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LOGARITHMIC DECAY FOR LINEAR DAMPED HYPOELLIPTIC
WAVE AND SCHR\"ODINGER EQUATIONS\ast 

CAMILLE LAURENT\dagger AND MATTHIEU L\'EAUTAUD\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We consider linear damped wave (resp., Schr\"odinger and plate) equations driven
by a hypoelliptic ``sum of squares"" operator L on a compact manifold \scrM and a damping function
b(x). We assume the Chow--Rashevski--H\"ormander condition at rank k (at most k Lie brackets
are needed to span the tangent space) together with analyticity of \scrM and the coefficients of L.

We prove that the energy decays at rate log(t) - 
1
k (resp., log(t) - 

2
k ) for data in the domain of the

generator of the associated group. We show that this decay is optimal on a family of Baouendi--
Grushin-type operators. This result follows from a perturbative argument (of independent interest)
showing, in a general abstract setting, that quantitative approximate observability/controllability
results for wave-type equations imply a priori decay rates for associated damped wave, Schr\"odinger,
and plate equations. The adapted quantitative approximate observability/controllability theorem for
hypoelliptic waves is obtained by the authors in [J. Eur. Math. Soc. (JEMS), 21 (2019), pp. 957--1069]
and [Mem. Amer. Math. Soc., to appear].

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . stability estimates, hypoelliptic operators, wave equation, resolvent estimates,
approximate observability
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\bfD \bfO \bfI . 10.1137/20M1354969

1. Introduction and statements.

1.1. Damped hypoelliptic evolution equations. We consider a smooth com-
pact connected d-dimensional manifold \scrM , endowed with a smooth positive density
measure ds. We denote by L2 = L2(\scrM ) = L2(\scrM , ds;\BbbC ) the space of complex-valued
square integrable functions with respect to this measure. Given a smooth vector field
X, we define by X\ast its formal adjoint in L2(\scrM ), that is,\int 

\scrM 
X\ast (u)(x)v(x)ds(x) =

\int 
\scrM 
u(x)X(v)(x)ds(x) for any u, v \in C\infty (\scrM ).

Givenm \in \BbbN andm smooth real vector fieldsX1, . . . , Xm, we consider the (H\"ormander
type I) hypoelliptic operator (also called sub-Riemannian Laplacian; see, e.g., [25, Re-
mark 1.30])

L =

m\sum 
i=1

X\ast 
i Xi.(1.1)
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Note that L is symmetric and nonnegative since

(Lu, v)L2(\scrM ) =

m\sum 
i=1

(Xiu,Xiv)L2(\scrM ) for all u, v \in C\infty (\scrM ).

Given a nonnegative (so-called damping) function b \in L\infty (\scrM ;\BbbR +), we are interested
in asymptotic properties of the linear damped wave equation associated to (L, b),
namely, \Biggl\{ 

(\partial 2t + L+ b\partial t)u = 0 on (0,+\infty )\times \scrM ,

(u, \partial tu)| t=0 = (u0, u1) on \scrM .
(1.2)

Solutions of (1.2) enjoy formally the following dissipation identity (obtained by taking
the inner product of (1.2) with \partial tu and integrating on (0, T )):

E(u(T )) - E(u(0)) =  - 
\int T

0

\int 
\scrM 
b(x)| \partial tu(t, x)| 2ds(x) dt

with E(u) =
1

2

\Biggl( 
m\sum 
i=1

\| Xiu\| 2L2(\scrM ) + \| \partial tu\| 2L2(\scrM )

\Biggr) 
.

We are also interested in the linear damped Schr\"odinger equation associated to (L, b),\Biggl\{ 
(i\partial t + L+ ib)u = 0 on (0,+\infty )\times \scrM ,

u| t=0 = u0 on \scrM ,
(1.3)

for which the L2 norm is a dissipated quantity (obtained by taking the imaginary part
of the inner product of (1.3) with u and integrating on (0, T )):

1

2
\| u(T )\| 2L2(\scrM )  - 

1

2
\| u0\| 2L2(\scrM ) =  - 

\int T

0

\int 
\scrM 
b(x)| u(t, x)| 2ds(x) dt.

Hence, in both situations, an ``energy"" decays, and an interesting question is,
Does it converge to zero, and if so, at which rate?

We shall always assume throughout the paper that the family (Xi) satisfies the
Chow--Rashevski--H\"ormander condition (or is ``bracket generating"").

For a family \scrF of smooth vector fields on \scrM and \ell \in \BbbN \ast , we define Lie\ell (\scrF ), the
Lie algebra at rank \ell of the vector fields as

\bullet Lie1(\scrF ) = span(\scrF );

\bullet Lie\ell +1(\scrF ) = span
\Bigl( 
Lie\ell (\scrF ) \cup 

\Bigl\{ 
[X,Y ];X \in \scrF , Y \in Lie\ell (\scrF )

\Bigr\} \Bigr) 
.

Assumption 1.1. There exists \ell \geq 1 so that

Lie\ell (X1, . . . , Xm)(x) = Tx\scrM for all x \in \scrM .

Denote by k \in \BbbN \ast the minimal \ell for which this holds.

The integer k is sometimes referred to as the hypoellipticity index of L. In our
notation, Lie1(X1, . . . , Xm)(x) = span(X1, . . . , Xm)(x). Hence, elliptic operators cor-
respond to (1.1) with k = 1, and Baouendi--Grushin and Heisenberg operators cor-
respond to (1.1) with k = 2. We refer the reader to, e.g., [25, section 1.1] for other
detailed examples.
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Under Assumption 1.1, the celebrated H\"ormander [22] and Rothschild--Stein [41]
theorems (see [7] for a simpler proof of the latter theorem) state that L is subelliptic
of order 1

k ; that is, there is C > 0 such that for any u \in C\infty (\scrM ), we have

\| u\| 2
H

2
k (\scrM )

\leq C \| Lu\| 2L2(\scrM ) + C \| u\| 2L2(\scrM ) .(1.4)

As a consequence, the operator L is self-adjoint on L2(\scrM ) with domain L : D(L) \subset 
L2(\scrM ) \rightarrow L2(\scrM ). Since H2(\scrM ) \subset D(L) \subset H

2
k (\scrM ), L has a compact resolvent

and thus admits a Hilbert basis of eigenfunctions (\varphi j)j\in \BbbN , associated with the real
eigenvalues (\lambda j)j\in \BbbN , sorted increasingly, that is,

L\varphi i = \lambda i\varphi i, (\varphi i, \varphi j)L2(\scrM ) = \delta ij , 0 = \lambda 0 < \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda j \rightarrow +\infty .
(1.5)

In particular, this allows us to define adapted Sobolev spaces

\scrH s
L = \{ u \in D\prime (\scrM ), (1 + L)

s
2u \in L2(\scrM )\} , \| u\| \scrH s

L
=
\bigm\| \bigm\| (1 + L)

s
2u
\bigm\| \bigm\| 
L2(\scrM )

, s \in \BbbR ,

where f(L)u =
\sum 

j\in \BbbN f(\lambda j)(u, \varphi j)L2(\scrM )\varphi j .
In addition to Assumption 1.1, we also make the following analyticity assumption.

Assumption 1.2. The manifold \scrM , the density ds, and the vector fields Xi are
real-analytic.

A nonexhaustive list of classical examples of operators L encompassed by this
framework is provided in [25, section 1.1]. Note that the damping function b does not
need to be analytic but only L\infty ; in particular, our results work for b = 1\omega if \omega is a
nonempty open subset of \scrM .

Motivations for studying propagation and unique continuation properties for hy-
poelliptic operators arise in different physical situations. For instance, wave-type or
Helmholtz-type equations involving a hypoelliptic operator of the form (1.1) appear
in the modeling of metamaterials, which are characterized by the fact that some ei-
genvalues of the material parameter tensor may vanish at places. The modeling of
such materials is described, for instance, in [20] in connection with sub-Riemannian
optics (and with applications to antenna design and energy harvesting). We refer
the reader to this article for other related interesting applications to ideal and ap-
proximate sub-Riemannian optics designs. Subelliptic operators of the form (1.1) also
naturally appear in several other physical contexts; we refer the reader to [10, Chapter
2] for a presentation of some of them.

On the space \scrH 1
L \times L2, the operator

\scrA =

\biggl( 
0 Id

 - L  - b(x)

\biggr) 
with D(\scrA ) = \scrH 2

L \times \scrH 1
L generates a bounded semigroup (from the Hille--Yosida the-

orem), and (1.2) admits a unique solution u \in C0(\BbbR +;\scrH 1
L) \cap C1(\BbbR +;L2). Our main

results for damped hypoelliptic waves are summarized in the following two theorems.

Theorem 1.3 (decay rates for damped hypoelliptic waves). Assume, together
with Assumptions 1.1 and 1.2, that b \in L\infty (\scrM ) is such that b \geq \delta > 0 a.e. on
a nonempty open set, . Then, for all (u0, u1) \in \scrH 1

L \times L2, the associated solution
to (1.2) satisfies E(u(t)) \rightarrow 0. Moreover, for all j \in \BbbN \ast , there exists Cj > 0 such that
for all (u0, u1) \in D(\scrA j), the associated solution to (1.2) satisfies

(1.6) E(u(t))
1
2 \leq Cj

log(t+ 2)j/k

\bigm\| \bigm\| \scrA j(u0, u1)
\bigm\| \bigm\| 
\scrH 1

L
\times L2 for all t \geq 0.
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Theorem 1.3 is actually a consequence of the following result together with the
result of [5].

