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We are concerned with the short-time observability constant of the heat equation from a subdomain ! of
a bounded domain M. The constant is of the form eK=T, where K depends only on the geometry of M
and !. Luc Miller (J. Differential Equations 204:1 (2004), 202–226) conjectured that K is (universally)
proportional to the square of the maximal distance from ! to a point of M. We show in particular
geometries that K may blow up like jlog.r/j2 when ! is a ball of radius r , hence disproving the conjecture.
We then prove in the general case the associated upper bound on this blowup. We also show that the
conjecture is true for positive solutions of the heat equation.

The proofs rely on the study of the maximal vanishing rate of (sums of) eigenfunctions. They also yield
lower and upper bounds for other geometric constants appearing as tunneling constants or approximate
control costs.

As an intermediate step in the proofs, we provide a uniform Carleman estimate for Lipschitz metrics.
The latter also implies uniform spectral inequalities and observability estimates for the heat equation in a
bounded class of Lipschitz metrics, which are of independent interest.
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1. Introduction and main results

We are interested in several constants appearing in the study of eigenfunctions concentration and control
theory, and the links between them. In the whole paper, we are given a connected compact Riemannian
manifold .M; g/ with or without boundary @M, we denote by �g the (negative) Laplace–Beltrami
operator on M. In the case @M¤∅, we denote by Int.M/ the interior of M, so that MD @MtInt.M/;
see, e.g., [Lee 2013, Chapter 1]. For readability, we first focus in the next section on results concerning
the observability constant for the heat equation.
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1A. The control cost for the heat equation. Here, we study the so-called cost of controllability of the
heat equation. It has been well known since the seminal papers [Lebeau and Robbiano 1995; Fursikov
and Imanuvilov 1996] that for any time T > 0, the heat equation is controllable to zero. More precisely,
by duality, the controllability problem is equivalent to the observability problem for solutions of the free
heat equation (see, e.g., [Coron 2007, Section 2.5.2]): for any nonempty open set ! and T > 0, there
exists CT;! such that we have

keT�guk2
L2.M/

� C 2T;!

Z T

0

ket�guk2
L2.!/

dt for all T > 0 and all u 2 L2.M/. (1)

Here, .et�g/t>0 denotes the semigroup generated by the Dirichlet Laplace operator on M (otherwise
explicitly stated). The observability constant CT;! is then directly related to the cost of the control to
zero and has been the object of several studies.

It has been proved in [Seidman 1984] in one dimension (in the closely related case of a boundary
observation) and in [Fursikov and Imanuvilov 1996] in general (see also [Miller 2010] for obtaining this
result via the Lebeau–Robbiano method) that the cost in small time blows up at most exponentially:

! ¤∅ D) there are C;K> 0 such that CT;! � Ce
K
T for all T > 0: (2)

Güichal [1985] in one dimension and Miller [2004a] in the general case proved that exponential blowup
indeed occurs:

N! ¤M D) there is c > 0 such that CT;! � ce
c
T for all T > 0:

This suggests defining

Kheat.!/D inffK> 0 W there exists C > 0 such that (1) holds with CT;! D Ce
K
T g; (3)

which, according to the above-mentioned results satisfies Kheat.!/<1 as soon as !¤∅ and Kheat.!/>0

as soon as N! ¤M. This constant depends only on the geometry of the manifold .M; g/ and the subset !.
It is expected to contain geometric features of short-time heat propagation and has thus received a lot of
attention in the past fifteen years [Miller 2004a; 2004b; 2006b; 2010; Tenenbaum and Tucsnak 2007;
2011; Ervedoza and Zuazua 2011b; Bardos and Phung 2017; Dardé and Ervedoza 2019; Egidi and Veselić
2018; Nakić et al. 2018; Phung 2018].

In this direction, the result of [Miller 2004a] is actually more precise and provides a geometric lower
bound: for all .M; g/; !, we have

Kheat.!/�
1
4
L.M; !/2;

where, for E �M, we write
L.M; E/D sup

x2M
distg.x;E/: (4)

The proof relies on heat kernel estimates. Luc Miller [2004a; 2006a] also proved that in the case !
satisfies the geometric control condition in .M; g/ (see [Bardos et al. 1992]) we have

Kheat.!/� ˛�L
2
! ;
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where L! is the maximal length of a “ray of geometric optics” (i.e., geodesic curve in the case @MD∅)
not intersecting !, and ˛� � 2 is an absolute constant (independent of the geometry). Based on these
results and the idea that the heat kernel provides the most concentrated solutions of the heat equation, he
formulated the following conjecture [Miller 2004a, Section 2.1; 2006b, Section 3.1].

Conjecture 1.1 (Luc Miller). For all .M; g/ and ! � M such that N! ¤ M, we have Kheat.!/ D
1
4
L.M; !/2.

Note that it has been proved in [Lissy 2015] that, in the related context of the one-dimensional heat
equation with a boundary observation, the factor 1

4
might not be correct (and should be replaced by 1

2
,

see Section 1D below). Our first result disproves Conjecture 1.1 in a stronger sense.

Theorem 1.2 (counterexamples). Assume .M; g/ is one of the following:

(1) MD Sn � RnC1 and g is the canonical metric (see Section 3A).

(2) MD S � R3 is a surface of revolution diffeomorphic to the sphere S2, and g is the metric induced
by the Euclidean metric on R3 (with additional nondegeneracy conditions, see Section 3B).

(3) MDDDf.x1; x2/2R2 W x21Cx
2
2 � 1g�R2 is the unit disk, g is the Euclidean metric and Dirichlet

conditions are taken on @M (see Section 3C).

Then, for any C > 0, there exists ! �M so that Kheat.!/� CL.M; !/2 and Kheat.!/� C.
More precisely, assume that x0 is either

(1) any point in Sn,

(2) one of the two points that intersect the axis of revolution of S � R3,

(3) the center of D.

Then, there exists C > 0 and r0 > 0 so that we have

Kheat.Bg.x0; r//� C j log.r/j2 (5)

for any 0 < r � r0.

Here, Bg.x0; r/ denotes the geodesic ball of M centered at x0 of radius r . The results we obtain are
slightly more precise. In particular, the constant C is an explicit geometric constant. The lower bounds
are related to an appropriate Agmon distance associated to the problem. We refer to Corollary 1.10 below
for more precise estimates.

Note also that this blowup of Kheat.B.x0; r// for small r does not always happen and is due here to a
particular (de-)concentration phenomenon. For instance on MDT1, the set !DB.x0; r/ always satisfies
the geometric control condition for any time T > 1�2r . Abstract results (see (15) below for more details)
give Kheat.B.x0; r//� ˛� � 2 for any r > 0 and blowup does not occur.

Our next result shows that the blowup given by (5) is actually optimal as far as the asymptotics of Kheat

for small balls is concerned. We prove the following observability result from small balls (closely related
to previous results of [Jerison and Lebeau 1999], see Section 1C2 below).
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Theorem 1.3. For all x0 2M, there exist C > 0 such that for all r > 0 we have

Kheat.B.x0; r//� C j log.r/j2CC:

Note that in [Bardos and Phung 2017; Phung 2018] it was recently proved independently that
Kheat.B.x0; r//� C�=r

�CC� for all � > 0 in the case M� Rn is star-shaped with respect to x0.
These results seem to suggest that L.M; !/ is not the only appropriate parameter needed for estimating

Kheat.!/. There are indeed some solutions of the heat equation concentrating more than the heat kernel
for small times. Our last result concerning the heat equation goes actually in the opposite direction. It
provides a large class of solutions of the heat equation, namely positive solutions, that do not concentrate
more than the heat kernel, thus proving Conjecture 1.1 when restricted to this class of solutions. Recall
that L.M; E/ is defined in (4).

Theorem 1.4. Assume that .M; g/ has geodesically convex boundary @M. Then, for any nonempty open
set ! �M and z0 2M, for any � > 0 there exist C;D > 0 so that for any 0 < T �D we have

ku.T /k2
L2.M/

�
C

T
e
.1C�/.L.M;!/C�/2

2T

Z T

0

ku.t; � /k2
L2.!/

dt; (6)

ku.T /k2
L2.M/

�
C

T
e
.1C�/.L.M;z0/C�/

2

2T

Z T

0

u.t; z0/
2 dt (7)

for all u0 2 L2.M/ such that u0 � 0 a.e. on M and associated solution u to

.@t ��g/uD 0 on RC� � Int.M/; ujtD0 D u0 in Int.M/; @�uD 0 on RC � @M:

Theorem 1.4 follows from classical Li–Yau estimates [1986]. Notice that here, Neumann boundary
conditions are taken (� denotes a unit vector field normal to @M), and an additional geometric assumption
is made (convexity of @M). The result still holds without the convexity assumption up to replacing
.1C �/ in the exponent by a geometric constant; see Remark 5.2. We also recall that for nonnegative
initial data u0 � 0, the solution of the heat equation remains nonnegative for all times. Of course,
the counterexamples of Theorem 1.2 prevent these estimates from holding in general. Estimate (7) is
particularly surprising (even without considering the value of the constants) and of course only true for
positive solutions (otherwise just taking z0 in a nodal set of an eigenfunction of �g invalidates (7)).
Finally, let us mention that the constants C and D are explicitly estimated by geometric quantities (see
Remark 5.4).

Let us now put these results in a broader context, and introduce several related geometric constants
appearing in tunneling estimates and control theory.

1B. Tunneling constants in control theory, and their links. The lower bounds of Theorem 1.2 are
proved using very particular solutions to the heat equation arising from eigenfunctions (exhibiting a very
strong concentration far from x0 as well as a strong deconcentration near x0). It is therefore natural to
study related constants measuring such (de-)concentration properties. In this section, we introduce all
geometric constants studied in the paper and collect known links between them.
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We first introduce spectral subspaces of the Laplace operator �g (with Dirichlet boundary conditions
if @M¤∅), which are at the core of most results presented here. Namely, for � 2 Sp.��g/, the space

E� WD spanf 2 L2.M/ W ��g D � g

denotes the eigenspace associated to the eigenvalue � and, for all � > 0,

E�� WD spanfE�j W �j 2 Sp.��g/; �j � �g

denotes the space of linear combinations of eigenfunctions associated to eigenvalues � �.
Let us now introduce the constants studied in the article, other than that involved in (1)–(2). For any

nonempty open subset ! �M, we recall the following results:

� Vanishing of eigenfunctions [Donnelly and Fefferman 1988; Lebeau and Robbiano 1995]: there exist
C;K such that we have

k kL2.M/ � Ce
K
p
�
k kL2.!/ for all � 2 Sp.��g/ and  2E�: (8)

� Vanishing of sums of eigenfunctions (so-called Lebeau–Robbiano spectral inequality) [Lebeau and
Robbiano 1995; Jerison and Lebeau 1999; Lebeau and Zuazua 1998]: there exist C;K such that we have

kukL2.M/ � Ce
K
p
�
kukL2.!/ for all � > 0 and all u 2E��. (9)

� Infinite-time observability of the heat equation [Fursikov and Imanuvilov 1996]: there exist C;K such
that we have Z

RC
e�

2K
t ket�guk2

L2.M/
dt � C

Z
RC
ket�guk2

L2.!/
dt for all u 2 L2.M/. (10)

� Approximate observability for the wave equation [Laurent and Léautaud 2019]:

.@2t ��g/uD 0; uj.0;T /�@M D 0; .u; @tu/jtD0 D .u0; u1/: (11)

For all T > 2L.M; !/, there exist C;K; �0 > 0 such that we have

k.u0; u1/kL2.M/�H�1.M/ � Ce
K�
kukL2..0;T /�!/C

1

�
k.u0; u1/kH1

0 .M/�L2.M/

for all �� �0 and all .u0; u1/ 2H 1
0 .M/�L2.M/, and u a solution to (11): (12)

Recall the definition of L.M; !/ in (4). Note that this last estimate is equivalent to (see [Laurent and
Léautaud 2019] or Corollary 2.2 below)

k.u0; u1/kH1
0 .M/�L2.M/ � C

0eK
0ƒ
kukL2..0;T /�!/; ƒD

k.u0; u1/kH1
0 .M/�L2.M/

k.u0; u1/kL2.M/�H�1.M/

for all .u0; u1/ 2H 1
0 .M/�L2.M/, and u a solution to (11). (13)

Note that in [Laurent and Léautaud 2019], the observation term in the right-hand side of these
inequalities is kukL2.0;T IH1.!// instead of kukL2..0;T /�!/. That the stronger inequalities above hold is
proved in [Laurent and Léautaud 2017, Section 5.3]; see also [Laurent and Léautaud � 2021].
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In all these inequalities, we are interested in the “best constant K” such that the estimate holds for
some C. More precisely, we are interested in the way it depends on the geometry of .M; g/ and ! (and,
in the case of (12), the time T ). Let us first formulate the precise definitions of these constants. These are
the analogues to that of Kheat.!/ given in (3).

Definition 1.5. Given ! �M an open set, we define Keig.!/, K†.!/, K1.!/, Kwave.!; T / to be the
best exponents in the above estimates (8)–(12), namely,

Keig.!/D inffK> 0 W there exists C > 0 such that (8) holdsg;

K†.!/D inffK> 0 W there exists C > 0 such that (9) holdsg;

K1.!/D inffK> 0 W there exists C > 0 such that (10) holdsg;

Kwave.!; T /D inffK> 0 W there exist C > 0; �0 > 0 such that (12) holdsg

D inffK0 > 0 W there exists C 0 > 0 such that (13) holdsg: (14)

A proof of the equality in (14) is given in Corollary 2.2 below. Note that we may writeKwave.!;T /DC1

if T < 2L.M; !/ since (12)–(13) are known not to hold; see the discussion in [Laurent and Léautaud
2019]. However, Kwave.!; T / <C1 as soon as T > 2L.M; !/, by virtue of (12)–(13).

Let us now collect some known facts concerning these constants, in addition to the already-discussed
bound Kheat.!/ �

1
4
L.M; !/2 [Miller 2004a]. A first trivial (but useful) fact is that Keig.!/ � K†.!/.

The following properties can also be found in the literature:

(1) For all .M; g/, ! such that N! ¤M, we have K†.!/�
1
2
L.M; !/; see [Miller 2010, Theorem 5.3]

(that K†.!/ > 0 had already been proved in [Jerison and Lebeau 1999]).

(2) K1.!/� Kheat.!/ [Miller 2006b, Theorem 1].

(3) For all .M; g/, !, we have K1.!/�
1
4
d1.!/

2, with

d1.!/D supfr > 0 W there exists x 2M such that B.x; r/�M n N!gI

see [Fernández-Cara and Zuazua 2000; Zuazua 2001, Section 4.1].

(4) Assume ! satisfies the geometric control condition in .M; g/ and denote by L! the maximal length
of a ray of geodesic optics not intersecting !. Then, we have

Kheat.!/� ˛�L
2
! (15)

with ˛� D 2
�
36
37

�2; see [Miller 2004a; 2006a] (improved to ˛� D 3
4

in [Tenenbaum and Tucsnak 2007]
and to 0:6966 in [Dardé and Ervedoza 2019]).

(5) Assume ! satisfies the geometric control condition in .M; g/ and denote by L! the maximal length
of a ray of geometric optics not intersecting !. Then, we have K1.!/ �

1
16
L2! ; see [Ervedoza and

Zuazua 2011b, Theorem 1.1].

(6) Kheat.!/� 4K†.!/
2; see [Miller 2010, Corollary 1 and Section 2.4] (see also [Seidman 2008] for a

proof of Kheat.!/� 8K†.!/
2).
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(7) If .!; T / satisfy the geometric control condition [Bardos et al. 1992], then Kwave.!; T /D 0 (more pre-
cisely, (12)–(13) hold with KDK0D 0). Conversely, if .M; g/ is real-analytic and . N!; T / does not satisfy
the geometric control condition (for a ray that only intersects @M transversally), then Kwave.!; T / > 0;
see [Lebeau 1992a].

Notice that in all these statements, the constants Kheat and K1 (heat equation) are homogeneous to a
square of a distance (as for the heat kernel), whereas the other ones are homogeneous to a distance (as for
the wave kernel).

Note also that every comparison statement above follows, in the associated reference, from a proper
inequality (the above statements being only weak forms of those).

Also notice that the converse inequality K†.!/
2 � CKheat.!/ for a universal constant C does not

seem to hold in general. For instance, in the related situation of boundary control on an interval .0; 1/
(see Section 1D), Kheat.f0g/ is finite, while a dimensional analysis shows that no spectral inequality holds
true; i.e., K†.f0g/ is infinite.

We first complete the above list of comparison results by the following proposition.

Proposition 1.6 (other links between the constants). We have

1
4
Keig.!/

2
� Kheat.!/;

1
4
Keig.!/

2
� K1.!/:

Also for all T > 0, we have Keig.!/� Kwave.!; T /.

Note that the last statement is empty if T < 2L.M; !/, since (12)–(13) are known not to hold (see
the discussion in [Laurent and Léautaud 2019]), but is nonempty if we have Kwave.!; T / <1, that is, if
T > 2L.M; !/ by virtue of (12)–(13).

Hence, in order to produce lower bounds for K†.!/, Kheat.!/, K1.!/, Kwave.!; T /, we shall produce
lower bounds for Keig.!/, i.e., construct sequences of eigenfunctions having a maximal vanishing rate
on !. Note also that, summarizing the inequalities so far, we have

1
4
Keig.!/

2
� K1.!/� Kheat.!/� 4K†.!/

2; (16)

so that the understanding of concentration properties for eigenfunctions and sums of eigenfunctions
essentially contains those of the heat equation. Therefore, our main focus in the following is to produce

� maximally vanishing eigenfunctions in particular geometries to yield a lower bound for Keig,

� a uniform Lebeau–Robbiano spectral inequality on small balls to yield an upper bound for K†.

Note that reducing our attention to Keig in the search for lower bounds is already very restrictive!
Indeed, as soon as the Schrödinger equation on .M; g/ is observable from ! in finite time (in particular
if ! satisfies the geometric control condition, see [Bardos et al. 1992; Lebeau 1992b]), then Keig.!/D 0

(more precisely, (8) holds with KD 0).

Before starting to state these lower/upper bounds, let us give a link between Kheat.!/ and Kwave.!; T /,
a consequence of a result of [Ervedoza and Zuazua 2011a] (weak observability with exponential cost for
the wave equation implies observability of the heat equation).
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Proposition 1.7. There exist universal constants ˛1; ˛2 > 0 so that for any S > 0, we have

Kheat.!/� ˛1S
2
C˛2Kwave.!; S/

2:

The proof of this result in Section 2C is a little more precise about this estimate. In particular, several
values of .˛1; ˛2/ can be deduced from it. The value of ˛1 is thought to be related to the cost of the
boundary control of the one-dimensional heat equation. Note that, as in (16), this yields

1
4
Keig.!/

2
� K1.!/� Kheat.!/� ˛1S

2
C˛2Kwave.!; S/

2 for all S > 0:

However, this upper bound seems for the moment less useful than that of (16), since the proof of (12)–(13)
in [Laurent and Léautaud 2019] is more technically involved than that of (9) in [Lebeau and Robbiano
1995; Jerison and Lebeau 1999; Lebeau and Zuazua 1998]. The computation of Kwave.!; S/ seems thus
more intricate than that of K†.!/.

