similarly for the other term), and on the use of (1). ]

Similarly, we have the following variant.

Lemma 2.4. Let f> € C*®°(R") with all derivatives bounded, and d > 0. Then for every
k € N, there exist C,c > 0 such that for all fi € H*(R") with dist(supp f1, supp f2)
> d and all . > 0, we have

I f10f2ll e < Ce™ L fill
Proof. We have

A. n,,/2 N »
Jr.f2(xa, xp) = (E) /R F2(Xar x6) f1 (Yar xp)e” 3Pl dy,,
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so that

)\' na/2 N ,
|f1,)»f2|(xas xb) = (_> / |f2(xa, xb)fl (ya, xb)|e_2|xa_}’a‘ dya
4 |Xa—yal=d

A\ %/? L2
< ||f2||L°°(]R”)<E) (Lpizae™ 51 sua |A11C, x0)) (xa)-

As a consequence, using the Young inequality, we have

na/2 R
_ap2
I fiaf2ll2 < ||f2||L°°(R”)<E> g =ae™ 50 Lt ooy I ALl L2y

and by (2.5) (with A(1/A) = (1)),

a2
I fixfaliz < CO" e TR fall oo 1 fill 2 gy

which implies the result in the case £k = 0. We obtain the case k > 0 by differentiating
and applying the same result (see e.g. the proof of Lemma 2.3). O

Lemma 2.5. Let ¢ : R" — R be a C*™ function, fi € C*°(R) with bounded derivatives
and fr € Cy°(R") such that dist(supp f1 o ¥, supp f2) > 0. Then, for all k € N, there
exist C, ¢ > 0 such that for all A > 0, we have

I f1.5. () f2ll gk (mmy— mE Ry < Ce .

Proof. We prove || f1»(¥) f2ll L@y < Ce~¢*, which implies the result for k = 0. We
obtain the case k > 0 by differentiating and applying the same result (see e.g. the proof
of Lemma 2.3).

Since f, € C°(R"), the set K := v (supp f2) is a compact subset of R. More-
over, the assumption dist(supp f1(¥), supp f2) > 0 implies that dist(supp f1, K) > 0.
Indeed, otherwise supp f1 N ¥ (supp f2) # @; taking ¢ in this intersection, there would be
x € supp f2 such that ¢ (x) = t € supp fi1, i.e. x € supp f1(¥), which contradicts the
assumption. Now, note that x € supp f> implies ¥ (x) € K, so that we have the pointwise
estimate | f| < || fallL~1x o ¥ on R". As a consequence,

1120 falle@n < ClLALW LK @) lLo@n < Cllfialklle@ < Ce™,
where we have used Lemma 2.3 together with dist(supp f1, K) > 0. O

Lemma 2.6. Let f1, f> € C°(R") with fi = 1 in a neighborhood of supp f>. Then for
all k € N there exist C, ¢ > 0 such that for all A > 0 and all u € Hk(R"), we have

Il f2,5.0%llo < Cll fiaulle + Ce™Hully  for || <k,
I foaulle < Cll froulle + Ce™H|ullx.
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Proof. Letd = dist(supp f>, supp(1 — f1)) > 0. Thanks to Lemma 2.3(1), we have

—ch
2,2 INhd(supp f2.d/3)c0%ullo < “lue| -
[ f211 “ullo < Ce™ " lull

Concerning the other term, we use again Lemma 2.3 applied to INnd(supp f>,4/3) and some
0% (1 — f1) (using 3%(f1,2) = (3% f1)1) to obtain

Il f2.5. INhd(supp f>.d/3) 9% wllo < Il f2.5. INnd(supp f2.4/3)0% (f1.21) [lo
+ Il f2,0 INnd(supp f2,d/3)0% (1 — f10wllo
< .25 Inndesupp fo,d/3) 9% (f1w)llo + Ce™ ™ [lul.
Writing then
| 2,2 InNndesupp f2,d/3)0% (f1,w)llo < CII*(fipw)llo < Cll fiaullk

concludes the proof of the first estimate of the lemma.
The second inequality follows by noticing that 9% (f2 xu) is a sum of terms of the form
(0# £2),0%Pu to which we can apply the first part of the lemma. O

Lemma 2.7. Assume mi, my € L°(R") are bounded by 1, and satisfy
dist(suppm1, suppmso) > d > 0.
Then there exists C > 0 such that for all f € L*®R"; L°®°(R")) satisfying F,(f) €
LR LY (R™)) and all i, » > 0, we have
lm1a(Da/ ) f(x)m25(Da/ i) L2@®ny— 121
= 1Fa(P gLt g,1zdusz) + Ce™ M Fal )l poowro: L1 (Rray
and the same estimate with my in place of my ;.

Proof. We begin with the first estimate, the second being simpler to handle. We denote
m}fx@a) = m;j(§q/m) for j = 1,2, and, to lighten notation, set f = F,(f). We set

fL =1p,1<aus3 f (thatis, fL&) = ]lléalfdu/Sf(fa)) and fg = L\p,|>du/3 f. We first
have

Y 5 (Da) fr )m’ , (Da)ll g2 12 < W full ooy < I ol poo o, 1 rea)
= I lLgs 1 ealzdis3)-

It remains to estimate || m‘f , (Do) fL (x)mg’ 5 (Da)ll 2, 2. We work in the Fourier domain:
for u € L2(R"), we have

Fa(m ; (D) fr.(x)mb , (Da)u) (Eq. xp) = m ; (€[ fiEa. xp) * [mh; (E)ik (Eq, x0)]].

where * denotes convolution in the variable &, only. Now, we set 711; = INhd(suppmy,d/3)
and my = LNnd(suppm2,d/3)» Which satisfy [|m;( 2 < 1 together with

dist(supp iy, suppmz) > d /3.
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We write

mi , Ea)[ L (Ear xp) % (M, EiA(Ea x0))] = Y1 + Y2 + V3,
with
Y1 =iy m, E)[ fr(Ear xp) % (A5 mYy , G, xp))].
Yy = (1 — iy )mh' , Ea)[ fLEa. x0) x (s mb , (E)ik (Ear xp)) ]
Yy =mt, (E) [ fLGar xp) * (1 = Ai5)mb , (E)ii(Ea. xp)) ]

The term Y| vanishes since n~1§ mg 5 (Ea)u(&a, xp) is supported in the set where &,/u €
Nhd(supp m», d/3); hence, as supp fL C {l&41/ 10 < d/3}, the convolution

FLGar x0) * (Aiymly , (Ea)u(a. xp))

is supported in &,/u € Nhd(suppmo, 2d/3) which does not intersect the support (in
£,/p) of m', that is, Nhd(suppm1, d/3).
Concerning Y>, Lemma 2.3 implies || (1 — r%’f)m‘fk ||L§° < Ce™*. This, together with

the Young inequality in &, and the uniform boundedness of 7 m} , , yields

| (= A ml s G FrEas x6) * (Y 5 G Ear X)) ]| 28
<N = Am g ol e 13 1Fa GOl 2ggna xrony < Ce™ M1 oo 1 2.

The term Y3 is treated similarly and the proof of the first estimate is complete.
The second estimate has the same proof and is actually simpler because the term
1 - ﬁg)mg is zero. O

Lemma 2.8. Assume f1, f» € L°°(R") are bounded by 1 and satisfy

dist(supp f1, supp f2) > d > 0.
Then there exists C > 0 such that for all m € L™ (R") satisfying m € L'(R") and all
A > 0, we have
||f1,x(x)m(Da)f2,A(X)||L2(Rn)_>L2(Rn) = ||”A1||Ll(|;7a|zd/3) + Ce_C)‘||nA1||L1(Rnu),
and the same estimate with f> ) replaced by f5.

Proof. This is essentially the same proof as for the previous lemma except that we have
to take care of the fact that the functions f; depend on all variables, while m only depends
on x, € R". Again, we set my = ]1|Da|5d/3m (that is, I’;lL(r]a) = ]1|na|5d/3r;l(7’]a)) and
mpy = 1|p,|>4/3m. First, we have

I f1,2(0m e (Da) f2,5 () p2mny— 2@ny < ImaDa)ll 2Ry 12R7) < IME L0 (RAa)

< g llp ey < 10l L1 2a/3)-
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Concerning the second term, and denoting m; = F, Ymp), ie. mp(ng) =
2m)"amyp (—ng), we have

F1.20)mp(Da) foi(0)u = fi0mp s (f2,0.(, xp)u, xp)).

Now we can finish the proof as in the previous lemma: introducing f] = INnd(supp £.d/3)>
Jj = 1,2, we notice that

supp(ritf, *gra [ f> f2,2ul) C Nhd(supp f, d/3) + {(x4, 0) : |xa| < d/3}
C Nhd(supp f2, 2d/3).

Moreover, Lemma 2.3 still yields
(L= F) fiallien < Ce™*, j=1,2,

so that the proof then follows exactly that of Lemma 2.7. We obtain the second inequality
similarly. O

Lemma 2.9. Let k € Nand f € C°(R"). Then there exist C, c such that, for any
A, > 0, we have

2 2 .
||Mﬁfk(1 — M)LM)||HI{(R”)~>HI((R") <Ce CH/n + Ce CA,
2 —en? —
11— M3™) M | gk oy gk ny < Ce™ M+ Ce™
Recall that the Fourier multipliers M f are defined in Section 2.3.2.

Proof. Note first that F, (32 9% ) (54, xp) = (i6)%e ™5 "*88 F, (f)(€a, x). Hence,
for k = 0, the result is a direct consequence of (the first estimate in) Lemma 2.7 since
suppm C {|&;] < 1} and supp(1 —m(-/2)) C {|&;] = 3/2}. Note that we also use the fact
that (1 —m), =1 —m;.
For k > 1, we proceed by induction, noticing that
VI = M3") fMyul = (1= My*)(V £ MLu+ (1= M) f, M Vu
(see e.g. the proof of Lemma 2.3). O

Lemma 2.10. Ler fi, f» € C*°(R") be bounded together with all their derivatives, with
dist(supp f1, supp f2) = d > 0. Then for every k € N, there exist C, ¢ > 0 such that for
all o, A > 0, we have

—cn? —
||f1,AM;lff2,A||Hk(]Rn)_>Hk(Rn) < Cet /A+C€ C)‘,

—en? e
”fl,)»M)/ffZHHk(R”)—)Hk(R") < Ce cus/x + Ce LA.

Proof. We first prove both estimates for k = 0, by using Lemma 2.8 with m replaced by
mp = m) (-/n). The Fourier transform of m, is given by

~ _ 2,275 A
ip(Ma) = W Fa(mp) (ung) = p"aea W g ().
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Asa consequence,

n _d2?
sl 1 g 1za/3) < €% Il i nay

and ||I’I,>lb ”L] (Rra) < ”ﬁl”Ll (Rnra)» so that

2,2
~ —ehn A _dp” Y
||mb||L1(|77a|Zd/3) =+ Ce ¢ ”mb”Ll(R”a) < Ce 9% 4 Ce ¢ .

Lemma 2.8 then yields the sought result for k = 0.
Again, for k > 1, we argue by induction noticing that

VIfiaMY foaul = (VMY foou+ fLaMEY )+ fiaMe £V,

and using the fact that the relevant support properties of V f; are preserved (see e.g. the
proof of Lemma 2.3). O

Lemma 2.11. Letk € Nand f € C°(R"). Then there exist C, c > 0 such that for all
w, A > 0andu € H*(R"), we have

—cul _
1ML frulle < I fM ullx + C (e 4 ™M) lull. @.11)

Moreover, for any fi € C°°(R") bounded together with all its derivatives, such that
f1 = 1 on a neighborhood of supp f, for any k € N, there exist C, c > 0 such that for
all u, . > 0andu € Hk(R"), we have

—ey? _
I Mlulle < CUME fiulle + C (e ™ 4+ e ulx. (2.12)

Proof. We write

A

2 2
1M frullie < 1IM5 fG ullie + 1M, fu(1— M ullg.

According to Lemma 2.9, we have ||M}f°fk(l — Mf“)u e < C(e“"‘z/)‘ —i—e‘”}‘) llu|lx. The

first term above is simply estimated by ||MffAM£“u||k < ||fAMf“u||k, which proves
@2.11).
Concerning the “moreover” part, we write

I AMy ulle < I AMS foulle+ 1| AMY (L= foaullk.

For the first term, we only have to remark that ||f;LMff1,;Lu||k < C||M)f‘f1,;tu||k uni-

formly in X. Then, since dist(supp f, supp 1 — f1) > 0, Lemma 2.10 yields

P _
I AME( = faulle < Cle™ 7/ + e ullk,

which eventually proves (2.12). O
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Lemma 2.12. Letk € Nand f € C°(R"). Assume supp f C Uies Ui where (Uy)ieq is
a finite family of bounded open sets. Let b; € Ci°(R") with b; = 1 on a neighborhood

of Uj. Then, for any k € N, there exist C,c > 0 such that for all u,» > 0 and u €
HK(R™), we have

2 —cu? —
1M} frulle < €Y IMF Bidsull + C (e + =) Jullx.
iel
Proof. Applying the first statement of Lemma 2.11 to f, we obtain
2 —cu? —
1M frulle < 11 M3 ulli + C (e + &) . 2.13)

Let now (f;)ies be a smooth partition of unity such that

Z fi = 1in aneighborhood of supp f, suppfi CU;, 0<f; <1.

iel
Note that in particular b; = 1 in a neighborhood of supp f;. Using the second estimate of
Lemma 2.6, we have

2 2 — 2
1M ull = €| Y |+ CemH M ull
i
< CY UM ullk + Ce™Hlully. (2.14)
i

Using the second estimate in Lemma 2.11, we then obtain
2 2 —eu? _
1M ullx < CIMF Bi)aulle + C (e + e=H)lullx.
which, combined with (2.13) and (2.14) concludes the proof of the lemma. ]

Lemma 2.13. There exists C > 0 such that for all D € R and ¥ € L*(R) such that
supp X C (=00, D], and all A, T > 0, we have

1675, (2)] < CIIF oo (h) /2e Ml DT o/h - for gl 7 € C,
~ ~ 2
le™ T (W) lLoony < CIX Loy (d)/2ePTe™ /> forally € CO(R"; R).
Proof. First, according to (2.9), we have the estimate
%2 < ClIF Loy (M) /2 ma o= distRez.supp ) fora]) 7 € C.
Now, if Rez < D, we use the bound |e™?| < ¢P7, which yields

Y =~ A 2
|erZXA.(Z)| S C||X||L00(R)<)\,>l/ze4llml| eD‘L’.

Next, for Re z > D, we have dist(Re z, supp X¥) > Rez — D > 0, and
|e'L’Z5("A(Z)| < erReZC||)’Z||L°°(R)0&)1/2€%umz|2e_%(ReZ_D)2

~ A 2 Y a2
< C|I% Nl ooy (M) 2 T2l qup o755 (P—9)°,
s>D
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Finally,

_A(p—g)2 A2 _ 2
sup eTe 7(D—s) = sup er(D—i—t)e T — erD sup et(t At/4) — eDrer /A

s>D >0 >0

)

which concludes the proof of the first estimate of the lemma. The second estimate follows
from the first for z = s € R combined with

le™ 5. ()l Lo ey < €7 %0.(8) [l Lo Ry ]
Lemma 2.14. There exist C, ¢ such that, for any ¢, T, ., i > 0 and any k € N, we have

__&lD
||e 2t

a|2 sp.z
I — = —cA
(=M | ey e ny <€ 57 +Ce™
Proof. Since the operator e~ 2t (1 — M") is a Fourier multiplier, it suffices to estimate
p A p

eléq 2
SUP;, cqa [e~ 3 (1 — mj (€ /1)) Recall that m € C5°(R"; [0, 1) is a radial function

that we identify with a function m = m(s) € C§°(R,) satisfying suppm C [0, 1) and
m = 1 on [0, 3/4). We distinguish the following two cases:

e if s] < /2, Lemma 2.3 applied with f; = 1 — m (and hence f1,(s) = 1 — my(s))
and f> = L5<1,2 implies |15 <p/2(1 — m; (s/w))| < Ce~¢* uniformly with respect
toA, u>0;

Esz & 2
e if [s| > 11/2, we simply have |]l|s‘zu/ze"7l(l —mu(s/pw)| < e~ ¥,

Combining these two estimates concludes the proof. O

2.4.2. Some more involved preliminary estimates. We will need the estimate of the fol-
lowing lemma.

Lemma 2.15. Let  be a smooth real valued function on R", which is a quadratic poly-
nomial in x, € R", let Ry > 0, and 0 € C{°(Brn(0, Ry)). Let x € Cy°(R) with
supp x C (—o0, 1), and x € C®(R) with x = 1 on a neighborhood of (—oo, 3/2) and
supp X C (—00, 2). Define xs(s) := x(s/8), xs(s) := x(s/8). Let f € C3°(R") be real
analytic in the variable x, in a neighborhood of Brn (0, Ry) and set

g:= eV s a0 is(W) for € CPRR™).

Then there exist co, c1 > 0 such that for all N € N and 8 € N, there exists C > 0 such
that for all § > 0, there is ¢y > 0 such that forany A > 1, T > 0, and 0 < & < &g, we
have

100 Fu(8)(Ear xp)| < CEa) N (x4 87" 4 DNHFIYat D207

2 22y 2 . 2 Y
% (er /Aecls Ae co€léql +er /Ae coA +eclka eére cod A)_

In particular, for all § > 0, N € N, B € N, there are C, c, g9 > 0 such that for any
AT >1and0 < ¢ < gg, we have

|8fh]:a(g)(§a, Xb)| < C(sa)—N_L,N+‘/3‘)\(I’Zg+l)/265‘[e‘[2/)x(ecszke—cs|§a| + eSTe—C)L).
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Proof. First, we prove the result for N = 0 and § = 0 (the other cases will be obtained
by differentiating g).

Also, we notice that since the regularization of o only occurs in the variable x,, we
have supp g C suppo; C R% x Bgm (0, Ry). Hence, estimates are only needed in the
region xp € Kp, := Brm (0, Ry).

Since f is real analytic in x, in a neighborhood of the compact set Bg« (0, Ry ), there
exists Ry > 0 such that f can be extended in an analytic way in a neighborhood of z, €
Brra (0, Ry(xp)) + i Brra (0, Ry), uniformly for x; € Kj, where we have set R, (xp)? =
(Rs + Rf)2 — |xp|%. Note that z, denotes the complex variable associated to x,,.

Notice also that we can extend x by 1 (hence analytically) on a neighborhood of
(—o00, 3/2) 4+ iR. Moreover, since ¥ is quadratic in x,, there exists &g = €9(§) > 0 such
that

(W (Reza, xp) < 38 < 36, Imz4| < 20Ry, xp € Kp) = Rey(zq.xp) < 38, (2.15)
(w(Reza,xb) = %8, Imz,| < eoRy, xp € Kb) = Re vy (zq4, xp) = %8. (2.16)
In particular, x (¥ (z4, xp)) = 1 on
(Y (Rezq, xp) < %5 < %5, Imz,| < €oRy, xp € Kp).
As a consequence, given x; € K}, the function

Za = x5, (W (2, Xp)) X5 (W (24, Xp))

is analytic on a neighborhood of {x, € R" : (x4, xp) < %8} +iBrna (0, e9Ry). Hence,
for x, € Kp, zq > g(24, Xp) 1s holomorphic in a neighborhood of

Ay, (e0) == ({¥ (xa. xp) < 38} N Broa (0, Ra(xp))) + i Brra (0, €0 Ry).

The plan of the proof is to first estimate g in the complex domain, and then bound its
Fourier transform using a complex deformation. We use the analyticity inside of Ay, (o)
and the smallness elsewhere on the real domain.

Step 1: uniform estimates of g. We separately estimate the functions fo; and
eV x5..(¥) Xs (), and then deduce estimates for g.
According to the basic estimate (2.10) for o;, we have, uniformly for x, € K,

(£ 02)(zas xp)| < CAMa/ 25zl o= distReza suppo (xp)”

Za € Brra (0, Ry(xp)) + i Brna (0, Ry),

where the constant C depends only on | f| L~ (on the previous complex domain)
and ||G || L.
In particular, for any ¢ € [0, 1], uniformly for x;, € Kp,

A2 p2
|(f03) zar )] < CA™/2 3% 2, € BRua (0, Ry(xp)) + i Broa (0, 6Rp).  (2.17)
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‘We now notice that
dist(xq, supp o (-, xp)) > dist((xa, xp), B(0, Rs)) = Ry for x4 = R4(xp).  (2.18)

As a first consequence, dist(xq, suppo (-, xp)) > Ry if |x4| = Ra(xp), so that for any
e € [0, 1] we obtain, uniformly for x; € Kj,

A2 p2 A p2 ) 2
1(f03) zar xp)| < CAM/ 23 Ri4e™ 4R < Cpral2ea e ~DRY
lImz,| < &Ry, [Reza| = Ra(xp).  (2.19)

Using now estimate (2.10) for o), on the real domain, together with the boundedness of f
and (2.18), we obtain, uniformly for x;, € Kp,

|(f0r) (e, xp)| < CAMal 23 ditCasuppo.)?
A p2
< Al R x, e R, (xa] = Ra(xp). (2.20)

We now estimate the term e”¥ x5..(¥) xs(¥) in parts of the complex domain.
First, on the real domain, we have

~ ~ _ 82
™ x5.1() X5 ()] < € |x5.2()Fs ()| < CA2ePTe™ D 5 > 33,

after having used (2.6), where c is a numerical constant. As a consequence,

~ 82 .
|7V ) s 0 (W (s 36)) s (W (2, X0))| < CA2eP T if Y (g, xp) = 35
2.21)

Next, for z € C, by Lemma 2.13, there is C > 0 such that for all § € R and all » > 1,
T > 0, we have

6% x5 (2)] < CAM2e3ma 7072 /h forall 7 € C. (2.22)
Since ¥ is a quadratic polynomial in x, with real coefficients, we have
Im ¥ (za, xp)| < C|Rezq| Imza| + C(Kp)[Imzal,  (za, xp) € C" x Kp,

where we have used the fact that K, is compact. As a consequence, there is a constant
Co = Co(¥, Ry, Ry) > 0 such that

Im ¥ (za, xp)| = €Co  forzq € Brua (0, Ra(xp)) + i Brra (0, £Ry), xp € Kp.

Hence, using (2.22), we obtain, for all ¢ € (0, &),

~ 2.2 2
|7V a5 3 (W (2as X)) s (W (zas xp))| < CAN2H 07 /4T
xp € Kp, 24 € Ay, (). (2.23)
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According to (2.9), we also have
|X8 ()| < Ckl/Ze%llmzlze—% dist(Rez,supp)((;)2
< Ckl/ze%“mzlze_c‘sz’\ on Rez > %5,
where c is a numerical constant. Using (2.16) yields
X5, (W (Zar Xp))| < CAM/2CoEH 4 gm0
xp € Kp, za € Ay, (e), ¥ (Rezq, xp) = 36,
and, with (2.15), this implies

~ 2.2 82
™V ) 5 1 (W (2 X)) Ko (¥ (Za» 4p))| < CAL/ 208330/ 2eme
xXp € Kp, 24 € Ay, (8), Y (Reza, xp) = 38, (2.24)

Let us finally gather all estimates obtained on the function g. Multiplying (2.23) by
(2.17) and (2.19), we find that there is a constant C; > 0 independent of A, u, 7, 8, € such
that, for any ¢ € (0, o),

18(za. xp)| < CAMFD2eCAEITGT /M e Ky 24 € Ay (), (225)
19(za, x5)| < C)L(na+1)/26)»(—Rj2c/4+C1EZ)eSretz/A7

xp € Kp, 24 € Ay, (¢), IRezq| = Ra(xp).  (2.26)
Next, multiplying (2.24) and (2.17) we also have

g (zas Xp)| < C)\'(na-l-l)/QeC]szke38r/2e—082k7
xXp € Kp, 2a € Ay, (8), Y (Rezq, xp) = 38.  (2.27)
Combining (2.20) with (2.22), and rewriting (2.21), we also have on the real domain
19k xp)| < CAPHD 27T g™ 0RT - e R x| = Ra(xp), 33 € Ky,
(2.28)
18(xa, xp)] < CRV2ePTe™¥h x e R™ | x, € R™, Yr(xg, xp) = 35, (2.29)

Step 2: estimating the Fourier transform using a deformation of contour in the com-
plex domain. We now want to estimate F,(g)(&,, xp) uniformly with respect to x;. We
split the integral as

Fol@) Ear xp) = / et g (g, xp) dxa = To + 11 + I
Rna

with I; = I (&4, xp) defined by

I()I:/ , I :Zf , Iz::f .
[xal <R (xp), ¥ (xa,xp) <36 Ixal <Ra(xXp), ¥ (Xa.xp)> %8 [%q|> Ra(xp)
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Using (2.28) together with the compactness of suppg C supp f, we obtain, for all
§,t>0and A > 1,

L] < CAOatD/27 72/ g~ RIA/A. (2.30)
Using (2.29), we obtain, for all §, 7 > Oand A > 1,
1] < CAM2e2T pmed®h, 2.31)

We now want to estimate the integral Io(&,, xp): for & € R™ \ {0}, we write x, =
X |§ZI + x], for x; = x4 - I%I and x, such that x/, - £, = 0 and make the (&,-dependent)
orthogonal change of coordinates to (x1, x/,) (preserving the ball Brea (0, R4 (xp))). This
yields

Io(Eq. xp) = / e Belg(xy, x}) dx} dx)
Bgna (0, Rq (xp)) N (-,x5)> 3 8}

-/ Ty (5)) d,,
Bpng—1(0,Rq(xp))

with

Ley oy, (Xg) = / e~ 1lalg(xy, x!) dxy,

4
X112 <R (xp)% =%} 12, ¥ (x1,x},x5) <58

so that

[o(£q, xp)| < C sup |, (X))
X(/A EBRna —1(0,Rq(xp))

Hence, it only remains to estimate |Zg, x, (x,)| uniformly. Now, g being analytic in a
nei'ghborhood of Ay, (g0), and given any x), € Bpu.-1(0, Ry(xp)), the function z;
e zildalg (7, x,,) is holomorphic in a neighborhood of the set

Rezi|* < Ra(xp)® — Ix)1%,  ¥(Rezi,x},xp) <38, |Imzi| <eRy,

for e € (0, gg).
Now, we have

{r1 €R:x|? < Ra(xp)? — I, % wrxn, 0 x) < 38} = [l 0f]. (232)
keJ

where J = J(x], xp) has 0, 1 or 2 elements since y is quadratic. Moreover,
either of|> + |x,|? = Ra(xp)?, or (el x),xp) = 38 (2.33)

fork € J andi = 1, 2, together with

Te, x, (X)) = 2/1 . e~ lalg(xy, x!) dxy.
keJ Yool
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To estimate Zg, ,, (x,), we now make a change of contour in the complex variable z; as
follows:

/ e Mg (xy, xp)dxy = I + It + I,
lo 7]

where

I, = / el g(zy,x!)dzy  forx=L,T,R,

and
vL = o}, @} —ieRy],
yr = [a} —ieRy, af —ieRy],
vr = [a} —ieRy, a?]

are three oriented segments in C (see Figure 2). We have

|I*| 5/ elm(zl)‘éaug(zl’x;)'dzl fOI'*ZL,T,R.