Theorem 1.4 (spectral properties for damped hypoelliptic waves). Assume,
together with Assumptions 1.1 and 1.2, that b \geq \delta > 0 a.e. on a nonempty open set.
Then, the spectrum of \scrA contains only isolated eigenvalues with finite multiplicity and
satisfies the following:

1. Sp(\scrA ) = Sp(\scrA ) and ker(\scrA ) = span\{ (1, 0)\} (where 1 denotes the constant
function);

2. Sp(\scrA ) \subset 
\bigl( \bigl( 

 - 1
2\| b\| L\infty (\scrM ), 0

\bigr) 
+ i\BbbR 

\bigr) 
\cup 
\bigl( 
[ - \| b\| L\infty (\scrM ), 0] + 0i

\bigr) 
;

3. there exist C, \nu > 0 such that
\bigm\| \bigm\| (is - \scrA ) - 1

\bigm\| \bigm\| 
\scrL (\scrH 1

L
\times L2)

\leq Ce\nu | s| 
k

for all | s| \geq 1;

4. there exist \varepsilon , \nu > 0 such that Sp(\scrA ) \cap \Gamma k(\varepsilon , \nu ) = \{ 0\} , where \Gamma k(\varepsilon , \nu ) = \{ z \in 
\BbbC ,Re(z) \geq  - \varepsilon e - \nu | Im(z)| k\} .

The first two points are rather standard; see [32]. Point 3 is the key information
in the theorem and is a consequence of the main theorem in [25, Theorem 1.15]. The
last point states an exponentially small spectral gap and is a consequence of point 3.

Combined together, Theorems 1.3 and 1.4 make up the counterpart to
[32, Th\'eor\`eme 1] in the case of the usual wave equation (k = 1, in which case no
analyticity is required, and boundary conditions can be dealt with).

Note that the fact that Sp(\scrA )\cap i\BbbR = \{ 0\} in point 2 (which, in turn, implies that
E(u(t)) \rightarrow 0 in Theorem 1.3 for all solutions to (1.2)) is actually a consequence of the
qualitative uniqueness,\Bigl( 

\varphi \in \scrH 2
L, z \in \BbbC , L\varphi = z\varphi on \scrM , \varphi = 0 on \omega 

\Bigr) 
=\Rightarrow \varphi \equiv 0 on \scrM ,(1.7)

which was proved by Bony [8] to be a consequence of the Holmgren--John theorem.
Even this weaker property is not well understood for general hypoelliptic operators
if we drop Assumption 1.2; see [3]. Here the key point is the quantification of the
Holmgren--John theorem proved in [26, 25] (see also [27] for a survey).

We present analogous results in the case of the damped hypoelliptic Schr\"odinger
equation. We set \scrA S := iL  - b with D(\scrA S) = D(L), so that (1.3) reformulates
as (\partial t  - \scrA S)u = 0. Note that \scrA S generates a contraction semigroup (from the
Hille--Yosida theorem), and (1.3) admits a unique solution u \in C0(\BbbR +;L2(\scrM )). Our
main results for the damped hypoelliptic Schr\"odinger equation are summarized in the
following two theorems.

Theorem 1.5 (decay rates for the damped hypoelliptic Schr\"odinger equation).
Assume, together with Assumptions 1.1 and 1.2, that b \in L\infty (\scrM ) is such that b \geq 
\delta > 0 a.e. on a nonempty open set. Then, for all u0 \in L2(\scrM ), the associated solution
to (1.3) satisfies u(t) \rightarrow 0 in L2(\scrM ). Moreover, for all j \in \BbbN \ast , there exists Cj > 0

such that for all u0 \in D(\scrA j
S), the associated solution to (1.3) satisfies

(1.8) \| u(t)\| L2(\scrM ) \leq 
Cj

log(t+ 2)2j/k

\bigm\| \bigm\| \bigm\| \scrA j
Su0

\bigm\| \bigm\| \bigm\| 
L2(\scrM )

for all t \geq 0.

Note that when comparing (1.8) to (1.6), we see that the decay rate looks better
(log(t + 2) - 2j/k instead of log(t + 2) - j/k) but actually consumes more derivatives:

for a smooth damping function b,
\bigm\| \bigm\| \bigm\| \scrA j

Su0

\bigm\| \bigm\| \bigm\| 
L2(\scrM )

\simeq \| u0\| \scrH 2j
L
, whereas

\bigm\| \bigm\| \scrA jU0

\bigm\| \bigm\| 
L2(\scrM )

\simeq 

\| U0\| \scrH j
L
\times \scrH j - 1

L
. Hence both decay rates essentially coincide for data having the same

regularity. Theorem 1.5 is a consequence of the following result together with the
result [5].
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Theorem 1.6 (spectral properties for the damped hypoelliptic Schr\"odinger equa-
tion). Assume, together with Assumptions 1.1 and 1.2, that b \geq \delta > 0 a.e. on a
nonempty open set. Then, the spectrum of \scrA S contains only isolated eigenvalues with
finite multiplicity and satisfies the following:

1. Sp(\scrA S) \subset 
\bigl[ 
 - \| b\| L\infty (\scrM ), 0

\bigr) 
+ i[0,+\infty );

2. there exist C, \nu > 0 such that
\bigm\| \bigm\| (is - \scrA S)

 - 1
\bigm\| \bigm\| 
\scrL (L2)

\leq Ce\nu | s| 
k/2

for all s \in \BbbR ;
3. there exist \varepsilon , \nu > 0 such that Sp(\scrA S)\cap \Gamma k,S(\varepsilon , \nu ) = \emptyset , where \Gamma k,S(\varepsilon , \nu ) = \{ z \in 

\BbbC ,Re(z) \geq  - \varepsilon e - \nu | Im(z)| k/2\} .
Note that in the elliptic case k = 1, the results of Theorems 1.5 and 1.6 are more or

less classical, even though they do not seem to be written explicitly in the literature. In
this situation, analyticity is not necessary, and boundary value problems can be dealt
with. As a consequence of [26] (with Dirichlet boundary conditions), our abstract
perturbative proof below works as well. One can, however, start from the seminal
Lebeau--Robbiano estimates in this situation; see [33, 32] for Dirichlet conditions (see
also [30] for a survey) and [34] for Neumann boundary conditions.

A similar result holds for the damped plate equation associated to (L, b),\Biggl\{ 
(\partial 2t + L2 + b\partial t)u = 0 on (0,+\infty )\times \scrM ,

(u, \partial tu)| t=0 = (u0, u1) on \scrM .
(1.9)

Solutions of (1.9) also enjoy formally a similar dissipation identity,

EP (u(T )) - EP (u(0)) =  - 
\int T

0

\int 
\scrM 
b(x)| \partial tu(t, x)| 2ds(x) dt

with EP (u) =
1

2

\Bigl( 
\| Lu\| 2L2(\scrM ) + \| \partial tu\| 2L2(\scrM )

\Bigr) 
.

The framework is quite similar to that of the wave equation. We work on the space
\scrH 2

L \times L2 with the operator

\scrA P =

\biggl( 
0 Id

 - L2  - b(x)

\biggr) 
with D(\scrA P ) = \scrH 4

L \times \scrH 2
L. It generates a bounded semigroup, and (1.9) admits a

unique solution u \in C0(\BbbR +;\scrH 2
L) \cap C1(\BbbR +;L2).

Theorem 1.7 (decay rates for damped hypoelliptic plates). Assume, together
with Assumptions 1.1 and 1.2, that b \in L\infty (\scrM ) is such that b \geq \delta > 0 a.e. on a
nonempty open set. Then, for all (u0, u1) \in \scrH 2

L \times L2, the associated solution to (1.9)
satisfies EP (u(t)) \rightarrow 0. Moreover, for all j \in \BbbN \ast , there exists Cj > 0 such that for all

(u0, u1) \in D(\scrA j
P ), the associated solution to (1.9) satisfies

(1.10) EP (u(t))
1
2 \leq Cj

log(t+ 2)2j/k

\bigm\| \bigm\| \bigm\| \scrA j
P (u0, u1)

\bigm\| \bigm\| \bigm\| 
\scrH 2

L
\times L2

for all t \geq 0.

Spectral statements similar to Theorems 1.4 and 1.6 hold for the plate equation.
We leave the details to the reader. Again, using the result of [26], we could also obtain
a logarithmic decay in the elliptic case k = 1 for a compact manifold with boundary
and with Dirichlet boundary conditions. We do not know if this result is new in this
context. There is an important literature on the subject, and we refer the reader to
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[31, 24] for exact control results (implying exponential decay of the damped equation)
and, e.g., to [1] for a spectral analysis of the decay rate.

Finally, we show that the results of Theorems 1.3, 1.4, 1.5, and 1.6 are optimal
in general (in the case when k > 1; this is already known in the elliptic case k = 1;
see [32, 34]). This is also the case for Theorem 1.7 (and the associated spectral
statement); we do not state the result for the sake of brevity.

Proposition 1.8. Consider the manifold with boundary \scrM = [ - 1, 1] \times (\BbbR /\BbbZ ),
endowed with the Lebesgue measure dx, and for k \in (1,+\infty ), define the operator

L =  - 
\bigl( 
\partial 2x1

+ x
2(k - 1)
1 \partial 2x2

\bigr) 
, with Dirichlet conditions on \partial \scrM . Assume that supp(b) \cap 

\{ x1 = 0\} = \emptyset . Then, there exist C, \nu > 0 and a sequence (sj)j\in \BbbN with sj \rightarrow +\infty such
that \bigm\| \bigm\| (isj  - \scrA ) - 1

\bigm\| \bigm\| 
\scrL (\scrH 1

L
\times L2)

\geq Ce\nu s
k
j for all j \in \BbbN ,(1.11) \bigm\| \bigm\| (isj  - \scrA S)

 - 1
\bigm\| \bigm\| 
\scrL (\scrH 1

L
\times L2)

\geq Ce\nu s
k/2
j for all j \in \BbbN .(1.12)

Moreover, if for all (u0, u1) \in D(\scrA ), the associated solution to (1.2) satisfies

E(u(t))
1
2 \leq f(t) \| \scrA (u0, u1)\| \scrH 1

L
\times L2 for all t \geq 2,

then there is C > 0 such that f(t) \geq C
log(t)1/k

. Similarly, if for all u0 \in \scrH 1
L, the

associated solution to (1.3) satisfies

\| u(t)\| L2(\scrM ) \leq f(t) \| \scrA Su\| L2(\scrM ) for all t \geq 2,

then there is C > 0 such that f(t) \geq C
log(t)2/k

.