1C. Main results.

1C1. Constructing maximally vanishing eigenfunctionsW lower bounds for Keig. In this section, we provide
lower bounds for Keig in three different geometries. This then proves Theorem 1.2 as a direct corollary of
Proposition 1.6.

The sphere. We first state the results we obtain on the two-dimensional sphere S2, since they are
particularly simple. The higher-dimensional case Sn is completely similar. The sphere S2 is parametrized
by .s; �/ 2 .0; �/�S1. We denote by N the north pole described by s D 0 and by S the south pole
described by s D � , and remark that s is the geodesic distance to the point N.

Theorem 1.8. For k 2 N, the function

 k.s; �/D ck sin.s/keik� ; ck D
k1=4

21=2�3=4

�
1CO

�
1

k

��
as k!C1

satisfies

��g k D k.kC 1/ k on S2;  k 2 C
1.S2/; k kkL2.S2/ D 1;

j k.s; �/j D ck sin.s/k � cks
k for s 2 Œ0; ��; k 2 N;

k kk
2
L2.B.N;r//

D
c2
k
�

kC 1

sin.r/2kC2

cos.r/
.1CR/; jRj �

tan.r/2

2kC 2
for r 2

�
0; �
2

�
; k 2 N:

This result is a much more explicit, more precise (and simpler to prove) version of the general results
we obtain on surfaces of revolution. We turn to the general case and shall explain at the end of the section
the links with Theorem 1.8.

Surfaces of revolutions. The precise description of the geometry of the surfaces we consider is given in
Section 3B and we only give here the features required to state the result. We consider MD S � R3

a smooth compact surface diffeomorphic to the sphere S2. We assume moreover that it has revolution
invariance around an axis, that intersects S in two points, the north and the south poles, respectively
N;S 2 S. These points are the only invariant points of the revolution symmetry. The surface is then
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endowed with the metric g inherited from the Euclidean metric on R3, which itself enjoys the rotation
invariance. Then, we describe (almost all) the surface by two coordinates, namely s D distg. � ; N /,
the geodesic distance to the north pole and � , the angle of rotation. The variable s is in .0; L/ where
LD distg.N; S/. The surface is characterized by the function R.s/ associating to s the Euclidean distance
in R3 to the symmetry axis, which, by definition, is rotationally invariant, and satisfies R.0/D 0DR.L/.
This function R is the “profile” of the revolution surface S.

We shall now assume that R reaches at s0 a global maximum, and introduce the relevant Agmon
distance to the “equator” s D s0, defined by the eikonal equation�

d 0A.s/
�2
�

�
1

R.s/2
�

1

R.s0/2

�
D 0; dA.s0/D 0; sgn.d 0A.s0//D sgn.s� s0/; (17)

or, more explicitly, for s 2 .0; L/, by

dA.s/D

ˇ̌̌̌Z s

s0

s
1

R.y/2
�

1

R.s0/2
dy

ˇ̌̌̌
: (18)

A more intrinsic definition of dA is given in Remark 3.3 below (and requires additional notation).

Theorem 1.9. Assume that s 7! R.s/ admits a nondegenerate strict global maximum at s0 2 .0; L/.
Then, for all k 2 N, there exists  k 2 C1.S/ and �k � 0 such that

�k D
k2

R.s0/2
C k

r
jR00.s0/j

R3.s0/
CO.k

1
2 /; k kkL2.S/ D 1; ��g k D �k k :

Moreover, there exist C;C�; C0; k0 > 0 such that, for all k 2 N, k � k0 and all 0� r � s0, we have the
estimate

k kkL2.B.N;r// � C�
C0
k
e�dA.r/.R.s0/

p
�k�C�/:

Note that one can choose any C�> 1
2

p
jR00.s0/jR.s0/ in this result. This statement has to be completed

by the asymptotic behavior of dA (proved in Lemma 3.8) when s! 0, namely

dA.s/D� log.s/CO.1/ as s! 0C: (19)

That is to say that the equator and the poles are infinitely distant to each other for the Agmon distance dA
(as opposed to the geodesic distance distg ). Note that at first order, dA does not depend on the geometry
of the surface S close to the north pole N (s D 0). A similar statement holds close to the south pole S
(s D L).

This, together with Definition 1.5 and Proposition 1.6, yields the following direct corollary.

Corollary 1.10. Under the assumptions of Theorem 1.9, for all 0� r � s0, we have the estimate

Keig.Bg.N; r//� dA.r/R.s0/:

This yields also

K†.Bg.N; r//� dA.r/R.s0/; Kwave.Bg.N; r/; T /� dA.r/R.s0/ for any T > 0;

K1.Bg.N; r//�
1
4
.dA.r/R.s0//

2; Kheat.Bg.N; r//�
1
4
.dA.r/R.s0//

2:
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Note also that Theorem 1.9, combined with the explicit asymptotic expansion (19) of the Agmon
distance dA implies the following result.

Corollary 1.11 (rate of vanishing). With .�k;  k/ as in Theorem 1.9, there exist C;C�; C0; k0 > 0 such
that, for all k 2 N, k � k0 and all r � 0, we have

k kkL2.B.N;r// � Ce
C
p
�krR.s0/

p
�k�C� ;

and, in any local chart centered at N, we have @˛ k.N /D 0 for all j˛j<R.s0/
p
�k �C��

n
2

.

As on the sphere, these eigenfunctions saturate the maximal vanishing rate predicted by the Donnelly–
Fefferman theorem [1988].

Note that in these estimates, R.s0/
p
�k � k does not depend on the geometry.

The proofs rely on classical semiclassical decay estimates for eigenfunctions [Simon 1983; Helffer
and Sjöstrand 1984]. We refer to the monographs [Helffer 1988; Dimassi and Sjöstrand 1999] for the
historical background and more references. An additional difficulty here is linked to the degeneracy of
the function R close to the north and south poles.

Note also that, to our knowledge, the idea of constructing such examples on surfaces of revolution is
due to Lebeau [1996] and Allibert [1998].

The disk. Recall that DD f.x; y/ 2 R2 W x2C y2 � 1g. Our results on the disk are quite similar to the
previous results on revolution surfaces. They are proved in Section 3C. Note the construction is more
explicit there since it involves Bessel functions. As in the above example, the concentration is related to
an Agmon distance to the maximum of the radius r , which corresponds to the boundary @D here.

Theorem 1.12 (whispering galleries on the disk). Define, for r 2 .0; 1�,

dA.r/D�.tanh.˛.r//�˛.r//; with ˛.r/D cosh�1
�
1
r

�
: (20)

Then, for all k 2 N, there exists  k 2 C1.D/\H 1
0 .D/ and �k � 0 such that

�k D k
2
CO.k

4
3 /; k kkL2.S/ D 1; ��g k D �k k :

Moreover, there exist C; ˇ; k0 > 0 such that for all k � k0 and 0 < r � 1�ˇ��1=3
k

, we have

k kkL1.B.0;r// � exp.�.
p
�k �C�

1
6

k
/dA.r/CC�

1
6

k
/:

That dA indeed represents an Agmon distance in the present context is justified in the next paragraph.
Note that dA still satisfies dA.r/�r!0C log

�
1
r

�
here, so that the analogues of Corollaries 1.10 and 1.11

still hold in this setting.

Remarks on the Agmon distance. In this paragraph we now compare the three geometries discussed above.
In particular, we stress the fact that the results obtained on the sphere are refinements of those on general
surfaces of revolution, and explain the similarities in the case of the disk.
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Remark 1.13 (Agmon distance on the sphere). Note that the coordinates .s; �/ introduced on the unit
sphere are the same as those defining general surfaces of revolution, withLD� , s 2 .0; �/, R.s/D sin.s/
and the maximum of R is reached at s0 D �

2
. In particular, recalling the definition of the Agmon distance

in (18), we obtain, for s 2 .0; �/,

dA.s/D

ˇ̌̌̌Z s

s0

r
1

R.y/2
�

1

R.s0/2
dy

ˇ̌̌̌
D

ˇ̌̌̌Z s

�
2

r
1

sin.y/2
� 1 dy

ˇ̌̌̌
D

ˇ̌̌̌Z s

�
2

cos.y/
sin.y/

dy

ˇ̌̌̌
D jlog.sin.s//j:

This can be rewritten intrinsically as

dA.m/D� log.sin.distg.m;N ///; m 2 S2 (recall distg.m;N /C distg.m; S/D �):

In view of this identity for the sphere, the estimates on the eigenfunctions  k of Theorem 1.8 can be
reformulated as (�k D k.kC 1/)

j k.s; �/j D cke
�kdA.s/ for s 2 Œ0; ��; k 2 N;

k kk
2
L2.B.N;r//

D
c2
k
�

kC 1

e�.2kC2/dA.r/

cos.r/
.1CR/; jRj �

tan.r/2

2kC 2
for r 2

�
0; �
2

�
; k 2 N:

These two statements (pointwise estimate and fine asymptotics of the L2-norm) are much more precise
than those of Theorem 1.9 on general surfaces of revolution.

Note that one can put the disk in a general setting of surfaces of revolution with boundary. In this
context, one can give a proof of (a slightly weaker version of) Theorem 1.12 following that of Theorem 1.9
(and only relying on Agmon estimates); see [Laurent and Léautaud 2021]. As opposed to the proof of
Theorem 1.12, the latter proof does not make use of the explicit knowledge of eigenfunctions on the disk
and properties of Bessel functions.

Remark 1.14 (Agmon distance in the disk). Recalling the definition of dA in (20), we have

˛0.r/D�
1

r2
1

p
1=r2� 1

;

so that

.d 0A.r//
2
D ˛0.r/2

�
1

cosh2.˛.r//
� 1

�2
D
1

r2
1

1� r2
.r2� 1/2 D

1

r2
� 1 and dA.1/D 0:

As a consequence, dA is exactly the Agmon distance to the boundary r D 1, and we have

d 0A.r/D�

r
1

r2
� 1; r 2 .0; 1�:

Note again that dA.r/�r!0C log
�
1
r

�
and, in particular, the center of the disk is at infinite Agmon distance

to the boundary: dA.0/DC1.

1C2. Uniform Lebeau–Robbiano spectral inequalitiesW upper bounds for K†. The counterpart of
Corollary 1.11 is due to [Donnelly and Fefferman 1988] and roughly states that eigenfunctions vanish at
most like rC

p
�CC on balls of radius r (� is the eigenvalue). It has been generalized in some sense to
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sums of eigenfunctions in [Jerison and Lebeau 1999]. We prove here a variant of this result under the
form of a uniform Lebeau–Robbiano spectral inequality with observation on small balls.

Theorem 1.15 (uniform Lebeau–Robbiano spectral inequality with observation on small balls). Let
.M; g/ be a compact Riemannian manifold with (or without) boundary @M. For all x0 2M, there exist
constants C1; C2 > 0 such that for all r > 0, �� 0 and  2E�� we have

k kL2.M/ � e
.C1
p
�CC2/.1Clog . 1

r
//
k kL2.B.x0;r//:

Note that a careful inspection of the proofs (of all Carleman estimates used, that are stable by small
perturbations) shows that the constants C1; C2 can actually be taken independent of the point x0. Note that
we prove the result in the case of Neumann boundary conditions as well. This uniform Lebeau–Robbiano
spectral inequality directly implies Theorem 1.3 using [Miller 2010, Corollary 1] (recalled in Lemma 2.6
below).

One of the tools we develop for the proof of Theorem 1.3 also yields a uniform Lebeau–Robbiano
inequality in a class of Lipschitz metrics. Even though it is not completely related to the main results of
the paper, we choose to state it here since we believe it is of independent interest.

On the manifold M, we denote here by g a metric and .�gj /j2N the spectrum of the associated Laplace–
Beltrami operator ��g (with Dirichlet boundary condition if @M¤∅) and by . g

�j
/j2N an associated

Hilbert basis of eigenfunctions, in order to stress the dependence with respect to the metric. We also write

E
g
��
D spanf g

�j
W �

g
j � �g;

which of course depends on the metric g. Now, given a reference Lipschitz metric g0, we define

��;D.M; g0/D fg Lipschitz continuous metric on M W kgkW 1;1.M/ �D; �g0 � g�Dg0g:

Theorem 1.16 (uniform Lebeau–Robbiano spectral inequality in a class of metrics). Let M be a compact
Riemannian manifold with (or without) boundary @M, g0 be a Lipschitz continuous Riemannian metric
on M, and ! �M a nonempty open set. Then, for all D � � > 0, there exist constants C; c > 0 such
that for all g 2 ��;D.M; g0/, �� 0 and w 2Eg

��
, we have

kwkL2.M/ � Ce
c
p
�
kwkL2.!/: (21)

Note that the above estimate is valid whatever the choice of L2-norm (i.e., with respect to g or g0)
since all these norms are uniformly equivalent for metrics g in the class ��;D.M; g0/. This result could
be reformulated by saying that (21) holds for all w 2

S
g2��;D.M;g0/

E
g
��

.
This uniform Lebeau–Robbiano spectral inequality directly implies the following uniform estimate on

the cost of the heat equation, using [Miller 2010, Corollary 1], recalled in Lemma 2.6 below (in which
the constants are explicitly computed in terms of the constants in the spectral inequality).

Corollary 1.17. Let M be a compact Riemannian manifold with (or without) boundary @M, g0 be a
Lipschitz continuous Riemannian metric on M, and ! �M be a nonempty open set. Then, for all
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D � � > 0, there exist constants C;K> 0 such that for all g 2 ��;D.M; g0/ we have

keT�guk2
L2.M/

� Ce
2K
T

Z T

0

ket�guk2
L2.!/

dt for all T > 0 and all u 2 L2.M/.

Note that the proofs of Theorem 1.16 and Corollary 1.17 are completely constructive, and, as such,
provide explicitly computable constants.

1C3. The case of a barrelW upper bounds for Kwave and Kheat. To conclude with the upper bounds on the
constant, we present in this section some applications of results obtained in [Allibert 1998]. In the case
of a “barrel-type surface” with boundary (a geometric setting close to that of the surfaces of revolution
described above), Allibert estimates the attainable space for the controlled wave equation. As corollaries,
we deduce from this result estimates of Kwave and, in view of Proposition 1.7, of Kheat.

We first present the geometric context (which is very close to that of surfaces of revolution described
above). In this section, MDS is a surface of revolution of R3 with boundary, parametrized by the equation

S D f.x; y; z/ 2 R3 W z 2 Œ0; L�; x2Cy2 D R.z/g;

where R is a strictly positive smooth function on Œ0; L� that admits at the point z0 2 .0; L/ a unique
local (and therefore global) nondegenerate maximum (i.e., R00.z0/ < 0). Observation takes place at the
boundary, only on the bottom side, that is, � D f.x; y; 0/ 2 R3 W x2Cy2 D R.0/g. We may also describe
S by .z; �/, with .x; y/D .R.z/ cos �;R.z/ sin �/.

We refer to Remark 3.4 to explain the link between the two parametrizations of revolution surfaces by
s and z (and in particular, that we may write z D z.s/ and R.s/D R.z.s//).

As above, we define the Agmon distance to the point z0, which in this z-parametrization can be written
(note that it is almost the same as (18) but in different coordinates)

dA.z/D

ˇ̌̌̌Z z

z0

p
1CR02.y/

r
1

R.y/2
�

1

R.c/2
dy

ˇ̌̌̌
:

We also need the following definition of a critical time T1 (see [Allibert 1998] for more details), which,
roughly speaking, represents the smallest period of the geodesic flow, modulo rotation. More precisely,
the principal symbol of the wave operator on R�S is given by

p.t; z; �; �; �; �/D
�2

1CR02.z/
C

�2

R2.z/
� �2;

where .�; �; �/ denotes the dual variables to .t; z; �/. For any (generalized) bicharacteristic curve  of p,
bouncing on the boundary according to the reflection law �!��, we denote by T ./ the smallest period
of the function …z./, where …z is the projection on the component z.

Then, T1 is defined by

T1 D supfT ./ W  bicharacteristic curve of pg;

and we have T1 � 2L.M; �/ (this critical time is larger than the time of unique continuation from �).
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In this context, we define similarly Kheat.�/ and Kwave.�; T / with exactly the same definition as in (2)
and Definition 1.5 with kukL2.Œ0;T ��!/ replaced by k@�ukL2.Œ0;T ���/ in (1) and (12). Note that @�u is in
L2.Œ0; T ���/ for initial data in L2 (resp. H 1

0 �L
2) for the heat (resp. wave) equation thanks to hidden

regularity. We deduce from [Allibert 1998] the following result.

Theorem 1.18. Under the above geometric assumptions, we have the estimates

Kwave.�; T /� R.z0/dA.�/ for all T > T1; (22)

Kheat.�/� ˛.T1.�/
2
CR.z0/

2dA.�/
2/ (23)

for some universal constant ˛ > 0.

The first estimate (22) follows simply from [Allibert 1998, Théorème 2] (see Proposition 2.7 below),
which is stated in terms of analytic spaces with respect to the rotation variable � . Then, (22) implies (23)
thanks to Proposition 1.7. Note that (22) also proves an analogue of Theorem 1.9 in this geometry, so
that in fact

Keig.�/D R.z0/dA.�/ and Kwave.�; T /D R.z0/dA.�/ for all T > T1: (24)

He also proves upper and lower estimates for T 2 .2L.M; �/; T1/ (which do not coincide). This other set
of estimates for Kwave.�; T / can also provide other estimates for Kheat.�/ using the proof of Theorem 1.18
and Proposition 2.7. Note finally that in [Laurent and Léautaud 2021], using the methods of [Allibert
1998], we also prove that Keig.Bg.N; r//D dA.r/R.s0/ in the context of Theorem 1.9 and Corollary 1.10.

1D. Previous results. Except for the bounds (24) (and that of Keig in [Laurent and Léautaud 2021])
following from Allibert’s result and the computation of K1.f0g/ on MD Œ0; L� in [Fattorini and Russell
1971], we are not aware of other situations in which the constants described in the previous paragraph
are known exactly. We collect in this section previous results on the constants Kheat and Kwave, which
received a lot of attention in the past fifteen years.

Parabolic equations in one dimension. The most-studied case concerns the constant Kheat, with observa-
tion/control at the boundary in the one-dimensional case, say MD Œ�1; 1�. Yet, it seems that the constant
Kheat.f�1; 1g/ is still unknown. Note that the latter has a particular importance since it has applications
to higher dimensions (with geometric conditions) via the transmutation method of Luc Miller [2006a].

Here, we list previous results on MD Œ�1; 1� with Neumann trace observation (Dirichlet control) on
both sides of the interval. Note also that each improvement of the constant was also the occasion of
finding new techniques of proofs:

� Kheat.f�1; 1g/� 2
�
36
37

�2 [Miller 2006a], using the transmutation method.

� Kheat.f�1; 1g/�
3
4

[Tenenbaum and Tucsnak 2007], using results of analytic number theory.

� Kheat.f�1; 1g/�
1
2

[Lissy 2015], using complex analysis arguments.