Imz;
) 0 o?
Rezl
YL YR
. Yr
Yk —ieRy Ol]%—l'&‘Rf

Fig. 2. Oriented contours.
On yr, and yg, using (2.33) and Imz; < 0, we can use either estimate (2.26) or (2.27)
and obtain, uniformly in x), &, xp, 8,7 > 0,1 > 1, and ¢ € (0, &(3)),
1| + |1g| < Ce)»("““)/zecl“z(eafe_mzz‘/“efz/* +esar/zefcazx)_

On yr, we have (z1, x)) € Ay, (¢) and Imz; = —&Ry, and thus using (2.25) we obtain,
uniformly in xé, &1, xp, 8,7 >0,1>1,and ¢ € (0, g0(5)),

< Cx(a+D)/2,C10e? 8T ,72/0 ,—eRy|Eal
[ IT] < CA e ee e .

Combining the estimates on Iy, Ig, IT now proves that there is C > 0 such that for any
&, € R" \ {0} (and, by continuity, for all £, € R"), x;, € R",§, 7 > 0, . > 1, and

. Rf
&< mln(80(3), z—m),
o] < C)"(ng+1)/2e5rer2/)»(eclkszefé‘Rf\Sa\ n e—R},\/s) i C)\(na+1)/26C11826351'/267&32}_’

which, in view of estimates (2.30) and (2.31), implies the result for N = 0 and « = 0.
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To obtain the result for N € N and § € N", we notice that the functions g4 5 =
ay, beg can be written as a finite sum of terms that have the same form as in one of the
assumptions of the theorem with some different f, b and xs (with the same support and
analyticity properties) and with powers of %8 F for la’|+]8’| < |a|+]|B]|. The constants
in the exponentials do not depend on «, 8 since they are functions of ¥, Rs, Ry, Kj only.
Noting that (i£,)%9%, Fo (¢) (6, xp) = Fa (03, 32 ¢) (£, x) concludes the proof. o
Remark 2.16. It is likely that the above lemma works as well if ¢ is any real val-
ued function, analytic (or at least polynomial) in the variable x, (and not only polyno-
mial of degree 2). The main point is to have uniform bounds of the form ¥ (z,, xp) =
¥ (Rezq, xp) + O(e) for (Rezg, xp) in a compact set, and |[Imz,| < &Ry. This could
be done by Taylor expansion. Moreover, the decomposition (2.32) in a finite number of
intervals should still be possible using analyticity in x,. This generalization is however
not needed below since all weight functions i will be quadratic polynomials in x, (and,
most of the time, in all variables).

As a consequence of the previous result, we now have the following lemma.

Lemma 2.17. Under the assumptions of Lemma 2.15, for all k € N, § > 0, there exist
N € Nand C, ¢y, &9 > 0 such that for any ., u, v > 1 and 0 < ¢ < &g, we have

2 2 2 . —
||M)lf/ g(l _ M)ILL)”Hk(R”)—)Hk(]R”) < CrNk("”+l)/265TeT /A(eCe )»e COEM + 68T€ CO)L)’
(1 — Mf)ng/ZHHk(RnHHk(Rn) < C.CN)\(na—H)/Zeéretz/)u(eCSZAe—COsM _'_eére—co)\)'

The estimates of this lemma will only be used in a weaker form: for all ¢,§ > 0 and

k € N, there exist cp, C, N > 0 such that for any 7, © > 1 and c_l,u < X < cu, we have

2 2 .
1ML (1 — MIY | gk ey iy < CTVe™ /BT emc0k, (2.34)
with the same estimate for the second term. This form is obtained by taking ¢ sufficiently
small in the regime c_l,u <A<cu.

Proof of Lemma 2.17. The two estimates are proved the same way, so we only prove the
first one. First, since M f is a Fourier multiplier, hence commutes with differentiation, for

any « with |a| < k, the derivative 8"‘[M§f/2g(1 - Mﬁf)u] is a sum of terms of the form
MM (0P g)(1 — M) (87 u) with |B] + || = |a| < k. Hence, Lemma 2.7 gives

2
1ML (1 = M ey ey <C Y 16508, Fa (@)l 11, 12au/3)
lee|+IB1<k

+ Ce™ MIELDE Fu(@) | oo b 11 (o) -
Next, Lemma 2.15 with N € N so large that (&,) =™+ is integrable on R™ yields
MM/Z 1 — M* )
1M; " g( ) ek @y kR
< CTN+k)L(na+l)/2eerer2/)L (eclszke—coeu + eSre—COA)

which concludes the proof. O
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3. The local estimate

The aim of this section is to prove the local quantitative uniqueness result, (analytically)
localized in frequency in the analytic variables.
In the following, for any R > 0, we shall denote
or(x) ;== o (R~ x — x%)) with 0 € C®(R) such that
o = 1 1in a neighborhood of (—oo, 1], and 0 = 0 in a neighborhood of [2, +00).
3.1

Our main local theorem is the following. See Figure 3 for the geometry of the theorem.
An important feature of this local result is that it can be iterated and hence propagated.

Fig. 3. Geometry of the local uniqueness result. The blue (darker) striped region is the observation
region (i.e. where ¢ = 1). The red (lighter) striped region is the observed region (i.e. where o = 1).

Theorem 3.1. Let x° € Q € R™ x R™ and P be a partial differential operator on Q of
order m. Assume that

e P is analytically principally normal in {§, = 0} inside Q2 (in the sense of Defini-
tion 1.6);

e there is a function ¢ defined in a neighborhood of x° such that ¢ (x°) = 0, and {¢ = 0}
is a C? strongly pseudoconvex oriented surface in {£, = 0} at x° for P (in the sense of
Definition 1.7).

Then there exists Ry > 0 such that for any R € (0, Ry) there exist r, p, Ty > 0 such that

forany ¥ € Cgo (R™) with 9 (x) = 1 on a neighborhood of {¢p > 2p} N B(x%, 3R), forall

c1, k > 0 there exist C, k', By > 0 such that for all B < By, we have

IME 0 eyttt < CEF(IME ey pttllm—t + I Pull 250 4ry) + Ce ™ ltllmor

forall p > to/B and u € CG°(R").
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Note that this local result contains in particular the unique continuation result for opera-
tors with partially analytic coefficients [Tat95, RZ98, H6r97, Tat99b] (which it is aimed
to quantify). The latter is proved by letting 4 — o0 in the estimate (and controlling
some error terms), yielding: [Pu = 0 on B(x",4R)), u = Oon supp®¥] = u = 0 on
B(x%, r) c {o, = 1}.

This theorem allows one to systematically quantify this local unique continuation re-
sult under partial analyticity conditions (in a way that can be iterated/propagated). As
such, it also allows one in particular to systematically quantify both the Hérmander and
the Holmgren theorems (again, in a way that can be iterated/propagated). Let us briefly
comment on these two extreme situations: n, = 0 (Hormander case) and n, = n (Holm-
gren case).

Remark 3.2. If n, = 0, this inequality takes the form (see also (1.13) in the introduction
and the associated discussion):

lorullm—1 < CEKM(”l?“”mfl + ||Pu||L2(B(x0,4R))) + Ce™  Mlullm—1  forall u > po,

or equivalently

1
lorullm—1 < CW(”ﬂ””m—l + 1 Pull;2p(x0 4ry) + Cellullm—1 foralle < g,

) —
lorttlm—1 < C(IPullm—1 + I Pull 2(px0.ary) el =% for some § € (0, 1).

This last estimate is an interpolation inequality of Lebeau—Robbiano type [Rob95, LR95],
and, as such, propagates well. Here it quantifies the general situation of the Hérmander
theorem (see also [Bah87]).

If n, = n, we here describe a systematic way to quantify the Holmgren theorem,
which propagates well. See also [Joh60] for a local result and [Leb92] for a global result
for waves.

Remark 3.3. The inequality of Theorem 3.1 can be written in the following way: For all
(D, v, u) € Ry x [F9/B, +00) x H"(R") satisfying

||Mélml9cmu||m—l < e letx mD, ||PM||L2(3(X0‘4R)) =< e letx )MD,

we have
)
||Mgllao—r,c1uu”m71 < Cle™ M(D + lullm-1).

This could certainly be written in the framework of propagation of (semiclassical, par-
tially analytic) microsupport with respect to the variable x, (see [Sjo82] or [Mar(02, Sec-
tion 3.2]). If n, = n, it seems related to microlocal proofs of the Holmgren theorem and
the propagation of the analytic wavefront set (see [Sjo82]).

The proof of Theorem 3.1 is divided into three steps, given in Sections 3.1-3.3 respec-
tively.
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3.1. Step 1: Geometric setting

The following lemma is a refined version of [RZ98, Lemma 4.1, p. 514] or [H6r97, Lem-
mata 4.3 and 4.4]. Its proof essentially follows that of [RZ98, Lemma 4.1]. We state the
geometric part for balls that are not necessarily Euclidean. This will be useful in Section 5,
where we study the boundary value problem and need to make changes of variable.

Lemma 3.4. Let P be analytically principally normal in {§, = 0} inside Q@ C R", of
order m and with principal symbol p. Let ¢ € C*(2;R) and S = {¢ = 0} be a C*?
oriented hypersurface in Q. Let x° € S N Q with V¢ (x°) # 0. Assume that S is strongly
pseudoconvex in Q@ x {£, = 0} at x° for P (in the sense of Definition 1.7). Then there
exists A > 0 such that the function

1 1
Y ) = (=2 Vo) +A (=2 Ved ()P + 29" () (r—x, x—x0) = < [x =202
satisfies:
D) ¥ =0, Yy (x”) = Vip(x?);
(2) ¥ is strongly pseudoconvex in QN{E, = 0} at x° for P (in the sense of Definition 2.1);
(3) let N be a distance function locally equivalent to the Euclidean distance; then there

exists Ry > 0 such that for any R € (0, Ry), there exists no > 0 and for any 0 < n
< no and any 11, 12 > 0 there exist p, r > 0 such that

(¢ <pIn{y = —nn By, B) C By(x", R/8), (32)
(¥ = m}N By R)) C {¢ > p). (3.3)
By r) C{—m < ¥ < m) (3.4)

In this statement, the By stand for balls with respect to the distance N. Conditions (3.2)—
(3.4) are illustrated in Figure 4.

Fig. 4. Local geometry of the level sets of the convexified function i (in case N is the Euclidean
distance).
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Proof of Lemma 3.4. (1) directly follows from the definition of ¢ as a second order
perturbation of the Taylor expansion of ¢ at x°.

The proof of the pseudoconvexity in (2) is very similar to that of [RZ98, Lemma 4.1]
or [Hor97, Lemma 7.4]. We sketch it for completeness.

Let us compute

_ (D, s [05 9p] 8*p[dp.
weip 0.9 = (e 55w |+ v ] - [ v ])

Since Vi (x%) = Vg (x0), we have
Re {p, {p, ¥} (x°, &) = Re (P, {p, p}}(x°, &)

) 2 219 2
+24 vx¢(x°)-£<x°,s>‘ —Z%(x(),f)‘ .

In this identity, all terms are homogeneous of degree 2m — 2 in the variable &, so it is
enough to prove the estimate for & € S"~!. Hence, applying Lemma A.l below on the
compact set K = {£ € s*1:g, =0, px% &) =0}, together with the first part of the
pseudoconvexity assumption, yields, for A large enough,

Re{p, {p, ¥y} &) >0 if p(x° &) =0and&, =0, & #0. 3.5)

For the second estimate, we compute

1

<3ﬁ . op . o [313 . ap . ])

=—| =&, §-itVe)—(x,§+itVP)+itd, | —(x,E—iTVP); —(x,E+iTV)
x 0& 9

0

p(x,€+irV¢)i|>

1(9p NN o) —ive! | P TV):
—f(—(x,s—n $)og (. EHiT ¢)—tr¢”[¥(x,é—zr 28y

i\ 0x &
=Crp1(x,8)+Crp2(x,8)

with

1/0p -0 op _ 0
Crpa (X, &) = —(—p<x, oﬁ(x, 7) - 5@, 5L (x, ;)>,

i\ 0& 9§
o " @ - 3_[7
Crp2(x,8) = 2t¢“[aé (x, 8); 08 (x, C)],

where we have denoted ¢ = £ + it V¢ (x). But we notice that for fixed (x, £) (and when
¢ varies), C; ¢ 1(x, &) only depends on V¢ (x), while C; ¢ 2(x, &) is linear in ¢)’C’x(x0)
once V¢ (x9) is fixed. So, since ¥ (x%) =0, V¢ (x?) = Vo (x°) and

VD) = 9,00 + 2V O VH() — 2 1d
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we have C; .1(x%, &) = Cr 1 (2%, &), ie.

0
Ve (%) - L0 )

2 4 ap
0§

0 2
A %(x 74‘)‘ .

(3.6)

1 _ 0 0
lf{P,,,, pyt(x”, &) = Crg1(x", §) +4Ar

In identity (3.6), all terms are homogeneous of degree 2m — 1 in the variables (7, &), so
it is enough to prove the estimate for (7, £) € S”, T > 0. We now want this to be positive
ontheset {(t,&§) e S": 7 >0, & =0, p¢(x0,5) =0={(r,6)eS":t>0,& =0,
py(°, &) =0}

For this, notice first that %%{ﬁ@ Do) = 2Re{p, {p, ¢}}. Hence, we can write

1 1
~(Py, Py} = = (P, P} + 2t Re (P, {p.o}}+0(t», 11— 0%, (3.7)

with O (%) uniform in (t, £) € S".

Moreover, by the Taylor formula, we have py = p +itV¢ - g—’g + 0(12) =
p +it{p, #} + O(x?), with O(r?) uniform in (z, &) € S". Hence, on the compact set
{(r, &) e S" : &, =0, p¢(x0, £) = 0}, we have p = —it{p, ¢} + O(7?). But since P is
analytically principally normal, (1.9) holds and we have {p, p} = O(p) on the compact
set {(r,&) e S": &, = 0}.

In particular, there is a constant C such that |#{ﬁ, p}| < C({p, o}l + It]) on
{(r,&) e S" : &, = 0, p¢(x0, &) = 0,7t # 0}. Coming back to (3.7), on this set we
have

1
7 (Pg: P} = 2Re{p. {p. 1} = C(l{p. ) + 7). (3.8)

Moreover, the first pseudoconvexity assumption (1.10) and Lemma A.1 below provide
Ci, Co > 0 such that, on the set {£, = 0} N {|&|> = 1}, we have

2Re (P, {p, o1} + C1(Ipl* + l{p. 9}1P) = Ca.

This is also true by homogeneity for |§] close to 1 with a different constant. Hence, on the
set {(t,&) e S" : §, = 0, p¢(x0, &) = 0, © # 0}, there exist constants C, C > 0 such
that [{p, ¢}| < e and |7| < ¢ imply

1 -
—{Pgr s} = Co = CIpP +1{p, 91 + I{p, $}l +171) = C2 = Ce
where we have used |p| < C|tr| < Ce¢ on this set.

Therefore, there exist &, C3 > 0 such that in {(z,&) € S" : §, = 0, p¢(x0, &) =0,
T # 0}, we have

1
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We now extend %{ﬁ(p, De} to the compact set K, ={(r,£) € §" : §,=0, p¢(x0, £)=0,
0 < t < &}, by giving any positive value when T = 0. We are in a position to apply
Lemma A.2 with g = %{ﬁqﬁ, Py} (its extension), f = |{p, ¢}? and h = |g—§(x0, §)|2.
This yields {7, py}(x°, &) > C on K,.

The case T > ¢ is easier since %{ﬁqﬁ, Dy} is continuous. We apply directly Lem-
ma A.1 using the second pseudoconvexity assumption (1.11).

So, at this stage, we have proved that there exists C such that for A large enough,
%{ﬁw,lﬂw}(xo,f) > Con({(t,6) € S" : & = 0, pp(x°,&) = 0, T > 0}. Since
Py (0, &) = py(x0, £), this yields

ll{@,,, pytx® E) >0 if py(x°. &) =0and&, =0,7 > 0. 3.9)

Combining (3.5) and (3.9) implies that ¥ is a strongly pseudoconvex function in
QN {&, =0} at x° for P.

Let us now prove the geometrical part of the lemma, i.e. (3). From now on, the pa-
rameter A is fixed. To simplify notation, we set x” = 0 and assume that 0 < p < . We
also take a positive constant Cn such that &N x,0) < |x| < CNyN(x,0).

Let us first prove (3.2). We have

%m2 ==Y (x) +x - V(0) + A(x - Vo (0)* + %¢”<0><x, x),
which implies
%m2 <n+x-Ve(0) + Alx - Vo (0))* + %«zs”(oxx, x)
on the set {y > —7}. Moreover, the Taylor expansion of ¢ yields x- V¢ (0)+1¢" (0) (x, x)

= ¢(x) + f(x) with | f(x)| < e(Jx])|x|?, where € : R4+ — Ry is increasing and
€(s) = 0t ass — 0T. For x € { > —n} N {¢ < p}, we thus obtain

%mz < n+p+AR-VH0) > +e(lx])x> < 2n+A(x-VP(O0)*+e(xDIx*.  (3.10)

Moreover, for x € {yy > —n}, the definition of i gives

L)

1
x -V (0) = ¥ (x) — A(x - Vp(0))* — 50" O, ) + x|

v

1
—n — (AC2 4 Co/2)|x* + Z|x|2

\

—n — (ACj + Co/2)IxI?
for Cop = max(|Ve (0)|, max,ep(o,ry) |¢” (x)]). Also, for x € {¢ < p}, we have

x-Vg(0) < ¢p(x) + Colx|?/2 < p + Colx[>/2 < n + Colx|*/2.
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Combining the last two inequalities, we obtain, for x € {¢ < p} N {¥ > —n},
lx - Vo (0)| < 1+ (ACF + Co/2)Ix P,
and hence
- Vo) < n* +21(ACG + Co/2)IxI” + (ACG + Co/2)|x|*.

Coming back to (3.10) yields, for x € {¢ < p} N {Y > —n},

1

S IXI? = 20+ An® + 240(ACG + Co/2)Ix [ + A(ACT + Co/2% x| + e lx .
Forx € {¢ < p}N{¢ = —n} N By (0, R), this implies

1
X|x|2 <204 An* +2A0(ACE + Co/2)|x|* + A(ACH + Co/2)*(Cn R)?|x|?
+e(CyR)Ix]*.

Taking R < Ro with Ry = Ro(A, Cy) sufficiently small such that

1
A(AC2 + Co/2)* (CNR)? 4+ €(CNR) < a

and n < no sufficiently small such that

1
2AN(AC? + Cy/2) < —,
n( ot 0/)<4A

we have by absorption
x> < 2420 + An?).

This gives N(x,0) < R/8 as soon as n < ng for n9p = no(A, Co, R) sufficiently small.
This concludes the proof of (3.2) for the chosen constants as long as 0 < p < n.

Let us now prove (3.3). Note that performing exactly the same computation as before
with p = n = 0 and the same R, we obtain

{¢ <0}N{y = 0}N BN (0, R) = {0}. (3.11)

Assume that the compact set {/ > 11} N By(0, R) is nonempty (otherwise (3.3) is
trivial). The minimum of ¢ on that set is reached at some point x,,. We necessarily have
¢ (x) > 0: otherwise, (3.11) implies x,, = 0, which is impossible since n; > 0 and
¥ (0) = 0. So, in particular, x € {¢ > 11} N By (0, R) implies ¢ (x) > ¢ (x,,) > 0. This
is (3.3) with some appropriate 0 < p < min(¢ (x,,), 1).

Finally, (3.4) is just a matter of continuity. Since ¥ (0) = 0, there exists » > 0 such
that N(x,0) < r implies |¢¥ (x)| < n2. m]
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Remark 3.5. Note that the estimate (3.8) implies in particular that 2 Re {p, {p, ¢}} is the

limit as t — 0 of ir{ﬁq), Do} on the subset

i
{(0.8) €8" £, =0, pp(x°,8) = {py, #)(x°,§) =0, T #0}.
However, this is not used directly in the above proof.

Now, thanks to Lemma 3.4 and the Carleman estimate of Theorem 2.2, we have the fol-
lowing result.

Corollary 3.6. Let x° € Q = Q, x Q, C R" x R"™ and P be a partial differential
operator on 2 of order m. Assume that

e P is analytically principally normal on {£, = 0} inside Q (in the sense of Defini-
tion 1.6);

e there is a function ¢ defined in a neighborhood of x° such that ¢ (x°) = 0 and {¢ = 0}
is a C? strongly pseudoconvex oriented surface in the sense of Definition 1.7.

Then there exists a quadratic polynomial ¥ : Q@ — R and Ry > 0 such that B(x°, 4Ry)
C 2, and for any R € (0, Ro] there exist ¢, 8, p, r,d, t9, C > 0 such that § < d/8 and

(1) the Carleman estimate

QY ulz_ . < C>IQY  Puld + 1™ V=D Pulf + 1™~ Du|2,_, ) (3.12)

m—1,1 m—1,1

holds for all t > tgand all u € CgO(B(xo, 4R));
(2) we have

(B(° 5R/2)\ B(x°, R/2)) N {=98 < ¢ <28} € {¢ > 20} N B(x",3R), (3.13)
(6/4 <y <28YNB(x°,5R/2) € {¢ > 2p} N B(x°, 3R), (3.14)
B(x%,2r) € {=8/2 <y < 8/2) N B(x", R). (3.15)

Proof. First, Lemma 3.4 furnishes the function ¥ for some A (large enough in its proof)
and Rp > 0. Once v is fixed, Theorem 2.2 yields the Carleman estimate (3.12) for
some constants R, d, 79, &, C. Then, we take any R < min(R/4, Ry/3) (with Ry given
by Lemma 3.4) and § < min(d/8, no/9). Finally, the conclusion of Lemma 3.4 with
n = 98, nm = §/4, no = §/2 implies (3.13)—(3.15), with possibly different constants,
which concludes the proof. O

3.2. Step 2: Using the Carleman estimate

From now on, we let 2, x°, P and ¢ be as in Corollary 3.6. The function i and constants
Ro, R := Ry (that we fix now) and §, p, r are provided by Corollary 3.6, as also are the
constants d, tg, C of the Carleman estimate (3.12). We shall moreover assume that there
exists C > 0 such that

1

EM <ir=<Cu. (3.16)
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Actually, at the end of the proof, we will take A = cju, but we believe that to keep the
notation A makes the presentation more readable by making a difference between p which
is the frequency and A which is the regularization parameter. All the constants appearing
in the following may depend upon the above ones.

Before going further, we need to introduce some cutoff functions that will be used
all along the proof. We first let x (s) be a smooth function supported in (—8, 1) such that
x(s) =1fors € [—7,1/2], and set

x5(s) := x(s/9). (3.17)

Hence, xs5(s) is a smooth function supported in (—84, §) such that ys(s) = 1 for s €
[—78,8/2]. We also define ¥ so that ¥ = 1 on (—00,3/2) and supported in s < 2,
and denote as well Xs(s) := X (s/3). We finally recall that the functions og and oy are
defined in (3.1).