Recall that for k \in \BbbN \ast , the operator L =  - 
\bigl( 
\partial 2x1

+ x
2(k - 1)
1 \partial 2x2

\bigr) 
satisfies precisely

Assumption 1.1. The first statement of the proposition is a consequence of [6, sec-
tion 2.3] as reformulated in [25, Proposition 1.14]. It proves the optimality in general
of point 3 in Theorem 1.4. The second part of the statement is a corollary of the first
one, together with the result of [5], and proves optimality of (1.6) and (1.8).

Let us finally mention related known decay results for damped evolution equations
driven by a hypoelliptic operator.

First, a reformulation of the result of [35] (e.g., combined with [21]) in the present
context states that if

span(X1(x), . . . , Xm(x)) \not = Tx\scrM 

for x in a dense subset of \scrM , and \scrM \setminus supp(b) \not = \emptyset , then uniform decay does not hold:
there is no function f : \BbbR + \rightarrow \BbbR + with f(t) \rightarrow 0 such that E(u(t)) \leq f(t)E(u(0)).
This contrasts with the Riemannian case [39, 4], and in this context gives a stronger
interest to the result of Theorem 1.3 as compared to the Riemannian counterpart. In
a genuine sub-Riemannian/hypoelliptic setting, uniform decay never holds, and the
best we can hope for is semiuniform decay in the sense of [32, 5], which is precisely
what we prove.

Second, one may, however, notice that logarithmic decay as in Theorem 1.3 is
not always optimal. Combining, for instance, [12, Theorem 1] with [2, Theorem 2.3]

implies that
Cj

log(t+2)j/k
in (1.6) can be replaced by

Cj

tj/2
(and this is probably not

optimal) in the geometric setting of Proposition 1.8 if b(x1, x2) = 1(a,b)(x2) for any
a < b.
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Similarly, logarithmic decay in Theorem 1.5 is not always optimal. For in-
stance [12, Theorem 1] (together with classical equivalence between observability for
the conservative system and uniform stabilization for the damped system) implies that
in the geometric setting of Proposition 1.8, if b(x1, x2) = 1(a,b)(x2) for a < b, then
uniform decay holds; that is, there are C, \gamma > 0 such that \| u(t)\| L2 \leq Ce - \gamma t \| u0\| L2

for all solutions to (1.3).
Let us finally remark that all proofs below rely on the approximate observabil-

ity/controllability of the hypoelliptic wave equation with optimal cost. The latter
result is proved by the authors in [25]. It is interesting to note that in the elliptic
case (k = 1 in the discussion above), the approximate observability/controllability
of the wave equation (proved in [26]) with optimal (exponential) cost allows us to
recover many known control results obtained with Carleman estimates. In particular,
it implies

1. null-controllability of the heat equation with optimal short-time behavior,
as proved in [17] and [29, Proposition 1.7] (the original result can be found
in [33, 19]);

2. approximate observability/controllability of the heat equation with optimal
(exponential) cost [25, Chapter 4] (the original result can be found in [18]);

3. optimal logarithmic decay for the damped wave equation, see Theorem 1.3
for k = 1 (the original result can be found in [32, 34]).

Here, we provide a proof of the last point in a general framework presented in sec-
tion 1.2 below and deduce counterparts for hypoelliptic equations using [25].

Remark 1.9. All equations considered in this paper are linear. It would be very
interesting to extend our results to a nonlinear context. The literature on the nonlinear
damped wave equation for the usual Laplacian is huge, and we refer the reader to,
e.g., the recent paper [23] for a survey. In the process of proving a stabilization result
for nonlinear hypoelliptic equations, there are, however, several crucial obstacles,
especially for large data solutions. Most of the results for the usual wave equation rely
on very strong geometric assumptions on the damping zone (like multiplier conditions
or at least the geometric control condition of [4]). To the authors' knowledge, even
in that classical setting, without any further assumption on the damping region, the
decay to zero of solutions to nonlinear damped wave equations is an open problem.
The article [23] deals with related problems for semilinear waves but in geometric
situations in which the decay rate of the linear damped wave equation is strong enough
and, in particular, integrable in time. Unfortunately, the decay rates we obtain in the
present paper (without any geometric assumption) is of the form 1

log(2+t)\alpha and hence

far from integrable. Therefore, it does not fit into the abstract framework of [23].

1.2. From approximate control to damped waves: Abstract setting. As
already mentioned, we prove all above results in an abstract operator setting. This
allows us to stress links between the cost of approximate controls and a priori decay
rates for damped waves. This follows in the spirit of, e.g., [21, 13, 38, 36, 37, 42, 17, 2,
14], exploring the links between different equations and their control properties (i.e.,
observability, controllability, and stabilization). Here, we follow closely [2].

Let H and Y be two Hilbert spaces (resp., the state space and the observa-
tion/control space) with norms \| \cdot \| H and \| \cdot \| Y , and associated inner products (\cdot , \cdot )H
and (\cdot , \cdot )Y . We denote by A : D(A) \subset H \rightarrow H a nonnegative self-adjoint operator
with compact resolvent and by B \in \scrL (Y ;H) a bounded control operator. We recall
that B\ast \in \scrL (H;Y ) is defined by (B\ast h, y)Y = (h,By)H for all h \in H and y \in Y .

We define H1 = D(A
1
2 ), equipped with the graph norm \| u\| H1

:= \| (A + Id)
1
2u\| H ,
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and its dual H - 1 = (H1)
\prime (using H as a pivot space) endowed with the norm

\| u\| H - 1
:= \| (A+ Id) - 

1
2u\| H .

In applications to Theorems 1.3--1.6, we take H = Y = L2(\scrM ), A = L, and
B = B\ast is multiplication by the function

\surd 
b.

We introduce in this abstract setting the wave equation\Biggl\{ 
\partial 2t u+Au = F,

(u, \partial tu)| t=0 = (u0, u1),
(1.13)

the damped wave equation \Biggl\{ 
\partial 2t u+Au+BB\ast \partial tu = 0,

(u, \partial tu)| t=0 = (u0, u1),
(1.14)

and the damped Schr\"odinger equation\Biggl\{ 
i\partial tu+Au+ iBB\ast u = 0,

u| t=0 = u0.
(1.15)

Definition 1.10. Given T > 0 and a function G : \BbbR + \rightarrow \BbbR +, we say that the
wave equation (1.13) with F = 0 is approximately observable from B\ast in time T with
cost G if there is \mu 0 > 0 such that for all (u0, u1) \in H1 \times H, the associated solution
u to (1.13) with F = 0 satisfies

\| (u0, u1)\| H\times H - 1
\leq G(\mu ) \| B\ast u\| L2(0,T ;Y ) +

1

\mu 
\| (u0, u1)\| H1\times H for all \mu \geq \mu 0.

(1.16)

According to [40] and [28, appendix], this is equivalent to approximate control-
lability (\varepsilon close) with cost G(1/\varepsilon ). This is satisfied for the usual wave equation in a
general context with B\ast = 1\omega , G(\mu ) = Ce\nu \mu for all T > 2 supx\in \scrM dg(x, \omega ) (where dg
is the Riemannian distance), as proved in [26]. For the hypoelliptic wave equation,

we proved in [25, Theorem 1.15] that this is satisfied for B\ast = 1\omega , G(\mu ) = Ce\nu \mu 
k

for all T > 2 supx\in \scrM dL(x, \omega ) (where dL is the appropriate sub-Riemannian (see [25,
equation (1.11)]) distance and k is the hypoellipticity index of L).

Our main results can be divided in several steps. First, we have the following.

Proposition 1.11. Let G : \BbbR + \rightarrow \BbbR + be such that G(\mu ) \geq c0
\mu > 0 for \mu \geq \mu 0.

Assume that there is T > 0 such that the wave equation (1.13) with F = 0 is approx-
imately observable from B\ast in time T with cost G in the sense of Definition 1.10.
Then, we have \bigl( 

\lambda \in \BbbC , v \in D(A), Av = \lambda 2v, B\ast v = 0
\bigr) 

=\Rightarrow v = 0,(1.17)

and there is \lambda 0 > 0 such that for all \alpha > 0,

\| v\| H \leq K

\alpha 
(\lambda +

\surd 
2 + \alpha )G(\lambda +

\surd 
2 + \alpha )

\bigl( 
\| B\ast v\| Y + C

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H

\bigr) 
(1.18)

for all v \in D(A), \lambda \geq \lambda 0,

with K =
\surd 
T + c - 1

0 and C > 0 a constant depending only on B and T .
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Note that in this statement,
\surd 
2 can be replaced by 1 at the cost of a slightly

longer proof, and \lambda 0 is the \mu 0 given in the definition of approximate observability.

In most applications we have in mind, G(\mu ) \approx e\nu \mu 
k

, and the estimate is better for
smaller values of \alpha . In a situation in which one would have G(\mu ) \approx \mu \gamma , a better choice
of \alpha would be \alpha \approx \lambda , so that (1.18) remains a bound of order G(\lambda ). Note also that
since A is a nonnegative self-adjoint operator with compact resolvent, (1.17) is only
interesting for \lambda 2 \in \BbbR + (but this information is not useful in the proof).