� Kheat.f�1; 1g/� 0; 7 [Dardé and Ervedoza 2019], combining Carleman estimates and complex analysis.
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Note that in this setting, the analogue of Conjecture 1.1 would be Kheat.f�1; 1g/D
1
4

, which [Lissy 2015]
disproved in this context (by a factor 2). However, this result does not in general prevent the existence of
a universal constant C > 0 so that Kheat.!/D CL.M; !/2.

As noticed in [Ervedoza and Zuazua 2011b], the result in [Fattorini and Russell 1971] implies that on
the interval .0; L/, we have K1.f0g/D

1
4
L2 (and [Ervedoza and Zuazua 2011b] even prove (10) for the

critical KD 1
4
L2).

Parabolic equations in higher dimensions. There are many papers concerning the controllability proper-
ties of the heat equation. We only mention those providing estimates on the constants studied in this paper.

The first computable estimates were obtained using the transmutation method to give estimates similar
to (15). We can find several references improving the universal constant involved; see [Miller 2004a;
2006a; Tenenbaum and Tucsnak 2007; Dardé and Ervedoza 2019].

In [Tenenbaum and Tucsnak 2007], the authors prove K†.!
�/ � 3 log..4�e/N =j!�j/, where MD

.0; �/N is a cubic domain and j!�j is the volume of the biggest rectangle included in !. The proof of
this result uses a number-theoretic argument of Turán concerning families of the complex exponential
.eikx/k2Z (which can be interpreted as an estimate of K†.I / for I a subinterval of T). In this particular
flat-torus geometry, we have no idea of what the right constant should be.

In [Bardos and Phung 2017], the authors prove K†.B.0; r//�C�=r� for all � >0 in convex geometries.
This has just been extended in [Phung 2018]. Our Theorem 1.3 improves this result. Note also that [Nakić
et al. 2018] gave results related to this in a periodic setting, tracking uniformity with respect to several
parameters.

In the Euclidean space Rn where � is the usual flat Laplacian, spectral estimates like (9) can be inter-
preted as a manifestation of the uncertainty principle. Several results relying on this fact have been recently
stated. We refer for instance to [Egidi and Veselić 2018; Wang et al. 2019] and the references therein.

The wave equation. Lebeau [1992a] proved in the analytic setting a result close to the fact thatKwave.!; T /

is finite for any open set ! and in optimal time T > 2L.M; !/. It was only very recently shown to be
finite by the authors [Laurent and Léautaud 2019] in a general C1 context. We refer the reader to the
introduction of that work for a detailed discussion of the literature on unique continuation for waves, and
estimates like (12)–(13).

Estimates on analytic spaces of controllable data were computed by Allibert in the above-described
examples. We refer to Section 2D for more details about why they have implications on the constant
Kwave (and therefore Kheat by Proposition 1.7). In [Allibert 1998], he studied the example of the barrel
as we describe it in Section 1C3. In [Allibert 1999], he studied the example of a cylinder .0; �/�S1.
The results he obtained in that paper imply Kwave.�; T /� Cı=T

1�ı, where � D f0g �S1 and T > 2� .
Notice finally that the blowup of the observability constant for the wave equation, when the time tends to
the minimal geometric control time, has recently been investigated in [Laurent and Léautaud 2016].

1E. Plan of the paper. The paper is divided in four main parts. In Section 2, we give the links between
the different constants, proving in particular Propositions 1.6 and 1.7. We also interpret the description of
the reachable set as an upper bound on the constant Kwave.!; T /.
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In Section 3, we construct the various counterexamples on rotationally invariant geometries, presented
in Section 1C1. This proves in particular Theorem 1.2.

Section 4 is devoted to the proof of the uniform Lebeau–Robbiano inequality on small balls, stated in
Theorem 1.15.

Finally, we prove in Section 5 the observability inequality of Theorem 1.4 concerning positive solutions
of the heat equation.

The paper ends with two appendices; in the first, Appendix A, we prove a uniform Carleman estimate
for bounded families of Lipschitz metrics. Such an estimate is used as an intermediate step in the proof
of Theorem 1.15. The result also yields Theorem 1.16.

Note finally that in the companion paper [Laurent and Léautaud 2021], we apply similar techniques for
the problem of uniform observability/controllability of transport equations in the vanishing viscosity limit.

2. Preliminaries: links between the different constants

2A. Different definitions of Kwave.!; T /. Let us start by proving equality (14). This is a consequence
of the following lemma.

Lemma 2.1. Let �0 � 0, K� 0 and assume that ƒ> 0 and X � 0 satisfy

1

ƒ
� eK�X C

1

�
for all � > �0: (25)

Then, for all ˛ > 0, we have

1�

�
1ƒC˛��0

�0�˛

˛
eK�0 C1ƒC˛>�0

eK˛

˛
ƒ.ƒC˛/eKƒ

�
X: (26)

Let F W RC! RC be a nondecreasing function and assume that ƒ> 0 and X � 0 satisfy

ƒ� 1 and 1� F.ƒ/X: (27)

Then, we have
1

ƒ
� F.�/X C

1

�
for all � > 0: (28)

As a direct consequence of this lemma, we obtain the following corollary, clarifying the definition of
Kwave.!; T /.

Corollary 2.2. Assume (12) with constants K; C; �0 > 0. Then, there is C 00 > 0 such that

k.u0; u1/kH1
0 .M/�L2.M/ � C

00ƒ2eKƒkukL2..0;T /�!/; ƒD
k.u0; u1/kH1

0 .M/�L2.M/

k.u0; u1/kL2.M/�H�1.M/

for all .u0; u1/ 2H 1
0 .M/�L2.M/ and u a solution to (11),

k.u0; u1/kL2.M/�H�1.M/ � C
00�2eK�kukL2..0;T /�!/C

1

�
k.u0; u1/kH1

0 .M/�L2.M/

for all � > 0 and all .u0; u1/ 2H 1
0 .M/�L2.M/, and u a solution to (11).
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Reciprocally, if (13) holds with constants K0; C 0 > 0, then (12) holds with KD K0, C D C 0, and �0 D 0
(and for all � > 0).

In particular, we have

Kwave.!; T /D inffK> 0 W there exist C > 0; �0 > 0 such that (12) holdsg

D inffK0 > 0 W there exists C 0 > 0 such that (13) holdsg

D inffK> 0 W there exists C > 0 such that (12) holds with �0 D 0 (and all � > 0)g:

Proof of Lemma 2.1. Let ˛ > 0. In the case ƒC˛ >�0, the assumption (25) with �DƒC˛ >�0 yields

1

ƒ

�
1�

ƒ

ƒC˛

�
� eK.ƒC˛/X;

and hence
1�

1

˛
eK˛ƒ.ƒC˛/eKƒX: (29)

If now ƒC˛ � �0 (and, in particular, ˛ < �0), that is 1
ƒ
�

1
�0�˛

> 0, the assumption (25) implies

1

�0�˛
�
1

ƒ
� eK�X C

1

�
for all �� �0:

This yields in particular

X �
�

1

�0�˛
�
1

�

�
e�K� for all �� �0;

and hence
X � max

���0

�
1

�0�˛
�
1

�

�
e�K� �

˛

�0�˛
e�K�0 > 0:

With (29), this proves (26).
Let us now prove (28). If ƒ � �, then 1

ƒ
�

1
�

and (28) holds. If ƒ � �, then (27) gives 1
ƒ
� 1 �

F.ƒ/X � F.�/X and (28) also holds in this case, concluding the proof. �

2B. The constant Keig.!/ as a lower bound for Kheat.!/, K1.!/, Kwave.!;T /W proof of Proposition 1.6.
We prove a slightly more precise version of Proposition 1.6.

Lemma 2.3. Assume that (1) holds with constants K; C > 0. Then, we have

k kL2.M/ �

r
C

2�
e2
p
K�
k kL2.!/ for all � 2 Sp.��g/ n f0g and  2E�: (30)

In particular,
1
4
Keig.!/

2
� Kheat.!/: (31)

Assume that (10) holds with constants K; C > 0. Then, there exists C 00 > 0 such that

k kL2.M/ �
C 00

�1=8
e2
p
K�
k kL2.!/ for all � 2 Sp.��g/ n f0g and  2E�: (32)

In particular
1
4
Keig.!/

2
� K1.!/: (33)



372 CAMILLE LAURENT AND MATTHIEU LÉAUTAUD

Assume that (13) holds in time T with constants C 0, K0. Then, we have

k kL2.M/ �

r
T

�
C 0eK

0
p
�
k kL2.!/ for all � 2 Sp.��g/ n f0g and  2E�: (34)

In particular, for all T > 0, we have Keig.!/� Kwave.!; T /.

Proof of Proposition 1.6. From (1), applied to u.t; x/D e�t� .x/ with � 2 Sp.��g/ n f0g and  2E�,
we have

e�2T�k k2
L2.M/

� Ce
2K
T

Z T

0

e�2t�k k2
L2.!/

dt D Ce
2K
T
1� e�2T�

2�
k k2

L2.!/
for all T > 0:

Taking T DD=
p
�, with D > 0 to be chosen, this implies

k k2
L2.M/

� Ce2T�e
2K
T
1

2�
k k2

L2.!/
D
C

2�
e2
p
�.DC K

D
/
k k2

L2.!/
:

Minimizing the exponent with respect to D leads to choosing D D
p
K, which implies (30) when taking

the square root. From (30), inequality (31) follows directly when taking the infimum over all K.
Let us now prove the second statement of the proposition. From (10), again applied to u.t; x/ D

e�t� .x/ with � 2 Sp.��g/ n f0g and  2E�, we haveZ
RC
e�

2K
t e�2t�k k2

L2.M/
dt � C

Z
RC
e�2t�k k2

L2.!/
dt D

C

2�
k k2

L2.!/
: (35)

The left-hand side may also be computed asymptotically for �!C1 using the Laplace method, setting
�D
p
�, asZ

RC
e�

2K
t e�2�

2t dt D

Z
RC
e�2
p
K�. 1

s
Cs/
p
K

�
ds

D .1C o.1//

p
K

�

Z
R

e�2
p
K�.2C.s�1/2/ ds

D .1C o.1//

p
K

�
e�4
p
K�

r
�

2
p
K�
D .1C o.1//

�
�
p
K

2�3

�1
2

e�4
p
K�:

From (35), we then obtain that, for any eigenfunction  associated to the eigenvalue �2 for �!1, we
have

.1C o.1//

�
�
p
K

2�3

�1
2

e�4
p
K�
k k2

L2.M/
�

C

2�2
k k2

L2.!/
:

Coming back to �D �2, this implies the existence of zC ; �0 > 0 such that for all �� �0

k k2
L2.M/

�
zC

�1=4
e4
p
K�
k k2

L2.!/
;

and hence the sought result of (32). That of (33) follows as above.
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Let us now prove the last statement of the proposition. We want to apply (13) to the function
u.t; x/D cos.t

p
�/ with � 2 Sp.��g/ n f0g and  2 E�, which is a particular solution to (11). We

have

ƒD
k.ujtD0; @tujtD0/kH1

0 .M/�L2.M/

k.ujtD0; @tujtD0/kL2.M/�H�1.M/

D

k kH1
0 .M/

k kL2.M/

D
p
�

and (13) then yields
p
�k kL2.M/ D k kH1

0 .M/ D kujtD0; @tujtD0/kH1
0 .M/�L2.M/ � C

0eK
0ƒ
kukL2..0;T /�!/;

where

kuk2
L2..0;T /�!/

D

Z T

0

cos2.t
p
�/k k2

L2.!/
dt � T k k2

L2.!/
:

This finally implies (34). The last result follows from Corollary 2.2. �

2C. Link between Kheat.!/ and Kwave.!; T /W proof of Proposition 1.7. The proof will follow very
closely the method of [Ervedoza and Zuazua 2011a], but with a different assumption. Note that this
strategy was applied to approximate controllability problems for parabolic equations in [Laurent and
Léautaud 2017]. We first summarize the results we need from [Ervedoza and Zuazua 2011a; 2011b] in
the next proposition for readability.

Proposition 2.4 [Ervedoza and Zuazua 2011a; 2011b]. Let T; S > 0 and ˛ > 2S2. Let L be a negative
self adjoint operator. Then, there exists a kernel function kT .t; s/ such that:

� If y is solution of the heat equation @sw�Lw D 0, then w.s/D
R T
0 kT .t; s/y.t/ dt is solution of8<:

@2sw�Lw D 0 for s 2 .�S; S/;

.w; @sw/jsD0 D

�
0;

Z T

0

@skT .t; 0/y.t/ dt

�
D

�
0;

Z T

0

e�˛.
1
t
C 1
T�t

/y.t/ dt

�
:

(36)

� For all ı 2 .0; 1/ and all .t; s/ 2 .0; T /� .�S; S/, we have

jkT .t; s/j � jsj exp
�

1

minft; T � tg

�
s2

ı
�

˛

.1C ı/

��
: (37)

Note that this last estimate is most useful for ı sufficiently close to 1 so that ˛ � S2
�
1C 1

ı

�
.

We first prove from this proposition an observability inequality for data in E�� (i.e., at low frequency)
as a consequence of the approximate observability result for waves (13) (coming from [Laurent and
Léautaud 2019]), with a precise dependence on the cutoff frequency � and the control time T . Combined
with an argument of [Miller 2010], this allows us to prove observability for all data inL2.M/ (still keeping
track of the constants), and we finally conclude the proof of Proposition 1.7 at the end of the section.

Lemma 2.5. Assume that (13) holds on the time interval .0; 2S/ and with constant K0. Then, there are
C; ˛0 > 0 such that we have

keT�gy0k
2
L2.M/

� C.1C�/e2K
0.1C�/1=2e

18S2

T

Z T

0

ket�gy0k
2
L2.!/

dt

for all 0 < T � ˛0, � > 0 and y0 2E��.
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Proof. For ˛ > 2S2 (to be fixed later on), we use the kernel kT described in Proposition 2.4. Let w.s/ be
associated to y by w.s/D

R T
0 kT .t; s/y.t/ dt , where y.t/D et�gy0 with y0 2E��. Then, in (36), W0

is of the particular form

W0 D

�
0;

Z T

0

e�˛.
1
t
C 1
T�t

/y.t/ dt

�
;

so that a calculation (see [Ervedoza and Zuazua 2011a, equation (3.3)]) yields

kW0k
2

L2�H�1L
� .1C�/�1kW0k

2

H1L�L2
D .1C�/�1

Z T

0

e�˛.
1
t
C 1
T�t

/y.t/ dt

L22
� .1C�/�1

X
i

jyi j
2e�2�iT

ˇ̌̌̌Z T

0

e�˛.
1
t
C 1
T�t

/ dt

ˇ̌̌̌2
:

The integral can be estimated by the Laplace method,Z T

0

e�˛.
1
t
C 1
T�t

/ dt D T

Z 1

0

e�
˛
T
. 1
s
C 1
1�s
/ ds � CT

�
T

˛

�1
2
e�4

˛
T for ˛

T
� 1;

since the nondegenerate minimum of 1
s
C

1
1�s

is 4 reached at s D 1
2

and the function is positive. We have
thus obtained

kW0k
2

L2�H�1L
� C.1C�/�1T 3˛�1e�

8˛
T ky.T /k2

L2
: (38)

Moreover, we have W0 2E�� �E�� so that

kW0kH1
0�L

2

kW0kL2�H�1
� .1C�/

1
2 :

As a consequence, (13) on the time interval .�S; S/ (which, by time-translation invariance, is the same
as on .0; 2S/) with constant K0 implies

kW0kL2�H�1L
� CeK

0.1C�/1=2
kwkL2..�S;S/�!/: (39)

Using the Cauchy–Schwarz inequality, we have

kwk2
L2..�S;S/�!/

�

�Z
.0;T /�.�S;S/

kT .t; s/
2 dt ds

�Z T

0

Z
!

jy.t; x/j2 dx dt: (40)

Now, we use (37) with ı 2 .0; 1/ fixed sufficiently close to 1 so that ˛ � S2 1Cı
ı

(which is possible since
we have assumed ˛ > 2S2). This yieldsZ

.0;T /�.�S;S/

kT .t; s/
2 dt ds � CS2

Z
.0;T /�.�S;S/

exp
�

1

minft; T � tg

�
S2

ı
�

˛

.1C ı/

��
dt ds

� CS3T: (41)

Combining (38), (39), (40) and (41) then gives the sought result, since the estimates are true for any
˛ > 2S2. �
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The following result, taken from [Miller 2010], deduces observability from low-frequency observability.
The values of the constants are tracked precisely.

Lemma 2.6 [Miller 2010]. Let T0; a; b; C > 0 and assume

keT�gy0k
2
L2.M/

� Ce2a�
1=2C 2b

T

Z T

0

ket�gy0k
2
L2.!/

dt for all 0 < T < T0 and all y0 2E��.

Then, we have

keT�gy0k
2
L2.M/

� C 0e2
c�
T

Z T

0

ket�gy0k
2
L2.!/

dt for all 0 < T < T0 and all y0 2 L2.M/,

with c� D .aC
p
bC

p
a2C 2a

p
b/2 and C 0 a constant depending only on T0; a; b; C.

Proof. The result is not stated exactly that way, but the author proves this as an intermediate result of
[Miller 2010, Theorem 2.2]. More precisely, the assumptions of our lemma are exactly estimate (10)
in [Miller 2010], with ˛ D 1

2
and ˇ D 1. It gives the result with c� D 4b2.

p
aC 2

p
b �
p
a/�4 D

1
4
.
p
aC 2

p
bC
p
a/4 D .aC

p
bC

p
a2C 2a

p
b/2. �

With these two lemmas in hand, we now conclude the proof of Proposition 1.7.

Proof of Proposition 1.7. To simplify notation, we prove the existence of universal constants so that
Kheat.!/� ˛3S

2C˛4Kwave.!; 2S/
2 for all S > 0.

Let K0 > Kwave.!; 2S/ so that there exists C > 0 so that we have the estimate (see Corollary 2.2 for
the equivalence)

k.u0; u1/kH1
0 .M/�L2.M/ � Ce

K0ƒ
kukL2..�S;S/�!/; ƒD

k.u0; u1/kH1
0 .M/�L2.M/

k.u0; u1/kL2.M/�H�1.M/

for all .u0; u1/ 2H 1
0 .M/�L2.M/, and u a solution to (11). (42)

Note that when compared to (12)–(13), we have changed the interval .0; 2S/ to .�S; S/, which gives the
same result by conservation of energy. The proof is a direct consequence of above Lemmas 2.5 and 2.6. �

2D. Link between Kwave.!; T / and analytic spaces. As already mentioned, Theorem 1.18 is a corollary
of observability estimates in spaces of ultradistributions (implying by duality that some spaces of analytic
functions are attainable/controllable for the control problem) obtained in [Allibert 1998]. The following
proposition explains (in the general setting of the paper) the link between such estimates and (12)–(13);
see also [Lebeau 1992a].

Proposition 2.7. Assume there areC0; C >0 such that for all .u0; u1/2H 1
0 .M/�L2.M/ and associated

u a solution of (11), we have

ke�C0
p
��g.u0; u1/kL2.M/�H�1.M/ � CkukL2..0;T /�!/ (resp. � Ck@�ukL2..0;T /��//: (43)

Then (12) is satisfied with constant KD C0 and all � > 0. In particular, we have

Kwave.!; T /� C0 (resp. Kwave.�; T /� C0/:
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Again, in this statement, �g denotes the Laplace operator with Dirichlet boundary conditions.