In this part of the proof, we want to apply the Carleman estimate (3.12) (with weight ¥
and constants d, 79, C given by Corollary 3.6) to the functions o2gror 1 X5 (W) xs.0 (¥)u
(for any u € C3°(IR")), which is indeed compactly supported in B(x°, 4R) (according to
the definition of oo g as in (3.1)). We first need to estimate the term

10V . Porror s Xs (W) xs,1.(¥)ullo,

which will appear on the right hand side of the inequality. Using supp xs C (—o00, §) with
Lemma 2.13, together with (3.16), we first have

10 . Poaror s X (W) xs,.(Wllo < 11QY c02r0R 3. 35 (W) x5.0.(¥) Pullo
+ 1107 [o2r0R 2. %5 (V) X5,1. (), Plullo
< CM]/ZeCtZ//Leﬁt ” Pu ||B(x0,4R)

+1QY [o2r0R 1 X5 (W) X34 (W), Pluflo.  (3.18)

The main task now consists in estimating the term containing the commutator, which we
do in the following lemma.

Lemma 3.7. With the above notations and assumptions, for any ¢ € Cy°(R") such that

9 (x) = 1 on a neighborhood of {¢ > 2p} N B(x°, 3R), there exist C,c > 0 and N > 0
such that

10V (020 R 3. 35 (W) x5, (W), Plutllo < CeX T | M 9t 1
e 2
+ O PN (8T 4o 4 e ST CT T U,y (3.19)
foranyu € C(C)’O(R"), w > 1, A such that (3.16) holds and t > 1.

We stress that all geometric constants are now fixed (see the beginning of Section 3.2).
Hence, all constants appearing in the estimates may depend on them. In particular, the
constant C in (3.19) depends on §.
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Proof of Lemma 3.7. The operator P can be written P = stm Do (x)0%, with py
smooth and analytic in x, in a neighborhood of B(x?, 4R) C Q. By the Leibniz rule,

Pa(x)3% (02ROR 2 X5 (W) X5,2. (W)u)
= pa(x) Z Cian 0™ (x5, ()% (028) 0" (0 1) 0™ (X5 (V) 0% us.

a1 tartaztoagtos=a

The commutator [X5(¥)xs..(¥)o2roR 2, P] consists of all terms in the sum where at
least one of the «; is nonzero, for i = 1, 2, 3 or 4. Hence, we can split it into a sum of
differential operators of order m — 1 as

[P, 02rOR A Xs (W) Xx5,»(W)] = B1 + B2 + B3 + By,
where

1. Bj contains the terms with &y # 0 and oo = a4 = 0;

2. B contains some terms with oy # 0;

3. B3 contains the terms with o3 # 0 and o1 = g = a4 = 0;
4. B4 contains some terms with aq # 0.

Note that some terms could belong to several categories, and that all terms are supported
in {y <28} N B(x%, 4R). More precisely:

1. Bj consists of terms where there is at least one derivative on x; (1) and none on o2g
and Xs(¥). According to the definition of x and (3.17), there are only two possibilities
for the localization of a derivative of xs. Since Xé,,\ = %(X/)Ms 9% (xs5.5.(¥)) with
o1 # 0 can be decomposed into two categories of terms: we shall use the notation
Xs.;, for those terms supported in [—88, —75] and ng , for those supported in [6/2, §].

Hence, B; is a sum of generic terms of the form
Bi = bi(x)37 = forrd” (or.1) %55 (W) Xs (V)07

where [B], |y| < m — 1, f € Cj°(R") is analytic in x, in B(x", 4R), and th isa
derivative of s (with the above convention for the superscript ). The function f
actually contains some terms coming from p, and some derivatives of . Notice that
in the absence of regularization (i.e. the subscript A), B4 would be supported in

(18/2 < v <8N BG,2R)) C ({6 > 20} N {¥ <8} N B(, 2R)),

and B_ in {—85 < ¢ < =78} N B(x", 2R).
2. Bj consists of terms where there is at least one derivative on opg. Hence, B; is a sum
of generic terms of the form

By = by(x)8” = bdP (ox.1) (x )55 (1),

where k, ||, |y| < m—1, the function b is smooth supported in B(x°, 4R)\ B(x, 2R)
and b contains derivatives of oo g, some terms of p, (x), and possibly some derivatives

of ¥ or x5 (¥).
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3. Bj consists of terms where there is at least one derivative on og 3 and none on x5 (),
Xs(¥) or ong. Hence, B3 is a sum of generic terms of the form

By = b3(x)d” = foard? (0r.2) X5, (W) Xs (Y)Y,

where f is smooth in (x,, xp), analytic in x, in a neighborhood of B (xY,4R), 1Bl > 1
and |B], [y] =m — L Notice also that in the absence of regularization (i.e. the sub-
script 1), B3 would be supported in

(=88 < < 81N BG",2R) \ B(", B)) € (1o > 20} N {y < 8} N B(x",2R)).

4. By consists of terms where there is at least one derivative on X5(3). Hence, By is a
sum of generic terms of the form

By = by(x)d” = bdP (ar.1) (x ©)s 1 (¥)d"

where k, |B], |y| < m — 1 and the function b is smooth supported in B(x%, 4R) N
{¥ € [35/2, 28]} and b contains derivatives of opg, some terms from py (x), and some
derivatives of ¥ or X5().

Now, proving an estimate of the last term in (3.18) consists in estimating successively
the associated expressions with the generic terms By, éz, 1§3, 1§4; the final estimate then
follows as the LHS of (3.19) is bounded by a finite sum of such terms. Recall that § is
fixed, so that Cs = C in the estimates below.

Estimating B_. Using Lemma 2.13 applied to y; , we have

_ 2 _ 2
10V B_ullo < le™V B_ullg < CsA'2e™ ™ e™ lully—y < Cu'2e™ 7™ /H |lu]lyy.
(3.20)

Estimating B,. We use Lemma 2.13 applied to Xa(k) and Lemma 2.3 applied to b and
8P (or) where supp b N suppog = . This yields

2 _
10Y . Boullo < lle™ Boullo < Cs1'/2e® e ™™ |lu |1
< Cp' e e e M ju |,y (3.21)

Estimating By. We use ™V < ¢?7 and |(x ®)5..(¥)| < Ce™* on {¢ € [38/2, 28]}
thanks to Lemma 2.3 applied to x ® and 1135/2,25)- This yields

27 —ch 257 —
10V Baullo < lle™ Baullo < Cse® e Mullm—y < Ce® e Hullm—1.  (3.22)

First estimates on B and B3;. With x = + or 3, we have

|Dal?

|0, Bl = %" e B,

1Da

< e B mfe™ By + e % (1 etV B

eu? .
< IM} eV Buullo + C(e™ 3 + e~ [le™ Boullo

e 2
< |M" eV Byullo + CAM2 (e™ %% + e )T 1T |y,
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where the second inequality comes from the application of Lemma 2.14 and the third
from Lemma 2.13.

Next, concerning the term with || M f €™V B,ul|o, we have B, = b, where * is either
+ or 3. So, we can estimate

2 2
1M e™ Baullo < 1My e™ bu(1 = M9 ullo + 1M} ™ boM; 87 ullo,

where
2 .
1M by (1 — M) ullg < CNeC™ e =K |y, _y,

according to Lemma 2.17 applied in the specific case of (2.34). Note that we use the
fact that foogp = f in a neighborhood of B(xo, 2R) D suppog, and foop is therefore
analytic in x, on a neighborhood of this set. Next,

1MLV b M 87 ullg < [le™Y b M 87 ullo.

Combining the above four estimates, we now have

o2
1QY, Baullo < lle™ b M2*97 ullg + Cp 2N (e %7 + % e #)eCT /e u ).
(3.23)

Now, to estimate the first term of the RHS, we will distinguish whether x = + or 3, using
the geometry of the “almost” location of each b,.

Estimating B... We have to treat terms of the form
By =byd" = fhuxs, (WD),

where b = 8% (ag), |8l < m — 1, is supported in B(x",2R) and f € CZ(R"). We
decompose R" as R" = O; U O, U O3 with

0y = (Y ¢ [8/4,281} N B(x°, 5R/2),
0, = B(x",5R/2)°,
03 = {y € [8/4,281} N B(x°,5R/2).

On Oy, since X(;L is supported in [6/2, 6] and using Lemma 2.3 with f, = T[s/4,251c, we
have | x;f , ()] < e~ Moreover, eV < ¢2%% on the support of ¥s. Hence,

2 _ _
1™ by MM 07 ull 20,y < Ce™ PP ullm—1 < Ce™ X ullm—i.
On 0, using Lemma 2.3 with f, =10, and f] = b and then Lemma 2.13, we get

. 2 . 2
€™ by M 07wl 120, < CAV e e Hullyy < CuP2e e M lull



Quantitative unique continuation and approximate control 1005

Using (3.14), we can find a smooth cutoff function ¥ such that ¥ = 1 ona neigh-
borhood of O3 and supported in {¢ > 2p} N B (x%,3R). So, for A large enough, we have
9, > 1/2 on O3. Moreover, le™¥| < €27 on 03, and thus

2 2 2
€™V by M3 07 Ul 12005y < €TI0 M 9V Ul 1205y < C*T M9V Ul 1205
< CTND M0 ull 120y < CET N5 M7 ull o
Let ¥ € Cg° be such that # = 1 on a neighborhood of supp ¢ and supported in

{¢p > 2p} N B(x 3R). This is possible since suppz§ C {¢p > 2p} N B(x 3R). In
particular, since ¥ = 1 on {¢ > 2p} N B(x",3R) by assumption, we have 19 =1lina

neighborhood of supp 19 Then, according to Lemma 2.6 and the properties of 19 we have
) z a2 -
19 M50 ull L2 < 193 M;" ullm—1 + €= ullm—1,
and then
= 2 2 —
192 M w1 < 1M Ot m—1 + Ce™ ||l 1,

according to Lemma 2.11.
Combining the previous estimates with (3.23), we have obtained

10Y  Byulo < Ce®T | M;" 93]l m—1
+Cu'PN (e % + P CT T . (3.24)
Estimating B3. We now treat terms of the form
B3 = b39" = fzxxa,x(llf)fa(w)ay,

where b = 3P (og), with |B] > 1,is supported in B(x?, 2R)\ B(x", R) and f € C{°(R").
We decompose R” as R" = O] U O} U O} with

={v ¢[-95,281N {|x —x°| € [R/2,5R/21}},

{lx —x° ¢ [R/2,5R/2]}.

={v € [-95,281 N {|x —x°| € [R/2,5R/21}}.

/
0y
0;
/
0; =
On O] Nsupp xs(1), we have e™ | x5.,.(¥)| < e~*e?7 as a consequence of Lemma 2.3

with f> = 1[_9s,2s]c, since xs is supported in [—84, §]. We thus obtain

2 —cA 28 — 28
le™ b3 M7 ull 2oy < Ce™ X lullm—1 < Ce™ "X |lullm—1.

On 0), using Lemma 2.3 with f> = ]loé and f] = b and using the support of X5(), we
get

2 —cA 28 — 268
le™ bsM* 07 ull 20y < Ce™ X ullm—1 < Ce™ e Juflp1.
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Using (3.13), we can find a function O suchthatd = lona neighborhood of 0§ and
supported in {¢ > 2p} N B(x°, 3R). So, for A large enough, we have 9, > 1/2 on 0j.
Moreover, |e™¥| < €?°T on O}. This yields

2 28 2 25 2
||€ﬂ//b3M)LM8yM”L2(03) <e T||b3M)LM8yM”L2(0§) < Ce T||MAH8YM||L2(03)
5 a2
< Cez‘s’||z9xM/\”8Vu||Lz(0é).
We can then finish the estimates for B3 just as for B to obtain, combining the above

estimates with (3.23),

£ )l.z

2 _Ept _ 2
10Y  Bsullo < Ce®™ | M Dpullm—r + Cp' 2tV (e7 55 + &) eCT /e ||u| 1.
(3.25)

Combining (3.20), (3.21), (3.22), (3.24) and (3.25) concludes the estimate of the com-
mutator (3.19) and the proof of Lemma 3.7. O

Remark 3.8. In the special case of terms of the form p, (xp)d%, that is, with coefficients
independent of x,, we can obtain better estimates, uniform in the size of pg, since

10 [02RoR 2. X5 (W) X5.0. (W), P (x5)3* Tullo
= 1 pa(xp) QY L [02ROR 3 X5 (W) X5.2. (W), 3% Tuello
< IpallLell Q;;/’,T[GzRGR,A)?(S(W)Xa,,\(lﬁ), 3 ullo.

Also, for @ = 0, that is, for a potential V (x;), we have [o2roR 3 5.2 (V) Xs(¥), V] = 0,
so this term does not give any contribution.

This will be useful in Section 6 below, when we want estimates that are uniform
with respect to lower order perturbations. We also refer to the paper [LL16], where these
uniform estimates are used.

Moreover, if p, is only analytic in x, and bounded in xp, all estimates of the commu-
tator remain valid. Indeed, we only use Lemma 2.17 for k = 0, which remains true in that
setting.

Now, we are ready to apply the Carleman estimate (3.12) to obtain the estimate of the
following lemma.

Lemma 3.9. With the previous notations and assumptions, for any 9 € Cy°(R") such
that ¥ (x) = 1 on a neighborhood of {¢p > 2p} N B(x", 3R), there exist j19, C,c, N > 0
such that

1 QY o2rOR 3 X5.,1 (V) X5 (W)U llm—1.7
2 2
S CM]/ZeCT /)»e(ST ”Pu”B(xOAR) + Ce231’ ”M)Luﬁkl/t”m—l
e 2
O PV (78T 4o %e 4 ST LT T,y (3.26)

foranyu € Cg°(R"), u > o, A such that (3.16) holds and T > 7.
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Proof. We only need to estimate the last two terms on the RHS of the Carleman esti-
mate (3.12) (the first term being estimated in (3.18) and Lemma 3.7). Since we have cho-
sen§ < d/8, we have § < d—74, so that the support of xs gives, using again Lemma 2.13
fort > 70, ¢ < A < Cp,

_ ~ _ _ 2
1e* Y Do gor s x50 (W) X Wullm—1.c < CA 2T LT /2 ),y
< Cp Pt LT Iy, (32T)

We also need to estimate

le* V=D Poyrar i x5 (W) Xs (W)ullo

< 1"V Dargor x50 (W) X5 (W) Pullo

+ 1" Doaror 1 x50 (W) X5 (W), Plullo

—td;1/2,8

2
<Ce Te" (| Pull p2(p(x0.4ry) + lttllm—1)

_ 2
< Cp'le7TTeCr /M(”PM”LZ(B(XOAR)) + llullm-1)  (3.28)

where we have applied several times Lemma 2.13 to x5, (¥) or some of its derivatives of
order less than m — 1. So, the Carleman estimate (3.12) applied to o2roR 1 x5.5. (V) X5 (Y)u
together with (3.18), (3.19), (3.27) and (3.28) gives (3.26) for all 79 < 7, u large enough,
and A such that (3.16) holds. ]

3.3. Step 3: A complex analysis argument

The purpose of this part is to transfer the information given by the Carleman estimate to
some estimates on the low frequencies of the function and conclude the proof of The-
orem 3.1. The presence of the nonlocal regularizing term e ¢ IDa?/27) makes this task
more intricate than in the usual case and imposes working by duality. As in [Tat95, Hor97,
Tat99b, Tat99a], the idea is to proceed in the following three steps:

1. We make a kind of foliation along the level sets of : if we want to measure u, we
rather define the distribution 1y = ¥ (fu) by

(hy, w)e®),co®) = (fu, W) e ®ny,coomny,

and estimate it for any test function f. Heuristically, /7 (s) is the integral of fu on the
level set {{/(x) = s}.

2. We notice that the Fourier transform of Ay is ﬁf(;“) = (fu, e *¥) and can be ex-
tended to the complex domain if u is compactly supported. In particular, on the imag-
inary axis, h rit) ={(f, ue“/’). Since the Carleman estimate gives information on the
norm of e™Vu for 7 large, this can be translated into some information on I;f on the
upper imaginary axis. A Phragmén—Lindelof type argument allows one to transfer this
estimate to the (almost) whole upper half-plane.

3. Finally, by using a change of contour, this information can be transferred to the real
axis where we can estimate the real Fourier transform }Azf.
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Note that in the problem of (qualitative) unique continuation, the third step is replaced by
a Paley—Wiener type argument: a bound of exponential type for |fz £(¢)] on C implies some
conditions on the support of /7. Roughly speaking, if ¥ (x) = x1, the problem is to trans-
fer information on the Laplace transform (with respect to the x; variable) fm e e™ fu
(given by the Carleman estimate) to information on the Fourier transform using com-
plex analysis. Moreover, since the Carleman estimate only gives some information on
e=éIDal?/ 20e™Vy, we need to add some cutoff in frequency to this reasoning.
More precisely, let us define

neCy((—4, 1), n=1in[-1/2,1/2] and ns(s) :=n(s/s).

We first prove Lemma 3.10 below. We then complete the proof of Theorem 3.1, by esti-
mating from below the left hand side of the inequality appearing in the lemma.

Lemma 3.10. Under the above assumptions, there is To = (|[¥/ || Loo(p(x0.4R)) + 98)!/2 1y
> 0 such that for any «, c1 > 0, there exist 8y, C, ¢ > 0 (depending on 8, ¥, d, 1, «, c1,
&, R and all the cutoff functions) such that for any 0 < B < Po, for all u > 79/B and
u € C°(R"), we have

IMPE oy ROR 5. x5,0 (W) Xs (VM54 (Wit llm—1 < Ce M (D + ullm—1)

with
2
D = "M Drullm—1 + [ Pull g0 4r)  *=2c1p.

Proof. We now follow [H6r97, Proposition 2.1]. For any test function f € S(R"), we
define the following distribution (with 8 > 0 to be chosen later):

(hf, wyen®y.coom) = (MP* £)oaror 3 xs.0 (W) Xs (W)u, w(i)) e/ rny.coo @y

We choose the particular test functions w = 7 5, and want to estimate the quantity

(hf,ms.)er@®).com® = (MPE £)oaror axs.a (W) Xs (W)u, 15.5(¥)) & @ny.co mm)
= (MPRoyRoR 3. 355 (W) X5 (W) N5.5. (YU, s @ny.s@n)s

uniformly with respect to f to finally obtain an estimate on

I MPHaagor 3 x50 (W) Xs (W) s 3 (W)t |1

Being the Fourier transform of a compactly supported distribution, h £ is an entire function
satisfying
hy(@) = (MP* £)o2r0R 3. x50 () Xs (W), €V ) er@my, coommy
= (02ROR, 3. X6, (W) Xs (Wu, eV (MPH £)) 1 @my oo ey
= (e Vorror a x5 (W Xs (W, (MP* f))er@my co@n, ¢ €C.
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Using supp oar C B(xo, 4R), we have the a priori estimate

lhp (O] = (e YV orror 5 x50 (W) Xs (W, (MPH ) 1 ny oo |
< le™ "V oarar 3 x5, (W) Xs (W)t lm—1 | (MP* F)Il1
< c(elym=" ™MWl mwoam 1l 1| flli—m, ¢ €C. (3.29)

It will be in particular useful for { € R, in which case the exponential vanishes.
Finally, for ¢ = it with T > 0, we have

lhp(T)| = [((MPR ), ™V oaroR 3 xs.. () Xs ()it oo rmy, Ry |
& 2 _ £ 2 ~
= |(e 1Pl (MPr ), e 1P ™V g por 55,0 (V) s (W)1) g ey ey
& 2 _ & 2 ~
< Hezf'D”‘ Mﬂ“le,m le 2¢ 1Dl ewﬁzRUR,Axa,A(I/f)Xa(I/f)uHm,l

& p2.2 ~
< e fllimll QY co2roR 3 X80 (V) s (Wit m—1,

as MPH = m(é’—; , with |&;] < B on suppm(ﬂj).USing (3.26) we obtain, for all T > 1,
AL & 2,2 2 2
lhp(T)| < Ce P | flliom (12T e T | Pull oo gy + €T IIM; " Orta [l
El.z
+ C/,LI/ZTN(E_&ST _i_e—éT +eST—c,u)eCrz/Meér||u”m71).

Now, we choose
A =2c1p,

and to simplify notation we write, for « > 0,
2
D = &M (IM; " Orullm—1 + | Pull g0 4r))-

With this notation, we have

A g p2,2 2
D)) < CeZ P H| flliopm (u!/2eCT /1P Te™ 1 D 4 €™ D
en? 2
+M1/2TN(6—881 +e—é—r +e§r—cu)eCr /#e‘h”u”m,])

£ £ 2
< Cp! PN e B LRI (D 4 u ) £l (€7 + €7 F 4 70,
(3.30)

where the new constant ¢ > 0 may depend on «.
We now come back to the quantity we want to estimate:

(MPFoaRroR 3 x50 (W) Xs (W0 (W, flswmy.s@my = (hf, Ns.0) e/ R).CoR)
1 .
= — | hr@©hsa(=0) de.
Zn/R (s (—=¢)d¢
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As ns € C3°(—44, 8), the Paley—Wiener theorem implies that the function 7)s is holomor-
phic in the lower complex half-plane together with the estimate

175()] < Ce™®ME for Im¢ <0,
that is, for Im¢ > 0,

15(—¢)| < Ce®Ime, (3.31)

h . amo)?-Rer)?
s (=0 = le 5 Ahs(=0) < Ce 7 MIme,

For a constant 0 < d < 1 (beware that this d is not the d appearing in the Carleman
estimate) to be chosen later, we split the integral into three parts:

(3.32)

\/lelf(g-)ﬁé‘,)\(_g)dé' = [_+ IO + I+

with [ = [T hi@isa(-0)de, o = [U hp©Ofsa(=0)dE, Ty =
fdzoo }Azf(g)ﬁgg;\(—g“) d¢. According to (3.29) for ¢ € R and (3.32), we have, for u > 1,
A=2c1L,

oo —1Z12/A g eym—1 2m —d?>u? )
| < C e " ullm=1ll f lli-m d§ < Cu™e Netllm—1ll fll1—m
dup

_ g2
< Cae™ M ulm-1lflh-m- (3.33)
So the main problem is to estimate Iy. For this, let us define
H@) =p 2+ Ve hy(2).

From (3.30), we have the estimate on the imaginary axis for all t > 7o, for © > 1,
A =2c1L,

M) < CeFF0 D Ll )l (e + e 6 + 7).
Moreover, (3.29) implies (we can assume N > m — 1 without loss of generality)
M| = C™ Wl weaw) oy | f 1o, ¢ €T, Tm 2 0.
Next, we define H := H/cp with
co =CD + llullm—D I flli—m, (3.34)

and apply Lemma 3.11 below to the function H. This lemma implies the existence of
do > 0 (depending only on &, &, [|[¥/ || Lo (p(x0 4r))» € and the constants C, ¢ appearing in
the exponents of the estimates of H(i7)) such that for any d < dy, there exists Sy > 0
(depending on the same parameters together with d) such that for any 0 < 8 < By, for all

= 70/B = wl¥ll~puo.ary + 99"/ B, we have

11| < coe ™™ on Q) N{dp/4 < |¢] < 2du)
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where Q1 = R’ +iR% . The same procedure leads to the same estimate if Q is replaced

by R* + iR*, and hence, by the whole C; = {¢ € C : Im¢ > 0}. Coming back to fzf,
we obtain

hp (0)] < co |z )N e < oy N+1/2,=631m¢
onCyNi{du/4 <1¢l <2dp}.  (3.35)

where ¢ is defined in (3.34). .
We now come back to Iy. The function Az (¢)#)5,,.(—¢) being holomorphic in C, we
make the following change of contour in the complex plane:

Io = / By (©)is (=) d + / B (s (—0) dE + / h ()5 (=) de.
rY rH rv

where the contours (oriented counterclockwise, see Figure 5) are defined by

I'Y ={Re¢ = +dp,0 <Im¢ < du/2},
I ={—du <Re¢ <dp.Im¢ =du/2},

with d € (0, dp) still to be chosen later on.

Im¢
du
2
rv rv
(N i Re¢
—dn 0 aZTM dun 2du

Fig. 5. Contours of integration.

Since FK urfurY c Con{du/4 < |¢] < 2dp} and A = ¢y, estimates (3.32)
and (3.35) imply

(Im ) —(Re £)?

iy ()50 (—0)| < cou™NH!/2em00ImE g e p#0ImE
(Im )2 —(Re$)?
< couNt12e2Ime, e e FK urfur?.

Using 3d?1?/4 < (Re¢)? — (Im¢)? < d*u? for¢ € TY UTY we now obtain

~ osime
s (©)iis 2 (=0)| < couNF12em?Imeem 5 e uTY.
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On ', we have Im¢ =du/2, so that

A a2
fr ()5 (=0 < couNT e 0mesr ¢ e DH,

a2
Now, we can fix 0 < d < min(4c;8, dy) so that e e3 " < Ce M (for some 0 < ¢ <
2¢18%). As a consequence,

ol =

Lo i @isat-00de| < PRV UTH U jeer
ryur#ur?