Second, we assume that for some function \sansG and some \lambda 0 > 0 we have

\| v\| H \leq \sansG (\lambda )
\bigl( 
\| B\ast v\| Y +

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H

\bigr) 
for all v \in D(A), \lambda \geq \lambda 0.(1.19)

This is precisely (1.18) with \sansG (\lambda ) = K(1+C)
\alpha (\lambda +

\surd 
2 + \alpha )G(\lambda +

\surd 
2 + \alpha ). From

estimate (1.19), we deduce the sought-after spectral properties for the damped oper-
ators (resolvent estimates and localization of the spectrum linked to the function \sansG ).
See section 2.3 for the damped Schr\"odinger equation and section 2.4 for the damped
wave equation. Note that a direct application of Proposition 1.11 yields the following
corollary in the context of hypoelliptic operators.

Corollary 1.12. With the notation of section 1.1, assume, together with As-
sumptions 1.1 and 1.2, that b \in L\infty (\scrM ) is such that b \geq \delta > 0 a.e. on a nonempty
open set. Then, (1.7) is satisfied, and there is \nu > 0, C > 0, and \lambda 0 > 0 such that

\| v\| L2(\scrM ) \leq Ce\nu \lambda 
k\bigl( 

\| bv\| L2(\scrM ) +
\bigm\| \bigm\| (L - \lambda 2)v

\bigm\| \bigm\| 
L2(\scrM )

\bigr) 
for all v \in \scrH 2

L, \lambda \geq \lambda 0.

This corollary states a stronger version of the eigenfunction tunneling estimates
of [25, Theorem 1.12] (this theorem is the same statement for solutions to (L - \lambda 2)v =
0). Note that the constant \nu is (essentially) the same as in the cost of approximate
controls in [25, Theorem 1.15].

Third, we deduce from the spectral properties the sought-after decay estimates
(resp., in subsections 2.3 and 2.4 for the damped Schr\"odinger and wave equations)
using the Batty--Duyckaerts theorem, which we now recall.

Theorem 1.13 (Batty and Duyckaerts [5]). Let (et\scrB )t\geq 0 be a bounded C0-
semigroup on a Banach space \scrX , generated by \scrB .

Assume that
\bigm\| \bigm\| et\scrB (Id+\scrB ) - 1

\bigm\| \bigm\| 
\scrL (\scrX )

\leq f(t), with f \in C0([0,+\infty )) decreasing to 0.

Then i\BbbR \cap Sp(\scrB ) = \emptyset , and there are C, \lambda 0 > 0 such that\bigm\| \bigm\| (i\lambda  - \scrB ) - 1
\bigm\| \bigm\| 
\scrL (\scrX )

\leq 1 + Cf - 1

\biggl( 
1

2(| \lambda | + 1)

\biggr) 
for all \lambda \in \BbbR , | \lambda | \geq \lambda 0.

Conversely, suppose that i\BbbR \cap Sp(\scrB ) = \emptyset and\bigm\| \bigm\| (is - \scrB ) - 1
\bigm\| \bigm\| 
\scrL (\scrX )

\leq \sansM (| s| ), s \in \BbbR ,(1.20)

where \sansM : \BbbR + \rightarrow \BbbR \ast 
+ is a nondecreasing function on \BbbR +. Then, setting

(1.21) \sansM log(s) = \sansM (s)
\bigl( 
log(1 +\sansM (s)) + log(1 + s)

\bigr) 
,

for all j \in \BbbN \ast , there exists Cj , Tj > 0 such that\bigm\| \bigm\| et\scrB \scrB  - j
\bigm\| \bigm\| 
\scrL (\scrX )

\leq Cj

\sansM  - 1
log

\Bigl( 
t
Cj

\Bigr) j for t \geq Tj ,

where \sansM  - 1
log : \BbbR + \rightarrow \BbbR + denotes the inverse of the strictly increasing function \sansM log.
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We refer the reader to [16, 15] for alternative proofs of the result of [5]. Note
that on a Hilbert space (which is the case here) \sansM log in the result can be replaced by
\sansM if it is polynomial at infinity, according to [9, Theorem 2.4] (see also [14] and the
references therein for generalizations of [9]).

To conclude this introductory section, let us briefly describe the contents of the
end of the article, namely section 2. In subsection 2.1, we explain in the abstract
functional setting how approximate observability/controllability statements (Defini-
tion 1.10) imply ``free-resolvent"" estimates like (1.19) (proving, in particular, Propo-
sition 1.11). Then, in subsection 2.2 we deduce (still in the abstract functional
framework) from these ``free-resolvent"" estimates a resolvent estimate for damped
wave-type or Schr\"odinger-type operators. The proofs of abstract setting analogues
of Theorems 1.6 and 1.5 (resp., Theorems 1.4 and 1.3) for the Schr\"odinger (resp.,
wave) equation are completed in subsection 2.3 (resp., subsection 2.4). Analogous
statements and proofs for the damped plate-type equations are deduced in subsec-
tion 2.5. Finally, the optimality statements of Proposition 1.8 in the case of particular
hypoelliptic operators on the square are proved in subsection 2.6.

2. Proof of the results.

2.1. From approximate observability of waves to a free-resolvent esti-
mate with an observation term: Proof of Proposition 1.11. From approximate
observability, we deduce the following (seemingly more general) result, concerning
(1.13) with a general right-hand side F .

Proposition 2.1. Let T > 0, and let a function G : \BbbR + \rightarrow \BbbR +. Assume that the
wave equation (1.13) with F = 0 is approximately observable from B\ast in time T with
cost G, in the sense of Definition 1.10. Then, there are \mu 0, C > 0 such that for all
F \in L2(0, T ;H) and (u0, u1) \in H1 \times H, the associated solution u to (1.13) satisfies

\| (u0, u1)\| H\times H - 1
\leq G(\mu )

\bigl( 
\| B\ast u\| L2(0,T ;Y ) + C \| F\| L2(0,T ;H)

\bigr) 
+

1

\mu 
\| (u0, u1)\| H1\times H

(2.1)

for all \mu \geq \mu 0.

Note that the constant \mu 0 is actually the same as in Definition 1.10 and that C
depends only on T and \| B\ast \| \scrL (Y ;H).

Proof. According to the linearity of (1.13), we decompose u as u = u0 + uF ,
where u0 is the solution to (1.13) for F = 0, and uF is the solution to (1.13) with
(u0, u1) = (0, 0).

First, according to the assumption, Definition 1.10 applies to the function u0, so
that (1.16) reads

\| (u0, u1)\| H\times H - 1
\leq G(\mu )

\bigm\| \bigm\| B\ast u0
\bigm\| \bigm\| 
L2(0,T ;Y )

+
1

\mu 
\| (u0, u1)\| H1\times H for all \mu \geq \mu 0.

(2.2)

Second, in order to estimate uF , we perform classical energy inequalities for (1.13).
We rewrite (1.13) as

(2.3) (\partial 2t +A+ Id)uF = uF + F, (uF , \partial tu
F )| t=0 = (0, 0).

Taking the inner product of this equation with \partial tu
F (assuming at first that F \in 
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L2
loc(\BbbR ;H1) and thus uF \in C0(\BbbR ;D(A)) \cap C1(\BbbR ;H1) \cap C2(\BbbR ;H)) implies

1

2

d

dt

\Bigl( \bigm\| \bigm\| \partial tuF\bigm\| \bigm\| 2H +
\bigm\| \bigm\| uF\bigm\| \bigm\| 2

H1

\Bigr) 
\leq 
\bigl( \bigm\| \bigm\| uF\bigm\| \bigm\| 

H
+ \| F\| H

\bigr) \bigm\| \bigm\| \partial tuF\bigm\| \bigm\| H .

Writing \~E(t) = 1
2

\Bigl( \bigm\| \bigm\| \partial tuF\bigm\| \bigm\| 2H +
\bigm\| \bigm\| uF\bigm\| \bigm\| 2

H1

\Bigr) 
, we see that this yields \~E\prime (t) \leq 2 \~E(t) +

\| F\| 2H . The Gronwall lemma, together with the vanishing initial data in (2.3), implies

sup
t\in [0,T ]

\bigm\| \bigm\| uF (t)\bigm\| \bigm\| 2
H

\leq sup
t\in [0,T ]

\~E(t) \leq CT \| F\| 2L2(0,T ;H) .

As a consequence, boundedness of B\ast yields\bigm\| \bigm\| B\ast uF
\bigm\| \bigm\| 
L2(0,T ;Y )

\leq \| B\ast \| \scrL (Y ;H)

\bigm\| \bigm\| uF\bigm\| \bigm\| 
L2(0,T ;H)

\leq \| B\ast \| \scrL (Y ;H) CT \| F\| L2(0,T ;H) .

Recalling that u0 = u - uF and combining this estimate with (2.2) yields for all \mu \geq \mu 0

\| (u0, u1)\| H\times H - 1
\leq G(\mu )

\bigm\| \bigm\| B\ast (u - uF )
\bigm\| \bigm\| 
L2(0,T ;Y )

+
1

\mu 
\| (u0, u1)\| H1\times H

\leq G(\mu )
\Bigl( 
\| B\ast u\| L2(0,T ;Y ) + CB,T \| F\| L2(0,T ;H)

\Bigr) 
+

1

\mu 
\| (u0, u1)\| H1\times H ,

which concludes the proof of the proposition.

From this result, we deduce a proof of Proposition 1.11 as a direct corollary.

Proof of Proposition 1.11. For v \in D(A) and \lambda \in \BbbC , we may apply the result of
Proposition 2.1 to the function u(t) = cos(\lambda t)v which satisfies (1.13) with

u0 = v, u1 = 0, F (t) = cos(\lambda t)( - \lambda 2 +A)v.