Proof. Given �>0, we decompose the data .u0; u1/ as u0 D 1p
��g��

u0C1p
��g>�

u0 (and similarly
for u1). Here 1p

��g��
denotes the orthogonal projector on the spectral space of ��g associated to

eigenfunctions �j with
p
�j � �. Noting that

k1p
��g>�

.u0; u1/kL2.M/�H�1.M/ �
1

�
k1p

��g>�
.u0; u1/kH1

0 .M/�L2.M/

�
1

�
k.u0; u1/kH1

0 .M/�L2.M/;

we obtain

k.u0; u1/kL2.M/�H�1.M/ � k1
p
��g��

.u0; u1/kL2.M/�H�1.M/C
1

�
k.u0; u1/kH1

0 .M/�L2.M/

� eC0�ke�C0
p
��g.u0; u1/kL2.M/�H�1.M/C

1

�
k.u0; u1/kH1

0 .M/�L2.M/

� CeC0�kukL2..0;T /�!/C
1

�
k.u0; u1/kH1

0 .M/�L2.M/;

where we used the assumption (43) in the last inequality. This concludes the proof of (12), and that of the
proposition. �

We now extract an estimate like (43) on some surfaces of revolution from [Allibert 1998]. Indeed, a
combination of several estimates in that work gives the following result on barrel-type surfaces.

Theorem 2.8 [Allibert 1998]. Under the geometric assumptions of Section 1C3, for any T > T1 and
C0 > R.z0/dA.�/, there exists C > 0 so that

ke�C0
p
��g.u0; u1/kH1

0�L
2 � Ck@�ukL2..0;T /��/ (44)

for any .u0; u1/ 2H 1
0 .M/�L2.M/ and associated solution u of (11).

The result is not stated exactly this way in the article. It is also more precise since it involves analytic
spaces only in the �-variable. More precisely, denoting by Ek0 the spaces of functions in H 1

0 �L
2 of

the form f .s/eik�, the following estimate is proved in [Allibert 1998, Theorème 2, Définition 3 and
Proposition 1]:

k.u0; u1/kH1
0�L

2 � C.k/k@�ukL2..0;T /��/ (45)

for any .u0; u1/ 2Ek0 , where C.k/ satisfies

lim sup
n!C1

lnC.k/
k

D dA.�/:

In particular, for any ı > 0, there is k0 2 N such that C.k/ � ek.dA.�/Cı/. Recalling that 1
R

has a
unique minimum at z D z0, together with the action of �z;� on functions of the form f .s/eik� (see (53)
in Remark 3.4, or the formula of Pn in [Allibert 1998]), we see that

.��z;� .f .s/e
ik� /; f .s/eik� /L2.M/ � k

2

fR
L22 � k2

R.z0/2
kf .s/eik�k2

L2.M/
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(and a similar formula in H 1
0 ). Denoting by �k;n the n-th eigenvalue of the operator restricted to the

space Ek0 , this yields �k;n � k2=R.z0/2 and thus C.k/� e.dA.�/Cı/R.z0/
p
�k;n for all k � k0 and n 2N.

As a consequence of (45), we obtain for k � k0

ke�.dA.�/Cı/R.z0/
p
��g.u0; u1/kH1

0�L
2 � k@�ukL2..0;T /��/ for all .u0; u1/ 2Ek0 :

This finally gives (44) for any C0 > R.z0/dA, when taking into account the orthogonality of the subspaces
Ek0 for the norm of H 1

0 �L
2 and the norm of the observation.

With Theorem 2.8 in hand, Theorem 1.18 is now a straightforward consequence of Propositions 2.7
and 1.7.

2E. Reformulation of the definition of the constants in terms of localization functions. This section is
aimed at giving an alternative definition for the geometric constants Keig.!/, K†.!/, Kheat.!/ in terms
of localization functions.

Definition 2.9. Let ! �M be an open set. We set

Loceig.!; �/D inf
�
k kL2.!/

k kL2.M/

W  2E� n f0g

�
2 Œ0; 1�; � 2 Sp.��g/;

Loc†.!; �/D inf
�
kukL2.!/

kukL2.M/

W u 2E�� n f0g

�
2 Œ0; 1�;

Locheat.!; T /D inf
�
ket�u0kL2..0;T /�!/

keT�u0kL2.M/

W u0 2 L
2.M/ n f0g

�
:

Note that if the Schrödinger equation is observable from ! in finite time (in particular if ! satisfies
the geometric control condition, see [Bardos et al. 1992; Lebeau 1992b]), then, there exists C > 0

so that Loceig.!; �/ � C for all � 2 Sp.��g/. Under the sole assumption that ! ¤ ∅, we have
Loceig.!; �/� C

�1e�C
p
� [Donnelly and Fefferman 1988; Lebeau and Robbiano 1995], Loc†.!; �/�

C�1e�C
p
� [Lebeau and Robbiano 1995; Jerison and Lebeau 1999; Lebeau and Zuazua 1998] and

Locheat.!; T /� C
�1e�C=T [Fursikov and Imanuvilov 1996; Miller 2010].

Lemma 2.10. We have

Keig.!/D lim sup
�!C1; �2Sp.��g/

� log Loceig.!; �/
p
�

;

K†.!/D lim sup
�!C1

� log Loc†.!; �/
p
�

;

Kheat.!/D lim sup
T!0C

�T log Locheat.!; T /:

Note that we do not have a similar formulation for the constants K1.!/ and Kwave.!; T / since they
do not correspond to an asymptotic regime (like T ! 0 or �!C1).
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Proof. We only prove the second statement, the other proofs being similar. Setting

C†.!/D lim sup
�!C1

� log Loc†.!; �/
p
�

;

we want to prove that C†.!/D K†.!/. Assume K; C satisfy (9); then we have

Loc†.!; �/�
1

C
e�K
p
�;

and hence
� log Loc†.!; �/

p
�

�
K
p
�C log.C /
p
�

:

Taking the lim sup�!C1, this implies C†.!/ � K. Taking the infimum over all such K and recalling
Definition 1.5, we obtain C†.!/� K†.!/.

We now prove the converse inequality. The definition of C†.!/ implies that for all � there exists �0.�/
such that for all �� �0.�/

� log Loc†.!; �/
p
�

� C†.!/C �;

that is, Loc†.!; �/� e�.C†.!/C�/
p
�. This, together with the fact that Loc†.!; �/ > 0 does not vanish

on Œ0; �0.�/�, implies the existence of a constant C.�/ > 1 such that

Loc†.!; �/�
1

C.�/
e�.C†.!/C�/

p
�

for all � � 0. This is precisely estimate (9) with K D C†.!/C � and C D C.�/. Taking the infimum
over all such K and recalling Definition 1.5, we obtain K†.!/ � C†.!/C � for all � > 0, and hence
K†.!/� C†.!/, which concludes the proof. �

3. Construction of maximally vanishing eigenfunctions

3A. The sphere. In this section, we consider the simplest case of our results that is, the unit sphere in R3:

S2 D f.x1; x2; x3/ 2 R3 W x21 C x
2
2 C x

2
3 D 1g D fx 2 R3 W jxj D 1g:

Eigenfunctions and eigenvalues of the Laplace–Beltrami operator on S2 are well-understood: eigenfunc-
tions are restrictions to S2 of harmonic homogeneous polynomials of R3, associated to the eigenvalue
k.kC 1/, where k is the degree of the polynomial. We are particularly interested in so-called equatorial
spherical harmonics, given by

uk D PkjS2 2 C
1.S2/; Pk.x1; x2; x3/D .x1C ix2/

k;

known to concentrate exponentially on the equator given by x3 D 0.
Since it can be written Pk D zk , where zD x1C ix2 2C, it is easy to check that Pk is holomorphic as

a function of z, and hence harmonic as a function of .x1; x2; x3/ 2 R3. Moreover, Pk is homogeneous of
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degree k. Therefore, see, e.g., [Shubin 1987, Proposition 22.2 p. 169], the function uk is an eigenfunction
of the Laplace–Beltrami operator on S2:

��S2uk D �kuk; with �k D k.kC 1/

(this fact can also be checked directly with the expression in (46)). Note that we have

juk.!/j
2
D .x21 C x

2
2/
k
D .1� x23/

k; ! D
x

jxj
:

We denote by N D .0; 0; 1/ and S D .0; 0;�1/ the north and south poles, and have coordinates

.0; �/�S1! S2 n fN;Sg;

.s; �/ 7! .sin s cos �; sin s sin �; cos s/:

Note that s.x/D distg.x;N / for x 2 S2. In these coordinates, the metric is given by ds2C .sin s/2d�2,
the Riemannian volume element is d! D sin s ds d� , and the sequence uk is defined by

uk.s; �/D sin.s/keik� : (46)

Remark 3.1. The construction works equally well in the unit sphere Sn �RnC1, n� 2. The coordinates
have to be changed by

.0; �/�S1 �Sn�2! Sn n fN;Sg;

.s; �; t/ 7! .sin s cos �; sin s sin �; t cos s/;

and we can still consider the eigenfunction ukD.x1Cix2/kjSn with��SnukD�kuk and �kDk.kCn�1/.

With the above choice of the eigenfunction uk , we have

juk.x/j
2
D .1� x23/

k
D .sin s/2k D j sin distg.x;N /j2k D e�2kdA.x/; dA.x/D� log sin distg.x;N /:

Note that dA is actually the Agmon distance to the equator
�
s D �

2

�
, where S2 is seen as a surface of

revolution; see Remark 1.13.
Also, given f 2 L1.S2/, we haveZ

S2
f .!/juk.!/j

2 d! D

Z
.0;�/�S1

f .s; �/.sin s/2kC1 ds d� D 2�
Z
.0;�/

F.s/.sin s/2kC1 ds;

where
F.s/D

1

2�

Z
S1
f .s; �/d�:

In the case f D 1, this yields the asymptotics of the norm of uk , given by the Laplace method (see, e.g.,
[Erdélyi 1956; Copson 1965]):

1

2�
kukk

2
L2.S2/

D
1

2�

Z
S2
juk.!/j

2 d! D

Z 1

�1

.1� x23/
k dx3 D

Z 1

�1

ek log.1�x23/ dx3

D

�
1CO

�
1

k

�� Z
R

e�kx
2
3 dx3 D

q
�

k

�
1CO

�
1

k

��
;

and hence kukkL2.S2/ � 2
1=2�3=4k�1=4 as k!C1.
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We have the elementary estimate

kukk
2
L2.B.N;r//

D 2�

Z r

0

.sin s/2kC1 ds �
�

kC 1
r2kC2:

This can be slightly refined, e.g., by writingˇ̌̌
kukk

2
L2.B.N;r//

�
�

kC1
.sin r/2kC2

ˇ̌̌
D

ˇ̌̌̌
kukk

2
L2.B.N;r//

� 2�

Z r

0

cos s.sin s/2kC1 ds
ˇ̌̌̌

D 2�

Z r

0

.1� cos s/.sin s/2kC1 ds

�
1
2
r22�

Z r

0

.sin s/2kC1 ds D 1
2
r2kukk

2
L2.B.N;r//

:

To be a little more precise, let us now prove an equivalent for kukk2L2.B.N;r// as k!1, which is
uniform in r .

Lemma 3.2. For all k 2 N� and all r 2
�
0; �
2

�
, we have

kukk
2
L2.B.N;r//

D
�

kC 1

sin.r/2kC2

cos.r/
.1CR/; with jRj �

tan.r/2

2kC 2
:

This furnishes an optimal lower/upper bound for this quantity which is uniform with respect to r in
any compact set Œ0; ˛� with ˛ < �

2
.

Proof. We write a D � log sin r > 0, use the change of variable y D � log sin s, and want to have an
asymptotic expansion of

1
2�
kukk

2
L2.B.N;r//

D

Z r

0

.sin s/2kC1 ds D
Z C1
a

e�.2kC2/y
1

p
1� e�2y

dy:

This integral is of the form

I.a; k/ WD
Z C1
a

e�.2kC2/yf .y/ dy;

where f .y/D 1=
p
1� e�2y is smooth on Œa;C1/. Writing

jf .y/�f .a/j � .y � a/ sup
Œa;1/

jf 0j � .y � a/
e�2a

.1� e�2a/
3
2

;

since f 0.y/D�e�2y.1� e�2y/�3=2 and integrating on .a;C1/, we obtainˇ̌̌̌
I.a; k/�f .a/

e�.2kC2/a

2kC 2

ˇ̌̌̌
�
e�.2kC2/a

.2kC 2/2
e�2a

.1� e�2a/
3
2

:

Coming back to the original notation, this is preciselyˇ̌̌̌
1

2�
kukk

2
L2.O�/

�
sin.r/2kC2

.2kC 2/ cos.r/

ˇ̌̌̌
�

sin.r/2kC4

.2kC 2/2 cos.r/3
D

sin.r/2kC2

.2kC 2/2 cos.r/
tan.r/2;

which concludes the proof of the lemma. �
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Note that the eigenfunctions we have constructed are complex-valued. Yet, since uk D .sin.s//keik�,
its real part Re.uk/D .sin.s//k cos.k�/ is a real-valued eigenfunction to which the same estimates hold,
except that

R
S1
jeik� j2 d� D 2� should be replaced by

R
S1

cos.k�/2 d� D � .

3B. General surfaces of revolution. In this section we consider a revolution surface S � R3 being
diffeomorphic to a sphere S2, generalizing the results of Section 3A. We follow [Besse 1978, Chapter 4B,
p. 95] for the precise geometric description of such manifolds.

Assume that .S; g/ is an embedded submanifold of R3 (endowed with the induced Euclidean structure),
having S1 D .R=2�Z/ � SO.2/ as an effective isometry group. The action of S1 on S, denoted by
� 7!R� (such that R�S D S), has exactly two fixed points denoted by N;S 2 S (the so-called north and
south poles).

We now describe a nice parametrization of .S; g/. Let LD distg.N; S/ and 0 be a geodesic from
N to S (thus with length L). For any � 2 S1, the isometry R� transforms the geodesic 0 into R� .0/,
which is another geodesic joining N to S . Set U D S n fN;Sg. For every m 2 U, there exists a unique
� 2 S1 such that m belongs to R� .0/. The geodesic R� .0/ can be parametrized by arclength

� W Œ0; L�!R� .0/; �.0/DN; �.L/D S; s D distg.�.s/; N /D L� distg.�.s/; S/;

and there exists a unique s 2 .0; L/ such that �.s/Dm. We use .s; �/ as a parametrization of U � S:

� W U D S n fN;Sg ! .0; L/�S1;

m 7! �.m/D .s; �/:

We define two other exponential charts .UN ; �N / and .US ; �S / centered at the fixed points N and S by

UN D fN g[ �
�1
��
0; 1
2
L
�
�S1

�
D Bg

�
N; 1

2
L
�
� S;

US D fSg[ �
�1
��
1
2
L;L

�
�S1

�
D Bg

�
S; 1

2
L
�
� S;

�N W UN ! BR2

�
0; 1
2
L
�
; �N .N /D 0; �S W US ! BR2

�
0; 1
2
L
�
; �S .S/D 0;

with the transition maps

�N ı �
�1
W �.U \UN /D

�
0; 1
2
L
�
�S1! �N .U \UN /D BR2

�
0; 1
2
L
�
n f0g;

.s; �/ 7! .s cos.�/; s sin.�//;

and
�S ı �

�1
W �.U \US /D

�
1
2
L;L

�
�S1! �S .U \US /D BR2

�
0; 1
2
L
�
n f0g;

.s; �/ 7! ..L� s/ cos.�/; .L� s/ sin.�//:

On the cylinder .0; L/�S1, the metric g is given by

.��1/�g D ds2CR.s/2d�2

for some smooth function R W .0; L/! RC� (see below Remark 3.4 for the geometric interpretation of R).
Since g is a smooth metric on S, [Besse 1978, Proposition 4.6] gives that R extends to a C1 function
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Œ0; L�! RC satisfying

R.0/DR.L/D0; R0.0/D1; R0.L/D�1; R.2p/.0/DR.2p/.L/D0 for any p2N: (47)

In these coordinates, the Riemannian volume form is hence R.s/ ds d� , the Riemannian gradient of a
function is

rgf D @sf
@

@s
C

1

R.s/2
@�f

@

@�
; with g.rgf;rgf /D j@sf j2C

1

R.s/2
j@�f j

2 (48)

and the Laplace–Beltrami operator is given by

�s;� D
1

R.s/
@sR.s/@sC

1

R.s/2
@2� : (49)

Another important operator is the infinitesimal generator X� of the group .R� /�2S1 , defined, for f 2
C1.S/, by

X�f D lim
�!0

��1.f ıR� �f /: (50)

In the chart .U; �/, the action of R� is given by .��1/�R� .u; � 0/D .u; � 0C �/, so that .��1/�X� D @� .
Let us now check that X� is a smooth vector field. Indeed, we have

.��1N /�X� D .�
�1
N /���@� D d.�N ı �

�1/ � @� ;

and hence

.��1N /�X� .s cos.�/; s sin.�//D .�s sin.�/@x1 C s cos.�/@x2/.s cos.�/; s sin.�//;

that is,
..��1N /�X� /.x1; x2/D�x2@x1 C x1@x2 :

Since ..��1N /�X� /.0/ D 0 (and since the computation is similar in US ), we have obtained that X� is
smooth. Note also that X� .N /DX� .S/D 0 and that its norm is given by

p
g.X� ; X� /.s; �/DR.s/ (in

the coordinates of U ).
We define by L2.S/ WDL2.S; d Volg/ the space of square integrable functions, which is also invariant

by the action of .R� /�2S1 .
Now, note that .R� /�2S1 acts as a (periodic) one-parameter unitary group on L2.S/ by f 7! f ıR� .

The Stone theorem (see, e.g., [Reed and Simon 1980, Theorem VIII-8 p266]) hence implies that its
infinitesimal generator is iA, where A is a self-adjoint operator on L2.S/ with domain D.A/� L2.S/.
Since iAf D X�f for f 2 C1.S/ (which is dense in D.A/) according to (50), we have that A is the
self-adjoint extension of X�=i . From now on, we slightly abuse the notation and still denote by X�=i its
self-adjoint extension A.

Since g is invariant by the action of R� , we have

ŒX� ; �g �D 0:

Moreover, �g has compact resolvent, so that the operators �g and X� share a common basis of
eigenfunctions: indeed, X�=i is self-adjoint and preserves each (finite-dimensional) eigenspace of �g ,
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and it can be diagonalized on these spaces. In U a common eigenfunction can be written as eik�f .s/
with k 2 Z, f 2 C1.0; L/\L2..0; L/;R.s/ ds/ a solution of

�
1

R.s/
@s.R.s/ @sf /C

k2

R.s/2
f D �f (51)

for some �� 0 an eigenvalue for ��g . To prove this assertion, take u to be a necessarily smooth common
eigenfunction of �g and X� . In U (with the coordinates .s; �/), we have uD u.s; �/ with (see (49) for
the definition of �s;� )

��s;�u.s; �/D �u.s; �/ and
@�

i
u.s; �/D �u.s; �/; .s; �/ 2 .0; L/�S1; (52)

for some �;� 2 R. Setting f .s/ WD u.s; 0/, the second identity in (52) implies u.s; �/D ei��f .s/. The
function u being smooth on .0; L/�S1, it is 2�-periodic in � so that�Dk2Z. Hence, u.s; �/Deik�f .s/
and the first identity in (52) directly yields (51).