< Ce "D+ llullm-DIflli-m  (3.36)

forany 0 < 8 < Bo and all © > max(C, 7p/8) (as |1"_‘|: urfurY| = cdp).
This together with (3.33) yields, for any 0 < 8 < Bp and all u > 7y/8,

(MPEoygoR 3 x5.0. (W) Xs (W15, (W)U, fsi@n,s@nl = Q)™ / hy(©)hs . (—¢) dg
R
< Ce (D + llullm=Dll fll1=m-
The constants being uniform with respect to f € S(R"), this provides by duality
IMPH o0 R X80 (W) s (W) M55 (W)U lm—1 < Ce™ (D + luflm—1).

which concludes the proof of the lemma. O

With Lemma 3.10, we can now conclude the proof of the local estimate of Theorem 3.1.
Lemma 3.11 and its proof are postponed to the end of the section.

End of the proof of Theorem 3.1. Using Lemma 2.3 with m(2 -) and 1 — m(-), we get
2 _
||Mfu/ (1 — Mﬁu)||Hm—1(Rn)_>Hm—l(Rn) =< Ce C)L.
Hence, Lemma 3.10 yields, for any 0 < 8 < fp and all © > 79/ and A = 2c u,

1M 2 62 r0 R x50 (W) X5 (W) 5.0 (W)t |1

< |MP2(1 = MPyoarop 5 x50 (W) s (M. (W) lm—1

+ IMPP2 MPE oy Rk x50 (W) K5 (W50 ()t
< Ce™™(D + [lullm-1)- (3.37)

Using Lemma 2.11, estimate (3.37) and the definition of r in Corollary 3.6, we get, for
any 0 < 8 < Bpand all u > 79/B and A = 2c 1,

1Mo sullmet < o ME Py + Ce™ o
< ”Ur,kMfM/ZO'ZRUR,AXS,A(I/f))?S(W)’M,)L(l/f)u”mfl
+ |oraMI* (1 = oaroR 5 x5.5. (DX Ins. 2 (W), + Ce™ M [ull—1
< Ce™ (D + [lullm—1) + || o M (1 — o2rom x5 (WIns (W), . (3.38)
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We know that og = xs(¥) = Xs(¥) = ns(¥) = 1 on a neighborhood of supp o
according to (3.15) and the properties of x, Xs and n. So, we can select IT € C(‘)’O(]R")
such that [T = 1 on a neighborhood of supp o, and such that oor = op = xs5(¢¥) =
Xs(¥) = ns(¥) = 1 on a neighborhood of supp I1. Now, we have

s MPP2 (1 = G2R0R A X6, (T (W52t |,
< o ME*? (1 = oarom axs.0. (W) X5 (W52 () (1 — T,
+ oraMP* (1 — oaroR 55,50 s s () |, - (3.39)

To estimate the first term, we use Lemma 2.10 to obtain ||or,,\Mf“/2(1 —ID || gm-1_, gm-1
< Ce~“*. Concerning the second term, we have

o s M2 (1 = 020k 5,00 X (V)55 (9)) Tt |,
< C|(1 = o2roRa X5 (W) X5 (W) s p (W) e[|, < CeFlluflm—1  (3.40)
where in the last inequality we have decomposed
1 —02roR 3 X5.1 (W) Xs (YWIns.a(¥) = (1 —0o2r) +02r (1 —0R 3) +02ROR 1. (1 = x5.1.(¥))

+02r0R X5, (W) (1 = X5(¥))
+02r0R X5, (W) Xs (W) (1 =155 (V)

and used Lemmata 2.3 and 2.5; these can be applied thanks to the geometric fact that
dist(supp IT, {x € R" : opr(x) # 1}) > 0,

and the same is true with oo replaced by og, xs(¥), Xs(¥) or ns(y). We now have the
existence of 7y > 0 such that for any «, c¢; > 0, there exist By, C, ¢ > 0 such that for any
0 < B < Bo, = T9/B and A = 2c ., the following estimate holds:

4 _ 2
IMP sty <Ce™ P (D4 ullm-1), D= (1M O3utllm1 + 1| Pitll piy0.apy)-
This concludes the proof of Theorem 3.1 with k' = ¢, after replacing  and wg by /2
and pto/2 respectively. O

It only remains to prove Lemma 3.11 below.

Lemma 3.11. Let d, k, Ry, Cq, €, 19 > 0. Then there exists dy = do(6, x, Ry, C1, &) such
that for any d < dy, there exists Bo($8, k, Ro, c1, €, d) such that for any 0 < B < By
and all u > 19(Ro + 98)1/2/;3, the following holds: for every holomorphic function H in
Q1 = R% + iR, continuous on 0, and satisfying

. 8% 2 2 _ _e?
|H(iT)| < &£ O M max(e ™ e7 57, e T)  fort € [tg, +00),  (3.41)

|H(¢)| < efomE on 0, (3.42)
we have

|H(@)| < ™M on Q) N{dp/4 < |¢] < 2dpu). (3.43)
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The proof of Lemma 3.11 essentially consists in performing a scaling argument to get rid
of the parameter w, and then using complex analysis arguments: construction of an ap-
propriate harmonic function and application of a quantitative maximum principle. These
technical arguments are given in Lemmata B.1, B.2 (construction of the harmonic func-
tion, and associated estimates) and B.4 (maximum principle), and are postponed to Ap-
pendix B for the sake of readability.

Proof of Lemma 3.11. The function H is holomorphic in Q1 and z +— log|z| is subhar-
monic on C*. As a consequence, the function

gt plog | H(uo)l
is subharmonic on Q1 (which is invariant by dilations). Assumption (3.41) (used for ru €
[t0, +00)) yields
9 B2 &
gtity<Cito+ — + max(—/c, —96, —8—> for t € [to/1, +00),  (3.44)
T T

and assumption (3.42) yields

¢"() < Rolm¢  on Q. (3.45)
Now, we set, for y € Ry,
1) = RoyLio,z/u) ()
~ € 2, B
+ Lzp/u, +00) (¥) ming Roy, max| —k, —98y, —5 + Ciy” + 7 . (3.46)

According to Lemma B.2, there exists dy = dy(6, k, Ro, &, C1) such that for every
d < dy, there exists By(8, k, Ro, d, €, C1) such that for any 0 < B < fo and any
w > t0(Ro + 98)'/2/B, the function f{‘ is continuous and the associated function f*
given by Lemma B.1 with fo = O and f; = f/" satisfies

ffec®Qp, Aff=0inQ1, |f* )l < Cul+1(x, ) in Q1.
= floniRy, fF=0onRy,

together with B
fH(@) = —838Im¢  on Q) N{d/4 < |¢| <2d}.

This yields
fHE/w) < =85(Im¢)/p on Q) N{du/4 < |¢| < 2du}. (3.47)
Now, as g/ is subharmonic and f* is harmonic, the function
h (&) = g"(¢) = f*(©)
is subharmonic too. As a consequence of (3.44)—(3.46), we have

hu(é‘) EO 0HR+U!R+
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Moreover, (3.45) and | f#(¢)| < C(1 + |¢]) also yield
h*(¢) < Cp + (Cp + Ro) |
According to Lemma B.4, this implies
W'(§) <0 on 0,

and hence

|H(uo)| = 8" (@) < MO on 0,.
Finally, coming back to (3.47), we obtain
|H(@)| < e on Q) N{du/4 < |¢| <2du},

which concludes the proof of the lemma. O

4. Semiglobal estimates

4.1. Some tools for propagating information

The local estimate of Theorem 3.1 only provides information on the low frequency part
of the function. Iterating this result allows us to propagate the low frequency information.
In this section, we define some tools that will be useful for this iterative procedure. They
are aimed at describing how information on the low frequency part of the solution can be
deduced from one subregion to another one.

Definition 4.1. Fix an open subset Q2 of R” = R"@ x R", a differential operator P of
order m defined in €2, and two finite collections (V;);ecs and (U;);es of bounded open sets
in R". We say that (V});ey is under the dependence of (U;);e;, denoted

(Vi)jes L (Uiiers

if for any 9; € Cgo (R™) such that ¢;(x) = 1 on a neighborhood of U;, for any 5j €
Cgo(Vj) and for all x, o > 0, there exist C, k', B, o > 0 such that for all (u,u) €
(o, +00) x C3°(R"), we have

D IMED; ullm—1 < CetH (Z IMEHD; |1 + ||Pu||L2(Q)) +Ce ™ |t
jeJ iel

If the cardinality of / is 1, and U is the only set of the family (U;);c;, we simply write
(Vj)jes < U. We use the same convention if the cardinality of J is 1.

Recall that the norm || - ||,,—1 is always taken in the whole R”".
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Remark 4.2. The relation < actually depends on the splitting R” = R" x R"?, the set
and the operator P. However, in the main part of this work, R” = R"« xR"» Q and P will
be fixed, so it should not lead to confusion (in particular in applications). The dependence
of < upon these objects will be mentioned when needed.

For applications, it is important that the functions u# are not necessarily supported
in Q.

In the following, we will only need to use the relation < in appropriate coordinate
charts. However, it will not be a problem for what we want to prove, even on a compact
manifold. Indeed, we will fix some coordinate chart on an open set 2 C R” close to a
point or close to a trajectory. Then, we will use the relation < relative to 2 to finally
obtain estimates which will be invariant by changes of coordinates.

Now, we list some general properties of the relation <, which actually hold without using
any assumption on the set €2 or the operator P.

Proposition 4.3. (1) If (Vj)jes < (Uj)ier with U; = U foralli € I, then (V})jey < U.
@) If (V))jes QWUpier withU; C W; foralli € I, then (V;)jeg < (Wi)ier.

3) If VCU,thenV QU. In particular, U <1 U.

@ Uies Ui 2 WUdier-

(5) IfV; QU foranyi € I, then (Vi)icr < (U)ier. In particular, (U)ier < (Uj)ier-

Proof. Property (1) is obvious from the definition, and (2) is also immediate since ¥ (x)
= 1 on a neighborhood of W; implies #; (x) = 1 on a neighborhood of U; C W;.

Property (3) is a consequence of Lemma 2.11 applied with o4 /2 instead of u, A = pu,
fi =vand f = . The assumptions on ¥ and ¥ ensure that f1 = 1 on a uniform
neighborhood of supp f. This gives the result with 8 = «/2.

Property (4) is a consequence of Lemma 2.12 with the same parameters as for (3), but
with b; = ;.

Property (5) is almost a consequence of the definition. Actually, the only difference is
that a priori, we have one B; for each i € I. Taking the worst of the constants C, k', o
given by the application of the definition for any i gives

D M, ullmy < Ce (Z M D11 + 1Pl 2y ) + Ce ™l
iel iel
with ¥; = 1 on U; and 5,- € Cgo(V,-). But taking 28 = min{g; : i € I}, we have

IMED; yutllm—y < |\ MBEFMERD; ey + I MEF (L — MBS, ]|y
< MBS pullm—1 + Ce™ |lullm—1.
where we have used Lemma 2.3 and the properties of the support of m(-/f) and

1 — m(-/B;) for the last estimate. The second part comes from the first, together with
U; QU foralli € I. m]

The relation is not transitive but we have the following weaker but sufficient property:
if (Vj)jes < (Upier and U; € U; (thatis, U; C U;) and (Uj)ier < (Wirek, then
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(Vi)jes < (Wi)kek (this is proved by introducing functions f; € Cgo(U,-) equal to 1 on
U;: see the proof of Proposition 4.5(6) below).
For this reason, it is convenient to introduce the following stronger property.

Definition 4.4. Given an open set Q2 in R? = R" x R", a differential operator P of
order m defined in €2, and two finite collections (V})jes and (U;);es of bounded open
sets in R", we say that (V});e; _is under the strong dependence of (U;);es if there exist
U € U such that (V})jey < (U )ier- In that case, we write

(Vi)jes < (Uier-

This makes the relation transitive, but it becomes more strict in the sense that we do not
always have U <1 U. We again summarize the properties of this relation.

Proposition 4.5. (1) (V))jcs < (Ui)ier implies (Vj)jes < (Ui)ier.

) If (V))jes QWpier withU; = U foralli € I, then (V)jey QU.

(3) If Vi € U; foranyi € I, then (V;)ie; < (Up)ier.

@) If Vi € Uj foranyi € I, then | J;c; Vi < (Upier.

O) If Vi < Uj forany i € I, then (Vi)ic; < (Uj)icy. In particular, if U; < U for any
i €l,then (Up)ier < U.

(6) The relation is transitive, that is,

[(V)jes < Upier and (Up)ier < Widkek] = (Vj)jes < Widkek -

Proof. Property (1) is obvious. For (2), the assumption gives some (l~/ )ier With (V}) ey <
(U,)lel and U, eV for all i € I. Since U, C U forall i € I and I is finite, we have
UIGIU = UleIU C U. Denote W = UZGIU We have U C Wiforalli € I, so
property (2) and then Proposition 4.3(1) give (V;)jey < W, which implies (V)jey < U
since W € U.

For (3), we use (V;)ic; < (V;)ies from Proposition 4.3(5) and V; € U;.

For (4), we use Proposition 4.3(4), which gives | J;.; Vi <Q (Vi)iesr. This means
Ui<; Vi < (Ui)ier by the definition of <. -

For (5), assume Viﬁﬁi with ﬁi € U;. Then Proposition 4.3(5) gives (V,-)l-e[ﬁ(ﬁi),-e[,
which yields (V;)ie; < (U;)ies by definition. The second part is direct by combining
with (2). _ _

For (6), the assumptions give the existence of U; € U; and Wy € Wy such that

(Vi)jes & (Udier and  (Up)ier < (Wikek -

Since 171- € U;, we can pick x; € C8°(U,~) such that x; = 1 in a neighborhood of 7, Let
o, k > 0, and take ¥ € C8° (R™) (for all k € K) such that ¥ = 1 on a neighborhood of

Wi, and B; € C(V)) (forall j € J). Since (Ui)ies < (Wiek and xi € C5°(Up), there
exist C, «’, B, o > 0 such that

D IME il < Ce“‘/z(z M O | m—1 + ||Pu||Lz<m) +Ce™ M ullm-r.
iel keK
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Now, we apply the relation given by (V});jcs < (ﬁi)ie ; with « replaced by the al;gve B
and « replaced by k; = min(«’, k)/2 > 0. Since x; = 1 in a neighborhood of U; and
0 € C3°(V)), there exist C', k", B, ju, > 0 such that

D IMEED; pull < c/eW(Z ||M5“xi,uu||m_1+||Pu||Lz<Q>)+C/e‘“ a1
jeJ iel

Combining the above two estimates now yields

S NMEH; i
jedJ
< CCle"PHORN I ME Oyl + C'eV (1 + Ce )| Pul| 2,
keK
+(Cle™ 1 4 CCe ™ M ]y

Since k/2+k1 <k and k1 —k’ < k'/2—k" = —k'/2 < 0, this gives (V})jes I (Wk)kek,
which implies the result since Wy € Wy.

Note that in the proofs above, we have not mentioned the restriction u > g each
time. Yet, all the estimates have to be taken with that restriction, taking the worst constant
o when several restrictions are involved. m]

Corollary 4.6. Under the assumptions of Theorem 3.1, there exists Ry > O such that for
any R € (0, Ry), there exist r, p > 0 such that

B(x%,r)<{p >2p)NB(xY,3R), BG&Y, r)<{¢ > p}n B 4R).

Proof. First, we restrict Ry so that B(xo, 4Rgp) C 2. Theorem 3.1 gives the existence of
constants R, r, p, Top > 0.

Let «, @ > 0. We apply the result with 4 = au’, ¢y = 1/« and « replaced by «/a to
obtain, uniformly for ' > %/ (aB),

||M£/om orpttllm—1 < Cet (”Mz/ﬂ Vyttllm—1 + ||Pu||L2(3(x0,4R))) + Ce ™ H ullm—1.
Now, let & € CS°(B(x°, r)). Since o, = 1 on B(x", r), Lemma 2.11 gives

an /2% au —eu!
M 2Dt < IME 0l + Ce™ ™ ullm1,

which implies the first statement. The second one comes directly from the compact inclu-
sion of {¢ > 2p} N B(x%, 3R) into {¢ > p} N B(x?, 4R). o

4.2. Semiglobal estimates along foliation by graphs

This section is devoted to the proof of Theorem 1.11. Actually, this result is a corollary
of the following stronger theorem, stated here in the context of zones of dependence.
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Theorem 4.7. Under the assumptions of Theorem 1.11, for any open neighborhood @
of So, there exists an open neighborhood U of K such that U <1 @.

In the present section, we first prove that Theorem 4.7 implies Theorem 1.11, and then
prove Theorem 4.7.

Proof that Theorem 4.7 implies Theorem 1.11. We first apply Theorem 4.7 for a neigh-
borhood @ of Sp such that ® @ @, where @ is as in the statement of Theorem 1.11. We
obtain U <1 &. Take x € Cy°(U) such that x = 1 on a neighborhood U, of K, and
¢ € Cy°(®) such that ¢ = 1 on a neighborhood of @. We find that for any « > 0, there
exist C, B, k', o > 0 such that for u > o,

IME" xyutllm—1 < Ce™ (1M puutllm—r + I Pull2(q)) + Ce™ “llullm1.  (4.1)

But since ¢ € C{°(®), taking again ¢ € C§°(®) with @ = 1 on a neighborhood of supp ¢,
we get, thanks to Lemma 2.3,

1M} ppullm—1 < 1My @puulim—1 + (1 — @)gpullm—1

< Y IDEMEDLFeun)llo + Cem M ullmr.
lee|+IBl<m—1

Next,
IDEMY fllo < 1ESmu(Ea/ 1)l oo ray || f llo
< WNESm (£ | Lo ®eay L fllo < C™Nl £ 110,

since &; — £m,, (&,) is uniformly bounded on R"* for 1 > 1. As a consequence,

IMEguullmy <C Y pIDL @puu)llo + Ce™ ullm—1

| +[Bl<m—1
scp™ 3 IDJull 2 + Ce M lullm—t
|Bl<m—1
< Cu" Ml gt gy + €& 1.

In the particular case where n, = n, we slightly change the estimate:
Ml guullm—1 < |M* Ml guullm—y + I1(1 = M*)YM @it
< O Niguull—s + Ce™ " |lullm—1
< NGl + C NI = @)puull—s + Ce™ " |lullm—1
< Cu’t N Gull g + Ce™Hllullm—1.

In (4.1), the constant k > 0 is arbitrary (all other constants in that estimate depending
on it): imposing k < ¢/2 and noticing that u"~! < C,,¢*, we obtain, with ¢’ :=
min(c/2, k'),

MG xpullm—r < Ce2 ¥ (lull gt ) + 1 Pull2g)) + Ce™ Fllullmr. (42)
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In the analytic case, n, = n, using ,u”m_l < Cye*" we have similarly
2 ~ _ /
1M xpullm—1 < Ce**(I1Gull g + | Pull2q)) + Ce™ *llullm1.

Now, let ¥ € C5°(U,) be such that ¥ = 1 in a neighborhood of K. We have, using again
Lemma 2.3,

1Xullo < X xuullo + (1 = x)Xulo < Clixuullo + Ce™ " a1
< CIIME xpullo + CII(L = MEM) xullo + Ce™ P [lullm—1. 4.3)

For the second term on the right hand side, we write

(- mM)(E—L)
|&a|m =1 + (Ep)ym—!

11— MEM)xuulo <C sup
(§a-Ep)ER D

I xpulim—1-

In the range |§,| > Bu/2 with u > 1o, we have the loose estimate
(- mu)(,%)
|&a ™1 + (&)1

In the range |£,| < Bu/2, using dist(supp(l —m(-/B)), {l&] < /3/2}) > 0, we have

&
1— 24
’( m”)<ﬂu>

in view of Lemma 2.3. In this range of &,, this yields
‘ I- mu)(é_ﬁ)

|&a ™! + (8p)m !

so that (4.4) holds for all £, € R" and p > . This yields

C
- Mm—l :

4.4)

< Ce™“H,

< Ce ¥,

11— MP#) gaullo < %uxﬂuum_l,
which, combined with (4.2) and (4.3), gives, for u > o,
~ 2% C
I xullo < Ce “(IIMIIH,;n—l@) + 1 Pullz2q) + Fllullm—y
Similarly, in the analytic case n, = n, we have

IXullo < Ce* (1 Gull - + 1 Pull2q)) +

=t e
Note also that in order to prove the precise statement in this case (for all ¢ such that...),
we first fix ¢, and then @ and @, having the above support properties. The rest of the proof
remains unchanged.
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Finally, the case n, = 0 is a direct consequence of (4.1) since there is no regulariza-
tion.

Now, we notice that the previous estimates are true for any neighborhood €2 of K
(with constants and open subsets depending on £2). Denoting now by €2 the neighborhood
of K given by the assumptions of the theorem, we can apply the previous estimates to an
open neighborhood Q of K with Q@ € Q. . This shows that for any neighborhood @ C Q
of Sp, there exists an open neighborhood Uof K (that we can require to be included in Q)
so that

C
Iull2@) = CE (ot ) + 1Pul2@) + g Nt 439)

Take xo supported in 2 and such that o = 1 in Q. In particular, ||P(X0u)||L2(§~2) =
1Pull @y = I Pulays lxoul gy = Nl X0l iy = Dl et g and
I xoullm—1 < Cllull gm-1()- Applying inequality (4.5) to xou gives

C
N 2
lull 2y < Ce K“(H”HH;H@) + 1Pull2(q)) + WH”HHWI(Qy

This concludes the proof of Theorem 1.11 in the general case. The end of the proof in the
cases ny, = n and n, = 0 is similar. O

Now, we come to the proof of the main result of this section, namely Theorem 4.7. This
proof consists in two main steps: first, to define the adapted geometrical context, and
second, to iterate the local result in this geometric context, using an induction argument.

Proof of Theorem 4.7. To begin with, we choose w; € wy € & where w is another open
neighborhood of Sy (see Figure 1). We fix R small enough such that

2R < min(dist(K, Q°), dist(wf, o)), (4.6)
define the set
K= BGx.2R).
xekK

and pick a cutoff function
xk € C(Q),  xxk =1lonK®  suppxx N{x, <0} C w. 4.7)

Given any point x € K, there exists ¢ > 0 such that x € S,. We denote by Ry > 0 the
constant given by Theorem 3.1 associated to the point x and the function ¢,. Next, we set

R, :=min(Ry/2, R/4), 4.8)

and then
ry :=min(r/2,3Ry),  px =p,

where r, p > 0 are the constants given by Theorem 3.1 (and Corollary 4.6) associated to
X, ¢ and R,.
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For any ¢ € (0, 1] and x € S,, we have ¢.(x) = 0. So, we can write

Se C U B(x,ry),

X€ES,

and, since S, is compact, we can extract a finite covering, i.e. there is a finite set I, of
indices and a finite family (xf )ie1, of points such that

Se C U B(xf,ry),  x] € Se.

ielg
For xf € S., we rename the associated radii, setting
e . £ ._ e ._
Ry i=Rye, rp i=7rxs, ] 1= Pxfs
and define
pe = min p{ > 0.
iel,

Since ¢, = 0 on S, we still have

S C (U B(xf,rf)) Nige < pe} = Ue.

ielg

The definition of U is illustrated in Figure 6. Therefore, for ¢ € (0, 1], U, is an open
neighborhood of the compact surface S;. Since G is C I we claim that we can find
g(e) > 0 such that

V, = U S C U, (4.9)
&'e(e—g(e),e+g(e))

(the definition of V; is illustrated in Figure 7). Indeed, since G € C (D x (0, 1]), we can
find C > 0 such that

|G(-x/’ 8) - G(xlv 8/)| = Clg - 8/|’

B(xg, rs
B(x5, ?W// é’ B(xg, 1)

& &€
B(x6, Te

S = (¢e = 0)
{pe = ps}

Fig. 6. Definition of the set I, striped in blue.
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Fig. 7. Definition of the set Vg, striped in blue.

uniformly for x’ € D. In particular, if |[¢ — &'| < % dist(Se, US) with dist(Se, US) > 0,
we have
dist[(x, G(x', ")), Se] < dist[(x", G(x', €)), (x', G(x', NI < |G(x', &) = G(x', &)
< dist(Se, US)/2.

This holds for any x’ € D, so that S,/ is contained in a neighborhood of S, of size
dist(Sg, US)/2, and hence contained in U;. This proves (4.9) with

g(e) = dist(S,, US)/(2C) > 0.
As a consequence of (4.9), we have in particular, for any ¢ € (0, 1],
Ve CUp C{de < pe}. (4.10)

Now, we also have

KC(SOU U Vg)c(wlu U V£>.

£e(0,1] £€(0,1]

The same argument as above using the fact that w; is a neighborhood of Sg shows that
there exists go such that

Vo = U Se C w1.

£€[0,&0)
As a consequence,
kc(wu J ). wcer.

e€lep, 1]

From the covering [gg, 1] C USE[SOJ] (e—g(e), e+g(e)), we now extract a finite covering
[go, 1] C Ujej(gj — g(gj), &j + g(gj)), where J is a finite set of indices. In particular,
this yields a finite covering

[0. 1] C [0, 20) U | J(gj — g(e)). &) + g(&))). (4.11)

ieJ
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As a consequence (with Vsj defined in (4.9)),
Kcoul vy (c oruJ U BEI rnig, < pgj})). (4.12)
jeJ jediely;
Now, we reorder the set J by increasing order of ¢; — g(g;), that is,
J=[1,N] with & —g(ej) <ejp1—g(ejq1) forall j € [1, N —1]. (4.13)

Note thatif ¢; — g(¢;) = &j11—g(€j+1), we can suppress the ng associated to the smaller
€j + g(¢;), and the covering property remains true. We will also need to check that

ek+1 — 8(&k+1) < max (e + g(g))). 4.14)
1<j<k

Indeed, if this is not the case, then &x11 — g(sk+1) > maxo<j<k(¢j + g(g;)). In par-
ticular, for j < k, we have ¢; + g(¢j) < é&ry1 — g(ek+1) and gry1 — glext1) ¢
(¢j — g(&j), &f + g(gj)). But for j > k + 1, by increasing choice (4.13), we have
ek+1 — g(ex+1) < & — g(&;), and in particular e;+1 — g(ex+1) € (6j — g(&)), &5 + g(&))).
Hence exy1 — g(ert1) & Ujey (e — g(g)), & + g(e))). Moreover, &1 — g(ek+1) =
maxi<;j<k(&j + g(&j)) = go as &f > gy for j > 1 and hence gr41 — g(ekt1) ¢ [0, £0).
This contradicts (4.11) and proves (4.14).