We first remark that the assumption of (1.17) implies F = 0 and B\ast u = 0, and
hence (2.1) reads \| v\| H \leq 1

\mu \| v\| H1
for all \mu \geq \mu 0. Letting \mu converge to +\infty yields

the conclusion of (1.17).
Let us now prove (1.18). For u(t) = cos(\lambda t)v, we also have

\| B\ast u\| 2L2(0,T ;Y ) \leq T \| B\ast v\| 2Y , \| F\| 2L2(0,T ;H) \leq T
\bigm\| \bigm\| ( - \lambda 2 +A)v

\bigm\| \bigm\| 2
H
.

Estimate (2.1) thus implies for all \lambda \geq 0, \mu \geq \mu 0

\| v\| H \leq G(\mu )
\surd 
T
\bigl( 
\| B\ast v\| Y + C

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H

\bigr) 
+

1

\mu 
\| v\| H1

.(2.4)

We now remark that

(Av, v)H  - \lambda 2 \| v\| 2H =
\bigl( 
(A - \lambda 2)v, v

\bigr) 
H

\leq 
\bigm\| \bigm\| (A - \lambda 2)v

\bigm\| \bigm\| 
H
\| v\| H .

Hence, we deduce

\| v\| 2H1
= ((A+ 1)v, v)H \leq (\lambda 2 + 1) \| v\| 2H +

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H
\| v\| H

\leq (\lambda 2 + 2) \| v\| 2H +
\bigm\| \bigm\| (A - \lambda 2)v

\bigm\| \bigm\| 2
H
.

D
ow

nl
oa

de
d 

06
/1

0/
21

 to
 1

29
.1

75
.9

7.
14

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



© 2021 the authors

1892 CAMILLE LAURENT AND MATTHIEU L\'EAUTAUD

Plugging this into (2.4) yields for all \mu \geq \mu 0 and \lambda \geq 0,

\| v\| H \leq G(\mu )
\surd 
T
\bigl( 
\| B\ast v\| Y + C

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H

\bigr) 
+

1

\mu 

\Bigl( \bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H
+ (\lambda +

\surd 
2) \| v\| H

\Bigr) 
.

We let \alpha > 0 and choose \mu = \mu (\lambda ) = max\{ \lambda +
\surd 
2+\alpha , \mu 0\} in order to absorb the last

term in the right-hand side, implying for all \lambda \geq 0,\Biggl( 
1 - \lambda +

\surd 
2

\lambda +
\surd 
2 + \alpha 

\Biggr) 
\| v\| H \leq G(\mu (\lambda ))

\surd 
T
\bigl( 
\| B\ast v\| Y

+ C
\bigm\| \bigm\| (A - \lambda 2)v

\bigm\| \bigm\| 
H

\bigr) 
+

1

\mu (\lambda )

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H
.

We then take \lambda \geq \mu 0 so that \mu (\lambda ) = \lambda +
\surd 
2 + \alpha \geq \mu 0. This implies

1

\mu (\lambda )

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H

\leq c - 1
0 G(\mu (\lambda ))

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H
,

and thus, for \lambda \geq \mu 0,

\alpha 

\mu (\lambda )
\| v\| H \leq G(\mu (\lambda ))

\surd 
T
\bigl( 
\| B\ast v\| Y + C

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H

\bigr) 
+ c - 1

0 G(\mu (\lambda ))
\bigm\| \bigm\| (A - \lambda 2)v

\bigm\| \bigm\| 
H
.

This concludes the proof of the proposition.

We finally give a proof of Corollary 1.12.

Proof of Corollary 1.12. By assumption, b \geq \delta > 0 on a nonempty open set \omega .
Since \scrM is compact, supx\in \scrM dL(x, \omega ) is finite. For the hypoelliptic wave equation on
H = Y = L2(\scrM ), we proved in [25, Theorem 1.15] that (1.16) is satisfied for A = L,

B\omega = B\ast 
\omega = multiplication by 1\omega , and G(\mu ) = Ce\nu \mu 

k

for all T > 2 supx\in \scrM dL(x, \omega )
(where dL is the appropriate sub-Riemannian distance, and k is the hypoellipticity
index of L). Since \| 1\omega u\| L2(\scrM ) \leq \delta  - 1 \| bu\| L2(\scrM ), the same inequality with different
constants remains true with B = B\ast = multiplication by b. Thus, we deduce from
Proposition 1.11 that (1.19) is satisfied (after having fixed \alpha = 2 - 

\surd 
2), with \sansG (\lambda ) =

K(1 + C)(\lambda + 2)G(\lambda + 2) = C(\lambda + 2)e\nu (\lambda +2)k .

2.2. From the free-resolvent estimate with an observation term to
damped resolvent estimates. In this section, we start from an estimate for A
with an observation term like (1.18) and deduce associated estimates for damped
operators.

For later use (see subsections 2.3 and 2.4 below), we introduce the operators

Q\lambda =  - i(\scrA S  - i\lambda ) = A - \lambda + iBB\ast ,

P\lambda = P (i\lambda ) = A - \lambda 2 + i\lambda BB\ast ,

both endowed with the domain D(Q\lambda ) = D(P\lambda ) = D(A).

Proposition 2.2. Let G1, G2 \geq 0, \lambda > 0, and v \in D(A), and assume

\| v\| H \leq G1 \| B\ast v\| Y +G2

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H
.(2.5)
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Then we have

\| v\| H \leq 
\Bigl( 
(G1\lambda 

 - 1
2 +G2

\surd 
2 \| B\| \scrL (Y ;H))

2 + 2
\surd 
2G2

\Bigr) 
\| P\lambda v\| H ,(2.6)

\| v\| H \leq 
\Bigl( 
(G1 +G2

\surd 
2 \| B\| \scrL (Y ;H))

2 + 2
\surd 
2G2

\Bigr) 
\| Q\lambda 2v\| H .(2.7)

In particular, given \sansG : \BbbR + \rightarrow \BbbR + such that \sansG (\mu ) \geq c0 > 0 on \BbbR + and \lambda 0 \geq 1,
if (1.19) is satisfied, then writing K = (1 +

\surd 
2 \| B\| \scrL (Y ;H))

2 + 2
\surd 
2c - 1

0 , we have

\| v\| H \leq K\sansG (| \lambda | )2 \| P\lambda v\| H for all v \in D(A), \lambda \in \BbbR , | \lambda | \geq \lambda 0,(2.8)

\| v\| H \leq K\sansG 
\bigl( \surd 
\lambda 
\bigr) 2 \| Q\lambda v\| H for all v \in D(A), \lambda \geq \lambda 20.(2.9)

Note that when passing from (1.18) to (2.8) and (2.9), we change \sansG to \sansG 2, which is
a loss in general; this is linked to the fact that the proof of Proposition 2.2 consists only
of a very rough estimate, treating the damping terms iBB\ast and i\lambda BB\ast as remainders.

Proof of Proposition 2.2. We only prove the result for P\lambda ; the analogous proof
for Q\lambda is identical.

First, we remark that, under the above assumptions, we have

\lambda \| B\ast v\| 2Y = \lambda (BB\ast v, v)H = Im (P\lambda v, v)H \leq \| P\lambda v\| H \| v\| H .(2.10)

Second, we notice that (A - \lambda 2)v = P\lambda v  - i\lambda BB\ast v, and thus, using (2.10),\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 2
H

\leq 2 \| P\lambda v\| 2H + 2\lambda \| BB\ast v\| 2H \leq 2 \| P\lambda v\| 2H + 2 \| B\| 2\scrL (Y ;H) \lambda \| B
\ast v\| 2Y

\leq 2 \| P\lambda v\| 2H + 2 \| B\| 2\scrL (Y ;H) \| P\lambda v\| H \| v\| H .

Plugging the last two estimates in (2.5) yields

\| v\| H \leq (G1\lambda 
 - 1

2 +G2

\surd 
2 \| B\| \scrL (Y ;H)) \| P\lambda v\| 

1
2

H \| v\| 
1
2

H +G2

\surd 
2 \| P\lambda v\| H .

Writing

(G1\lambda 
 - 1

2 +G2

\surd 
2 \| B\| \scrL (Y ;H)) \| P\lambda v\| 

1
2

H \| v\| 
1
2

H

\leq 1

2
(G1\lambda 

 - 1
2 +G2

\surd 
2 \| B\| \scrL (Y ;H))

2 \| P\lambda v\| H +
1

2
\| v\| H

allows absorption of the last term in the left-hand side and implies

1

2
\| v\| H \leq 1

2
(G1\lambda 

 - 1
2 +G2

\surd 
2 \| B\| \scrL (Y ;H))

2 \| P\lambda v\| H +G2

\surd 
2 \| P\lambda v\| H .

This concludes the proof of (2.6), and (2.8) corresponds to the case G1 = G2 = \sansG (\lambda ).
Also, we notice that for \lambda \in \BbbR , P - \lambda u = P\lambda u, so the statement for \lambda \geq \lambda 0 implies
that for \lambda \leq  - \lambda 0. Finally, the proof of (2.7) is similar to that of (2.6) (beware
that it should be written for Q\lambda 2 and not Q\lambda ), and (2.9) follows from changing \lambda 2

into \lambda .

Note that another advantage of Proposition 2.2 is that it is flexible enough to
support perturbations of the operator A by lower order terms. This was used in [23],
where the perturbation comes from the linearization of a nonlinear equation. See
also [14, 11] for recent related perturbation results.
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2.3. Damped Schr\"odinger-type equations. There are not many references
concerning the damped Schr\"odinger equation, so we provide a more detailed argument.
We set \scrA S := iA  - BB\ast with D(\scrA S) = D(A), so that (1.15) reformulates as (\partial t  - 
\scrA S)u = 0.