We will call these normalized eigenfunctions 'k;n D eik�fk;n.s/ with eigenvalues �k;n for ��g ,
where n 2 N. In particular, we can write L2.S/D

L?
.k;n/2Z�N span.'k;n/.

We will define

L2k D ker.X� � ik//D f' 2 L
2.S/ W 'jU D eik�f .s/; f 2 L2..0; L/; R.s/ ds/g

and H 2
k
D H 2.S/\L2

k
. The commutation property implies that �gH 2

k
� L2

k
, so we can define the

operator�k D�gjL2
k

, which is self-adjoint with domainH 2
k

. This can be seen for instance directly on the
simultaneous diagonalization, which implies an isometry L2.S/� `2.Z�N/, where L2

k
�f.k; n/ Wn2Ng

as a closed subspace of `2.Z�N/. The fact that �g has compact resolvent implies the same for �k .

Remark 3.3. Note that the introduction ofX� allows us to give a more intrinsic definition of dA introduced
in (17): given any point m0 on the “strict global nondegenerate equator” of S, the Agmon distance dA is
the unique continuous function such that

X�dA D 0; dA.m0/D 0; jrgdAj
2
g.m/�

�
1

g.X� ; X� /.m/
�

1

g.X� ; X� /.m0/

�
D 0:

All properties of Lemma 3.8 can be formulated intrinsically since s measures the geodesic distance to the
north pole, and hence s.m/D distg.m;N /, L� s.m/D distg.m; S/, and s.m/� s0D distg.m; equator/.

Remark 3.4 (another possible parametrization). Some of the surfaces of revolution described above admit
the following “cylindrical” parametrization on the set U : with z� < zC and the two poles N D .0; 0; zC/
and S D .0; 0; z�/, we have

.z�; zC/�S1! U D S n fN;Sg � R3;

.z; �/ 7! .R.z/ cos �;R.z/ sin �; z/;

where R W Œz�; zC�! .0;1/ is the profile of the surface, that is, a smooth positive function on .z�; zC/
satisfying R.z˙/ D 0 and limz!z˙ R0.z/ D �1. Note that R.z/ represents the distance of S to the
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revolution axis fx D y D 0g at height z. Note that (except for the shape/topology of the surface) this
parametrization is the same as that of [Allibert 1998]; see Section 1C3. We have8<:

dx1 D R0.z/ cos � dz�R.z/ sin � d�;
dx2 D R0.z/ sin � dzCR.z/ cos � d�;
dx3 D dz;

so that the metric on S induced by the Euclidean structure is given by

g D dx21 C dx
2
2 C dx

2
3 D .1CR0.z/2/ dz2CR.z/2 d�2:

As a consequence, the Riemannian volume element is V.z/ dz d� with V.z/D R.z/
p
1CR0.z/2 and the

Laplace–Beltrami operator is given in these coordinates by

�z;� D
1

V.z/
@z

�
V.z/

1CR0.z/2
@z

�
C

1

R.z/2
@2� ; (53)

with a suitable self-adjoint extension on L2..z�; zC/�S1;V.z/ dz d�/. The link between s and z is the
diffeomorphism

s.z/D

Z z

z�

p
1CR0.t/2 dt;

and we have LD
R zC
z�

p
1CR0.t/2 dt , together with R.s.z//D R.z/.D

p
g.X� ; X� //. In particular, we

see that R.s/ indeed measures the distance to the axis of revolution.

Remark 3.5 (the sphere). Note that, in the z-parametrization, the sphere is given by z˙ D ˙1 and
r.z/D

p
1� z2 and hence r 0.z/D�z=

p
1� z2 and V.z/D 1 is smooth (which is not the general case

if the surface is flat near the poles).

Let us first prove existence of the particular eigenfunctions under interest in Theorem 1.9. We then
study their concentration/deconcentration properties.

Lemma 3.6. Assume that s 7!R.s/ admits a nondegenerate local maximum at s0 2 .0; L/. Then, for all
k 2 N, there exists  k 2 C1.S/\L2k and �k 2 R such that

�k D
1

R.s0/2
C
1

k

r
jR00.s0/j

R3.s0/
CO

�
1

k3=2

�
;

k kkL2.S/ D 1, and we have ��g k D k2�k k .

Note that the assumption of the lemma is R0.s0/D 0 and R00.s0/ < 0. In the proofs below, we shall
often consider hD k�1 as a semiclassical parameter.

Proof. We first construct a family of sufficiently accurate quasimodes (i.e., approximate eigenfunctions)
compactly supported in U and of the form (in the coordinates .s; �/ of U ) eik�uk.s/. The function uk.s/
should thus solve (51) approximately. Setting hD k�1 and �D �h2 in that equation, we are left with the
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following semiclassical eigenvalue (or approximate eigenvalue) problem in the limit h! 0C:

.Ph��/f D�
h2

R.s/
@s.R.s/ @sf /C

�
1

R.s/2
��

�
f D 0:

Now, according to the assumption, the potential 1=R.s/2 is positive, tends to plus infinity near 0 and L,
and admits 1=R.s0/2 as a nondegenerate local minimum. Namely, this is R0.s0/D 0 and R00.s0/ < 0.
The construction is classical (harmonic approximation) and follows, e.g., that of [Dimassi and Sjöstrand
1999, Theorem 4.23] in a simpler setting. The idea is to approximate the operator Ph by its harmonic
approximation at s0, namely

zPh WD �
h2

R.s0/
@sR.s0/ @sC

1

R.s0/2
C

�
1

R2

�00
.s0/

.s� s0/
2

2

D � h2@2s C
1

R.s0/2
�
2R00.s0/

R3.s0/

.s� s0/
2

2
: (54)

Recall that the spectrum of the operator �h2@2y C c0y
2 on R (c0 > 0) is given by

En.h/D hEn.1/D h.2nC 1/
p
c0;

associated with the eigenfunctions

uhn.y/D h
� 1
4u1n

�
y
p
h

�
; where u1n.y/D pn.y/e

�
p
c0
y2

2

(pn being a Hermite polynomial). Here, this applies with

c0 D
jR00.s0/j

R3.s0/
:

We consider a cutoff function � 2 C1c .0; L/ such that �D 1 in a neighborhood of s0. We set

uh.s/D �.s/uh0.s/; with uh0.s/D Ch
� 1
4 e�
p
c0
.s�s0/

2

2h ; (55)

where C is a normalizing constant, and prove this is an approximate eigenfunction (quasimode). First
notice that we have, with zPh defined in (54), that

zPhu
h
D � zPhu

h
0C Œ

zPh; ��u
h
0 D

�
1

R.s0/2
C h
p
c0

�
�uh0C Œ�h

2@2s ; ��u
h
0:

In this expression, Œ�h2@2s ; �� is a first-order differential operator supported away from zero, where uh0
and its derivatives are exponentially small. This yields zPhuh�� 1

R.s0/2
C h
p
c0

�
uh

L2..0;L/;R.s/ ds/

DO.e�
c
h /:
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Now we consider, with norms L2..0; L/;R.s/ds/,�Ph�� 1

R.s0/2
C h
p
c0

��
uh
L2

� k.Ph� zPh/u
h
kL2C

� zPhuh�� 1

R.s0/2
C h
p
c0

��
uh
L2

�

� h2

R.s/
@sR.s/@s � h

2@2s

�
uh
L2C � 1

R.s/2
�

1

R.s0/2
� c0.s� s0/

2

�
uh
L2CCe� ch :

According to the Taylor formula and the definition of c0, we have

1

R.s/2
�

1

R.s0/2
� c0.s� s0/

2
DO..s� s0/

3/

on the support of �, so that� 1

R.s/2
�

1

R.s0/2
� c0.s� s0/

2

�
uh
L22 � CZ

R

j.s� s0/
3h�

1
4 e�
p
c0
.s�s0/

2

2h j
2 dz � Ch3:

We now estimate the term� h2

R.s/
@sR.s/@s � h

2@2s

�
uh
L2 D hR0.s/R.s/

h@su
h

L2:
Notice that h@suh D h�0uh0 C h�@su

h
0 D OL2.e

�c=h/ �
p
c0.s � s0/�u

h
0 , where we have used the

expression of uh0 in (55). Moreover, since R0.s0/D 0, the Taylor formula yieldshR0.s/R.s/
h@su

h

L2 � Ce� ch CCkh.s� s0/2�uh0kL2 � Ch2:
Now, combining the above estimates finally yields the existence of constants D;h0 > 0 such that for

all h < h0 we have, with �h D 1=R.s0/2C h
p
c0,

k.Ph� �h/u
h
kL2..0; L/;R.s/ ds/�Dh

3
2 �Dh

3
2 kuhkL2..0; L/;R.s/ ds/:

Now, we define in coordinates in U � S, fk.s; �/ D eik�uh.s/, h D k�1. This function is smooth
and compactly supported in U thanks to the cutoff �, and can therefore be extended as a function in
C1.S/\L2

k
, still denoted by fk , which satisfies

k.h2�k � �h/fkkL2
k
�Dh

3
2 �Dh

3
2 kfkkL2

k
:

Hence, if �h … Sp.�h2�k/, this implies

k.�h2�k � �h/
�1
kL2

k
!L2

k
�

1

Dh3=2
:

Finally, the operator h2�k being self-adjoint on L2
k

, we have for z 2 C nSp.�h2�k/

k.�h2�k � z/
�1
k D

1

d.z;Sp.�h2�k//
;
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so that, if �h … Sp.�h2�k/,
1

d.�h;Sp.�h2�k//
�

1

Dh3=2
:

In any case, this implies d.�h;Sp.�h2�k// � Dh3=2, and using that the spectrum of h2�k is purely
pointwise, this proves the sought result. �

The next step is to study the behavior of the eigenfunction  k constructed in the previous lemma (and
under a stronger assumption on the point s0). This is the goal of the so-called Agmon estimates. We first
need the following integration-by-parts lemma.

Lemma 3.7. For all ‰ 2W 1;1.S/ real-valued and all w 2H 2.S/, we haveZ
S
jrg.‰w/j

2
g d Volg �

Z
S
jrg‰j

2
g jwj

2 d Volg D Re
�Z

S
j‰j2.��gw/ Nw d Volg

�
:

Proof. For ‰ 2 C 2.S/, this is a direct consequence of the integration by parts formula (also valid when S
has a boundary @S and wj@S D 0)Z

S
jrg.‰w/j

2
g d Volg D�

Z
S
�g.‰w/‰ Nw d Volg

D Re
�Z

S

�
�‰.�gw/� .�g‰/w� 2rg‰ � rgw

�
‰ Nw d Volg

�
D Re

�Z
S
j‰j2.��gw/ Nw d Volg

�
CA;

with

AD Re
�Z

S

�
�.�g‰/‰jwj

2
� 2rg‰ � rgw‰ Nw

�
d Volg

�
D Re

�Z
S

�
jrg‰j

2
jwj2Crg‰ � rg.jwj

2/‰� 2rg‰ � rgw‰ Nw
�
d Volg

�
D

Z
S
jrg‰j

2
jwj2 d Volg ;

where we integrated by parts in the second line. This is the sought estimate in the case ‰ 2 C 2.S/. The
result of the lemma follows by a classical approximation argument; see, e.g., [Dimassi and Sjöstrand
1999, Proof of Proposition 6.1]. �

We shall now assume that R reaches at s0 a strict global nondegenerate maximum, and introduce the
relevant Agmon distance to the “equator” s D s0. The latter is defined in the coordinates of U by the
eikonal equation (17), or, more explicitly, for s 2 .0; L/, by (18).

Lemma 3.8 (properties of dA). Assume that R reaches at s0 a strict global nondegenerate maximum.
Then, dA 2 C 2.0; L/, and we have

dA.s/D� log.s/CO.1/ as s! 0C; dA.s/D� log.L� s/CO.1/ as s! L�; (56)

dA.s/D
1

2

r
�R00.s0/

R3.s0/
.s� s0/

2
CO..s� s0/

3/ as s! s0: (57)
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Proof. Note that according to (47), we have 1=R.y/!C1 as y! 0C or y! L�, with

R.s/D sCO.s3/ when s! 0C and R.s/D L� sCO..L� s/3/ when s! L�:

As a consequence, with (18), we obtain

dA.s/D

ˇ̌̌̌Z s

s0

1

y
.1CO.y2// dy

ˇ̌̌̌
D� log.s/CO.1/

as s! 0C (and similarly when s! L�), that is, (56).
Let us also study the behavior of dA near s0. Setting

V.s/D
1

R.s/2
�

1

R.s0/2
;

we have V.s0/D V 0.s0/D 0 and

V 00.s0/D
�2R00.s0/

R3.s0/
> 0:

This implies (57) and that dA is of class C 2 near s0, by Taylor expansion of dA and its derivatives. �

We can now state the following relatively precise result. All results concerning surfaces of revolution
are corollaries of this one.

Theorem 3.9 (Agmon estimate). Assume that R reaches at s0 a strict global nondegenerate maximum,
and consider the associated numbers �k and functions  k given by Lemma 3.6. There exist C;C0; k0 > 0
such that for all k 2 N, k � k0, we have  k 2 L2.S; ekdA d Volg/ with the estimateZ

S
e2kdA.m/j kj

2.m/ d Volg.m/� Ck2C0 :

Here, we have used dA.m/ to denote dA.s.m// with a slight abuse of notation. Note that dA.N /D
dA.S/DC1. We first draw corollaries of this result, concluding the proof of Theorem 1.9, and then
prove Theorem 3.9 at the end of the section. Using that dA is decreasing on .0; s0�, we obtain the following
direct corollary.

Corollary 3.10. Under the assumptions of Theorem 3.9, there exist C;C0; k0 > 0 such that for all k 2 N,
k � k0 and all s1 � s0 we haveZ

B.N;s1/

j kj
2 d Volg � Ck2C0e�2dA.s1/k :

From this result, we may now derive a proof of Theorem 1.9 and Corollary 1.11.

Proof of Theorem 1.9 and Corollary 1.11. The eigenfunctions constructed in Lemma 3.6 satisfy

�k D k
2

�
1

R.s0/2
C
1

k

r
jR00.s0/j

R3.s0/
CO

�
1

k3=2

��
:

In particular, for any C� > 1
2

p
jR00.s0/jR.s0/, there is k0 2 N such that k �

p
�kR.s0/ � C� for

k � k0. This gives e�2kdA.s1/ � e2C�dA.s1/e�2dA.s1/R.s0/
p
�k . Then, Theorem 1.9 follows directly from
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Corollary 3.10 up to changing the constants involved. The second part of Theorem 1.9 follows directly
from Proposition 1.6.

Corollary 1.11 follows from the asymptotics (56) of dA and the fact than Theorem 1.9 is uniform for r
small. Indeed, for an appropriate constant C, we have dA.s/� � log.s/�C for all 0 < s1 � s0.

Finally, for fixed �k and using the uniformity for r small, we obtain the order of vanishing using the
general Lemma B.1 of Appendix B. �

We will need a very simple lemma.

Lemma 3.11. Let ' 2W 1;1.S/\L2
k

. Then, we have the pointwise estimate on U

jrg.'/j
2
g �

k2

g.X� ; X� /
j'j2:

Proof. We have, in the coordinates ofU, that ' can be written as '.s;�/Deik�f .s/, with, according to (48),

jrg.'/j
2
g D j@sf j

2
C

1

R.s/2
j@� .e

ik�f .s//j2 D j@sf j
2
C

k2

R.s/2
jeik�f .s/j2

�
k2

R.s/2
jeik�f .s/j2 D

k2

g.X� ; X� /
j'j2;

which is the sought result. �

Let us now give a proof of Theorem 3.9, following that of [Helffer 1988, Proposition 3.3.5].

Proof of Theorem 3.9. As in the above proof, we use the notation hD k�1, considered as a semiclassical
parameter. We define for some constant C0 > 1, h0 > 0 and h 2 .0; h0/ the sets

�� D fs 2 .0; L/ W dA.s/� C0hg; �C D fs 2 .0; L/ W dA.s/ > C0hg;

We set
�.s/D dA.s/�C0h log.C0/ for s 2��;

D dA.s/�C0h log.dA.s/=h/ for s 2�C:

For M > 1, set �M Dmin.�;M/ and �M D ��1M .fM g/. Moreover, on ��, we have

� D dA�C0h log.C0/� dA � C0h < C0h0;

so for M � C0h0, we have ��\�M D∅. Hence, we have a partition ��t .�C n�M /t .�C\�M /.
Note that it will be very important in what follows that all the estimates are independent of M, while

C0 will be defined later on. The function �M is Lipschitz on .0; L/, and can be pulled back to an
.R� /-invariant Lipschitz function defined on U, and extended to S by �M .N /D �M .S/DM. We call
SC;S�;SM � S, the .R� /-invariant regions on S associated to ��; �C; �M , respectively, so that

S D S� t .SC nSM /t .SC\SM /:
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We now apply the formula of Lemma 3.7 with ‰ D e�M =h with �M given above and M large, and
w D  h (note that  h 2 C1.S/ since it is an eigenfunction of �g , so the lemma applies):Z

S
jrg.‰ h/j

2
g d Volg �

Z
S
jrg‰j

2
g j hj

2 d Volg D k2�h

Z
S
j‰j2j hj

2 d Volg :

Applying now Lemma 3.11 since ‰ h 2W 1;1.S/\L2
k

and using jrg‰j2g D k
2j�0M .s/j

2e2�M =h in U
and so almost everywhere in S, we getZ

S

�
1

R.s/2
� j�0M .s/j

2
��h

�
e2�M =hj hj

2 d Volg � 0:

Using the expression of �M on �� and of �h D 1=R.s0/
2 CO.h/, this yields, for some C > 0

(independent of h and M ),Z
SC

�
1

R.s/2
� j�0M .s/j

2
��h

�
e2�=hj hj

2 d Volg � Ch
Z
S�
e2dA.s/=hj hj

2 d Volg

� Che2C0
Z
S�
j hj

2 d Volg � Che2C0 ;

since  h is normalized.
Note also that on �M \�C, we have dA �C0h and so dA � dA�C0h log.C0/� � �M � 1. Hence,

since dA is continuous, there is a constant � > 0 so that s 2�M \�C implies js� s0j � �. In particular,
since s0 is a nondegenerate maximum for R, there is � > 0 so that it also implies

1

R.s/2
�

1

R.s0/2
� �:

On SM \SC, we thus have

1

R.s/2
� j�0M .s/j

2
��h D

1

R.s/2
�

1

R.s0/2
CO.h/� 0

for h < h0 for h0 only depending on the geometry, and not on M. Therefore, we have obtainedZ
SCnSM

�
1

R.s/2
� j�0.s/j2��h

�
e2�=hj hj

2 d Volg � Che2C0 : (58)