The preparatory definitions were made to state the following geometrical lemma to be
proved later.

Lemma 4.8. With the notation of the proof of Theorem 4.7, for any k € [0, N — 1] and
i €I, wehave
& &
(Beres > P ) N BOF 4RI € [oru U BGg )],
jell.a el
where we consider the union Uje[[l,k]] to be empty if k = 0.
Now, we are going to use an abstract iteration argument, so we set the following notations
for j € [1, N] and i € I;:
i & ioE
lj=1I;, U=Bx",2r"), wj=Bkx",r"),
&j & A~
Vij =Ape; > pe;} N B(x;”, 4R7), Vo=0&, U= .
The choice of the ris 7 and ,oie 7 < pe ; according to Corollary 4.6 implies
Ui,j < Vi’j.
Moreover, we have w; j € U; j, and Lemma 4.8 can be written as
Vik+1 € [UOU U Uwi,j].
Je[Lk] i€l

Now, we are in a position to apply the following iteration proposition, to be proved
later.
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Proposition 4.9. Assume that there exist open sets Uy, U; j, w; j € U; j, with j € [1, N]
and i € I; (I; finite), such that

Uij<Vij and w;j €U forallje[l,N]andie I

Viksl € [Uo v U U wm] fork e [0,N — 1] andi € Iy,
Jjell.k] tel;

where we consider the union Uje[[l,k]] to be empty if k = 0. Then

[vou U Uewi]av

Je[1.N] €€l;
for any open set Vyy such that Uy € V).
Now, we always have wy <1 @, as a consequence of properties (5) (second part) and (6)
of Proposition 4.5. Hence, with U := w; U U]eﬂl N] Ulele B(xe , "z 7Y, Proposition 4.9

yields U <0 @. Since U is a neighborhood of K by the covering property (4.12), this
concludes the proof of Theorem 4.7, up to the proofs of Lemma 4.8 and Proposition 4.9.
]

4.2.1. Proof of Lemma 4.8. We first prove, for later use, that for any x’ € D and any
e € (0, 1], we have

G(x',e —g(e)) = G(x', &) — pe. 4.15)
Indeed, let x € V,, so x € S, for some &’ € (¢ — g(¢), e + g(¢)). That is, x,, =
G(x', ¢). Using (4.10), we have ¢, (x) < p, thatis, G(x', &) —x, < pe andso G(x', &) —
G(x',&") < pe. This is true for any point x = (x/, G(x/, &")) for&’ € (¢ —g(e), e + g(¢)).
Letting ¢’ — & —g(¢) and using the continuity of G, we get G(x', €)—G (x', e —g(&)) < pe,
which is (4.15).
We now come back to the proof of the lemma. As a consequence of the definitions of
Ug and V., C U, and of (4.12), for all k € [0, N] we have

wu U vo]elerv U U el (4.16)
JE[1,k] Je[1.k] €el;

By (4.16), it is sufficient to prove, for any k € [0, N — 1] and all i € I,

k12
(IBec = Pt} N BT ARFD) € (@ U | W),
J€[l.A]
which will follow from the following two inclusions:
(e, = Py} NK) C (a)1 v U Vg_,,), 4.17)
Je[L.A]
({Begss = Pec Y NKE) N B! 4RTH) C ). (4.18)
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Let us first prove (4.17). Since K C w1 U Uje[[l’N]] ng by (4.12), we have

(9o = P} NK) € (01U [ O 08y = pecD)- (4.19)
jel1.N]
Moreover, using (4.10), we get
Ve CH®eyy < P -
Now, we will use the fact that G is increasing in ¢ to prove that also
Ve CAPeryy < eyt forj=k+1. (4.20)
Actually, for x € ng with j > k + 1, we have x, = G(x', ¢) for some & > gj —g(gj) =
ek+1 — &(ek41) (it is here that we use the fact that the ¢;’s are ordered as in (4.13)).
But since G is strictly increasing in ¢, this implies x, > G(x’, ex+1 — g(&k+1)). Using
the inequality (4.15), true for any ¢ € (0, 1], we obtain x,, > G(x’', ex+1) — Peyyr - This
gives ¢g, | (x', xn) < pg,, and therefore (4.20). As a consequence, on the right hand side

of (4.19) only the terms for j < k are nonempty, which implies (4.17).
We now prove (4.18). Since x;“*' € K and 4R;**' < R, it is sufficient to prove

{Perss ZOINK NKER C .
We first notice that, according to the definition of K, we have
K¢ ={x, <0}U{x, > G, D}.
In addition, since for x’ € D, G is increasing in ¢, we have
{ber = 0} N {x € D} = {xy < G/, e541), " € D} C {x < G, D}
But for x’ ¢ D, we have G(x', ex41) < 0 and hence
{Peres = 0V N{x" ¢ D} = {x, < G, ex41), ¥’ ¢ D} C {x, < O}
As a consequence, {¢, ., > 0} N K¢ C {x, < 0}. We are thus left with proving
({xn <0}Nn KR) C w1.
This is direct thanks to (4.6) since dist(x, K) = dist(x, Sp) for x, < 0. This concludes
the proof of (4.18).
We finally check that the proof works the same way for the degenerate case k = 0,

which corresponds to the same proof with ¢} instead of | ; e[1.]- This concludes the proof
of Lemma 4.8. O
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Remark 4.10. In this process, we can also require that the points xf / be far from {x,, =0},
by forcing B(x;”, 4R;”) N {x, = 0} = .

Indeed, if B(x;’, 4R;") N {x, = 0} # ¥, we have necessarily dist(x,’, So) < 4R;’
because dist(xfj , {x, = 0}) is necessarily reached at a point in Sy = D x {0y, }, since
xfj €S, C D x R,,. But in the process (see (4.6) and (4.8)) we have chosen Risj <
dist(e$, So)/8. This implies dist(x,”, w¢) > dist(w$, Sp) — dist(x;’, So) > 8R;’ — 4R}’
and so B(xf 7 4Rf 7Y C oy . In particular, these points xf / can be removed without affecting

the set
Ej Ej
w1 U U UB(xi’,rl."),

jellalicl;

for any k.
This fact was not used here but it will be useful later in the presence of boundary.

4.2.2. Semiglobal estimates by iteration: proof of Proposition 4.9. To prove Proposi-
tion 4.9, we use induction on k € [[1, N]. We make the following induction assumption
at step k:

Forany j € [1,k] andi € I;, we have U; ; < V. TAp)

We first explain why this proves Proposition 4.9, and then perform the induction argu-
ment. Note that using Proposition 4.5(4) and since we can select Wy with Uy € Wy € Vp
and w; ; € U; j, we have

[Uo U U U a)g,j] <AWo, Ui, jje1 k] iel;-
JjelL.k] tel;

So, since Wy <1 Vp, with the use of properties (5) (second part) and (6) of Proposi-
tion 4.5, (IAy) directly implies

[vov U Uers]<ve 4.21)

jelllk] tel;

In particular, (IAy) implies (4.21) for k = N, which is the result of the proposition,
namely

U= [UOU U Uwg,j]qvo. (4.22)
Jje[1.N] t€l;

We now come to the proof of (IAx) by induction.

For k = 1, we need to prove U; | < Vp fori € ;. But the assumption with k = 0 gives
Vi.1 € Uy, which implies V; 1 < Up. Since U; 1 < V;1 by assumption, we get U; 1 < Up
by transitivity. Since also Up < Vp, we obtain U;; < Vg for all i € I as desired.

We now prove (IAx) = (IAj41) fork € [1, N—1]. The assumption of the proposition
gives

Vik+1 G [Uo U U U a)g’j] foralli € Ixy1.
je[Lk] tel;
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Combined with Proposition 4.5(3), this yields

Vi,k+1<[uou U me»] forall i € Its1.
Jje[1.k] e<l;

Using (4.21) for k since (IA) is true, together with the transitivity of <1, we get
Vik+1 < Vy  foralli € Iyqg.

Since U; ; <V, ;, the transitivity property gives again U; x41 <1 Vo for all i € [y 1. This
implies (IAx1) and thus proves the induction property for k € [1, N —1]. This concludes
the proof of Proposition 4.9. O

4.3. Semiglobal estimates along foliation by hypersurfaces

The previous framework, where we define hypersurfaces by graphs, may look a bit rigid
for applications. Having defined hypersurfaces by graphs was mainly convenient to make
the foliation more effective and order the hypersurfaces more easily.

Now, we give a slight variant of Theorem 4.7, more adapted to some possible changes
of variables.

Theorem 4.11. Let @ C R" = R" x R™ and let P be a smooth differential operator
of order m on 2, analytically principally normal in {§, = 0}. Let ® be a diffeomorphism
of class C? from Q to Q@ = ®(Q). Assume that the geometric setting of Theorem 1.11
is satisfied for some D, G, K, ¢, on Q (and not on 2). Assume further that for any
e € [0, 1 + n), the oriented surface {¢p; o ® = 0} = O1(S,) (well defined on Q) is
strongly pseudoconvex with respect to P on ®~1(S;).

Then, for any neighborhood w of ®~1(Sy), there exists an open neighborhood U C Q
of ®~1(K) such that U <l w, where < = <q,p is related to the operator P defined on Q2
(see Remark 4.2).

Proof. The proof is exactly the same as that of Theorem 1.11/4.7 except that the local
uniqueness estimates are performed in Q. So, for any x € ®~1(S,), it furnishes some r,,
R, and p, such that

Bo(x,1x) <do,p ({¢e © @ > pi} N Ba(x, 4Ry)).

But since ® is a homeomorphism, this implies the existence of 7, and Ry (that can still
be chosen small enough) such that

&~ '[Bs(®(x),F)] € Ba(x, 1) and Bq(x,4R,) € ®'[Bg(P(x), 4R,)],
and hence
O [Bg(®(x), Tl <a.p (¢ 0 @ > o) N O [Bz(®(x), 4R,)]).

where Bg (resp. Bg) denote balls in €2 (resp. ?2).

The geometric part of the proof of Theorem 1.11/4.7 is then exactly the same, per-
formed in €2, i.e. replacing ry, Ry by 7y, R,. Once the geometric part is done, the itera-
tion process, performed in €2, is exactly the same by replacing each geometric term by the
preimage in € (for instance ®~'[Bg (P (x;*), 4R =)] replaces B(x;*, 4R «)etc.). O
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5. The Dirichlet problem for some second order operators

In this section, we shall consider a particular class of operators as described in Re-
mark 1.10, that is, with symbols of the form py(x, &) = O, (&) where Q, is a smooth
family of real quadratic forms. Assuming that the variables x, are tangent to the bound-
ary, and that the functions satisfy Dirichlet boundary conditions, we prove a counterpart
of the local estimate of Theorem 3.1 for this boundary value problem. For this, the main
goal to achieve is to prove a Carleman estimate adapted to this boundary value problem.
All local, semiglobal and global results will then follow.

This situation is of particular interest for the wave equation for which x, is the time
variable, which is always tangent to the boundary of cylindrical domains.

For simplicity, we shall further assume that the principal symbol of the operator P is
independent of the x, variable. More precisely, in Theorem 5.2 below, we first assume
that no coefficient of P depends on x,. This is then relaxed in Corollary 5.4, where we
explain how to include lower order terms that are analytic in x,. It would be in principle
possible to allow the principal part of P to depend analytically on x,, but it would require
some additional technicalities in the (already rather technical) proofs.

5.1. Some notation

Here, we shall always assume that the analytic variables are tangential to the boundary,
that is,

x = (xg,%p) € R™ xR}? with RY = R xRy, xp = (x), x}).

When the distinction between analytic and nonanalytic variables is not essential, we shall
split the variables according to

x=x) eRL =R xRy with x' = (x4, xp) e Ry, = x e Ry,

We also denote by £ = (§,,§;) € R"~! the cotangential variables and &, = &, the
conormal variable, by D’ = (D, DXL) = %(axa, 8XL) the associated tangential derivations

andby D, = Dyn = %an the normal derivation.
For any ro > 0, we define

Ky = {x € R 1 |x4] < r0, |xp| < r0} = Brea (0,70) X Brn (0,70) N{x, = 0}, (5.1)

We denote by C3°(R”) the space of restrictions to R of functions in C5°(R"), and
by Cgo(KrO) the space of Cgo (R%) functions supported in K,,. The trace of a function
f e Cg°(RY) at x, = 0 is denoted by fi,=0.

We denote by (f, g) = fR’i fgand ||f||%qu = (f, f) the LZ(R’i) inner product and

norm. For k € N, || - ||, + will denote the classical Sobolev norm on R’} and || - ¢, +, . the
associated weighted norms, that is,
2 2j 2
IRy e= D T7010°fI5,, T=1. (5.2)

Jtlel<k
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We also define the tangential Sobolev norms by

2 k 2 2j 2
e =AD" T+ flg .~ D =105 fllgy. =1
JHlel<k

For f, g € C§°(R"), we shall also use (f, 8)0 = [pi—1 fix,=0(x")gx,=0(x") dx’.
Finally, for j € N, we denote by D’; the space of tangential differential operators, i.e.
operators of the form

P(x,D' 7) = Z aj,a(x)TjD/“,
JHlal<k

and by
o(P)=pE,&,1)= Y @ 0)T/E"

JFlal=k

their principal symbols.

Remark 5.1. Denote by T the restriction operator from D’(R") to D’ (R%). We write
HYRY) = T(H*(R")) with the restriction Sobolev norms

inf{||vlx : v e HYR"), Tv = uin D'(R)}

inf {||vl : v e HY(R"), v =uae. onR.}.

lloell,+ :

We have the property

lulle,+ ~ sup 10%ull 2 )
| <k

(see [Hor85, Corollary B.2.5] with different notations ﬁ(k,o) (R%)). Moreover, the set
CP(RY) = T(Cy°(R™)) of restrictions of smooth functions is dense in H k (R%) (see
[Hor85, Theorem B.2.1]). As a conclusion, if L is a linear operator from H*(R") to
H'(R"™) of norm C that sends ker(T') N H* into ker(T) N H', then L extends to a linear
operator from H k(RQ’_) to H! (R%) and we have

I Lulli+ < Cllullk,+-

In particular, this will be the case for all “tangential” operators.

5.2. The Carleman estimate

In this section, we state and prove the counterpart of the Carleman estimate (2.4) as-
sociated to the Dirichlet problem for some second order operators (including the wave
operator). Recall that the operator QZI is defined in (2.3) and acts in the variable x, only,
and hence is tangential to the boundary.



Quantitative unique continuation and approximate control 1031

Theorem 5.2 (Local Carleman estimate). Letrg > 0 and P = Df},; + r(xp, Dy,, Dx;)
be a differential operator of order 2 on a neighborhood of K, with real principal part,
where r(xp, Dy,, D"z;) does not depend on x, and is a smooth x;, family of second order
operators in the (tangential) variable (xq, x})).

Let  be a quadratic polynomial such that I/I)/C y # 0on K,, and

{p.Ap. ¥} x,8) >0 ifp(x,6)=0,x € Kyyand&, =0, § #0, (5.3)

1 _ .
E{p,/,, pylx,8) >0 ifpy(x,§)=0,xeK,yand§, =0, T >0, 54

where py (x,§) = p(x,§ +itVy).
Then there exist ¢,d, C, 19 > 0 such that for any t > 1y allu € Cgo(Kr0/4) we have

T QY ull}, . < CIQY Pull} . +e ¥l ul}, . + QY 1), —ol}
+ e eV Uy, —ol3 + TI(D(QY ;1)) xy=ol3 + e 1™ Dujy,—ol3).  (5.5)

If moreover lﬂ;n > 0 for (x',x, = 0) € Ky, then for all u € C{°(Ky,/4) such that
Uy, =0 = 0, we have

t1QY ull} 4. < CIQY Pull} , +e T lle™ull}, ). (5.6)

Note that the operators P considered here satisfy in particular assumption (H) (i.e. have
a real valued principal symbol independent of x,).

The proof of this theorem relies on a Carleman estimate interpolating between the
“boundary elliptic Carleman estimates” of Lebeau and Robbiano [LR95] and the “par-
tially analytic Carleman estimates” of Tataru [Tat95] (see also [Hor97]).

Let us first state two corollaries that explain how to deal with lower order terms, and
then prove Theorem 5.2.

Corollary 5.3. Under the assumptions of Theorem 5.2, there exist ¢,d,C,t9 > 0

such that for any V. e L®(K,)), W e L*(K,; R"), independent of x, and any
v > rpmax{l, | V|72, |W|3}, the Carleman estimates (5.5) or (5.6) are satisfied with
P replacedby Py w =P+ W -V 4+ V.

Here the constant C does not depend on the lower order terms V or W - V (that are
independent of x,).

Proof of Corollary 5.3. Applying the Carleman estimates (5.5) or (5.6) for P = Py w —
iW - D — V, we need to estimate the term

oV . Pu= Q! Pywu—iWw- QY (Du)— VOl u
where V = V(xp), W = W(xp). Notice first that

2 2 2 1.3 2 1 2
CIVOY ulg, < CIVIT< QY ull§ . < 173100 ullf . < drl0Yulf .
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as soon as t> /4C) = | VII%M (recall the definition of T-depending norms in (5.2)). Next,
we recall how Qllf, commutes with differentiation (using the fact that v is a quadratic
polynomial):

QY. (Du) = (D — ey, Dy +ity)OY u

(see e.g. (5.7)—(5.8) below), and consequently
Cliw - QY (DW|[§ 4 < C'IWITllQY ullf 4o < IOV ullf ;.

as soon as t/(4C’) > | W||%oo. For such 7, these two terms may hence be absorbed in the
left hand side of the inequality. This concludes the proof. O

Corollary 5.4. Under the assumptions of Theorem 5.2, let R(x, D) be a differential
operator of order 1 with coefficients which can be extended to bounded functions in
{(zg, xp) € C' x R™ : |z4] < 5ro, |xp| < Sro} and are analytic with respect to z,
for fixed xp,. Then there exist e,d, C, 1y > 0 such that for any any T > 19, the Carleman
estimates (5.5) or (5.6) are satisfied with P replaced by PR = P + R.

Proof. Lemma 4.8 of [Hor97] yields
10Y . R(x, Dyullo.+ < CIQY cully +.c + Ce ™™ ully 4.-

for all u € C3°(Kyy/4). Actually, it is stated for the interior case, with the norm | - |l + ¢
replaced by | - |l1,r. Yet, the estimates used for the proof, [Hor97, (3.13), (3.14)], are
actually made first in the variable x, and then integrated in xj. Since the variable x, is
tangential, the same proof gives the expected result.

As in Corollary 5.3, we can absorb the term C|| Qép,fu||1,+,, for t large enough. The
second term has the same form as the right hand side of the Carleman estimate, up to
changing d. O

Remark 5.5. This theorem, as well as its consequences, may be extended with some
modification to the Neumann case following Lebeau—Robbiano [LR97]. It could also be
generalized to a larger class of operators and boundary conditions (satisfying a Lopatin-
skii condition) following Tataru [Tat96] and Bellassoued-Le Rousseau [BLR15].

We now turn to the proof of Theorem 5.2. For this, we define the conjugated operator
Py = eV Pe™™ = P(x,D + ity’), and also let Py . be the conjugate of Py with

_£(D.2 .
respect to e 3¢ 1Dal , that is,

Dal® pyw = Py e~ Py forall w, (5.7)

£
e 2t
or equivalently

Q:s//,rP“ = Pw,sQl{f,u for all u,

with, as usual, Q]g/fr —e¢ e™ . Since P is independent of x,, we have

Pye=P(x,D—ey/ Dy+ity'), (5.8
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where ¥ . D, = ¥/ ((Dg, 0)) (with the notation of [H6r97]); recall that ¥ is a quadratic
polynomial such that ¥/, is a constant symmetric matrix with real coefficients.

When proving the theorem, we shall drop the index + in the norms to lighten notation;
of course, all inner norms and integrals are meant on R’i. We first need the following
proposition.

Proposition 5.6. Under the assumptions of Theorem 5.2, there exist C, tg > 0 such that
forany t > 19 and f € C3°(K,,), we have

Tl f15 . < CI Py fIIG + TIDa fIIG + T°1 fixy=0l§ + TIDfix,=0l5)-  (5.9)

If moreover Y, > 0 for (x', x, = 0) € Ky, then

Tl flf. < C(IPyefllg + TIIDafIG)  forall f € C§°(Kyy) such that fix,—o = 0.
(5.10)

Remark 5.7. As stated, ¢ is fixed and all constants may depend on it. It is likely that
one could perform uniform estimates in the limit ¢ — 07, so as to recover the estimate
in the case ¢ = 0, i.e. get rid of the term t ||Daf||% on the right hand sides. This would
require some additional work (in particular, the introduction of a uniform metric on the
phase space, see e.g. [H6r97, (5.7)]), and is not needed in the applications we have in
mind here.

Proof of Proposition 5.6. Defining Q; = %(Pw,g + P*’g) and Qi = #(PW; — P;Z)e),
we have
Py = Qi + l“CQi.
We also denote by pf// the principal symbol of Py . and by éf that of QJS ,J = 1,2 (which
is real valued), so that
Py =5 +itg;.

We have
{Qz = Dy —2&y) . (Dy; Do) + 05, (5.11)
0% = Dy}, + ¥, Du+205,
and hence
{g; = &7 — 26y . (Eniba) + 45, (5.12)
a5 =259, + 24,

In these expressions, the operators Qf € D% and Qf € D% have principal symbols
g5 = (W E)® = TP ) Hr(x, E — eyl Ea) — T (X, Y,
qi = —eVy, o (U3 60) + 7, & — eyl | Eas ),

where 7 is the bilinear form associated with the quadratic form r. Note that even if this
does not appear in notation, all these operators depend upon the parameter t.



1034 Camille Laurent, Matthieu Léautaud

With this notation, we hence have p, = c]g + itc}?, so that l.i{ﬁw, Py} = Z{c}g, c]?}.

Assumptions (5.3) and (5.4) then translate respectively into !
{9, G}(x.6) >0 if p(x,&) =0, x € Kyand & =0, 1 =0, (5.13)
(@), G x.£) >0 if py(x,&) =0, x € Kyyand&, =0, T >0, (5.14)

where the second assertion is a direct consequence of (5.4), and the first one follows
from (5.3) together with the fact that, as p is real, we have

1 91
lim —{p,, = ——{p,, =2{p.,{p, ¥}}.
r_lfgwr{p"’ Py} 8”.{P./, Py} _ {p.{p. ¥}

Next, we have the integration by parts formulz:

(8. 05) = (058, ) — il(8, Duflo + (Dag. o —2(8. ¥, , Da ol
(8. 05 1) = (O%g, ) —2i(¥, 8 fo.

So, for f € C§°(K,) we have

1Py e fIZ=1105F13+ 2105 FI3 +itl(Q% £, 050) — (051, Q5 ). (5.16)

Hence, by the integration by parts formule (5.15),

1Py e fI3 = 1105 FII3 + T2105 FI3 + it (05, Q51 )+ TB5(f) (5.17)

with the boundary term

B(f) = Q5 f. Duf)o+ (Dn Q5 £, flo — 26(05 f. ¥ . Daflol —2(¥, 05 f. o
=20}, Duf. Duf)o+ (M f. Duf)o+ (M Dy f. flo+ (M5 f. fo  (5.18)

for some tangential operator M{ of order 1 (in (£’, 7)) (note that terms of order 2 in D,
cancel).

Now that we have made the exact computations, we will make some estimates on
the symbols of the interior part of the commutator. The idea is to transfer the positivity
assumption on the full symbol to some positivity of a tangential symbol, which will then
allow one to apply the tangential Garding inequality.

The first step is to perform a factorization of [Q;, Qi] with respect to Qi and Q; to
obtain a tangential remainder. Since [Qi, Q‘i] is of order 2, it can be written i[Q;, Qi 1=
C,+CD, + COD,% where C; € Di. But using (5.11), and w)/(” # 0 on K,,, we can

replace D,, = ﬁéi + D! and D? = Q; +2ey! | (Dn; Dy) — Q5. So, in particular,

XnsXa

(5.15)

we can write
i[05, 051 = B Q5 + BS Q5 + B, (5.19)
where Bf € D with real symbol b¢. Now, we need to

e use the assumption to get some positivity of the symbol {p,;,, py }—this is Lemma 5.8;
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o transfer this positivity to {ﬁf//, pfp} for £ small enough by approximation—this is Lem-
mas.9;
o transfer this information to tangential information on the symbol—this is Lemma 5.10.