The compact embedding D(A) \lhook \rightarrow H implies that \scrA S has a compact resolvent.
Elementary spectral properties of \scrA S are described in the following lemma.

Lemma 2.3. The spectrum of \scrA S contains only isolated eigenvalues, and we have\bigm\| \bigm\| (z Id - \scrA S)
 - 1
\bigm\| \bigm\| 
\scrL (H)

\leq 1

Re(z)
for Re(z) > 0,(2.11) \bigm\| \bigm\| (z Id - \scrA S)

 - 1
\bigm\| \bigm\| 
\scrL (H)

\leq 1

| Im(z)| 
for Im(z) < 0.(2.12)

Moreover, assuming (Au = zu,B\ast u = 0) =\Rightarrow u = 0, we have

Sp(\scrA S) \subset [ - \| B\ast \| 2\scrL (H;Y ), 0) + i[0,+\infty ).

Proof. The structure of the spectrum comes from the fact that \scrA S has a compact
resolvent (since A does also, and BB\ast is bounded). Now, for a general z \in \BbbC , we have

\| (z Id - \scrA S)u\| H \| u\| H \geq Re ((z Id - \scrA S)u, u)H = Re(z) \| u\| 2H + \| B\ast u\| 2H
\geq Re(z) \| u\| 2H ,

which yields (2.11). The statement (2.12) comes from

\| (\scrA S  - z Id)u\| H \| u\| H \geq Im ((\scrA S  - z Id)u, u)H = (Au, u)H  - Im(z) \| u\| 2H
\geq  - Im(z) \| u\| 2H .

Finally, given z \in Sp(\scrA S), there exists u \in D(A) \setminus \{ 0\} such that \scrA Su = zu. Taking
the inner product with u yields

z \| u\| 2H = (\scrA Su, u)H = i(Au, u)H  - \| B\ast u\| 2H .

In particular,

Re(z) =  - 
\| B\ast u\| 2H
\| u\| 2H

\in [ - \| B\ast \| 2\scrL (H) , 0], Im(z) =
(Au, u)H

\| u\| 2H
\geq 0.

Now if Re(z) = 0, this implies B\ast u = 0 and hence zu = \scrA Su = iAu. The assumption
then yields u = 0, which contradicts the fact that u is an eigenvector. Thus Sp(\scrA S)\cap 
i\BbbR = \emptyset .

We then deduce straightforwardly from Proposition 2.2 and Lemma 2.3 the fol-
lowing result.

Theorem 2.4. Let \sansG : \BbbR + \rightarrow \BbbR + be such that \sansG (\mu ) \geq c0 > 0 on \BbbR +, \lambda 0 \geq 1, and
assume (1.19). Then there exists K > 1 (the same as in Proposition 2.2), such that

\| (i\lambda Id - \scrA S)
 - 1\| \scrL (H) \leq K\sansG 

\bigl( \surd 
\lambda 
\bigr) 2

for all \lambda \geq \lambda 20,

Sp(\scrA S) \cap \Gamma \sansG ,S = \emptyset ,
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where

\Gamma \sansG ,S =

\Biggl\{ 
z \in \BbbC , Im(z) \geq \lambda 20,Re(z) \geq  - 1

K\sansG 
\bigl( \sqrt{} 

Im(z)
\bigr) 2
\Biggr\} 
.

Finally, assuming further (1.17), there exists another constant \widetilde K \geq K such that

\| (i\lambda Id - \scrA S)
 - 1\| \scrL (H) \leq \widetilde K\sansG 

\bigl( \sqrt{} 
| \lambda | 
\bigr) 2

for all \lambda \in \BbbR ,

Sp(\scrA S) \cap \widetilde \Gamma \sansG ,S = \emptyset ,

where \widetilde \Gamma \sansG ,S =

\Biggl\{ 
z \in \BbbC ,Re(z) \geq  - 1\widetilde K\sansG 

\bigl( \sqrt{} 
| Im(z)| 

\bigr) 2
\Biggr\} 
.

Proof. The first point is a rewriting of (2.9) in Proposition 2.2. The second point
comes from the general fact that

(2.13)
\bigm\| \bigm\| (z Id - \scrA S)

 - 1
\bigm\| \bigm\| 
\scrL (H)

\geq 1

dist(z,Sp(\scrA S))
.

A simple proof of this inequality in the present context uses the fact that the spectrum
is discrete and only consists of eigenvalues. Hence, writing Sp(\scrA S) = \{ zj , j \in \BbbN \} 
and denoting by \psi j a normalized eigenfunction of \scrA S associated to zj , we have\bigm\| \bigm\| (z Id - \scrA S)

 - 1
\bigm\| \bigm\| 
\scrL (H)

\geq 
\bigm\| \bigm\| (z Id - \scrA S)

 - 1\psi j

\bigm\| \bigm\| 
\scrL (H)

=
\bigm\| \bigm\| (z  - zj)

 - 1\psi j

\bigm\| \bigm\| 
\scrL (H)

= | z  - zj |  - 1,

and the result follows from taking the supremum in j \in \BbbN . Hence, we have for
\lambda \geq \lambda 20,

dist(i\lambda ,Sp(\scrA S)) \geq 
\bigm\| \bigm\| (i\lambda Id - \scrA S)

 - 1
\bigm\| \bigm\|  - 1

\scrL (H)
\geq 
\Bigl( 
K\sansG 

\bigl( \surd 
\lambda 
\bigr) 2\Bigr)  - 1

,

which, together with the localization of the spectrum in Lemma 2.3, proves the second
point.

For the last point, Lemma 2.3 ensures that \lambda \mapsto \rightarrow \| (i\lambda Id - \scrA S)
 - 1\| \scrL (\scrH ) is a well-

defined continuous function on \BbbR , which is bounded by 1
| \lambda | for \lambda < 0. On the interval

( - \infty , \lambda 20], it is therefore bounded by a constant C0 \leq C0c
 - 2
0 \sansG 

\bigl( \sqrt{} 
| \lambda | 
\bigr) 2
. This gives the

expected estimates for all \lambda \in \BbbR with another \widetilde K = max
\bigl( 
K,C0c

 - 2
0

\bigr) 
.

Again, (2.13) proves the spectral gap near the imaginary axis.

As a consequence, we deduce the following decay.

Theorem 2.5. Let \lambda 0 \geq 1, \sansG : \BbbR + \rightarrow \BbbR + be a nondecreasing function such that
\sansG (0) > 0, and assume (1.17) and (1.19). Then, for all j \in \BbbN \ast , there are Cj , Tj > 0

such that for all u0 \in D(\scrA j
S) and associated solution u of (1.15),

\| u(t)\| H \leq Cj

\sansM  - 1
log

\Bigl( 
t
Cj

\Bigr) j \bigm\| \bigm\| \bigm\| \scrA j
Su0

\bigm\| \bigm\| \bigm\| 
H

for all t \geq Tj ,

where \sansM log is defined as in (1.21) with \sansM (\lambda ) = \sansG 
\bigl( \surd 
\lambda 
\bigr) 2
.

Again, \sansM log in the result can be replaced by \sansM if it is polynomial at infinity,
according to [9, Theorem 2.4].

Proof. This is a direct corollary of Theorem 2.4, and Theorem 1.13 applied to the
operator \scrB = \scrA S in the Hilbert space \scrX = H. We have also used the fact that if \sansM 
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is a positive nondecreasing function, K > 0, and \sansN = K\sansM , then \sansN log \leq \sansM log if K \leq 1

and \sansN log \leq K
\Bigl( 
1 + log(K)

log(1+\sansM (0))

\Bigr) 
\sansM log if K \geq 1. Changing \sansM into K\sansM in Theorem 1.13

thus only changes the values of the constants Cj in the result.

We may now conclude the proofs of Theorems 1.5 and 1.6.

Proofs of Theorems 1.5 and 1.6. Corollary 1.12 implies that (1.19) is true with

\sansG (\mu ) = Ce\nu \mu 
k

. Then, Theorem 2.4 implies Theorem 1.6. Indeed, taking into ac-
count (1.17), we then obtain that the resolvent is bounded on the positive imaginary

axis by a constant times \sansM (\lambda ) = \sansG 
\bigl( \surd 
\lambda 
\bigr) 2

= Ce2\nu 
+\lambda k/2

(after having changed the
constants slightly).

Finally, we obtain

\sansM log(\lambda ) = Ce2\nu 
+\lambda k/2

\Bigl( 
log
\bigl( 
1 + Ce2\nu 

+\lambda k/2\bigr) 
+ log(1 + \lambda )

\Bigr) 
\leq Ce2\nu 

+\lambda k/2

(after having changed the constants slightly), and thus \sansM  - 1
log(t) \geq c log(t)2/k for large

t. Theorem 2.5 implies Theorem 1.5.

2.4. Damped wave-type equations: Semigroup setting and end of the
proofs. We now turn estimate (2.8) in Proposition 2.2 into a resolvent estimate for
the generator of the damped wave group, and then into an energy decay for (1.14).
We equip \scrH = H1 \times H with the norm

\| (u0, u1)\| 2\scrH = \| (A+ Id)
1
2u0\| 2H + \| u1\| 2H ,

and define the seminorm

| (u0, u1)| 2\scrH = \| A 1
2u0\| 2H + \| u1\| 2H .

Of course, if A is coercive on H, | \cdot | \scrH is a norm on \scrH equivalent to \| \cdot \| \scrH . We define
the energy of solutions of (1.14) by

E(u(t)) =
1

2

\bigl( 
\| A 1

2u\| 2H + \| \partial tu\| 2H
\bigr) 
=

1

2
| (u, \partial tu)| 2\scrH .