Next, on �C n�M , we have �0 D d 0A�C0h.d
0
A=dA/ and hence

1

R.s/2
� j�0j2��h D�h

r
jR00.s0/j

R3.s0/
CO.h

3
2 /C 2C0h

.d 0A/
2

dA
�C 20 h

2 .d
0
A/
2

d2A

� �h

r
jR00.s0/j

R3.s0/
CO.h

3
2 /CC0h

.d 0A/
2

dA
;

where we used that dA � C0h. According to (57),

.d 0A/
2

dA
! 2

r
�R00.s0/

R.s0/3
> 0
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and .d 0A/
2=dA can thus be extended by continuity at s0. Since d 0A.s/D 0 if and only if sD s0 (R reaches at

s0 its unique global maximum), the extended function is uniformly bounded from below on any compact
subset of .0; L/. Moreover, according to (56), we have

.d 0A/
2

dA
.s/�s!0C

1

s2 log.s�1/
and

.d 0A/
2

dA
.s/�s!L�

1

.L� s/2 log..L� s/�1/
:

Hence, there is a constant C1 > 0 such that .d 0A/
2=dA � C1 on .0; L/, and we have

1

R.s/2
� j�0j2��h � h

�
C0
.d 0A/

2

dA
�

r
jR00.s0/j

R3.s0/
CO.h

1
2 /

�
�
C0

2
h
.d 0A/

2

2dA
;

when taking C0 large with respect to C�11 and h � h0 with h0 depending on C0; C1. We can now
fix C0; h0. From (58), we have thus obtained

Ch

Z
SCnSM

.d 0A/
2

dA
e
2�
h j hj

2 d Volg � Che2C0 :

Our next task is to replace � by dA in this expression. Note that

e2�.s/=h D e2dA.s/=h
�

h

dA.s/

�2C0
:

In particular, this yields

Ch

Z
SCnSM

.d 0A/
2

dA
e2dA.z/=h

�
h

dA.s/

�2C0
j hj

2 d Volg � Ch:

Now, the function .d 0A/
2=d

1C2C0
A is positive on .0; s0/[ .s0; L/, tends to C1 at s0, and satisfies, as

above,
.d 0A/

2

d
1C2C0
A

�
1

s2.log.s�1//1C2C0
!C1 as s! 0C;

and similarly
.d 0A/

2

d
1C2C0
A

�
1

.L� s/2.log..L� s/�1//1C2C0
!C1 as s! L�:

Hence, it is bounded from below on .0; L/ by a constant, and we obtainZ
SCnSM

e2dA.z/=hj hj
2 d Volg � Ch�2C0 ;

which, combined with the already-remarked fact that
R
S� e

2dA.z/=hj hj
2 Volg � Cte, givesZ

SnSM
e2dA.z/=hj hj

2 d Volg � Ch�2C0 :

Since all the constants are independent of M, it gives the sought result by dominated convergence (for
fixed h) making M tend to infinity. �
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3C. The disk. Denote by D D f.x; y/ 2 R2 W x2C y2 � 1g � R2 the unit disk. We denote by � the
(negative) flat Laplace operator in R2. In polar coordinates, x D r cos � , y D r sin � , we have

�D @2xC @
2
y D

@2

@r2
C
1

r

@

@r
C
1

r2
@2

@�2
:

Then, it can be seen that
 n;k.r; �/D Jn.zn;kr/e

in� (59)

is an orthogonal basis of L2.D/, where

� Jn is the Bessel function of order n, namely

Jn.z/D
1

2�

Z �

��

eiz sin �e�in� d�; n 2 Z; z 2 C nR�; (60)

� 0 < zn;1 < zn;2 < zn;3 < � � � is the sequence of the positive zeros of Jn.

We refer for instance to [Vasy 2015, Chapters 14.4 and 15] for an elementary introduction. In particular,
the functions defined in (59) satisfy

�� n;k D �n;k n;k in Int.D/; with �n;k D z
2
n;k and  n;kj@D D 0:

Roughly speaking, the index n encodes the oscillation in the �-variable, while the index k will
contain an oscillation in the radial variable. We refer to [Anantharaman et al. 2016] for a description of
concentration/delocalization properties of general eigenfunctions (or, more generally, quasimodes) on the
disk. Here, we want to analyze some eigenfunctions corresponding to the so-called whispering gallery
modes that are concentrated close to the boundary of D. They “rotate” very fast and concentrate towards
one of the two trajectories of the billiard contained in S�@D. This phenomenon corresponds to n!C1
and k small, typically k D 1. In the following, we thus focus on

 n;1.r; �/D Jn.zn;1r/e
in� ;

and hence on the function Jn.zn;1r/. This requires information on zn;1.
A huge amount of information is known on the Bessel functions and its zeros. But we will need very

few of them. First, we need to normalize them. For instance, [Burq et al. 2003, Lemma 5.1] taken for
k D 1 (which is that of interest for us) yields

k n;1kL2.D/ � n
� 2
3 :

We also need a rough estimate on the asymptotic of the zn;1, see [Burq et al. 2003, Lemma 4.3] for
instance, namely,

zn;1 D nCO.n
1
3 /; zn;1 > n:

To estimate the norm of  n;1 on B.0; �/, � < 1, we first prove the following lemma.

Lemma 3.12. For all ˛ � 0 and n 2 N, we haveˇ̌̌̌
Jn

�
n

cosh.˛/

�ˇ̌̌̌
� en.tanh.˛/�˛/:
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Note that in [Copson 1965, Section 32, p. 79], for fixed ˛, a full asymptotics in terms of n is proved,
with principal term

Jn

�
n

cosh.˛/

�
�

en.tanh.˛/�˛/
p
2�n tanh.˛/

: (61)

Here, we need only the principal term but also a uniform bound in terms of ˛. Note that the short proof
below is not very informative, and the reader is referred to [Copson 1965, Section 32] for a complete
steepest descent approach to this asymptotic expansion.

Proof of Lemma 3.12. We start from formula (60), in which we write � D n=cosh.˛/, and use the
holomorphy of the integrand, together with the fact that ei�.sin z�z cosh˛/ is a periodic function of Re.z/
to change the contour. This yields

Jn.�/D
1

2�

Z �

��

ei.
n

cosh.˛// sin �e�in� d� D
1

2�

Z �

��

ei�.sin ��� cosh˛/ d�

D
1

2�

Z ��i˛

���i˛

ei�.sin z�z cosh˛/ dz D
1

2�

Z �

��

ei�.sinx cosh˛�i cosx sinh˛�x cosh˛Ci˛ cosh˛/ dx:

This implies

jJn.�/j �
1

2�

Z �

��

e�.cosx sinh˛�˛ cosh˛/ dx � e�.sinh˛�˛ cosh˛/
D en.tanh˛�˛/;

and concludes the lemma. �

Lemma 3.13. There exist C; ˇ; n0 > 0 such that for all n� n0 and 0 < r � 1�ˇn�2=3 we have

k n;1kL1.B.0;r// � exp.�ndA.r/CCn
1
3 /:

Recall the definition of dA in (20). See also Remark 1.14. Note that for r 2 .0; 1/ fixed, the asymptotic
formula (61) implies that such eigenfunctions have indeed the decay given by Lemma 3.13.

Proof. We have zn;1=nD 1CO.n�2=3/ and zn;1=n> 1. Hence recalling that jd 0Aj is decreasing on .0; 1�,
we have, as long as rzn;1=n� 1,ˇ̌̌̌

dA

�
rzn;1

n

�
� dA.r/

ˇ̌̌̌
� Cn�

2
3 r jd 0A.r/j D Cn

� 2
3 r

r
1

r2
� 1D Cn�

2
3

p

1� r2:

Thus we obtain from Lemma 3.12

jJn.zn;1r/j D

ˇ̌̌̌
Jn

�
n
zn;1

n
r

�ˇ̌̌̌
� exp

�
�ndA

�
zn;1

n
r

��
� exp.�ndA.r/CCn

1
3 /

for all n 2 N and 0 < r � n=zn;1. �

The combination of the previous estimates gives Theorem 1.12.



394 CAMILLE LAURENT AND MATTHIEU LÉAUTAUD

4. Maximal vanishing rate of sums of eigenfunctions, and observability from small balls

In this section, we prove Theorem 1.15, i.e., the Lebeau–Robbiano spectral inequality with observation in
balls of (small) radius r and constants uniform in r .

We follow the proof proposed in [Jerison and Lebeau 1999, middle of p. 231]. There are three main
steps, that we summarize in three lemmas. We then prove Theorem 1.15 from these lemmas, and prove
the lemmas afterwards.

In the following, for ˇ > 0, we set Xˇ D .�ˇ; ˇ/ �M, and define P D �@2s � �g . In the set
X2S D .�2S; 2S/�M, we denote by .s; x/ the running point and by Br a geodesic ball (for the metric
Id˝g) of radius r (its center being implicit in the notation). We also use the rescaled H 1-norm on an
open set U, denoted by H 1

r .U / and defined by

kF k2
H1
r .U /
D kF k2

L2.U /
C r2krgF k

2
L2.U /

: (62)

This will only be used on small geodesic balls or annuli, namely U D B˛r or U D B˛r nBˇr .

4A. The three key lemmas. In this section, we state the three key lemmas needed for the proof of
Theorem 1.15.

The first lemma is a classical global Lebeau–Robbiano interpolation inequality [1995, Section 3,
estimate (1)].

Lemma 4.1 (global interpolation inequality from unit balls to the whole space). Let S > 0 and let
U �X2S be any nonempty open set. Then there is C > 0 and ˛0 2 .0; 1/ such that we have

kF kH1.XS /
� C.kPF kL2.X2S /CkF kH1.U //

˛0kF k
1�˛0
H1.X2S /

for all F 2H 2.X2S / such that F j.�2S;2S/�@M D 0.

The next lemma states a local interpolation inequality. Its specificity is that the observation term is on
a small ball Br and the constants are uniform in r small. For this, the exponent has to depend on r as
jlog.r/j�1.

Lemma 4.2 (local interpolation inequality from small balls to unit balls). Let P D�@2s ��g and let Br
denote balls centered at .s0; x0/ 2XT , away from the boundary. Then, there exists r1 > 0 such that for
all 0 < r0 � r1 there is C > 0 such that for all r 2

�
0; r0
10

�
, and F 2H 2.Br0/, we have

kF kH1.Br0=4/
� C.kPF kL2.Br0 /

CkF kH1
r .Br /

/˛rkF k
1�˛r
H1.Br0 /

; ˛r D
log 2

log
�
2r0
r

�
C log 2

:

A proof of this lemma is given in Section 4C, starting from a Carleman estimate (with singular weight)
due to Aronszajn [1957]; see also [Aronszajn et al. 1962; Donnelly and Fefferman 1988; 1990].

The last lemma is an interpolation inequality with boundary observation term. All terms are taken on
sets of size r , and the important feature of this estimate is that the constants are uniform in r .

Lemma 4.3 (uniform local interpolation at the boundary on small balls). Let .0; x0/ 2 f0g �M,
distg.x0; @M/ > 0 and consider balls centered at .0; x0/. Then, there exist C > 0, r0 > 0 and ˛0 2 .0; 1/
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such that we have for all 0 < r < r0

kF kH1
r .Br /

� C.r2kPF kL2.B2r /C r
3
2 k@sF jsD0kL2.B2r\f0g�M//

˛0kF k
1�˛0
H1
r .B2r /

for all F 2H 2.X2S / such that F j.�2S;2S/�@M D 0.

This lemma is proved in Section 4D, and is a consequence of a uniform Carleman estimate proved in
Appendix A.

4B. Concluding the proof of Theorem 1.15 from the three lemmas. From these three lemmas, we may
now give a proof of Theorem 1.15. We first formulate a straightforward corollary of the three lemmas to
prepare the proof.

Corollary 4.4. Let P D �@2s ��g and .0; x0/ 2 f0g � Int.M/ and consider balls centered at .0; x0/.
Then, there exist r0 > 0, C > 0 and ˛0 2 .0; 1/ such that, for all r 2

�
0; r0
10

�
and F 2 H 2.X2S / with

PF D 0 and F j.�2S;2S/�@M D 0, we have

kF kH1.XS /
� CkF k

˛0
H1.Br0=4/

kF k
1�˛0
H1.X2S /

;

kF kH1.Br0=4/
� CkF k

˛r
H1.Br /

kF k
1�˛r
H1.X2S /

; ˛r D
log 2

log
�
2r0
r

�
C log 2

;

kF kH1.Br /
� Ck@sF jsD0k

˛0
L2.B2r\f0g�M/

kF k
1�˛0
H1.X2S /

:

Proof of Theorem 1.15. Let us first treat the case where @MD∅, or @M¤∅ but the center of the balls,
x0 is in Int.M/. The case x0 near @M will be treated afterwards.

We reformulate (again) these three results as (in a form close to that of [Donnelly and Fefferman 1988])

kF kH1.X2S /

kF kH1.Br0=4/

�

�
C
kF kH1.X2S /

kF kH1.XS /

� 1
˛0

;

kF kH1.X2S /

kF kH1.Br /

�

�
C
kF kH1.X2S /

kF kH1.Br0=4/

� 1
˛r

;

kF kH1.X2S /

k@sF jsD0kL2.B2r\f0g�M/

�

�
C
kF kH1.X2S /

kF kH1.Br /

� 1
˛0

;

and combine them to obtain

kF kH1.X2S /

k@sF jsD0kL2.B2r\f0g�M/

� C
1
˛0C

1
˛0˛r C

1

˛2
0
˛r

�
kF kH1.X2S /

kF kH1.XS /

� 1

˛2
0
˛r
: (63)

We then follow [Lebeau and Robbiano 1995; Jerison and Lebeau 1999; Lebeau and Zuazua 1998;
Le Rousseau and Lebeau 2012], and, given  2E�� take the function

F.s/D
sinh.s

p
��g/

p
��g

…C C s…0 ;
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where �g is the Dirichlet Laplacian, …0 the orthogonal projector on ker.�g/ and …CD Id�…0; that is,
F is the unique solution to

.�@2s ��g/F D 0; F j.�2S;2S/�@M D 0; .F; @sF /jsD0 D .0;  /:

Classical computations (see, e.g., [Le Rousseau and Lebeau 2012, Proof of Theorem 5.4]) show that there
is C > 1 such that for all �� 0 and  2E��, we have

1

C
k kL2.M/ � kF kH1.XS /

� kF kH1.X2S /
� Ce3S

p
�
k kL2.M/:

As a consequence, (63) yields for some C; � > 0, for all �� 0,  2E��, and r 2
�
0; r0

4

�
k kL2.M/

k kL2.BM.x0;2r//

� C �C
1
˛r e.�C

1
˛r
/
p
�: (64)

Recalling the definition of ˛r , this is the sought result of Theorem 1.15 (up to changing 2r into r , and
the names of the constants accordingly) with the restriction r 2

�
0; r0

4

�
. To conclude for all r > 0, it

suffices to notice that (64) remains true with ˛r0=16 on the right-hand side uniformly for observation
terms k kL2.BM.x0;2r//

with r � r0
8

(the constants are nonincreasing functions of the observation set).

To conclude the proof in the general case, we need to consider the situation @M¤∅ in full generality.
We again follow [Donnelly and Fefferman 1988; Jerison and Lebeau 1999]. In this case, we define the
double manifold eMDMtM, consisting in gluing two copies of M, endowed with a smooth structure
of compact manifold, as in [Lee 2013, Theorem 9.29–Example 9.32]. Then, the procedure is very well
explained in [Anton 2008, Section 3] and we only sketch the proof. We extend the metric g on M by
symmetry/parity with respect to the boundary @M as a metric Qg on eM. Note that even if g is smooth, the
extended metric Qg is only Lipschitz on eM. This is not an issue since Lemmas 4.1, 4.2 and 4.3 remain
valid for Lipschitz metrics (as a consequence of Appendix A, [Aronszajn et al. 1962; Donnelly and
Fefferman 1990], and Appendix A, respectively). In the case of Dirichlet boundary condition on @M, and
given  2E�� we take its antisymmetric/odd extension on eM, yielding a function Q 2 zE��. Here, zE��
is the counterpart of E�� defined for the Laplace–Beltrami operator � Qg on eM. The above computations
are then made for � Qg on eM and the estimate (64) is proved for Q . The same estimate for  follows.
Similarly, in the case of Neumann boundary condition, we take the symmetric/even extension of functions,
yielding the sought result. �

4C. A proof of Lemma 4.2 from Aronszajn estimates. In this section, we give a proof of Lemma 4.2
starting from Carleman–Aronszajn estimates as stated in [1988, Proposition 2.10; 1990, Proposition 2.10]
(and slightly modified according to the remarks in [Jerison and Lebeau 1999, beginning of Section 14.3]),
which we now state. An alternative proof of a closely related estimate is given in [Hörmander 1985a,
inequality (17.2.11), Chapter XVII.2].

Proposition 4.5. Let P D�@2s ��g and let .�; t/ 2 .0; r1/�Sn be geodesic polar coordinates around a
point .s0; x0/ 2XS away from the boundary. Then, there exists a function N�.�/ with

N�D �CO.�2/ as �! 0C; (65)
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and constants �0; C; r0 > 0, such that we have

C

Z
j N���Puj2��1 d� dt �

Z
.j N���ruj2Cj N���uj2/��1 d� dt for all � � �0; u 2 C10 .Br0 n f0g/:

With this Carleman–Aronszajn estimate in hand, we now give a proof of Lemma 4.2.