Lemma 5.8. There exist C1, Co, > 0 such that for all (x,§) € K,y x R" and v > 0, we
have

2
17 + 1% < C1{gy. 41} (x. &) + C{M + |sa|2]
lEl*+
Proof. All the terms are homogeneous of degree 2 in (£, 7) and continuous on the com-
pactset K, x {(§,7) e R" xR, : |€|% + 12 = 1}. Thus, on this set, the result is a conse-
quence of (5.13), (5.14) and Lemma A.1 applied to f = |py (x, /(&> + D) +|E)? >
0,g = {cig, c]?} and & = 0. The result on the whole K, x R" x R, follows by homo-
geneity. O

Lemma 5.9. There exists ey such that for all ¢ € (0, &), there exist C1, Cy > 0 such that
forall (x,&) € K, x R" and t > 0, we have

|5, (x, ©)I7
Pt + |§a|2:|.

Proof. By the same argument, we may restrict to the compact set K, x{(§, ) e R" xR :
|E|?> + ©2 = 1}. There, the inequality follows from Lemma 5.8 and the continuity of the
maps & q]’?, j=1,2,fromRto C'(V), where V is a neighborhood of K,y x{&, 7)€

R x Ry : [+ 2 =1}inR* x R"” x R, o

1E1% + 2 < C1{G5, G (x, &) +C2[

Now, we set

1 (x, &) = (g + 2eqiy . (Wi Ea) + (W), )45

For T > 0, the symbol 1 (x, &) has the property that u°(x, ") = 0 if and only if there
exists &, real such that pf/f (x,&’,&,) = 0. This can be seen by noticing that t Im pf/f =
g; = Oifand only if & = —q7 /¥, (see (5.12)), as a function of 7, x, &'. Note that given
7, x, &', the formula

&€

q;
vy,

PY(x, €' &) =Re ply (x, &, &) = G5 (x, €, &) = (Y, ) °u’(x, &) for§, = —

always holds (even if T = 0). Notice also that u°(x, §’) is a tangential symbol of order 2.

Lemma 5.10. There exists gq such that for all € € (0, gg), there exist C1, Co > 0 such
that for all (x, &) € K, x R" ! and T > 0, we have
e X, N2
EF + 1% < Cubg + cz[[“ i1 Sl |sa|2]

—_— 2
|§"|2+‘L'2 (5 O)



1036 Camille Laurent, Matthieu Léautaud

Proof. Note first that for any (x, &', &,) with &, = —¢q1(x, &)/, , we have g7 (x, &', &,)
=0and

P ELE) = G5 (x £ E) = () P (x, §)).

Now, assume u®(x,&) = 0 and §, = 0. Setting § = —q1(x,§")/¥, , we have
pfﬂ(x, &¢',&,) = 0. Using Lemma 5.9, we have {g5,q7}(x,&",&,) > 0. According to
the definition of Bf in (5.19), we have b§(x, £') > 0. As a consequence,

(1°(x, &) =0and & = 0] = b5(x, &) > 0.

Moreover, all terms in (5.20) are homogeneous of degree 2 in (§/, T) and continuous on
(¢/, 1) # (0, 0). Hence, applying Lemma A.1 below on the compact set K,, x {(£§', 1) €
R x Ry @ |E')2 4+ 12 =1, & = 0} yields (5.20) on that set. The conclusion follows
by homogeneity. O

Let us now come back to the proof of Proposition 5.6. Taking the real part of (5.17) and
using (5.19), we obtain

1Py f1I§ — T Re B (f) = 105 1l5 + =11 Q5 f1I5 + T Re (BS f, f)
+7Re (B35 + B{OD . [)- (5.21)
Concerning the remainder term, we have

t[Re (B§ 05 + B{ O5) £, f)| < <l flloll Q5 fllo + =1 £11 1105 fllo
T 2@ fIL A0S FIG+ IO FIID).  (5.22)

A

IA

We now define the tangential differential operator
Y= (0D +2:05y) . (Wi Do) + (¥} )* 05,

having principal symbol ©®. We also let G be a tangential pseudodifferential operator
1 (x.E"

with principal symbol T

The operator
C1Bs + C»(G*E + D?)

lies in the tangential class S((|§’| +1)2, |dx' | + (lé‘,ﬁf)z) (see [Hor85, Chapter X VIII]
or [Ler10]), in which symbols are allowed to depend smoothly upon the variable x,. Ac-
cording to Lemma 5.10, it is elliptic in this class, so that the tangential Garding inequality

yields, for t sufficiently large,

|f3, < CRe((Bsf. f) +Re(Ef, Gf) + [ DafII3)- (5.23)

Writing w;n D, = %(Qf — [Dy, 1//)’6’1]) — Qf (where w;n does not vanish) allows us to
estimate the full norm || f||;,; according to

I£lle < CULQS fllo + | f11,0)- (5.24)
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Recalling the definitions of Qf in terms of Qf in (5.11),i = 1, 2, we also have

S = (Y, Do — 505 = [Dn, ¥, D) + 260597 . (W ; Do)
+ (¥, )2(05 — DE + 2y . (Du: Do)
= (s, Dn — 5(Q5 = [Du. ¥, D)}, Dn + 3 Q1(0F — [Da. ¥}, 1)
+2e 05y (W3 Do) + (W, )2 (05 — Dy + 26y . (Dy; D). (5.25)

In this expression, notice that second order derivatives in x,,, namely the terms (‘ﬁ;/cn )2D,21,
cancel. Hence, we obtain

2 e (Y, )* 05— 3 DuQ5+2ey . (), )*Du+ Q5 Do)+ D} Q5 +D; +DID,.

We now want to estimate the term Re (X f, Gf) in (5.23). For this, integrating by parts
in the tangential direction x,, we have

| (W )2 D+ Q59 Do) . G < CIUDG) FIN e

n>Xa

This yields

- 1 -

I(Zf, GHI < CIO5 Flloll fllo + ‘(51//;,,Qif, Gf)
0
+ 105 flloll flle + U floll £lle + CIDG) FI £l

1 !/ AE
(wa,, o5 f. Gf)0
+ Cllflhe (T 05 fllo + 1105 fllo + T M fllie + 1Dafllo).  (5.26)
According to (5.23), (5.24) and (5.26), this now implies

=<

- 1 - -
I£15 . SRe(BS S, £)+ 105 £II5 + ‘(2—1.% 0} f. Gf) + 72105 F1I5 + 1 Da £1I5-
0

Coming back to (5.21), we obtain, for t large enough,
2 < P 2 _ R BS _ ANE 2 _ 2 ANE 2 D 2
tllflT . S I1Pyefllg —TReB(f) =195/ llg — =7 11Q1 fllg + Tl Da f

1 I AE
1| (gwidtror)

S NPy flIE — TReBE(f) + tlDafIIf + 7

1 I AE
(2—iwan1f, Gf)0

Recalling the definition of Qi in (5.11), we have v, Qi = Z(w;n)an + G1, where
G € D% is a differential operator of order 1 (in (z, D’)), we finally have

T fI5 . S IPpefllg — TReB(f) + Tl Da fI5+ TI(Duf + G1f, Gf)ol,  (5.27)
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where G a tangential pseudodifferential operator of order zero. Recalling the form of
BE(f) in (5.18) gives the bound |B*(f)| < t2|ﬁxn:0|(2) + |Df|x"=0|%, which concludes
the proof of (5.9).

Now if fr,—0 = 0, all tangential derivatives vanish. With (5.27) and the form of
BE(f) in (5.18), this yields

T £1IF » S 1Py fII§ — 2T} Duf. Duflo+ Tl DafIIG,

which proves (5.10) since ‘ﬁ;/cn > 0 for (x’,x, = 0) € K. This concludes the proof of
Proposition 5.6. O

We now turn to the proof of Theorem 5.2.

Proof of Theorem 5.2. In the proof, we consider functions u € C§°(K},/4) where K is

defined in (5.1). Let x € C§°(Bgna (0, r9)) be such that y = 1 on Bgna (0, r9/2). Setting
v=0lu=e"FPF (V) and  f = x(a)v(),

we have supp f C K, so that we may apply Proposition 5.6 to f. We have

v f=(= 00 u=(1—-x)e 7P (Ge Vi)

for some ¥ € C{°(Brna (0, 70/3)) with ¥ = 1 in a neighborhood of Brua (0,r9/4). As a
consequence of Lemma 2.4, we have, for t > 1,

Iollie < I flhe 4+ Ce 7 e™ ull; .. (5.28)

Now, it remains to estimate the terms on the RHS of Proposition 5.6 in terms of v. Notice
first that the same reasoning as for Lemma 2.4 (using that D, is tangential) allows us to
estimate the boundary terms as

| fixp=0l0 < [Vpe,=o0lo + Ce ¢ 1e™ u,, —olo, (5.29)
and, with Dv — Df = D((1 — )()e_%lDalz()v(e“pu)),
|Dfix,=0lo < 1Dvjy,=olo + Ce™ ¢ le™ upy, —olo + Ce™ /¥ |e™V (ty' + D)uyy,=olo
+Ce 7% 1™V Dujy,—olo
< |Dvpy,=olo + Cte™ " le™V upy,—olo + Ce™C#1e™Y Duyy,—olo.  (5.30)

Second, we estimate || Py s fllo = [[Py.exvlio = X Py.evlio + [ Py.e, xIvllo. For the
commutator, we write

_ & 2.,
[Py.e, x1v=[Pye, xle 21Pal" o™y,

We notice that [Py ., x] is a differential operator of order 1 in (D, t) with coefficients
supported in supp X)/ca’ that is, away from supp x. In particular, Lemma 2.4 implies
I[Py.e, xIvllo < Ce=T/¢)leVul|; ;. This yields

1Py fllo < 1Py evllo+ Ce e ully . (5.31)
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Now, it remains to treat the term || D, f |lo. We find similarly that

_ & 2,
IDafllo = 1Da(xW)llo < X Davlio + || x,e” P ze™Vul,
< IDavllo + Ce™ " le™ ullo, (5.32)

where we have again used Lemma 2.4.
Let ¢ be a small constant to be fixed later. We distinguish between frequencies of size
smaller and larger than ¢7. For t > 1/(c2¢) large enough (so that \/7/¢ > ¢t and the

. _eg2. .
function s — se”2c% is decreasing on s > /7 /¢) we get
—21D.|? _£1D. |2
IDavllo = [1Dae™ %PV e™ ullg < | D1 p, 1<grvllo + | Dal|p,izcre” 7 Pl ™V,

< ctlvllo + ste " 2 eV ullo. (5.33)

‘We may now apply Proposition 5.6 to f. Combining the Carleman estimate (5.9) with
(5.29)—(5.33), we obtain, for some C; > 0 and t > 79 with 79 (depending also on ¢, ¢)
sufficiently large,

— _ 2
Crelvllf o < I1Pyevlig +e > Ne™ullf . + PNl + s> e ™ e ullf

+ T v, =0ld + T2 e eV g, o] + TI Dy, =0l + Te /¢ e™V Duyy, —ol3.
For fixed ¢ < /C1/2 this yields, for some d > 0 (¢ is already fixed) and T > 1,
sirivllf, < IPyevlly+ e leullf  + v v, —olg + e M le™ upr,—ol3
+ 7| Dy, =0l2 + ¢ 797 e™V Dy, —ol3. (5.34)
Similarly, if moreover ¥, > 0 for (x’, x, = 0) € Ky, then (5.10) yields, for all u €
C§° (K ry/4) such that uj,,—o = 0,
9. _ 2
Crlvlt; < IPyevllg+e e le™ullf . + >0 Ivllg + s> e ™ e ull3,
and hence
Leitivill, < 1Pyevld +e 9 le™Vull . (5.35)

Rewriting (5.34)—(5.35) in terms of u concludes the proof of Theorem 5.2. O

5.3. The local quantitative uniqueness result

The Carleman estimates of the previous section have been proved when P has a very
specific form. Before proving the local quantitative uniqueness result, we first state them
in a more invariant way that can be obtained by change of coordinates in x;,. When doing
so, we strengthen the assumptions made on the operator P, still encompassing the cases
of wave and Schrodinger operators (or more generally of the form of Remark 1.10).
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From now on, and until the end of the section, P will have the following property:

Assumption 5.1. P is a differential operator on R« x Ri”, of order 2, with coefficients
analytic in x,. Moreover, P has principal symbol independent of x, of the form p(x, §) =
qx,(Eq) + Gx, (&p), wWhere gy, , ¢y, are smooth x,-families of real quadratic forms on R"«
and R" respectively.

Moreover, given V € LOO(R'j_b) and W e L®(R"’; R"), independent of x,, we set
Pvw=P+W-V4+V.

Note that operators P satisfying Assumption 5.1 also satisfy assumption (H).

The proof of the local quantitative uniqueness result will then be essentially the same
as in the boundaryless case. The following proposition is the counterpart, in the boundary
case, of the end of the first step in Section 3 (hence containing the geometrical part of the
proof of the local uniqueness result).

Proposition 5.11. Let x° € {x, = 0} and let P satisfy Assumption 5.1. Assume that
{x, = 0} is noncharacteristic with respect to P. Let ¢ be a function defined in a neigh-
borhood of x° in R" such that ¢(x°) = 0, and {¢ = 0} is a C? strongly pseudoconvex
oriented surface at x° in the sense of Definition 1.7.

Then there exists Ry > 0 and a smooth function { : B(x% 4Ry) — R which is a
quadratic polynomial with respect to x, € R"4, such that for any R € (0, Ro), there exist
&8, p,rd, 19, C > 0 such that

(1) § <d/8and (3.13)-(3.15) hold,
(2) for any T > 7o, the Carleman estimate (5.5) holds for P, for all u € Cg°(R",) with
suppu C B(x%, 4R).

If moreover (}5;’1 (x%) > 0, then the Carleman estimate (5.6) holds for P for all u €
CS°(RY) with suppu C B(x°, 4R) and ujy,—o = 0.

The estimates can also be made uniform for T > Ty max{l, || Vlli/oz, I W||%oc} if Pis
replaced by Py w, as in Corollary 5.3.

Proof. First, by noncharacteristicity, we have gy, (§5) # 0 for x, = (x;,0) and &, = 0,
&, = 1. We may thus reason in normal geodesic coordinates for gy, in R", in a suf-
ficiently small neighborhood of {x, = 0}. More precisely (see [Hor85, Appendix C.5])
there exists a local diffeomorphism W}, from a neighborhood of xg in R:’_k to a neigh-
borhood of 0 in erf such that, for W := Idgn ® W, the principal part of P¥ :=
(U~ H*PW* takes the form £(€]')? + r(xp, &, &). From the function ¢ o W~ (still
defining a strongly pseudoconvex surface for P¥ since this property is invariant), we
can construct a quadratic polynomial v/ exactly as in Lemma 3.4/Corollary 3.6 such that
the Carleman estimates (5.5)—(5.6) hold for P¥ and 1} Note also that the constructions
imply that if ¢)’C” (x%) > 0, then the same property holds for ¢ o W~ and then v/. We
then use Corollary 5.4 and next Corollary 5.3 to allow, first, lower order terms analytic
in x, and next lower order terms independent of x, with the right estimates (note that
both properties are invariant by our change of coordinates in x;). Applying then the
diffeomorphism W to come back to the original setting yields the sought estimate with
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¥ = ¥ o W, which remains a quadratic polynomial with respect to the variable x, (only)
since ¥ := Idge ® Wp. This proves (2).

Finally, the geometric assertion of (1) comes from the application of Lemma 3.4 in
geodesic coordinates. There, using the distance N (x, y) = |\I/_1 (x)—w! (y)| allows us
to obtain (3.13)—(3.15) with Euclidean balls as claimed in (1). ]

The aim is now to prove the following two local results, namely local quantitative unique-
ness up to and from the boundary.

Theorem 5.12 (Local quantitative uniqueness up to the boundary). Let x° € {x, = 0}
and let P satisfy Assumption 5.1. Assume that {x,, = 0} is noncharacteristic with respect
to P. Assume that there is a function ¢ defined in a neighborhood of x° in R" such that
#(x%) = 0, and {¢ = 0} is a C? strongly pseudoconvex oriented surface at x° in the
sense of Definition 1.7 and such that ¢, % > 0.

Then there exists Ry > 0 such that for any R € (0, Ry), there exist r, p > 0 such that
forany ¥ € Ci°(R") with ¥ (x) = 1 on a neighborhood of {¢ > 2p} N B(xY,3R), for all
c1, k > 0 there exist C, k', B, Ty > 0 such that

IMEE 0wl < Ce M (IME Oyl + IPull 2peo apynrey) + Ce™ P llulln+
forall p > Ty and u € Cy°(R'}) such that u|y,—o = 0.

Moreover, under the same assumptions, there exist Co, k', B, To > 0 such that for all
V e L®[R"), W € L®(R"; R") the previous estimate is still true with P replaced by
Pyw =P+ W -V 4V with C replaced by Co max{l, | W| r=}, and uniformly for all

~ 2/3
w = Fomax{L, [VIZR, IWI3w).
This theorem is proved similarly to the case without boundary. See the details in the proof
of the related Theorem 5.13 below.

Theorem 5.13 (Local quantitative uniqueness from the boundary). Let x° and P satisfy
Assumption 5.1. Assume that {x,, = 0} is noncharacteristic with respect to P, and the
function ¢ (x) = —x, satisfies the property of Definition 1.7 at x°.

Then there exists Ry > 0 such that for any R € (0, Ry), there exists r > 0 such that
forall ¢y, k > 0 there exist C, k', B, Ty > 0 such that

”Mf]lzar,cluu“l,-l-
< Ce" (I Dntel 120 4Ry (xp=0) T+ ||PM||L2(B(x0,4R)mR1)) + Ce ™ Mlully,+

forall p > Ty and u € Cy°(R'}) such that u|y,—o = 0.
The same dependence of the constants holds if P is replaced by Py w as in Theo-
rem 5.12.

Proof. The proof is very similar to the proof of Theorem 3.1 in Section 3, using the
Carleman estimate (5.5) of Theorem 5.2 . We only sketch it and underline the differences
from the boundaryless case. We moreover add the lower order terms V and W - V; we
need to check that all estimates can be carried out uniformly with respect to these terms.
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Step 1: The geometric setting. We start by choosing ¢ = —x,,. The surface {¢ = 0}
= {—x, = 0} is noncharacteristic by assumption, and according to Remark 1.10, is hence
a strongly pseudoconvex oriented surface for P. Proposition 5.11 furnishes an appropriate
convexified i, polynomial of degree two in the variable x,, that satisfies the desired
geometric conditions, together with the Carleman estimate (5.5). We now follow the proof
of the boundaryless case.

Step 2: Using the Carleman estimate. The point is to use the Carleman esti-
mate (5.5) with weight ¢, applied to the (compactly supported) function w =

02ROR 3 X5.0 (W) Xs (V).
Similarly, using the same support property supp xs C (—86, §), and Lemma 2.13, we
write

10, Py.wwllo+ < 1QY 0280k 3. x5.,. (V) X5 (W) Py wullo.+
+ 10 (0280 R X5.0. (V) X5 (W), Py.wlullo.+

2/) St
<e e 1Py wiull L2(B(x0,4R)N{xy=0)

+ 1107 [o2r0R 2. x5, (W) Xs (W), Py,wlullo,+-

Next, Lemma 3.7 still holds in R} since x, is a tangential variable (see Remark 5.1).
Hence, the commutator term is bounded by
1QY [o2ROR X5, (W) s (W), Pluclo +
eu2
< Cez&r”M)%V-ﬁ)\u”l’_’_ + C}\,l/2‘[N(e_fT + 6—851 + EBr_CM)eTZ/)LEBI”M”L_Q_,

with some ¢+ (equal to 1 in a neighborhood of {¢ > 2p} N B(x%, 3R)) supported in
{p > p}={xn < —p}.

Moreover, following Remark 3.8, we can get uniform estimates for the commutator
of Py w by replacing C by Comax{l, ||W|| roomrs)}. We will not write it any more for
clarity but it appears multiplicatively in all the estimates.

Since the operator MZ-‘I « only applies in the tangential variable x,, we have

IME Deuutlln+ < 19¢putlln+

2
_1Dg]
Moreover, since ¥ is supported in {x, < —p} and ¥, = e <* ¥ is a regularization

in the variable x4, ¥, is also supported in {x, < —p} and V¢, ,(x) = 0if x, > 0.In
particular, || 9, u|l1,+ = 0. That is,

10Y, Pywwllo.s < Ce™ e | Py wtll 2500 4y
+ Ckl/th(e—mz/M + e 87 4 eér—c;x,)e‘[z/keﬁr Nl -
The other terms in the Carleman estimate that we have to check are
TI(D(QY ;) 1, =o0lg + €™ Dwyy, =0l < Ctle™ Dywiy,=ol, (5.36)
where we have used u|x,—0 = w|x,=0 = 0. This also implies

Dywix,=0 = (02rOR 1 X5, (W) X5 (W) Dptt) |, =0-
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Since [le™ x5, (¥) |l < CA/2e37¢™*/* thanks to Lemma 2.13, the left hand side of

. 2
(5.36) is bounded by C1e?%7¢?* /)\T|D"u|i2(B(x0,4R)ﬂ{x,l:0})'

So, combining the Carleman estimate of Corollary 5.3 and the previous bounds, we

have proved for all T > 79 max{l, ||V||i/£, ||W||%oo}, u=>1, %/,L <A <Cu,

1/2 ~
t210Y oaroR 2 x50 (W Xs (Wl 1 4.2
2/ 8
< Ce" e PV,W””LZ(B(XOAR)HM)

2
+ Ckl/zrl/zeafer /)\|Dnule(B(onR)ﬂ{xn:O})

2
_en _ —eny 12
+ CAMPTN (673 4 1B 4 DT e AT |y

So, denoting D = e (|| Duutll2(p(x0 4r)(x,=0)) T 1P Ul L2(B(:0 4R)"R?Y))» We can rewrite
it as

~ 2 _
10V o2r0oR 3 X6.0 (WX (Wull1 4.7 < Cu'/2e’ T /He ™D

2
_eut _ _ 2
—i—C/L]/z‘L'N(e T 4 Te 86t +e§t cu.)eCr /A96r||u||l,+~

Step 3: A complex analysis argument. We now proceed exactly as in the boundaryless
case. For any test function f € C5°(R’}), we define the distribution /¢ (with 8 > 0 to be
chosen later) by

(hy wer@),co®) = (02RO X0.: T WAIU, (MPE 1)) gt ) s -

We proceed similarly, noticing at the end that C;j°(R’}) is dense in the dual space
H™! (R) and that all operations are tangential. The analogue of Lemma 3.10 is proved
with the same complex analysis argument (which does not involve the x-space, but only
complexifies the Carleman large parameter t), using Lemma 3.11. This yields the analo-

gous result for u > Ctg max{l, ||V||2L/£,, ||W||%Dc}.

Finally, it remains to transfer the estimate of || Q;”JJZRJR,,\X&,\ W xs(Y)ull1,4.¢ to
an estimate of ||M£1fﬂr,cl ut|l1,+. The computations of the end of Section 3.3 remain valid

in the present context for the following two reasons: (a) the operators Mﬁ’,ﬂ are tangential
and the associated estimates of Section 2.4.1 still hold; (b) these computations only rely
on the geometric fact that op = xs(¥) = Xs(¥) = ns(¥) = 1 on a neighborhood of
supp oy, which now follows from Proposition 5.11. O

5.4. The semiglobal estimate with boundary

In this section, we prove a version of Theorem 1.11/4.7 adapted to the boundary value
problem. More precisely, the following result considers, under the assumptions of the
above uniqueness results, the Dirichlet boundary condition at the bottom and the top of
the graph, with an observation at the bottom.

Recall that in the present context, the analytic variable is supposed to be tangential to
the boundary. In the following results (as opposed to the boundaryless case), this translates
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into the fact that we assume that, in the splittings x = (x/, x,) € R"=1 x [0, ¢¢] and
x = (x4, xp) € R x R", the variable x, = x; always belongs to the x; variables.

In Theorem 5.14 below, we state the semiglobal estimate with an observation from
the boundary (i.e. the first hypersurface So is a Dirichlet boundary) and when the last
hypersurface Sj touches a (Dirichlet) boundary. This is the most intricate situation. The
proof is the same in the cases where the last hypersurface does not touch the boundary, or
if we have an internal observation around the first surface. We do not state these cases for
the sake of concision.

Theorem 5.14. Let D be a bounded open subset of R~ with smooth boundary. Let
G = G(x', &) be a C? function defined in a neighborhood of D x [0, 1] such that

o foralle € (0, 1], we have {x' e R"~! : G(x, &) > 0} = D,
o forall x' € D, the function € — G(x', &) is strictly increasing,
e foralle € (0, 1], we have {x' e R"! : G(x', &) =0} = dD.