The damped wave equation (1.14) can be recast on \scrH as a first order system\biggl\{ 
\partial tU = \scrA U,
U | t=0 = t(u0, u1),

with U =

\biggl( 
u
\partial tu

\biggr) 
,

and \scrA =

\biggl( 
0 Id

 - A  - BB\ast 

\biggr) 
, D(\scrA ) = D(A)\times H1.

The compact embeddings D(A) \lhook \rightarrow H1 \lhook \rightarrow H imply that D(\scrA ) \lhook \rightarrow \scrH compactly,
and that the operator \scrA has a compact resolvent. First, spectral properties of \scrA 
are described in the following lemma borrowed from [32, 2]. We define the following
quadratic family of operators:

P (z) = A+ z2 Id+zBB\ast , z \in \BbbC , D(P (z)) = D(A).(2.14)

Lemma 2.6 (Lemma 4.2 of [2]). The spectrum of \scrA contains only isolated eigen-
values, and, provided (1.17) is satisfied, we have

Sp(\scrA ) \subset 
\biggl( \Bigl( 

 - 1

2
\| B\ast \| 2\scrL (H;Y ), 0

\Bigr) 
+ i\BbbR 

\biggr) 
\cup 
\Bigl( 
[ - \| B\ast \| 2\scrL (H;Y ), 0] + 0i

\Bigr) 
,
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with ker(\scrA ) = ker(A)\times \{ 0\} . Moreover, the operator P (z) in (2.14) is an isomorphism
from D(A) onto H if and only if z /\in Sp(\scrA ).

This lemma leads us to introduce the spectral projector of \scrA onto the spectral
subspace of \scrA associated to the eigenvalue 0, namely,

\Pi 0 =
1

2i\pi 

\int 
\gamma 

(z Id - \scrA ) - 1dz \in \scrL (\scrH ),

where \gamma denotes a positively oriented circle centered on 0 with a radius so small that
Sp(\scrA ) \cap \gamma = \emptyset and 0 is the single eigenvalue of \scrA in the interior of \gamma . The projector
\Pi 0 and ker(\scrA ) are linked by the following classical lemma.

Lemma 2.7. Under the assumptions of Lemma 2.6, we have

range(\Pi 0) = ker(\scrA ) = ker(A)\times \{ 0\} .

Proof. We only need to check that there is no generalized eigenfunction (equiv-
alently, no Jordan block) associated to the eigenvalue 0. Given \{ e0, . . . , ek\} a basis
of ker(A), and setting \psi j = (ej , 0), we see that the set \{ \psi 0, . . . , \psi k\} forms a basis of
ker(\scrA ) according to Lemma 2.6. Assuming ker(\scrA ) \subsetneq range(\Pi 0) implies that there is a
generalized eigenfunction \phi = (u0, u1) \in D(\scrA ) and j \in \{ 0, . . . , k\} such that \scrA \phi = \psi j .
Recalling the form of \scrA , this is equivalent to u1 = ej and  - Au0 - BB\ast u1 = 0. Taking
the inner product in H of this with u1 = ej , we see that this implies

0 =  - (u0, Aej)H =  - (Au0, ej)H = (BB\ast ej , ej)H = \| B\ast ej\| 2Y .

We obtain a contradiction with (1.17) since ej \not = 0. This proves the lemma.

We set \.\scrH = (Id - \Pi 0)\scrH and equip this space with the norm

\| (u0, u1)\| 2\.\scrH := | (u0, u1)| 2\scrH = \| A 1
2u0\| 2H + \| u1\| 2H

and associated inner product. This is indeed a norm on \.\scrH since \| (u0, u1)\| \.\scrH = 0 is

equivalent to (u0, u1) \in ker(A) \times \{ 0\} = \Pi 0\scrH . In addition, we set \.\scrA = \scrA | \.\scrH with

domain D( \.\scrA ) = D(\scrA )\cap \.\scrH . Note that Sp( \.\scrA ) = Sp(\scrA ) \setminus \{ 0\} and thus Sp( \.\scrA )\cap i\BbbR = \emptyset .
Lemma 2.8 (Lemma 4.3 of [2]). The operator \.\scrA generates a contraction C0-

semigroup on \.\scrH , denoted (et
\.\scrA )t\geq 0. Moreover, the operator \scrA generates a bounded

C0-semigroup on \scrH , denoted (et\scrA )t\geq 0, and the unique solution to (1.14) is given by
(u, \partial tu)(t) = et\scrA (u0, u1). Finally, we have

(2.15) et\scrA = et
\.\scrA (Id - \Pi 0) + \Pi 0 for all t \geq 0.

Once we have put the abstract damped wave equation (1.14) in the appropriate
semigroup setting, it remains to

1. deduce from (1.18) and (1.19) a resolvent estimate for \.\scrA ,

2. relate this resolvent estimate to a decay estimate for et
\.\scrA , and

3. deduce the decay of the energy for (1.14).

Step 1 is achieved thanks to the following result from [2].

Lemma 2.9 (Lemma 4.6 of [2]). There exist C > 1 such that for s \in \BbbR , | s| \geq 1,

C - 1\| (is Id - \.\scrA ) - 1\| \scrL ( \.\scrH )  - 
C

| s| 
\leq \| (is Id - \scrA ) - 1\| \scrL (\scrH ) \leq C\| (is Id - \.\scrA ) - 1\| \scrL ( \.\scrH ) +

C

| s| 
,

(2.16)

C - 1| s| \| P (is) - 1\| \scrL (H) \leq \| (is Id - \scrA ) - 1\| \scrL (\scrH ) \leq C
\bigl( 
1 + | s| \| P (is) - 1\| \scrL (H)

\bigr) 
.(2.17)
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As a corollary of this together with Proposition 2.2, we deduce the following
result.

Theorem 2.10. Let \sansG : \BbbR + \rightarrow \BbbR + be such that \sansG (\mu ) \geq c0 > 0 on \BbbR +, \lambda 0 \geq 1,
and assume (1.19). Then there exists K > 1 such that

\| (i\lambda Id - \scrA ) - 1\| \scrL (\scrH ) \leq K| \lambda | \sansG (| \lambda | )2 for all \lambda \in \BbbR , | \lambda | \geq \lambda 0,

\| (is Id - \.\scrA ) - 1\| \scrL ( \.\scrH ) \leq K| \lambda | \sansG (| \lambda | )2 for all \lambda \in \BbbR , | \lambda | \geq \lambda 0,

Sp( \.\scrA ) \cap \Gamma \sansG = \emptyset , Sp(\scrA ) \cap \Gamma \sansG = \emptyset ,

where

\Gamma \sansG =

\biggl\{ 
z \in \BbbC , | Im(z)| \geq \lambda 0,Re(z) \geq  - 1

K| Im(z)| \sansG (| Im(z)| )2

\biggr\} 
.

Finally, assuming further (1.17), there exists another constant \widetilde K \geq K such that

\| (is Id - \.\scrA ) - 1\| \scrL ( \.\scrH ) \leq \widetilde K \langle \lambda \rangle \sansG (| \lambda | )2 for all \lambda \in \BbbR ,

Sp( \.\scrA ) \cap \widetilde \Gamma \sansG = \emptyset , Sp(\scrA ) \cap \Gamma \sansG = \{ 0\} ,

where \widetilde \Gamma \sansG =

\Biggl\{ 
z \in \BbbC ,Re(z) \geq  - 1\widetilde K \langle Im(z)\rangle \sansG (| Im(z)| )2

\Biggr\} 
.

Proof of Theorem 2.10. The first two points are corollaries of (2.8) in Proposi-
tion 2.2 combined with Lemma 2.9.

The last point comes from Sp( \.\scrA ) = Sp(\scrA )\setminus \{ 0\} , together with the general fact that\bigm\| \bigm\| \bigm\| (z Id - \.\scrA ) - 1
\bigm\| \bigm\| \bigm\| 
\scrL (\scrH )

\geq 1
dist(z,Sp( \.\scrA ))

(see (2.13) in the proof of Theorem 2.4). Hence, we

have for \lambda \in \BbbR , | \lambda | \geq \lambda 0,

dist(i\lambda ,Sp( \.\scrA )) \geq 
\bigm\| \bigm\| \bigm\| (i\lambda Id - \.\scrA ) - 1

\bigm\| \bigm\| \bigm\|  - 1

\scrL (\scrH )
\geq 
\bigl( 
K| \lambda | \sansG (| \lambda | )2

\bigr)  - 1
,

which, together with the localization of the spectrum in Lemma 2.6, proves the state-
ment about the region free of spectrum. The proof concerning the compact zone
follows the same way as in the proof of Theorem 2.4, using the fact that, as already
noted Sp( \.\scrA ) \cap i\BbbR = \emptyset .

Step 2 is achieved as a consequence of Theorem 1.13 applied to the operator
\scrB = \.\scrA in the Hilbert space \scrX = \.\scrH .

Finally, step 3 is a consequence of the following elementary Lemma 2.11, linking
the energy of solutions to the abstract damped wave equation (1.14) to the norm of

the semigroup
\bigl( 
et

\.\scrA \bigr) 
t\geq 0

.

Lemma 2.11. For all j \in \BbbN \ast , U0 \in D(\scrA j) such that \Pi 0U0 \not = U0, and associated
solution u of (1.14), we have

E(u(t))
1
2 | \scrA jU0| 2\scrH 

=
| et\scrA U0| 2\scrH 
| \scrA jU0| 2\scrH 

=
\| et \.\scrA \.U0\| 2\.\scrH 
\| \.\scrA j \.U0\| 2\.\scrH 

, where \.U0 = (Id - \Pi 0)U0.