Proof of Lemma 4.2. We use the estimate of Proposition 4.5 as in [Lebeau and Robbiano 1995] (see also
[Le Rousseau and Lebeau 2012, Section 5]) to deduce an interpolation inequality. We introduce for this
(as in [Donnelly and Fefferman 1988, beginning of Section 3]) a cutoff function �r D �r.�/ such that,
with 0 < r < r0

2
a small parameter (appearing in the statement of the lemma),

supp.�r/�
n
r

2
< N� < r0

o
; �r D 1 on

n
r < N� <

r0
2

o
;

j@˛�r j � C˛r
�j˛j on

n
r

2
< N� < r

o
; j@˛�r j � C˛ on

n
r0
2
< N� < r0

o
:

We apply Proposition 4.5 to u D �rF . The operator ŒP; �r � is a first-order differential operator with
suppŒP; �r ��

˚
r
2
< N� < r

	
[
˚
r0
2
< N� < r0

	
, being moreover of the form O.r�1/DCO.r�2/ on the set˚

r
2
< N� < r

	
. Therefore, we obtain using (65), for all � � �0,Z

.j N���r.�rF /j
2
Cj N����rF j

2/��1 d� dt

� C

Z
j N����rPF j

2��1 d� dt CC

Z
j N��� ŒP; �r �F j

2��1 d� dt

� C
�
r

2

��2��1
kPF k2

L2.Br0 /
CC

�
r

2

��2��2
kF k2

H1
r . r2� N��r/

CC
�
r0
2

��2�
kF k2

H1. r0
2
� N��r0/

;

where Br0 denotes the set f N� � r0g. Recall that the norm H 1
r is defined in (62). Concerning the left-hand

side, we bound it from below byZ
.j N���r.�rF /j

2
Cj N����rF j

2/��1 d� dt �

Z
2r� N��

r0
4

.j N���r.�rF /j
2
Cj N����rF j

2/��1 d� dt

�

�
r0
4

��2�
kF k2

H1.r� N�� r0
4
/
:

Combining the last two estimates together with the fact that
�
r0
4

���
kF kH1.Br /

�
�
r
2

���
kF kH1.Br /

yields, for some �0 > 0 and all � � �0 and r 2
�
0; r0
10

�
,�r0

4

���
kF kH1.Br0=4/

� C
�r
2

���
.kPF kL2.Br0 /

CkF kH1
r .Br /

/CC
�r0
2

���
kF kH1.Br0 /

:

Multiplying by r�0 and recalling (65) to replace balls in N� by real balls, we obtain, up to changing the
names of the parameters r; r0, that

kF kH1.Br0=4/
� C

�
2r0
r

��
.kPF kL2.Br0 /

CkF kH1
r .Br /

/C
C

2�
kF kH1.Br0 /

:
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An optimization in � � �0 [Robbiano 1995] (see also [Le Rousseau and Lebeau 2012, Lemma 5.2]) then
implies the following interpolation inequality:

kF kH1.Br0=4/
� C.kPF kL2.Br0 /

CkF kH1
r .Br /

/˛rkF k
1�˛r
H1.Br0 /

; ˛r D
log 2

log
�
2r0
r

�
C log 2

;

and concludes the proof of the lemma. �

4D. A proof of Lemma 4.3 from Proposition A.14. In this section, we give a proof of Lemma 4.3. The
latter consists in performing a scaling argument to reduce the problem to fixed-size balls. However, the
scaling argument yields in these fixed balls a family of metrics (converging to a fixed metric as r! 0),
and we need to use uniform interpolation/Carleman estimates for such families of metrics. These uniform
estimates are proved in Appendix A (Proposition A.14).

Proof of Lemma 4.3. We first choose r0 small enough so thatB2r;0�XS and there exists a local coordinate
patch on M: ˆ W fx 2M W dist.x; x0/< 2r0g!U where U is a neighborhood of 0 in Rn, withˆ.x0/D 0.
Up to a multiplication by an invertible constant matrix, we may assume that ..ˆ�1/�g/.0/ D Id. As
a consequence, ds2˝ ..ˆ�1/�g/.ry/, defined on the ball of radius 2, converges uniformly in this ball
towards the flat metric on the flat ball of RnC1 in the limit r! 0C. We will thus only use the flat metric
in the present proof, which behaves well with respect to scaling. The distance (hence the balls, still
denoted by Br or B1 below, all centered at 0) will be defined with respect to the flat metric, as well as the
Sobolev norms (still denoted by H 1

r .Br/, H
1.B1/ below). The final result we obtain will be formulated

in terms of the flat metric, and associated balls and Sobolev spaces. Coming back to a formulation on the
manifold R�M with the metric ds2˝g only uses the uniform equivalence of norms in T �.R�M/ and
in L2.R�M/ for r sufficiently small.

With this in mind, let us now proceed with the scaling argument in the coordinate chart. Denote by
Fr.x/D F.rx/ and Pr the Laplace–Beltrami operator with respect to the metric ds2˝ ..ˆ�1/�g/.ry/
defined on the ball of radius 2, we have

kF kH1
r .Br /

D r
nC1
2 kFrkH1.B1/

;

r2kPF kL2.B2r / D r
nC1
2 kPrFrkL2.B2/;

r
3
2 k@sF jsD0kL2.B2r\f0g�M/ D r

1
2 r

n
2 k@sFr jsD0kL2.B2\f0g�M/:

Note that the metric ds2˝g.r � / defined on B2 converges uniformly, when r tends to zero, to the flat
metric ds2˝g.0/D ds2˝dy21 ˝� � �˝dy

2
n for the Lipschitz topology on metrics. So, the result follows

if we are able to prove the following estimate: there exist �; ˛0; C such that for all Lipschitz metrics g
with kg� Id kW 1;1 < � and all u 2H 2.B2/ such that ujsD0 D 0 we have

kukH1.B1/
� C

�
k.�@2s ��g/ukL2.B2/Ck@sujsD0kL2.B2\f0g�Rn/

�˛0
kF k

1�˛0
H1.B2/

:

This is the object of Proposition A.14 proved in Appendix A. Note that the result of Proposition A.14 is
stated with half-balls BC

k
but is also true with real balls Bk instead by a symmetry argument. �
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5. The observability constant for positive solutions

The aim of this section is to prove the result of Theorem 1.4 concerning observability of positive solutions
to the heat equation. The main tool will be the following Li–Yau estimates.

Theorem 5.1 [Li and Yau 1986, Theorem 2.3]. Let M be a compact manifold. Let

�K Dmin.0; min
x2M

Ricci.x//� 0;

where Ricci.x/ is the Ricci curvature at x. We assume that the boundary of M is convex, i.e., II > 0. Let
u.t; x/ be a positive solution on .0;C1/ of the heat equation with Neumann boundary condition. Then
for any ˛ > 1, x; y 2M, and 0 < t1 < t2, we have

u.t1; x/�

�
t2

t1

�n˛
2

e
n˛K.t2�t1/p

2.˛�1/ e
˛ d.x;y/

2

4.t2�t1/u.t2; y/:

Here, we have denoted by II.x/ the second fundamental form of @M with respect to outward-pointing
normal at the point x.

Remark 5.2. The convexity assumption is not necessary to obtain a Li–Yau-type estimate (if the boundary
is smooth), up to a loss in the exponent. Indeed, setting �H Dmin.0;minx2@M II.x//� 0, Wang [1997,
Theorem 3.1] proved the estimate

u.t1; x/�

�
t2

t1

�C˛
eC
0
˛.t2�t1/e

˛ d.x;y/
2

4.t2�t1/u.t2; y/ for all ˛ > .1CH/2:

The proof of Theorem 1.4 below shows that the result still holds without the convexity argument, but
yields

ku.T /k2
L2.M/

�
C�

T
e.1CHC�/

2 .L.M;!/C�/2
2T

Z T

0

ku.t; � /k2
L2.!/

dt;

ku.T /k2
L2.M/

�
C�

T
e.1CHC�/

2 .L.M;z0/C�/
2

2T

Z T

0

u.t; z0/
2 dt;

instead of (6)–(7) (hence with a loss of .1CH/2 in the exponent). We do not know whether this is
optimal. Finally, we did not find any analogous estimate in the case of Dirichlet boundary conditions.

Proof of Theorem 1.4. Along the proof, we will need the following asymptotic constants, all depending
on the chosen � > 0. Namely, we shall use �0 > 0 arbitrarily small, r > 1 arbitrarily large, � 2 .0; 1/
arbitrarily close to 1, and ˛ > 1 arbitrary close to 1. Given � > 0, they will all be fixed at the end so that

r˛

.r � 1/�
.L.M; !/C 3�0/

2
� .1C �/.L.M; !/C �/2:

For any x0 2M and for any �0 > 0, there exist �D �.x0; �0/ 2 .0; �0/ and y0 2 ! such that

d.x0; y0/� L.M; !/C � and B.y0; �/� !:

In particular, we have M�
S
x02MB.x0; �/ so that the compactness of M yields the following statement:

given �0 >0, there exist a finite set J and families .xj /j2J 2MJ, .yj /j2J 2!J and .�j /j2J 2 .0; �0/J
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such that

M�
[
j2J

B.xj ; �j /; d.xj ; yj /� L.M; !/C �j and B.yj ; �j /� ! for all j 2 J:

Now, fix j 2 J, and take x 2 B.xj ; �j / and y 2 B.yj ; �j /� !, and we have

d.x; y/� �j CL.M; !/C �j C �j � L.M; !/C 3�0 DW dm:

For t 2
�
0; T
r

�
, Theorem 5.1 with t1 D t and t2 D rt1 D rt then yields

u.t; x/2 � rn˛e
2n˛Kt.r�1/p

2.˛�1/ e
˛d2m
2.r�1/t u.rt; y/2:

Defining

 WD
2n˛K.r � 1/
p
2.˛� 1/

;

this may be rewritten as

u.t; x/2e�
˛d2m
2.r�1/t � rn˛etu.rt; y/2: (66)

We may now integrate this estimate for x 2 B.xj ; �j / and y 2 B.yj ; �j /� !:

e�
˛d2m
2.r�1/t ku.t/k2

L2.B.xj ;�j //
�
jB.xj ; �j /j

jB.yj ; �j /j
rn˛etku.rt/k2

L2.B.xj ;�j //

�
jB.xj ; �j /j

jB.yj ; �j /j
rn˛etku.rt/k2

L2.!/
:

Summing all these estimates for j 2 J yields, for a constant C.�0/ depending only on the geometry of
.M; g/, on !, and on the constant �0,

e�
˛d2m
2.r�1/t ku.t/k2

L2.M/
� C.�0/r

n˛etku.rt/k2
L2.!/

:

Given � 2 .0; 1/, integrating this on the interval t 2
�
�T
r
; T
r

�
yieldsZ T

r

�T
r

e�
˛d2m
2.r�1/t ku.t/k2

L2
dt � C.�0/r

n˛

Z T
r

�T
r

etku.rt/k2
L2.!/

dt

� C.�0/r
n˛e

T
r

Z T
r

�T
r

ku.rt/k2
L2.!/

dt D C.�0/r
n˛e

T
r

Z T

�T

ku.s/k2
L2.!/

ds;

after the change of variables s D rt . Concerning the left-hand side, we use the decay of the L2-norm of
solutions to the heat equation to write

ku.t/kL2.M/ �

u�T
r

�L2.M/� ku.T /kL2.M/; (67)

for all t 2
�
�T
r
; T
r

�
since r > 1. Noting also that t 7! e�˛d

2
m=.2.r�1/t/ is increasing in t > 0, we haveZ T

r

�T
r

e�
˛d2m
2.r�1/t dt �

T .1��/

r
e�

r˛d2m
2.r�1/�T :
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Combining the above three estimates yields

T .1��/

r
e�

r˛d2m
2.r�1/�T ku.T /k2

L2.M/
� C.�0/r

n˛e
T
r

Z T

�T

ku.s/k2
L2.!/

dsI

that is, for all � > 0, r > 1, � 2 .0; 1/, and ˛ > 1,

ku.T /k2
L2.M/

�
C.�/rn˛C1

T .1��/
e
2n˛K.r�1/p
2.˛�1/

T
r e

r˛.L.M;!/C�/2

2.r�1/�T

Z T

�T

ku.s/k2
L2.!/

ds:

But r
r�1
D 1C 1

r�1
can be made arbitrary close to 1C for large r , � close to 1�, ˛ close to 1C, and �

to 0C, so that
r˛.L.M; !/C �/2

2.r � 1/�T
�

L.M; !/2C �

2T
:

We have thus proved the first statement.
To be a little more precise, we can choose ˛; r such that 1

r
C
1
˛
D 1. This yields
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L2.M/
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e
2nKp
2.˛�1/

T
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˛2.L.M;!/C�/2

2�T

Z T

�T

ku.s/k2
L2.!/

ds;

or, with ˛ D 1C � and �D 1� �, we obtain for all � 2 .0; 1/

ku.T /k2
L2.M/
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C.�/

�
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�.1C�/nC1
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Z T
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ku.s/k2
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T�2nC2
e
2nKp
2�
T
e
.1C�/2

1��
.L.M;!/C�/2

2T

Z T

.1��/T

ku.s/k2
L2.!/

ds:

So we have proved the first estimate of the theorem. The second can be obtained similarly by integrat-
ing (66) in the x-variable only, and not in the y-variable. �

Remark 5.3. In fact, note that from (67) on we could also put
u�T

r

�L2.M/
2 on the left-hand side

of all estimates of the proof, which amounts to
u�T �

1C�

�L2.M/
2, and, in particular, we have the

stronger statement

ku..1� �/T /k2
L2.M/

�
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2nKp
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e
.1C�/2

1��
.L.M;!/C�/2

2T

Z T

.1��/T

ku.s/k2
L2.!/

ds:

Remark 5.4. All constants can be made explicit. We denote by K WDminf0;�minx2M Ricci.x/g. For
instance, we have for all � > 0

ku.T /k2
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�
C.�/rn˛C1

T .1��/
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2nKp
2.˛�1/
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Choosing the constants, we have, for all � 2 .0; 1/, for all � > 0u�T �

1C �

�L2.M/
2
�

C.�/

T�2nC2
e
2nKp
2�
T
e.1C�/

3 .L.M;!/C�/2

2T

Z T

.1��/T

ku.s/k2
L2.!/

ds:
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Note that for nonnegatively (Ricci) curved manifolds (this is the case of a convex domain in Rn) K D 0
and the constant is

C.�/

T�2nC2
e.1C�/

3 .L.M;!/C�/2

2T

and hence decays like 1
T

for T large.

Appendix A: Uniform Lipschitz Carleman estimates

In this appendix, we produce Carleman estimates for a Laplace–Beltrami operator on a Riemannian
manifold M with boundary @M. Our proof presents several advantages with respect to the existing proofs
of similar results:

� It is relatively short.

� It is completely geometric and, we hope, is relatively readable.

� As we already said, it requires the minimum of regularity for the metric (in dimension � 3), namely
only Lipschitz regularity. Indeed, it is known that in dimension � 3, local uniqueness does not hold
for general elliptic operators (even in divergence form) with C 0;˛ coefficients for all ˛ < 1; see [Pliś
1963; Miller 1974].

The proof, using formulae from Riemannian geometry, is inspired by Carleman estimates for the
Schrödinger equation proved by the first author [Laurent 2010].

There have been several works about such Carleman estimates for Lipschitz metrics (but without
boundary). The oldest result seems to be [Aronszajn et al. 1962] for elliptic operators. Another one,
which actually falls short of the Lipschitz regularity is the very general result of [Hörmander 1963,
Section 8.3], which requires C 1 regularity, but applies to many more operators than elliptic ones. A proof
for general elliptic operators with order 2m and Lipschitz coefficients is written in [Hörmander 1985a,
Proposition 17.2.3]. For Lipschitz regularity of the coefficients, we can also mention for instance [Nakić
et al. 2019], with explicit dependence. One can also mention doubling estimates directly for the parabolic
equation; see [Canuto et al. 2002; Escauriaza and Vessella 2003] for instance.

A1. Toolbox of Riemannian geometry. The definitions given in this section have a deep geometric
meaning; see [Gallot et al. 1987]. We will however only use the associated calculus rules, which we
recall below. Note that they are usually written for smooth metrics, but they still make sense for Lipschitz
metric, as we shall see below. We follow the notation of [Gallot et al. 1987].

Here and in all estimates below, M is a (not necessarily compact) smooth d -dimensional manifold
with boundary @M, so that M D @M t Int.M/.

Given an open set U �M such that U is compact in M (note that this definition holds not only for
open sets of Int.M/), we denote by Lp.U /, Hk.U /, W k;1.U / the usual Sobolev spaces. These are
defined intrinsically once U is fixed, even if the associated norms may depend on the metric or the charts
chosen. The notation Lploc.M/, Hk

loc.M/, W k;1
loc .M/ will be used for functions belonging to Lp.U /, etc.

for any open set U such that U is compact in M (and not Int.M/).
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We denote by g a locally Lipschitz metric on M, (that is, x 7! gx. � ; � / is a locally Lipschitz section
of the bundle of symmetric bilinear forms on TM that is uniformly bounded from below by a positive
constant on any compact set).

Given a local regularity space B as above, and U �M such that U is compact in M, we define

T 2
B .U /D �B.T

2T �M/jU

to be the space of sections of 2-tensors on T �M having regularity B on a neighborhood of U. In local
charts, such a tensor t 2 T 2

B .M/ can be written as t D .tij /, with tij having the regularity of B . Typically,
a locally Lipschitz metric g satisfies g 2 T 2

W 1;1
loc

.M/.
We denote by h � ; � ig D g. � ; � / the inner product in TM. Note that this notation omits mention of the

point x 2M at which the inner products takes place: this allows us to write hX; Y ig as a function on M
(the dependence on x is omitted here as well) when X and Y are two vector fields on M. For a vector
field X, we also define jX j2g D hX;Xig .

We recall that the Riemannian gradient rg of a function f is defined by

hrgf;Xig D df .X/ for any vector field X:

For a function f on M, we denote by
R
f D

R
M f .x/ d Volg.x/ its integral on M, where d Volg.x/ is

the Riemannian density. We denote by divg the associated divergence, defined on a vector field X byZ
u divg X D�

Z
hrgu;Xig for all u 2 C1c .Int.M//:

We denote by �g D divg rg the associated (nonpositive) Laplace–Beltrami operator. We also denote by
D the Levi-Civita connection associated to the metric g; see [Gallot et al. 1987, Chapter II, Section B].

Let us now recall how these objects can be written in local coordinates.

Formula 1. In coordinates, for f a smooth function and X D
P
i X

i @
@xi

, Y D
P
i Y

i @
@xi

smooth vector
fields on M, we have

hX; Y ig D

nX
iD1

gijX
iY j ;

Z
f D

Z
f d Volg D

Z
f .x/

p
detg.x/ dx;

rgf D

nX
i;jD1

gij .@jf /
@

@xi
; divg.X/D

nX
iD1

1
p

detg
@i .
p

detgXi /;

�gf D

nX
i;jD1

1
p

detg
@i .
p

detggij @jf /; DXY D

nX
iD1

� nX
jD1

Xj
@Y i

@xj
C

nX
j;kD1

� ij;kX
jY k

�
@

@xi
;

where .g�1/ij D gij and the Christoffel symbols are defined by

� ij;k D
1

2

nX
lD1

gil.@jgkl C @kglj � @lgjk/I

see for instance [Gallot et al. 1987, p. 71].
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Note in particular that the Lipschitz regularity of g can be written as, on any local chart U with
U compact, gij 2 W 1;1.U /, and implies gij 2 W 1;1.U /. This gives, if f;X; Y are smooth, that
hX; Y ig 2 W

1;1
loc .M/, rgf is a locally Lipschitz vector field, �gf 2 L1loc.M/ and DXY is an L1loc

vector field on M, since the definitions of �g and DX involve one derivative of the coefficients of g.

In view of the properties of DX , it is natural to set DXf DXf D df .X/ for a function f on M. Let
us now collect some properties of these objects, that we shall use below.

Formula 2. For f; h smooth functions and X D
P
i X

i @
@xi

, Y D
P
i Y

i @
@xi

smooth vector fields on M,
we have

rg.f h/D .rgf /hCf .rgh/;

divg.fX/D hrgf;Xig Cf divg.X/;

DX .f Y /D .Xf /Y CfDXY; where Xf WD df .X/;

DX .hY;Zig/D hDXY;Zig ChY;DXZig :

That DX acts on functions as well as on vector fields suggests extending the definition of DX to more
general vector bundles; see [Gallot et al. 1987, Proposition 2.58]. In particular, for a one-form !, DX! is
defined (by duality) to be the one-form acting as

.DX!/.Y /DX.!.Y //�!.DXY / for all vector fields Y:

This allows us to define the Hessian of a function, see [Gallot et al. 1987, Exercise 2.65],

Hess.f /.X; Y /D .DXdf /.Y / for vector fields X; Y

(which only involves the values of X, Y and not their derivatives). In local charts, note that we have

Hess.f /.X; Y /D
X
i;j

X iY j Œ@2ijf ��
k
ij @kf �;

which again is in L1loc.M/ for a locally Lipschitz metric g and L1loc vector fields X; Y . Note also that the
Hessian of f is symmetric; that is, Hess.f /.X; Y /D Hess.f /.Y;X/.