Set
Lo=maxG(x', 1), G,00=0, Sy=D x {x, =0},

x'eD
and, for ¢ € (0, 1],
Se ={(x",xp) e R" : x, > 0and G(x', &) = x,)

= (D xR N{(x,x,) eR": G(x', &) = x,},
K=xeR":0<x, <G, D}

Let Q be a neighborhood of K in R"™! x [0, £o] and Da neighborhood of D in R"~ 1.
Let P satisfy Assumption 5.1. Assume that {x,, = 0} and {x, = £o} are noncharacteristic
with respect to P. Assume also that for any € € [0, 1], the function

G (X', xp) = G(x', ) — xp

is strongly pseudoconvex in {§, = 0} with respect to P on the whole S;.
Then there exist a neighborhood U of K and constants k, C, jto > 0 such that for all
u € CP R x [0, €o)) satisfying

Ujx,=0 = Ujx,=¢o =0 on D,

we have
' c
lull 2@y = Ce*F ([ Dputyx,=oll 25y + 1 Pull2(q)) + ;”M”Hl(Rnflx[o,eo])

forall u > .
Moreover;, under the same assumptions, there exist Cg, k', B, To > 0 such that for all
V e L®[R"), W € L®(R";R") the previous estimate is still true with P replaced by

Pyw =P+ W -V 4V, with C replaced by Comax{l, | W| L=}, and uniformly for all

- 2/3
= fomax{l, V72, IWI2).
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Proof. For simplicity, we first argue for V. = 0, W = 0, and we will check the depen-
dence on V, W at the end.

We will use the same scheme of proof as for Theorem 4.7. We first note that the
notion of < can be extended to the case when there is a boundary and the variables &,
are tangential to the boundary. Then, the local uniqueness results of Corollary 4.6, and
Theorem 5.12, can be written as

B(% r) < [{¢ > p} N B, 4R)] (5.37)

as long as B(xY,4R) N {x, = 0} = ¢. Indeed, in (5.37), the case where B(x?,4R) N
{xn = Lo} = O follows from the internal quantitative uniqueness result (e.g. Corol-
lary 4.6), whereas the case “up to the boundary” B(x?, 4R) N {x, = £y} # @ follows
from Theorem 5.12. To apply this theorem in this context, one needs to make the change
of variables x, > £o — x,, which transforms {x, < £y} into R’} and ¢, = G/, e) —xy,
to (]35 = G(x', &) — (£p — x,,). The condition BXHQBS = —0x,¢s = 1 > 0 is satisfied,
the surface {x, = 0} (new coordinates) remains noncharacteristic; the pseudoconvexity
assumption is invariant as well.

Claim. For any open neighborhood @ of Sy = D x {x, = 0}, there exists an open
neighborhood U of K (for the topology of R~ x [0, £o]) such that

U<a.

The claim can be proved with almost the same proof as that of Theorem 4.7, but using
in addition Theorem 5.12 instead of only Theorem 3.1. So, we have to ensure that in the
proof, we only apply Theorem 5.12 for some points x;’ with B(x;”, 4R, )N {x, = 0} = .
This is the point of Remark 4.10, which then allows us to prove the Claim as in Theo-
rem 4.7.

Now, let x° € D x {x, = 0}. We apply Theorem 5.13 with R, small enough that
R* 1 x {x, = 0}N B(x, Ry) C {x, = 0} x D and B(x, R,) C Q. This gives r, such that
for some B, «, C, k’, o > 0,

0 o
IMEE oo ulli s < Ce (I Duttys,=oll 25y + | Pull 2ggy) + Ce™ el 4

where arxo is centered at x0. By compactness of D, we can cover it by a finite number of
such balls (B(x', r"));ecs. Pick ¥ € CE)"’(R"_1 x [0, £o]) with supp® C U;¢; B(x', ")
so that # = 1 in a neighborhood @ of Sy. Lemma 2.12 gives, for functions ar)il equal to 1
on B(x, r'), the estimate

IMEPE O ull—y < Y IMER Yl e + Ce™ M lluly
iel
Now, apply the Claim with the selected @ and for some ¥ e Co(un R~ % [0, £o])
equal to 1 in a neighborhood of K. For some «; < min(c/2, «’), there exist C1, K{ >0

such that

1M yully 4 < CeV (| MPHDullmoy + | Pull 2qy) + Ce™ 1 {|ull1 -
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This implies, for some 2, k7, C > 0,

IMp"0ull 4 < Ce* (| Dyt =oll 125y + I Pull o) + Ce 2 lully -

We finish the proof as in Theorem 1.11 once Theorem 4.7 is proved, taking into account
Remark 5.1.

Now, if P is replaced by Py w, we want to obtain uniformity with respect to the size
of V and W. It is clear that the proof of the theorem involves a finite number of appli-
cations of Theorems 5.12 and 5.13. Indeed, the scheme of proof of Theorem 4.7 only
involves a finite number of applications of the geometric propagation of the property <.
They can be divided into two categories: the general ones described in Proposition 4.5 that
are completely independent of the operator P (so the constants will be independent of V
and W), and those using Theorems 5.12 and 5.13 where the dependence of the constants
o and C is explicitly described. Note also that all properties (propagation, transitivity,
simplification...) that we prove about the relations <1 and < in Propositions 4.3 and 4.5 sat-
isfy the following: once « is fixed, the associated ¢ provided by <1 and < is always trans-
formed into some linear combination (with universal constants) of the pg corresponding
to the previous ones. The same holds for the constants C involved in <1 and <. Finally,
a finite number of applications of these rules will always conclude with the restriction of
the form p > Zomax{1, ||V |72, [W|2~} and C of the form Comax{l, | W||.x}, once
K is fixed. O

6. Applications

We now give applications of the above main results, namely Theorem 1.11 and, in the case
with boundary, Theorem 5.14, to the wave and Schrodinger operators. In these applica-
tions, we study an evolution equation in the analytic variable. We thus have n, = 1,
n, = n — 1 = dim(M) and we denote accordingly by + = x, the time variable
and by x = x; the space variable. In this section, we prove general versions of Theo-
rems 1.1 and 1.5: we add (complex valued) lower order terms that are analytic in time.
We also provide uniform estimates with respect to these lower order terms if they are
time-independent. The proof consists each time in

o first applying the quantitative estimates of Theorem 5.14;
e then using energy estimates to relate time-space H ' norms of the solution to the energy
of the initial data and the norm of the source term.

Note that the first step, the quantitative unique continuation itself, does not involve the
lower order terms. For instance, Theorem 6.7 below is equally valid for the Schrodinger
operator i d; + A, the heat operator 9; — A, Ginzburg-Landau operators 9, + A g» etc.
The second step however uses the well-posedness properties of the evolution problem
(conservation of energies...), and is not so well-adapted to dissipative equations.
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6.1. The wave equation

Our result for the wave equation can be formulated as follows. We recall that the geomet-
ric constant £(M, w) is introduced in (1.3).

Theorem 6.1. Let M be a compact Riemannian manifold with (or without) boundary,
Ay the Laplace—Beltrami operator on M, and
P=03—Ag+Wody + Wi -V+V

with V., Wy, Wy, div(W)) bounded and depending analytically on the variablet € (—T, T)
(see Remark 6.4).

For any nonempty open subset w of M and any T > L(M, w), there exist C, k, j1o
> 0 such that for any (ug,u;) € HO1 (M) x L*(M), f € L>((-T,T) x M) and
associated solution u of

Pu=f in (=T, T) x Int(M),
u=0 in (=T, T) x M, 6.1)

(I/l, 8[”)‘[:0 = (MO, ul) in Int(M)v

we have, for any (L > Lo,
Il (uo, M1)||L2><H71
KL C
<Ce (”””LZ((fT,T);Hl(w)) + ”f”LZ((fT,T)xM)) + ;”(”O’ u)ll g2 (6.2)

If moreover OM = @ and all coefficients of P are analytic in both t and x (i.e. the
manifold M, the metric g and the lower order terms Wy, W1, V are analytic), then there
exists ¢ € Cf)’o((—T, T) x w) such that for any s € R, we have

o, u) 2 g1
KL C
< CeM(1@ull s (—1,1yx M) + I I 2T 1y M) + ;ll(uo, u)ll g2

If oM # @ and T is a nonempty open subset of dM, for any T > L(M, ') there exist
C, k, o > 0 such that for any (ug, uy) € Hol(./\/l) x L2(M), f € L*>((-T,T) x M)
and associated solution u of (6.1), we have
o, u) 25 g1 c

=< CGKM(”av””LZ((_T,T)Xr) + ||f||L2((—T,T)></\/[)) + ;”(”0, ullgixrz- (6.3
Finally, if V, Wy and W1 are time-independent then we have the following stronger
result. There exist Co, k, by > O such that for any V, Wy, Wy, div(W}) bounded (all

independent of t), for any (ug,u;) € HO1 (M) x L>(M), f € L>(-T,T) x M)

and u the solution of (6.1), estimates (6.2) and (6.3) hold uniformly for all u >

2/3 .
o max{l, “V”L/oc, IWoll2 . W12} with constant

C = Coexp(Comax{||V| Loy, IWoll oo ity IWill oo (ay s IAVIWD [l oo A })-
(6.4)
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Remark 6.2. Using Lemma A.3 and the admissibility condition [[dyull 27, 7)xr) <

Cll(uo, u1) || g1 <2, We can write the previous estimates as in Corollary 1.2 with some
constants depending explicitly on the norms of the lower order terms.

Note that refinements of the rough energy estimates made in the proof of Theorem 6.1
lead to improved dependences of the constant in (6.4) (see e.g. [LL16, Section 3]).

Theorem 6.1 above is a consequence of the following result, together with basic en-
ergy estimates for solutions to the wave equation.

Theorem 6.3. Let M be a compact Riemannian manifold with (or without) boundary,
A, the Laplace—Beltrami operator on M, and P = 8,2 —Ag+Rwith R = R(t, x, 0;, 0x)
a differential operator of order 1 on (—T, T) x M, with coefficients bounded and depend-
ing analytically on the variable t € (—T, T) (see Remark 6.4 below).

For any nonempty open subset w of M and any T > L(M,w), there exist
e, C,k, uo > 0 such that for any u € H'(=T,T) x M) and f € L*((=T,T) x M)
solving

Pu=f in(-T,T) x Int(M),

) (6.5)
u=20 in(=T,T) x oM,

we have, for any (L > Lo,

”u”Lz((fe,e)xM)
C
< CeM(lull -ty @) T I f 27,1y M) + ez

If moreover M, the metric g and the lower order terms R are analytic, and oM = (@,
then there exists ¢ € C;°((=T, T) X w) such that for any s € R, we have

||“||L2((—s,s)xM)
- C
< Ce" (1 gpull s (—1.1yx My + 1 27,1y M) + ;”””H‘((—T,T)XM)'

If OM # W and T is a nonempty open subset of 0 M, then for any T > L(M,T) there
existe, C, k, o > 0 such that foranyu € H' (=T, T)x M) and f € L>((—=T, T)x M)
solving (6.5), we have

”u”Lz((—s,s)xM)
C
< CeM(10vull 2 —1.1yxr) + I 201 1) A)) + ;||M||H1((—T,T)x/\/1)~

Finally, if all lower order terms are time-independent, that is, R = Wyd;+W1-V+V does
not depend on t, then we have the following stronger result. There exist €, Co, k, up > 0
that such for any V, Wy € L®°(M) and Wy an L*° vector field on M, for any u €
H'(=T,T) x M) and f € L*((—T,T) x M) solving (6.5) all the above estimates
hold uniformly for all © > pomax{l, ||V||i/oz, ||W0||%oo, | W1 ||%oo} and C replaced by
Comax{L, [[Wollro, [|WillLoe}.
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Remark 6.4. In the above theorems, a function is said to be “bounded and depending
analytically on the variable t € (—7,T)” if it is bounded in N x M where N is a
complex neighborhood of (-7, T'), and depending analytically on the variable t € N for
almost every x € M.

We first prove Theorem 6.3 and then conclude with the proof of Theorem 6.1.

Proof of Theorem 6.3. We only prove here the more complicated case of the bound-
ary observation. The internal observation case is simpler and follows the same proof. To
transport information from one point x° to another point x', the idea is to build nice
coordinates in a neighborhood of a path between x? and x!. In these coordinates, we
construct an appropriate foliation in order to apply our semiglobal estimate. To construct
these coordinates, we follow the presentation of Lebeau [Leb92, pp. 21-22].

We fix a point x' € M. We can find x € I" and a smooth path y : [0, 1] — M
of length £¢ with L(M, ") < €y < T (see the definition of L(M, T") in (1.3)) so that
y(0) = x% and y(l) = x!. Moreover, we can require that

y does not have self-intersections,

y(s) € Int(M) for s € (0, 1),

y(0) is orthogonal to d M,

y (1) is orthogonal to 9 M in case y (1) = x! € IM.

According to Lemma 6.5 below, we can find local coordinates (w, x;) near y in which
M is defined by 0 < x,, < £o, the path y by y(s) = (0, s€p) and the (co)metric is given
by the matrix m(w, x,) € M, (R) with

/
m(w, x,) = (”’ g‘") ?) + Om, @ (lw))  forw € Bga-1(0,8), § >0,  (6.6)

with m’(x,) € M,_1(R) symmetric and (uniformly) positive definite. With these coor-
dinates in the space variable, and still using the straight time variable, the symbol of the
wave operator is given by

P(ta w, Xp, T, gwa En) = p(w7'xﬂ’ T, éuh E”l) = _TZ + (m(wvxn)gﬂ E)’ E = (va én)v
©6.7)

where we have used 7 for the dual of the time variable and &, &, for the duals to w €
Bpu-1(0, 8) and x,, € [0, £o].

We now aim to apply Theorem 5.14. Pick again #y with £y < #9 < T.For b < § small,
to be fixed later, we define

, w\?  [1)?
xp =1, x =(,w), Dz{(t,w):(z> +<£> <1},

2 2
G(t,w,e) = 8£09< <%) + (%) ), Qe (t, w,x,) :=G(t,w,e) —x,, €€]0,1],
0
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where 0 is such that, for some 79, n; > 0,

0 :[—1—no, 1 4+nol = [—n1,1], smoothandeven, O6(x1)=0, 6(0) =1,
f(s) > 0if and only if s € [—1, 1], 10'] <aon[—1—ng,1+nol,

with 1 < « < ty/€o. This is possible since #y/€y > 1.
Note also that the point (t = 0, w = 0, x, = {) corresponding in the local coordi-
nates to x! belongs to {¢; = 0}. We have

doe(t, w, x,)

ol w2 n 1\? 71/29, w)? n 1\ [ 1dt n wdw J

= — — — — — + —— | —dx,.

0 b o b o tg b2 "
Given the form of the principal symbol of the wave operator in these coordinates (see
(6.6)—(6.7)), we obtain

5 12w AN\,
p(waxnvd(pe(t’ w, xl’l)) = —¢ £0_4<<_> + <_) > |9/|
I b fo
+£282(m/(x yw, w( (2 2+ A% _1|9’|2+1
0 p# e b 1
82E2 w 2 ¢ 2N\ —1
otw (1 0.2 (¥ r 012 ).
cout (s ZBup((2) + (£))

where |0'|2 is taken at the point v/(w/b)2 + (¢/19)%. Now, since a < to/lo and m’(x,,) is
uniformly (for x,, € [0, £o]) positive definite, there is n > 0 such that for |w| < b small
enough, we have

62
1+ 0(lw?) > azt—g +1,
0
(' (x)w, w) + O(lwH|wl* = Lim' (x)w, w) > 0.

Hence, there is a sufficiently small neighborhood (taking again b small enough) of the
path (i.e. of w = 0), in which we have, for any ¢ € [0, 1] and any (¢, w, x,) € D x [0, £¢],

e Lt \((w) AR
p(wvxnad¢€(tawaxn)) = __ZEO - ' + | - |9 | +o _2+77
15 to b fo 15

02 02
> 20"+ a3 +n =0
1y 1y

So, the surface {¢o = 0} is noncharacteristic for any ¢ € [0, 1], and therefore strongly
pseudoconvex with respect to the wave operator (see Remark 1.10).

Moreover, since b can be chosen arbitrarily small and I" open with x € ", we can
select b small enough so that in the chosen coordinates, we have D C [—1p, o] x I.
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Therefore, applying Theorem 5.14 (in case x' € d.M; see the remark preceding Theo-
rem 5.14 in case x' ¢ 3.M) in the chosen coordinates and writing (with a slight abuse of
notation) the final result in an invariant way, we get

C
lull 2y = Ceku(”auu”LZ((_T,T)xr) + ||P“||L2((_T,T)x,/\/()) + ;”u”Hl((—T,T)xM)v
6.8)

where U is a neighborhood (in the local coordinates) of {¢y = 0} and in partic-
ular a neighborhood of x! (in the global coordinates). Note that we actually apply
the theorem to yu with x € C*®((—T,T) x M) so that in the coordinate charts,
Xu € Cgo([O, Lo] x R”_l) and ¥ = 1 on a neighborhood of the 2 defined in Theo-
rem 5.14. We have therefore || Pxull;2q) = Pulli2q) < CllPullp2(—7 1)< M) and
I xull o, xme-1y < Nl g1 7,7y M) (Where we have switched from some coordi-
nate set to another with a slight abuse of notation).

Since the previous property is true for any x~ € M, we deduce by compactness
(taking the worst of all the constants «, C, 10), using this estimate only a finite number
of times, that there exists € > 0 such that

1

||“||L2((—s,g)xM)
C
= C@K“(||3v“||L2((—T,T)xr) + ||P”||L2((—T,T)x/vl)) + ;”M”Hl((—T,T)xM)'

This concludes the proof of the theorem in the general (boundary) case.

For the last analytic case, we apply the same reasoning as before using the case n, = n
of Theorem 1.11 and taking care about having some analytic change of coordinates. For
instance, we need to have an analytic path. So, this leads to an observation term ||@u || g-s
where ¢ = 1 on all the cutoff functions obtained by the theorem.

The lower order terms depending analytically on time are treated using Corollary 5.4
and Remark 3.8.

The uniform dependence with respect to time-independent lower order terms follows
from the fact that we only use Theorem 5.14 a finite number of times. O

With Theorem 6.3, we now conclude the proof of Theorem 6.1, using energy esti-
mates to relate || (ug, ”1)”H0‘xL2(M) to ||”||H'((—T,T)x/vl)’ and || (uo, I/tl)”LZXH—](M) to
lwll L2—7.7)x Mm)- These estimates are very classical in the selfadjoint case (which we
omit here) and need a little care in the general case. They can be refined in various ways
(see e.g. [LL16, Section 3]).

Proof of Theorem 6.1. We consider a perturbation of order 1, R(¢,x, 0, 0x)u =
V(t, x)u + Wo(t, x)o;u + Wi(t, x) - Vu, and perform the energy estimates. For s €
[T, T], we have the pointwise-in-time estimate

IR)u)l 2 < Cr{Iu) g1 pg + 18 2000))
with

Cr = VIiroq=1,11xM) + IWollLoo (=T, T1x M) + Wil Lo (=T, T1x M) -
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Using the Duhamel formula and the Gronwall lemma gives

IlGa, YOl 1w 2ay < CeCF (o, u gt s r2ovn + 1F L oty 2200m)) -

and in particular, after integrating in time,

Il g .7y nty < CeCR (o, uD) g wrzvn + 1F Il ot r:200my)- (69)

Let R*(t, x, 9;, Dy)u = V(t, x)u — 9, (Wy(¢t, x)u) —div(Wy (¢, x)u) be the formal (space-
time) adjoint of R (we take the real duality for simplicity).
If (vg, v1) € H' x L2, let v be the associated solution of v + R*v = 0. We have

[R*($)v(s)llp2 < CR*(”U(S)”HI(M) + ||3tU(S)||L2(M))

for s € [0, €], with

Cre = IVl qo.e1xM) + IWollywi.coo.e1: Lo (M) T Wil Lo (0,e1x M)
+ [divIW D) Loo(10,e]1x M) -
Similar energy estimates applied to v give

C&CR*

||U||H|((O’g)><_/\/[) <Ce Il (vo, ”1)||H1><L2(M)' (6.10)

We now choose x € C*([0, ]) such that x(0) = 1, x(0) = 0, x(¢) = 0, and
x(e) = 0. Then w = x(¢)v is the solution of
Ow+ R*w =2x@)o,v + x @) Wov + } (H)v =: g,
wigm =0,
(w, dw) ;=0 = (vo, v1).

Thus, g is a (trivial) control that drives (vo, v1) to zero, i.e. (w, d;w);= = (0, 0), with,
according to (6.10), gl 2(0,e)x M) = CeCCr | (vo, V)l g1« z2- So, the usual computa-
tion yields, after integrating by parts,

/ ug = / u(d+ RMw
0,6)x M 0,6)x M

=/ MIUO_/ uov1 —/ Wo(0, X)uovo+/ fw,
M M M 0,e)x M

and in particular

((M(), I/ll), (_Ul, UO))
= C||“||L2((o,g)x/\/1)||g||L2((o,s)><M) + C||f||L2((o,g)xM) ||w||L2((o,g)XM)
R*
< Ce“®|(vo, vl)||1-11XL2(||M||L2((0,5)><M) + ||f||L2((0,g)XM)),

where (-, ) is the twisted duality ((uo,u1), (V1,v0)) 25 g1 1251 = fMulvo —
f/\/l ugvy — fM Wo (0, x)ugvo.
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By specifying to vp = 0 and ||v1||;2 = 1, this gives first by duality
luollp2 = sup f uovy = CecR(”M”LZ((O,S)xM) + ||f||L2((0,g)XM))~
lvill,2=1J/M

Then, with v; = 0 and ||vg]|| 1 = 1, we obtain

Il =  sup fulvo
ol ;1 =1 J M

< sup /(ulvo—/ Wo(O,X)u0v0+/ WO(O,X)MOUO)
loll 1 =1 JM M M

< sup (o), (O, 00)) 2yt 2t 4 SUD /Mwo(o,x)uovo

ol 1=t lvoll 1 =1
< CeCR(||u”L2((0,£)><M) F 12 .epxrty) + CliWollL< lluol .2

So, finally, we have

o, w2 p-1 < CeCR(”“”LZ((o,g)xM) + ||f||L2((o,g)xM))- (6.11)
In the particular case where the perturbation is independent of time, we have
Cr + Cgr+ = Cmax{[|Vl eoamy, [WollLoo(mys IWillLoe(ays 1divIWD) [ oo A }-

The combination of Theorem 6.3 with (6.9) and (6.11) gives the sought result. O

We now give a brief proof of Theorem 1.4 (so-called “penetration into shadow for
waves”), which is very close to that of Theorem 6.3.

Proof of Theorem 1.4. Following exactly the same proof as for Theorem 6.3 but stopping
at estimate (6.8) and using the internal observation instead, we find that for any x| € w1,
there exist ¢ > 0 and C, «, (g such that

C
Il 22((—e.e)x Bxy.ey) = CEF Nl 27,7y 11 (o)) + el e (6.12)

uniformly for 4 > wg. Since w is compact, we can cover it by a finite number of such
balls, w; @ UIN=] B(x;, &;). In particular, we can find € > 0 small such that ¥ < ¢; for
any 1 <i < N and Nhd(w;,%) c UY, B(xi, &). This gives el L2((—2 3 xNhd(w; 7)) =
C iy Nl 2oy ) By

Note then that the wave equation with Dirichlet boundary conditions is well-posed
under the assumptions of Theorem 1.4 (that the operator (—Ag, Dirichlet) is essentially
selfadjoint on L%(M) follows e.g. from an adaptation of [Str83]). This allows one to
perform energy estimates as in the compact case. Hence, since (uq, u1) are supported
in wp, the finite speed of propagation implies that u(¢) is supported in Nhd(wy, ) for
|t| < & (where we use the distance coming from the Riemannian metric to define balls).
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That is, lullp2(—z2) xNnhd(w, 7)) = lullL2(—z7xMm)- Now, we conclude as before us-
ing the inequalities [[ull;2(—zz)xpm) = Cllwo, uD)llp2 -1 and [lull g7 ryxpy =
Cll(uo, u1) || g1« 2 which only rely on energy estimates and duality. ]

The following lemma is contained in [Leb92, p. 22] (see also [ABB12, Lemma 11.38,
p. 221]. We give the proof for completeness.

Lemma 6.5. Let y : [0, 1] = M be a smooth path without self-intersections, of length
Lo, such that

y(s) € Int(M) fors € (0, 1),
y(0) and y (1) belong to dM,
y(0) and y (1) are orthogonal to 9 M.

Then there are some coordinates (w,l) € Bgu-1(0, &) x [0, £o] in an open neighbor-
hood U near y ([0, 1]) such that

e y([0,1]) = {w = 0} x [0, £o],
o the metric g is of the form m(l, w) = ((l) m’O(I)) + Opm,®) (Jwl),
e in coordinates, we have M NU = Bpa-1(0, €) x [0, £o] for some ¢ > 0.

Proof. The path y is of length £g, so we can reparametrize it by y : [0, £o] — M such
that y is unitary (that is, g, () (¥ (s), y(s)) = 1 for all s € [0, £9]). Moreover, since y
does not have self-intersections, there exist a neighborhood U (in the topology of M)
of y and a diffeomorphism W (in the structure of M) such that

e W(U) C{lx,y) eR":x €[~ lo+el, [y < e},

o U(y(s) = (s,0),

e W(U) ={(x,y) e R": fi(y) <x < fo(y), x € [—¢,£9 + €], |y] < &} for some
smooth functions f; locally defined.

Up to making the change of variable (x, y) — (x — f1(¥), y), we can moreover require
f1 = 0 and change f>to f> — f1.