In particular, setting fj(t) :=
\bigm\| \bigm\| \bigm\| et \.\scrA \.\scrA  - j

\bigm\| \bigm\| \bigm\| 
\scrL ( \.\scrH )

for j \in \BbbN \ast , we have for all U0 \in D(\scrA j)

and associated solution u of (1.14),

E(u(t)) \leq 1

2
fj(t)

2\| \scrA jU0\| 2\scrH for all t \geq 0.
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Proof. This is essentially [2, Lemma 4.4]. Recalling that \scrA U0 = \.\scrA \.U0, we have

E(u(t)) =
1

2

\bigl( 
\| A 1

2u(t)\| 2H + \| \partial tu(t)\| 2H
\bigr) 
=

1

2
| et\scrA U0| 2\scrH 

=
1

2
| et \.\scrA \.U0 +\Pi 0U0| 2\scrH =

1

2
\| et \.\scrA \.U0\| 2\.\scrH 

and

\| \.\scrA j \.U0\| 2\.\scrH = | \scrA jU0| 2\scrH ,

which yields the first statement. The second follows from the fact that | \cdot | \scrH \leq \| \cdot \| \scrH .

As a consequence, we deduce the following decay.

Theorem 2.12. Let \lambda 0 \geq 1, \sansG : \BbbR + \rightarrow \BbbR + be a nondecreasing function such that
\sansG (0) > 0, and assume (1.17) and (1.19). Then, for all j \in \BbbN \ast , there are Cj , Tj > 0
such that for all U0 \in D(\scrA j) and associated solution u of (1.14),

E(u(t))
1
2 \leq Cj

\sansM  - 1
log

\Bigl( 
t
Cj

\Bigr) j \bigm\| \bigm\| \scrA jU0

\bigm\| \bigm\| 
\scrH for all t \geq Tj ,

where \sansM log is defined as in (1.21) with \sansM (\lambda ) = \langle \lambda \rangle \sansG (\lambda )2.
Again, \sansM log in the result can be replaced by \sansM if it is polynomial at infinity,

according to [9, Theorem 2.4].

Proof. This is a direct corollary of Theorem 2.10, and Theorem 1.13 applied
to \scrX = \.\scrH and \scrB = \.\scrA , together with Lemma 2.11 (and a remark in the proof of
Theorem 2.5).

We conclude this subsection with the proofs of Theorems 1.3 and 1.4.

Proof of Theorems 1.3 and 1.4. Again, Corollary 1.12 implies the unique contin-
uation property (1.7) (that is, (1.17) in the present context) together with (1.19)

with \sansG (\mu ) = Ce\nu \mu 
k

. With this estimate at hand, we see that Theorem 1.3 is

an application of Theorem 2.12 with \sansM (\lambda ) = \langle \lambda \rangle \sansG (\lambda )2 \leq Ce2\nu 
+\lambda k

(after having
changed the constants slightly), while Theorem 1.4 is implied by Lemma 2.6 and
Theorem 2.10.

2.5. Damped plate-type equations. The plate equation actually fits into the
``wave-type"" framework. Indeed, the abstract plate equation\Biggl\{ 

\partial 2t u+A2u+BB\ast \partial tu = 0,

(u, \partial tu)| t=0 = (u0, u1)
(2.18)

is actually a particular case of the abstract equation (1.14) applied with the operator
A2 (instead of A) which is still nonnegative self-adjoint with a compact resolvent. In
this case, we define H2 = D(A), equipped with the graph norm \| u\| H2

:= \| (A2 +

Id)
1
2u\| H , and its dual H - 2 = (H2)

\prime (using H as a pivot space) endowed with the

norm \| u\| H - 2
:= \| (A2 + Id) - 

1
2u\| H .

The natural space is then \scrH = H2 \times H with the norm

\| (u0, u1)\| 2\scrH = \| (A2 + Id)
1
2u0\| 2H + \| u1\| 2H
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and the seminorm
| (u0, u1)| 2\scrH = \| Au0\| 2H + \| u1\| 2H .

The associated energy is

EP (u(t)) =
1

2

\bigl( 
\| Au\| 2H + \| \partial tu\| 2H

\bigr) 
=

1

2
| (u, \partial tu)| 2\scrH .

In order to transfer the properties of A to A2, we will only need the following simple
lemma.

Lemma 2.13. Assume (1.19) is satisfied. Then, we have

\| v\| H \leq \sansG (
\surd 
\lambda )
\bigl( 
\| B\ast v\| Y + \lambda  - 1

\bigm\| \bigm\| (A2  - \lambda 2)v
\bigm\| \bigm\| 
H

\bigr) 
for all v \in D(A2), \lambda \geq \lambda 20.

(2.19)

Proof. Since A is a nonnegative operator, we have
\bigm\| \bigm\| (A+ \lambda 2)w

\bigm\| \bigm\| 
H

\geq \lambda 2 \| w\| H for

all w \in D(A). Applying this to w = (A - \lambda 2)v gives\bigm\| \bigm\| (A2  - \lambda 4)v
\bigm\| \bigm\| 
H

\geq \lambda 2
\bigm\| \bigm\| (A - \lambda 2)v

\bigm\| \bigm\| 
H
.

This, combined with (1.19), implies

\| v\| H \leq \sansG (\lambda )
\bigl( 
\| B\ast v\| Y +

\bigm\| \bigm\| (A - \lambda 2)v
\bigm\| \bigm\| 
H

\bigr) 
\leq \sansG (\lambda )

\biggl( 
\| B\ast v\| Y +

1

\lambda 2
\bigm\| \bigm\| (A2  - \lambda 4)v

\bigm\| \bigm\| 
H

\biggr) 
.

(2.20)

This is the expected result up to changing \lambda into
\surd 
\lambda .

Lemma 2.13 implies that if (1.19) is satisfied, the assumptions of Theorem 2.12
are satisfied for the operator A2 with GP (\lambda ) = G(

\surd 
\lambda ). Moreover, since A is a

nonnegative self-adjoint operator with compact resolvent, the eigenfunctions of A2

are those of A. In particular, if (1.17) is true for A, it is also true for A2. It directly
gives the following result.

Theorem 2.14. Let \sansG : \BbbR + \rightarrow \BbbR + be such that \sansG (\mu ) \geq c0 > 0 on \BbbR +, \lambda 0 \geq 1,
and assume (1.17) and (1.19). Assume further that \sansG is nondecreasing. Then, for all
j \in \BbbN \ast , there are Cj , Tj > 0 such that for all U0 \in D(\scrA j) and associated solution u
of (2.18),

EP (u(t))
1
2 \leq Cj

\sansM  - 1
log

\Bigl( 
t
Cj

\Bigr) j \bigm\| \bigm\| \bigm\| \scrA j
PU0

\bigm\| \bigm\| \bigm\| 
\scrH 

for all t \geq Tj ,

where \sansM log is defined in (1.21) with \sansM (\lambda ) = \langle \lambda \rangle \sansG 
\bigl( \surd 
\lambda 
\bigr) 2
.

Proof of Theorem 1.7. Thanks to Corollary 1.12, (1.19) is true with \sansG (\mu ) =

C(\mu + 2)e\nu (\mu +2)k . Theorem 1.7 is then an application of Theorem 2.14 with \sansM (\lambda ) =

\langle \lambda \rangle \sansG (
\surd 
\lambda )2 \leq Ce2\nu 

+\lambda k/2

(after having changed the constants slightly).

2.6. Lower bounds: Proof of Proposition 1.8.

Proof of Proposition 1.8. According to [25, Proposition 1.14] (which relies on [6,
section 2.3]), since supp(b) \cap \{ x1 = 0\} = \emptyset , there exist C, c0 > 0 and a sequence
(\lambda j , \varphi j) \in \BbbR + \times C\infty (\scrM ) such that

L\varphi j = \lambda j\varphi j , \varphi j | \partial \scrM = 0, \| \varphi j\| L2(\scrM ) = 1,

\lambda j \rightarrow +\infty , \| \varphi j\| L2(supp(b)) \leq Ce - c0\lambda 
k
2
j .
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As a consequence, concerning the damped Schr\"odinger resolvent, we have

\| (\scrA S  - i\lambda j)\varphi j\| L2(\scrM ) = \| (iL - b - i\lambda j)\varphi j\| L2(\scrM ) = \| b\varphi j\| L2(\scrM ) \leq \| b\| L\infty Ce - c0\lambda 
k
2
j .

This implies estimate (1.12) with sj = \lambda j .
Concerning the damped wave resolvent, recalling the definition of P (z) in (2.14),

we write \bigm\| \bigm\| \bigm\| P \bigl( i\sqrt{} \lambda j\bigr) \varphi j

\bigm\| \bigm\| \bigm\| 
L2

=
\bigm\| \bigm\| \bigm\| \bigl( L - \lambda j + i

\sqrt{} 
\lambda jb
\bigr) 
\varphi j

\bigm\| \bigm\| \bigm\| 
L2

=
\bigm\| \bigm\| \bigm\| \sqrt{} \lambda jb\varphi j

\bigm\| \bigm\| \bigm\| 
L2

\leq 
\sqrt{} 
\lambda j \| b\| L\infty Ce - c0\lambda 

k
2
j .

With sj =
\sqrt{} 
\lambda j , this implies

\bigm\| \bigm\| P \bigl( isj\bigr) \varphi j

\bigm\| \bigm\| 
L2 \leq sjCe

 - c0s
k
j , and using (2.17) in Lemma 2.9

proves estimate (1.11).
The last part of the proposition follows from (1.11)--(1.12), together with the first

implication in Theorem 1.13 (and, in the case of damped waves, with equivalence
between the resolvents of \scrA and \.\scrA in (2.16) in Lemma 2.9).
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