Then, we make some change of variable to diagonalize the metric on y. By unitarity
of the coordinates, the metric on y has the form

_ 1 [(x)
e = (’l(x) G(x))’

where / is a row vector and G is a positive definite matrix. We perform the change of
variable ® : (x,y) = (X,5) = (x —a(x) - y,y).Iny = 0, we have D®(x,0) =

( (1) _‘fé")) with ' D®(x, 0) = ( _ ;(x) 1(31) (in particular, the change of variable is valid for

small y) and D®(x,0)"! = ((1) ”I%C)) with ‘D®(x,0)~! = (’a}x) I(c)i)' Moreover, in the

new coordinates, the set is {¥ = 0} and the metric there is given by

DD (x,0) " 'm(x, 0)Dd(x,0)"" = ( ! 1x) J”’(x)).

I(x) + fa(x) *
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So, we choose a(x) = —I(x) so that in these new coordinates
1 0
m(x,0) = (0 *) (6.13)

‘We notice that since y (0) is orthogonal to d M which is defined locally by {x = 0}, we
have 1(0) = 0 (since y(0) = (1, 0), this implies (0, y)m (0, 0)y (0) = I(0)y for all y).
In particular, ® restricted to {x = 0} is the identity.

This implies that in these new coordinates, M is still defined near y by 0 < x < f2(y)
(now, we still write (x, y) for (X, ¥)). We still have f>(0) = £y. Morever, since y (£g) =
(1, 0) is orthogonal to d M which is defined locally by {x = f>(y)}, and using the fact
that m(x, 0) is of the form (6.13), we get df>(0) = 0.

Finally, making the change of variable (x, y) — (£o/f2(y)x, y), which is the identity
on y, we see that M is given by 0 < x < £y. Moreover, since df>(0) = 0, the metric is
unchanged on y.

The expected property of m is then obtained by the mean value theorem using the
diagonal form (6.13) on y. m]

6.2. The Schrodinger equation

Now, we turn to the Schrodinger equation. The results are quite similar to those for the
wave equation except for two facts.

The first one is that there is no minimal time. This is quite natural with the infinite
speed of propagation. In the proof, this appears in the fact that the principal symbol of
the Schrodinger operator i9; + Ag is |§|§,. Therefore, the hypersurface {¢(t, x) = 0} is
noncharacteristic if V¢ # 0, without any assumption on the time derivative.

The second difference is that the remainder term involving the H Y(=T,T) x M)
norm involves some derivatives in time and space which do not have the same weight.
Hence, since 0,u = i Agu, this term will actually count for two derivatives in space.

Theorem 6.6. Let M be a compact Riemannian manifold with (or without) boundary,
A, the Laplace—Beltrami operator on M, and
P=id+A;+V,

with V bounded and depending analytically on the variable t € (=T, T) (see Remark
6.4). Assume moreover that V.€ L® (=T, T); W>®(M)).

For any nonempty open subset w of M and any T > 0, there exist C, k, 19 > 0 such
that for any ug € H* N HOl (M), f € L>((=T, T); H*(M)) and u the solution of

idu+Agu+Vu=f in(=T,T) x Int(M),
u=>0 in(T,T) x oM, (6.14)
u(0) = ug in Int(M),

we have, for any i > L,

C
lluollz2 < Celm(”b‘||L2((_T,T);Hl(w)) + ||f||L2((—T,T);H2(M))) + ;||”0||H2~ (6.15)
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If moreover M = @ and all coefficients of P are analytic in both t and x (i.e. the
manifold M, the metric g and the lower order terms Wy, W1, V are analytic), then there
exists ¢ € Co°((=T, T) x w) such that for any s € R, we have

C
luoll 2 < Ce* (llpull s (1. 1yx My + 1 | 27,7y 2 M) + ;HMOHHZ- (6.16)

If oM # @ and T is a nonempty open subset of M, then for any T > 0, there exist
C, k, o > 0 such that for any ug € H?N HOl (M), and u the solution of (6.14), we have,

for any p > po,
KL c
luoll 2 < Ce(IBvull 2~ 7. 7yxr) + Il 2110 2 M) + EHMOHHQ' (6.17)

Finally, if V is time-independent then we have the following stronger result. There ex-
ist Co, k, o > 0 such that for any V bounded, for any uy € H? N Hol(./\/l), f €
L2((=T,T) x M) and u the solution of (6.14), estimates (6.15) and (6.17) hold uni-

Sformly for all u > pomax{1, || VII%@} with constant
C = Coexp(CollV llw2.00a1))-

As in the case of the wave equation, the above theorem is a combination of the theorem
below and energy estimates for the Schrodinger equation.

Theorem 6.7. Let M be a compact Riemannian manifold with (or without) boundary,
Ag the Laplace—Beltrami operator on M, and P = Ag + R with R = R(t, x, 0;, 9y)
is a differential operator of order 1 on (=T, T) x M, with coefficients bounded and
depending analytically on the variable t € (—T, T) (see Remark 6.4).

For any nonempty open subset w of M and any T > 0, there exist ¢, C, k, uo > 0
such that for anyu € H' (=T, T) x M) and f € L>((=T, T) x M) solving

Pu = in(—T,T) x Int ,
w=f i (=T, x Int(M) 618)
u=20 in(=T,T) x oM,
the same three estimates as in Theorem 6.3 hold.
In the case that R = Wyo; + W1 -V 4V does not depend on t, the dependence on the
size of the coefficients of R remains the same as in Theorem 6.3.

Proof. The proof is quite similar to the one for the wave equation, so we only sketch the
main steps. The main difference will be that T can be chosen arbitrary. Pick # arbitrary
with 79 < T, this time without any relation to £y.

We use the same coordinate charts as defined in the proof of Theorem 6.1 for the wave
equation. Then the principal symbol of the Schrodinger operator will be

p(w, xu, T, &y, &) = —(m(w, x,)§, &), & = (&w, &n)-
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Therefore, p is a quadratic form with real coefficients that is definite on the set
{r = 0}. Remark 1.10 implies that any noncharacteristic hypersurface is strongly pseu-
doconvex. So, with the same definition of ¢, we obtain

2 w 2 t !
p(ws xn, dd)s(t, wv xﬂ)) = _E%ﬁhfn/(xﬂ)w? w)((z) + (5) ) |0/|2 - 1

22 2 2\ -1
2 ety o (w r )
+Odwl )<1+ b* v <<b> +(t0> ) o1 >

But, for w small enough, we still have
—1+0(wP) < —1/2,  —(m'w, w) + O(wl*)|w|* <0.

In particular, with the same notations as for the wave equation, there exists b small enough
such that for any ¢ € [0, 1], and any (¢, w, x,) € D x [0, €], we have

p(w, x,, doe(t, w, x,)) < —1/2.

So, applying the same reasoning as for the wave equation, we obtain the existence of
some k, C, g, n > 0 such that

c
lelli2nxrty = CEX MBI L 11030y + Ml 1% )

for any u > .

The dependence on the lower order term R follows as for the wave equation. O
Proof of Theorem 6.6. Since multiplication by V acts on Hj and H? if V € W>®(M),
using the Duhamel formula and a Gronwall argument yields, for s € [T, T,

ol 2 ag) < CeEMVI=00 ()l 2 gy + 1277y A)) -
ClIV 2,00
lu )2y < Ce 2200 (ol 2 + 1L £ 1l 2, ms 2 emn)-

Integrating in time gives

luoll 2 agy < CeSMVI=0 (lull 2 e oyspty + 1 2.7y 0m)
lall 27,2y < €MV (lluoll 2 + 1 F 27,1 2 )
To estimate d;u, we notice that d;u = i (A+V)u—if. Therefore, we only need to estimate
|Agull;2. We have
||atu||L2((7T,T)XM) = C”’/‘”LZ((—T,T);HZ) + ClIV Lo Mmy ||M||L2((7T,T)XM)
+ 1 211y x M)
< eI (Jlugll 2 + 1 2 r. e my):

Hence,

CIV 20 aa)

lull g1 (—1.1yx My < Ce luoll g2 + I F Il 2—7.7y: H2 (M) -

When combined with Theorem 6.7, this gives the estimates of the theorem. O
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Appendix A. Two elementary technical lemmata

In the above proof, we used the following elementary lemma (see e.g. [LRL12]).

Lemma A.1. Let K be a compact set and f, g, h three continuous real valued functions
on K. Assume that f > 0on K, and g > 0 on { f = 0}. Then there exist Ag, C > 0 such
that for all A > Ao, we have g + Af — +h > C on K.

Lemma A.1 is a consequence of the following variant.

Lemma A.2. Let K be a compact set and f a continuous real valued function on K. Let
g and h be two bounded functions defined on K. Assume that f > 0 on K, and there
exists an open neighborhood V of {f = 0} in K such that g > c on V for some constant
¢ > 0. Then there exist Ay, C > 0 such that for all A > Ao, we have g + Af — %h >C
on K.

We also used the following classical result.

Lemma A.3. Consider the following three assertions, for C1, C>, o, Dy, D> > 0 and
a,b,c>0:

b<Cy, a<c, and a<eC"p +c/u® forall u > uo, (A.1)
D
a<———c, (A.2)
log(c/b + 1)
¢ < eD2le/) (A3)

Then:

e forany Cy, Ca, > 0, there exists K > 1 such that for all uy > 0, (A.1) implies (A.2)
with Dy = (2C1)* max{K, ug};

o (A.2) implies (A.3) with Dy = D}'%;

o (A.3) together witha < c and b < Cyc implies (A.1) with o = 0 (and all © > 0) and
C1 = Ds.

Note in particular that (A.1) for some large ;1o implies (A.1) for pg = 0, but with a loss

in the exponent (namely C; replaced by 2C| max{K /e Ho})-

Proof of Lemma A.2. Let us prove the first two statements, namely (A.1)=(A.2)=(A.3)
with appropriate constants. Dividing all inequalities by ¢, and setting y = a/c > 0 and
x =b/c > 0, it suffices to prove

[x<Coy<l y< eC1hx 4+ ™% forall pu > o]

D 1 (D1 /3
= <— = —< 1/y) i
Y= log(lx+ e x=°

Note that the second implication is straightforward since the second assertion is equivalent
1/a . . .
tol/x < @1/ fe_ 1. To prove the first implication, we set

1 1
= —1 —+1),
p(x) 3¢, 0g<x + )
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so that eC1* ™ x = (1/x+1)1/2x = (14x)!/2x!/2. Denoting now C3 = C3(Cy, Ca, &) =
sup, ¢, (1 +x)12x12 1 (x)® < 400, we have eC1H¥ x < C3/u(x)®. As a consequence,
if p(x) > po, then y < (Cz + 1)/u(x)%, which is the sought estimate.

If now p(x) < po, that is, z—él log(1/x + 1) < uo, we have 1 < (logz(?%)a. Then
2C1 1o

the assumption y < 1 directly implies y < (m)a, This concludes the proof of the
first two statements of the lemma for D; = (2C)* max{Cs + 1, pfg}.

To prove the last statement, fix 4 > 0.Then either c/a < u®, in which case, according
to (A3),a <c¢ < eP2p or c/a > p*, in which case a < ¢/u”. In any case, a <
eP2b + c/u®, which proves (A.1). ]

Appendix B. Elementary complex analysis
We recall that we identify C and R? with z = x + iy = (x, y) and denote
Q1 ={ze€C:Rez >0, Imz > 0} =R} +iR}.

Lemma B.1. Let fy, f1 € WIL’COO(RJF) be such that | f3(x)|, | f{(x)| < C for some C >0
and almost all x € R.. Then the function defined for (x,y) € Q1 by

4xy /OO §fo(§)
=y d
TeN="" ) Gt id“

T Jo G2HO@+FDHE+G-n?)
satisfies | f(z)] < 2C(1 + |z|) in Q together with
Af=0 inQ1, fx,0=/fix), fO,y=f), xyeRi
If moreover fy(0) = f1(0), then f is continuous on Q.

Note that this theorem provides an existence result for the Poisson problem on Q; as-
sociated to Lipschitz boundary conditions. The Phragmén—Lindel6f theorem B.4 below
provides an associated uniqueness result in the class of functions having a subquadratic
growth at infinity.

The next lemma is a key point in the proof of the local estimate (see Section 3.3).

Lemma B.2. Let R, 8, «,¢,c; > 0. Then there exists dy = do(8, k, R, &, c1) such that
for any d < do, there exists Bo(5, k, R, €, c1,d) such that for any 0 < B < P, the
following two assertions hold:

o the function
1) = RyLio, ) () + Ly 100)(y) min{Ry, max(—k, =98y, —e/y) + c1y* + p*/y}

is continuous for all y < B/(R + 98)'/? (in the application y = 1o/ 1),
e the function f given by Lemma B.1 associated to f1 and fo = O satisfies

flx,y) = =88y ford/4 <|(x,y)| <2d.
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Proof of Lemma B.1. Let us first justify the form (B.1) of the solution. From the Green
function G¢(z, 7)) = (2w) " log |z’ — z| in C, we first construct a Green function in Q
using the so-called “image points” z, —z and —z. This yields

1 1 1 1
Go,(z,7):=—1log|z —z| — —log |z — 7| — — log |z +Z| + — log |z + 2|,
01(2.2) =5 loglz —z| — S loglz — 2| — S—loglz + 2| + 5 loglz + 2]

that is, with z = (x, y) and 7/ = (&, n),

1 1
Go, ((x,y), (§,m) = —log((§ — )+ =y — 7 log((€ — )2+

_ 1 2 oo, b 2 2
) log((§ +x)*+ (m —y)*) + —log((§ +x)= + (n + y)).
T 4

For fixed z € Qy, the last three terms are smooth in z’ € Q; so that —A;Gg,(z,2")
= 8,/—;. Moreover, for z’ = (£, ) € 8Q1, either § = 0 or n = 0, so that G, = 0 for
7€ da01.

Now we compute

9G g, _ 4y ]
E |img 7w 2+ GHEDIE+ (-0
3G, __4ﬂ §
i lmo T ((x=E2+y)((x+8E)2+y?)

The representation formula for solutions of Af = 01in Q1 and flyp, = f reads

G ~
ro=[ 3% e
90 vy, 7€d 0
which justifies (B.1).
Let us now estimate for (x, y) € Q1 the term
4xy / > nf1(m) ’
T Jo 2HO@+EMHEE+G-m?H)
4 o c(1
< nCd+mn) dn

m Jo 2+G+MHEE+ -0
< C((2/m) arctan(y/x) + y)
<Cd+y),
where we have used Lemma B.3 in the second inequality. The other term containing fj
can be estimated as well in Q1 by C(1 + x), so that
[f@DI<=CR+x+y) <2C(+z]), z=(x,y) € Q.

That Af = 0 follows from the definition of G, as a Green function, and it only
remains to check the boundary values of f. For this, by symmetry, it suffices to prove that
for all xg, yo > 0, we have

)(Tfl)(x,y)ZO, ( lim )(Tfl)(x,y)=f1(yo), (B.2)

1
(x,y)—>(x0,0 x,y)—>(0,y0
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with

ey [ nf1(m)
TGy = /0 2+ 0+ DI+ (=)

dn.
Since f{ € L*(Ry), we have
L] = 1AO)] + 1l £l
Hence, according to the definition of 7', we obtain
ITAil < 1AOIT Q) + I fillz=T ). (B.3)
In view of Lemma B.3, this implies
(T D), Y| = 1£10)](2/m) arctan(y/x) + || f{ll Ly,

and thus (T f1)(x, y) — 0 as (x, y) — (xo, 0), which yields the first part of (B.2).
To prove the second part of (B.2), we write

A1) — fio)l < 1n—yol I f{llLes.

This implies
ITf1(x, y) — (2/m) arctan(y/x) f1(yo)| = |T f1 — T (f1(Go)|(x, y)
< I fillLeeT (In = yol)(x, ¥). (B.4)
We now study the term
dxy [ nin — yol
Tn = yb6, 7)==~ /0 @24+ +mHE2+(y—n?) an
_ Ay /yo n(yo —n) dn
T Jo 2+ +nHE2+-m?
LAy /°° n(n — yo) dn
w Jy G2+ G+FDHE2+ G -n?)
_ Aﬂfyo n(yo—mn dn
T Jo G2+ +HE2+-m?H
L a0y /°° n(n = yo) dn
T Jo G2+ +EDHE?+G-n?)
4xy [ n(yo —1n)
N 27/0 oD+ -y T,

With Lemma B.3, we have T'(n — yo)(x, ¥y) = y — (2/m) arctan(y/x)yp — Oas (x, y) —
(0, yo0). Moreover, we have

dxy /y" n(yo —n) J
7 Jo Z+OG+nHEZ+ G —-n?)

:l/y°<_ x(o=m . xGo—m )d
ah U roam T 2ro-m2) Y

n
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(see the proof of Lemma B.3). The term [j° %dﬂ vanishes when (x,y) —

(0, yo). Concerning the second term, we have

! /yo xoo—m 1 /@o—wx ( | _ds
—_ _— = — — —X5) ——
ah 2ro-2 T, T TR

Yo —y Yo —y y X x? 4+ (yo — y)?
= arctan +arctan| = ) | — — log| ————5—),
T X X 2 x2+y?

which vanishes when (x, y) — (0, yg). The last three estimates prove T (|n — yo|)(x, ¥)
— 0as (x, y) = (0, yo). In view of (B.4), this implies

lim [T fi(x,y) = (2/7) arctan(y/x) f1(yo)| = 0,
@)= (0.0

which is the second part of (B.2).

For the continuity, by symmetry and translation by a constant, it is sufficient to prove
that if f1(0) = O, then T f1(x, y) converges to zero as (x, y) converges to zero. This is
implied by (B.3). This concludes the proof of the lemma. O

Proof of Lemma B.2. Let us define

P \/Z (8 Kk e
o= |5l 550258

and notice that Ig # @ for B < Bo with By = Bo(8, «, c1, &) sufficiently small. We first
prove that for all y < 8./4/5, we have

fi(y) = =98y +ciy* + B2/y onlg, (B.5)
and
Ig C {f1 < —8.58y}, (B.6)

and a fortiori for y < B/(R + 98)'/%? < B./4/8.
For this, notice that y € Ig implies y < §/(4cy) and y > B./4/3, which yields

—8y%/2 4 c1y? < —8y*/4 < —p~.
As a consequence, for y € Ig, we have

—8y/24+ 1y +B%/y <0, andso —98y+ci1y*>+ B%/y < —8.58y <0 < Ry.
(B.7)

In particular, (B.5) implies (B.6). Moreover, for y € Ig, we have —k < —93y together
with —g/y < —98y, so that max(—«, —98y, —e/y) = —98y. This proves (B.5) with the
help of (B.7).

Let us now check the continuity of f;. First we remark that both

y— Ry and ym— min{Ry, max(—fc, —98y, —8/(4y)) + cly2 + ,32/y}
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are continuous. Second, we prove that both functions coincide for y < y, which provides
the continuity of fi. For0 <y <y < B/((R + 98)'/?), we have (98 + R —c1y)y? < B>
and we obtain Ry < —98y + c1y? + p2/y. For B < o we have Ig # ¥ so that
y < BJ4/6 < min(g"—s, %), and max(—«, —98y, —¢/y) = =98y fory < y. As a
consequence, we have

Ry = min{Ry, max(—«, =98y, —e/y) + C1y2 + ,32/y} forO0 <y <y,

and f) is continuous for all B < By and y < B/(R + 98)'/2.
Since fi is continuous, piecewise smooth, and linear at infinity, it is globally Lip-

schitz. Hence, it satisfies all assumptions of Lemma B.1 (and fy = 0), so that we can
define f by

dxy / o nfi(m) dn.
0

TN =" o+ +0 -9

Setting f = f + 8.58y, we now prove an upper bound for f Using the second formula
of Lemma B.3, we have

Ty =2 / > n(fi(n) +8.567)
7 0 2+ +EDHEZ+ G —n?)

T IR\ T Jig

According to (B.6), we have

4xy n(f1(n) +8.56m)
w Jip P+ +mHEE+ (v —n)?)

0. (B.8)

Next, for small 8, we have Ry \ Ig = [0, Dg] U [D, +o0], with Dg := 8./4/6 < D :=

min(%, 5 %) Since f1(y) < Ry, we have

dxy [ _Axy [ (R + 8.58)n?
T Jp T Jp 2HO+FDHEI+ -0

If0 <y < D/2andn > D, we have (y —n)* = (n — D/2)* and (y + n)* = n?, so

dn.

4xy [ - 16xy /‘OO (R + 8.58)n?
7 Jp ~ 7 Jp n*(n—D/2)?

Hence, if x < vD and y < D/2, this implies

dn=C(@,k, R, ¢, cr)xy.

dxy [

— - <vC@,k, R, e,c1)D(S, Kk, 8,c1)y < 8y/4 (B.9)
T Jp

as soon as v < §/(4CD). Now we fix 2dy := 2dy(8, x, R, ¢, c1) = min{vD, D/2}. For

any d < dyp, we have (B.9) for all (x, y) such that |(x, y)| < 2d.
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Finally, we study the term (4xy/7) fODﬁ -+ dn. For B sufficiently small (namely 8 <
dﬁ/l6), we have d /4 — Dg > d/8 (recall Dg = 84/4/5). As a consequence, for (x, y)
such that d/4 < |(x, y)| < 2d, and for all n € [0, Dg], the triangle inequality yields

2+ (v + D = (d/4— Dp)* > d* /8, (P4 (y—n)?) = (d/4— Dpg)* > d*/8%
Still using f1(y) < Ry, we have

4xy /Dﬁ _ 4y [P (R +8.58)n* J
=y LT n
T Jo T Jo @X+OG+nHEE+G -0
4xy (8\* Dg
< ﬂ(—) (R+8.58)/ 2 dn
T d 0
4xy (8\* D;
<2 2) (R+855)=L < C'(R, s, d)B3y.
7 \d 3

Now, for all B < (46‘/(1(3—5:1))1/3 this is less than 8y /4.

This together with (B.8) and (B.9) implies that f (x,y) < 8y/2 for (x, y) such that
d/4 < |(x,y)| < 2d, that is,

fx,y) = =88y ford/4 <|(x,y)| <2d.
This concludes the proof of the lemma. O
Lemma B.3. Forall x,y > 0, we have
4xy [ n
T 2 2y(x2 74
T Jo (CFGENIEE+G—n)

n = (2/m) arctan(y/x),

4xy 0 772 g
7/0 o+ o) T
Proof. First notice that
4xyn . X X
e Y Uy e . S By e R SRy g 5

Hence, we obtain

4xy /N L dn
0o 2+ +HEZ+ -2

L )
T U040 T2 y—n2)

/(N+y)/x 1 y/x 1
=— ds + / —ds
y/x 1452 o-Nyx 1 +s?

= —arctan((N + y)/x)) + arctan(y/x) + arctan(y/x) — arctan((y — N)/x))

— 2arctan(y/x) as N — oo,

since x, y > 0.
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Concerning the second equation, we have

fN 4xyn? p _fN<_ xn N X1 )d
0 2o+ +o-m "L Uarormr Ta2ro-n2) "

N xn 4 Ny x(s —y)
== 2 7 4n = - T2 498
_NX*+(+n) —N+y X°+s

N+y xs N+y Xy
= — ﬁds + ﬁds
—N+y X“+§ —N+y X“+s

The integrand of the first term is an odd function, so that

Nty o xy Nty xs
- ds = — -3 ds,
—N+y X“+§ —N—y X“+s

which converges to zero as N — co. Moreover, the second term satisfies

Nty xy WN+»)/x
/ ﬁds=y/ ——5ds—>mny asN — oo,
—N+y X*+s (—N+y)/x L+
which concludes the proof of the lemma. O

The following is a version of the Phragmén—Lindelof principle for subharmonic functions
in a sector of the complex plane. We prove it as a consequence of the maximum principle
for subharmonic functions in bounded domains. Note that the usual Phragmén—Lindelof
theorem (see [PLO8] or [SS03, Theorem 3.4]) can be deduced from this one.

Lemma B.4. Let ¢ be a subharmonic function in Q1, continuous in Q. Assume that
there exist e, C > 0 such that

() <CUA+1z7%), ze€Q,
$(z) <0, z€dQ =Ry UiR,.

Then ¢(z) <0 forall z € Q.

Note that the power 2 — ¢ with ¢ > 0 is sharp: the result is false for ¢ = 0, as showed by
the harmonic function (x, y) — xy.

Proof of Lemma B.4. First note that the sector Q| can be rotated, say to the quadrant
Q={zeC:argz e [—n/4, /4]}.

We set v := Re z27¢/2 (with the principal determination of the logarithm) which is har-
monic in Q. We have v(r, ) = r>~¢/? cos((2 — £/2)0) > r>~¢/? cos((2 — £/2)m /4) with
cos((2 —e/2)m/4) > 0. Let

us(z) = ¢(z) — dv(z),
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which is also subharmonic in Q. We have limsup ¢ ;|00 #(2) = —00. As a conse-
quence, there exists R > 0 such that us(z) < 0 on {|z| = R} N Q. Now, on the bounded
set O = 0 N {|z| < R}, we apply the maximum principle to the function us, satisfying
us < 0on dQR. This yields us < 0 on QX and hence u5 < 0 on Q. Finally, letting § tend
to zero, we obtain the sought result. O
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