Lemma A.1. For any function f and any vector field X and Y , we have

Hess.f /.X; Y /D hDXrgf; Y ig :

Proof. According to the above calculus rules, we compute in two different ways the quantity

DX .hrgf; Y ig/DDX
�
df .Y /

�
D .DXdf /.Y /C df .DXY /D Hess.f /.X; Y /C df .DXY /:

We also have

DX .hrgf; Y ig/D hDXrgf; Y ig Chrgf;DXY ig D hDXrgf; Y ig C df .DXY /;

which, combined with the previous computation yields the result. �

Finally, we recall an integration-by-parts formula in the present context.
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Formula 3 (Riemannian Stokes formula). Assume @M is piecewise C 1 and graph-Lipschitz. Then, for
all f 2H 2

loc.M/ and h 2H 1
loc.M/, one of which is compactly supported, we haveZ
.�gf /hD

Z
@M

hrgf; �igh�

Z
hrgf;rghig :

Here, the boundary @M is endowed with the Riemannian metric induced by g, and
R
@M is the integral

with respect to the associated surface measure (defined as in Formula 1). The vector field � is the unit
normal vector to @M which is outgoing. It is defined almost everywhere if @M is piecewise C 1. In a local
coordinate chart .x1; : : : ; xn/ centered at 0, and in which @M � fxn D 0g and M � fxn � 0g, we have

� D

nX
jD1

gjn
p
gnn

@

@xj
:

With the prescribed regularity of the boundary, the space L1loc.@M/ is defined intrinsically. We denote by
@�f Dhrgf; �ig the normal derivative at the boundary, which is onlyL1loc.@M/ since @M is piecewise C 1.

Note that in the above coordinate system, we have

@�f D

nX
jD1

gjn
p
gnn

@xj f:

In particular, if f satisfies Dirichlet boundary conditions, this is @�f D
p
gnn @xnf .

Note finally the vector field X�hX; �ig� is tangential to @M, so that we may decompose a vector field
as its normal and tangential parts. In particular, we shall decompose the gradient rgf D @�f �CrT f ,
where rT f j@M 2 T @M.

A2. The Carleman estimate. We stress the fact that functions u2C1.M/ are smooth up to the boundary
of M (as opposed to functions u 2C1.Int.M//). We will first estimate the Carleman conjugate operator
in Theorem A.2 and then give the desired estimate under appropriate assumptions in Theorem A.5.

Theorem A.2. Assume g is a Lipschitz metric on M and @M is piecewise C 1 and graph-Lipschitz. Let
U be an open subset of M such that U is compact (in the topology of M � @M ) and define †D @M \U.
Then, for any f 2W 1;1.U /, ' 2W 2;1.U /, u 2H 2

comp.U / and � � 0, we haveZ
je�'�g.e

��'u/j2CR.u/� �3
Z �
2Hess.'/.rg';rg'/C .�g'/jrg'j2g �f jrg'j

2
g

�
juj2

C �

Z
2Hess.'/.rgu;rgu/� .�g'/jrguj2g Cf jrguj

2
g CBT .u/;

with boundary terms

BT .u/D�2�

Z
†

hrgu; �ighrg';rguig C �

Z
†

hrg'; �ig jrguj
2
g

� �3
Z
†

hrg'; �ig juj
2
jrg'j

2
g C �

Z
†

hrgu; �igf u; (68)

and remainder R.u/ satisfying

jR.u/j �
�
kf ��g'k

2
L1.U /C

1
2
krgf kL1.U /

�
�2kuk2

L2
C
1
2
krgf kL1.U /krguk

2
L2
: (69)
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Note that the last term in (68) is actually of lower order. We keep it here since it vanishes in the case
of Dirichlet boundary conditions.

Remark A.3. It is very important for our purpose to notice that all terms in this identity only involve
derivatives of order 0 or 1 of the metric. This will be important when we will consider stability issues
with respect to Lipschitz perturbations of the metric.

This identity suggests introducing and studying the following two important quantities, given X a
smooth vector field on M :

Bg;';f .X/D 2Hess.'/.X;X/� .�g'/jX j2g Cf jX j
2
g ;

Eg;';f D 2Hess.'/.rg';rg'/C .�g'/jrg'j2g �f jrg'j
2
g :

Note that for a Lipschitz metric g, we have Eg;';f 2L
1
loc.M/ and Bg;';f .X/ 2L

1
loc.M/ for any locally

bounded vector field X.

Remark A.4. At this level, it would be very tempting to set F D��g'Cf and work with the associated
simplified expressions of Bg;';f .X/ and Eg;';f . From a conceptual point of view, this is completely
fine; see Remark A.8 below. However, since we consider the limiting Lipschitz regularity of the metric,
this change of additional function is not admissible. Indeed, the remainder term R.u/ in Theorem A.2
requires the regularity rgf 2 L1 and f D F C�g' is already in L1 and consumes one derivative of
the metric g. Having rgF 2 L1 would then require g to be W 2;1.

We define kwk2
L2
D
R
jwj2 (see Formula 1 for the notation

R
) for a function w and kXk2

L2
D
R
jX j2g

for a vector field X.
We can now state the Carleman estimate.

Theorem A.5. Let U be an open subset of M such that U is compact (in the topology of M � @M ) and
define†D @M \U. Assume that the functions .'; f / satisfy f 2W 1;1.U /, ' 2W 2;1.U /, jrg'j2g >0
on U, and there exists C0 > 0 such that for any vector field X we have almost everywhere on U

Bg;';f .X/� 2C0jX j
2
g ; (70)

Eg;';f � 2C0jrg'j
2
g : (71)

Then, setting c.'/Dmaxf1; .minU jrg'j
2
g/
�1g, we have the following statements:

(1) For all � � c.'/
C0

�
kf ��g'k

2
L1.U /

C
1
2
krgf kL1.U /

�
and all v 2 C1c .U / we have the estimate

1
3
C0.�

3
ke�'vrg'k

2
L2.U /

C �ke�'rgvk
2
L2.U /

/

� ke�'�gvk
2
L2.U /

C �.ke�'rgvk
2
L2.†/

C �2ke�'vrg'k
2
L2.†/

/Kf;' ; (72)

with Kf;' D 3
�c.'/
�
kf kL1.†/C 3krg'kL1.†/

�
.

(2) For all � � c.'/
C0

�
kf ��g'k

2
L1.U /

C
1
2
krgf kL1.U /

�
and all v 2C1c .U / such that vD 0 on † we

have

1
3
C0.�

3
ke�'vrg'k

2
L2.U /

C �ke�'rgvk
2
L2.U /

/� ke�'�gvk
2
L2.U /

C �

Z
†

e2�'@�'j@�vj
2: (73)
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(3) If 'j† is constant and �m.'/ WDmax† @�' < 0, then setting M.'/ WDmax†.�@�'/ > 0, we have
for all

� �max
�
c.'/

C0

�
kf ��g'k

2
L1.U /C

1
2
krgf kL1.U /

�
;

p
kf kL1.†/

m.'/

�
and all v 2 C1c .U /

ke�'�gvk
2
L2
CM.'/�

Z
†

e2�' jrT vj
2
g �

C0

3
.�3ke�'vrg'k

2
L2.U /

C �ke�'rgvk
2
L2.U /

/

C
�

8

m.'/3

M.'/2

Z
†

e2�' j@�vj
2
C �3

m.'/3

4

Z
†

jvj2: (74)

Remark A.6. In the last two statements of this result, we assume boundary conditions (either for v or
for ') on the whole boundary †. Since the integrals involved are local, we could also assume different
conditions on parts of the boundary, obtaining the associated terms in the estimates.

For simplicity, in the proof, we shall denote by

kuk2
H1
�
D �2kurg'k

2
L2
Ckrguk

2
L2

the semiclassical norm (recall that jrg'j2g > 0 here).

Proof of Theorem A.5. We first let vD e��'u, and apply the estimate of Theorem A.2. The latter, together
with our assumption (70)–(71) (applied almost everywhere in M to X Drgu) implies for all � � 0 and
u 2 C1c .U /

ke�'�g.e
��'u/k2

L2
CR.u/� 2C0�

3
kurg'k

2
L2
C 2C0�krguk

2
L2
CBT .u/

D 2C0�kuk
2

H1
�
CBT .u/;

where BT .u/ is defined in (68) and R.u/ estimated in (69). Now, we have

jR.u/j � c.'/
�
kf ��g'k

2
L1 C

1
2
krgf kL1

�
kuk2

H1
�
;

which implies that if �C0 � c.'/
�
kf ��g'k

2
L1 C

1
2
krgf kL1

�
, we obtain

ke�'�g.e
��'u/k2

L2
� C0�kuk

2

H1
�
CBT .u/: (75)

We now consider the boundary terms. Without any assumption on the boundary, we have

jBT .u/j�3�krg'kL1.†/.krguk
2
L2.†/

C�2kurg'k
2
L2.†/

/C1
2
kf kL1.†/.k@�uk

2
L2.†/

C�2kuk2
L2.†/

/;

and hence obtain in this case

C0�kuk
2
H1
�
� ke�'�g.e

��'u/k2
L2

C .c.'/kf kL1.†/C 3�krg'kL1.†//.krguk
2
L2.†/

C �2kurg'k
2
L2.†/

/:
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Recalling that uD e�'v, this implies rguD e�'rgvC �urg', and hence

ke�'rgvk
2
L2
� 2krguk

2
L2
C 2�2kurg'k

2
L2
D 2kuk2

H1
�
;

krguk
2
L2
� 2ke�'rgvk

2
L2
C 2�2ke�'vrg'k

2
L2
:

(76)

The last four estimates imply

1
3
C0.�

3
ke�'vk2

L2
C �ke�'rgvk

2
L2
/

� C0�kuk
2
H1
�

� ke�'�gvk
2
L2
C 3

�
c.'/kf kL1.†/C 3�krg'kL1.†/

��
ke�'rgvk

2
L2.†/

C �2ke�'vrg'k
2
L2.†/

�
;

and hence (72).
Second, we assume the Dirichlet boundary condition vj† D 0. This implies uj† D 0 and rguj† D

@�uj†@� , so that we obtain

BT .u/D��

Z
†

@�'j@�uj
2
D��

Z
†

@�'e
2�'
j@�vj

2:

Estimate (75) then reads

ke�'�g.e
��'u/k2

L2
C

Z
†

@�'e
2�'
j@�vj

2
� C0�kuk

2
H1
�
:

Using again (76) to come back to the variable v yields (73).
Finally, we consider the case where 'j† is constant and @�' ��m.'/ < 0, in which case we obtain

from (68)

BT .u/D�2�

Z
†

@�'j@�uj
2
C �

Z
†

@�'jrguj
2
g � �

3

Z
†

.@�'/
3
juj2C �

Z
†

@�uf u

D��

Z
†

@�'j@�uj
2
C �

Z
†

@�'jrT uj
2
g � �

3

Z
†

.@�'/
3
juj2C �

Z
†

@�uf u:

Estimate (75) then reads

ke�'�g.e
��'u/k2

L2
C�

Z
†

@�'j@�uj
2
��

Z
†

@�'jrT uj
2
gC�

3

Z
†

.@�'/
3
juj2��

Z
†

@�uf u�C0�kuk
2

H1
�
;

and hence, using �M.'/� @�' � �m.'/ < 0,

ke�'�g.e
��'u/k2

L2
CM.'/�

Z
†

jrT uj
2
g � �

Z
†

@�uf u

� C0�kuk
2
H1
�
Cm.'/�

Z
†

j@�uj
2
C �3m.'/3

Z
†

juj2:

Now, we estimateˇ̌̌̌Z
†

@�uf u

ˇ̌̌̌
� kf kL1.†/kukL2.†/k@�ukL2.†/

�
kf kL1.†/

2m.'/�
k@�uk

2
L2.†/

C
kf kL1.†/m.'/�

2
kuk2

L2.†/
;
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so that for � �
p
kf kL1.†/=m.'/ this term is absorbed in the right-hand side, and we obtain

ke�'�g.e
��'u/k2

L2
CM.'/�

Z
†

jrT uj
2
g � C0�kuk

2
H1
�
C
m.'/

2
�

Z
†

j@�uj
2
C �3

m.'/3

2

Z
†

juj2:

Recalling that uD e�'v and rT 'j† D 0, this implies rT uD e�'rT v and

e2�' j@�vj
2
� 2j@�uj

2
C 2�2j@�'j

2
juj2I

hence
1

4

m.'/2

M.'/2

Z
†

e2�' j@�vj
2
�
1

2

Z
†

j@�uj
2
C �2

m.'/2

2

Z
†

juj2:

Finally using again (76) with the last two estimates implies (74), concluding the proof of Theorem A.5. �

Proof of Theorem A.2. The statement of the theorem is a lower bound for the L2-norm of the quantity
e�'�g.e

��'u/, which we may compute as

P'u WD e
�'�g.e

��'u/D�gu� 2�hrg';rguig � �.�g'/uC �
2
jrg'j

2
gu:

We then decompose the conjugated operator P' as

P' DQ2CQ1;

with
Q1u WD �2�hrg';rguig � �f u;

Q2u WD�guC �
2
jrg'j

2
gu� �.�g'/uC �f uD

zQ2uCR2u;

where zQ2 is the principal part of Q2, that is,

zQ2uD�guC �
2
jrg'j

2
gu and R2uD �.��g'Cf /u:

Now, we write (k � k denotes the L2-norm for short)

2kP'uk
2
C 2kR2uk

2
� kP'u�R2uk

2
D kQ1uC zQ2uk

2;

where we estimate the remainder as

kR2uk
2
� �2kf ��g'k

2
L1kuk

2
L2
: (77)

Hence, we are left to produce a lower bound for

kQ1uC zQ2uk
2
D kQ1uk

2
Ck zQ2uk

2
C 2Re.Q1u; zQ2u/:

Now, note that the all differential operators P' ;Q1; zQ2 involved have real coefficients. Hence, if
we consider complex-valued functions u D uR C iuI , we have kP'uk2 D kP'uRk2 C kP'uIk2,
kuk2 D kuRk

2 C kuIk
2 so that proving kP'uk2 � c0kuk2 for real-valued functions u implies the

same inequality for complex-valued ones. As a consequence, we only prove the result for a real-valued
function u, and associated real inner product. We now provide an explicit computation for .Q1u; zQ2u/,
which is the key step in the proof.
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Lemma A.7. For all functions ' 2W 2;1
loc .M/, f 2W 1;1

loc .M/ and u 2H 2
comp.M/, we have

.Q1u; zQ2u/D �
3

Z �
2Hess.'/.rg';rg'/C .�g'/jrg'j2g �f jrg'j

2
g

�
juj2

C �

Z
2Hess.'/.rgu;rgu/� .�g'/jrguj2g Cf jrguj

2
g

C �

Z
uhrgu;rgf ig CBT .u/;

with

BT .u/D�2�

Z
†

hrgu; �ighrg';rguig C �

Z
†

hrg'; �ig jrguj
2
g

� �3
Z
†

hrg'; �ig juj
2
jrg'j

2
g � �

Z
†

hrgu; �igf u:

To conclude the proof of the theorem, we now simply write

2kP'uk
2
C 2kR2uk

2
� kQ1uC zQ2uk

2
� 2.Q1u; zQ2u/: (78)

In the estimates of Lemma A.7, the remainder term is

R3.u/D��

Z
uhrgu;rgf ig ; jR3.u/j �

1
2
krgf kL1.krguk

2
L2
C �2kuk2

L2
/;

which, combined with (78), (77) and Lemma A.7, concludes the proof of Theorem A.2 with

R.u/D kR2uk
2
CjR3.u/j: �

For the proof of Theorem A.2 to be complete, it only remains to prove Lemma A.7.

Proof of Lemma A.7. We have

.Q1u; zQ2u/D

Z
.�2�hrg';rguig � �f u/.�guC �

2
jrg'j

2
gu/D��.2J C 2�

2KCL/; (79)

with

J D

Z
hrg';rguig�gu; K D

Z
hrg';rguig jrg'j

2
gu; LD

Z
f u.�guC �

2
jrg'j

2
gu/:

We now perform one (and only one, which is the most we can do with the Lipschitz regularity of g)
integration by parts in each of these integrals. Firstly, we compute J as

J D

Z
†

hrgu; �ighrg';rguig �

Z
hrgu;rg.hrg';rguig/ig :

But, we also have

hrgu;rg.hrg';rguig/ig DDrgu.hrg';rguig/

D hDrgurg';rguig Chrg';Drgurguig

D Hess.'/.rgu;rgu/CHess.u/.rgu;rg'/;
so that

J D

Z
†

hrgu; �ighrg';rguig �

Z
Hess.'/.rgu;rgu/�

Z
Hess.u/.rgu;rg'/:
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We then notice that

hrg';rg jrguj
2
gig D d.jrguj

2
g/.rg'/DDrg'.hrgu;rguig/

D hDrg'rgu;rguig Chrgu;Drg'rguig D 2hDrg'rgu;rguig

D 2Hess.u/.rg';rgu/; (80)

so that we have in particular

2

Z
Hess.u/.rg';rgu/D

Z
hrg';rg jrguj

2
gig D�

Z
.�g'/jrguj

2
g C

Z
†

hrg'; �ig jrguj
2
g :

Coming back to J, this finally implies the expression

2J D 2

Z
†

hrgu; �ighrg';rguig � 2

Z
Hess.'/.rgu;rgu/

C

Z
.�g'/jrguj

2
g �

Z
†

hrg'; �ig jrguj
2
g : (81)

Secondly, remarking that rg juj2 D 2urgu, we write K as

K D

Z
hrg';rguig jrg'j

2
guD

1

2

Z
jrg'j

2
ghrg';rg juj

2
ig :

An integration by parts yieldsZ
.�g'/juj

2
jrg'j

2
g D

Z
†

hrg';�ig juj
2
jrg'j

2
g�

Z
hrg';rg.juj

2
jrg'j

2
g/ig

D

Z
†

hrg';�ig juj
2
jrg'j

2
g�

Z
jrg'j

2
ghrg';rg juj

2
ig�

Z
juj2hrg';rg jrg'j

2
gig :

Combining these two formulas, we obtain

2K D�

Z
.�g'/juj

2
jrg'j

2
g C

Z
†

hrg'; �ig juj
2
jrg'j

2
g �

Z
hrg';rg jrg'j

2
gig juj

2

D�

Z
.�g'/juj

2
jrg'j

2
g C

Z
†

hrg'; �ig juj
2
jrg'j

2
g � 2

Z
Hess.'/.rg';rg'/juj2; (82)

where we have used as in (80) that

hrg';rg jrg'j
2
gig DDrg'hrg';rg'ig D 2hDrg'rg';rg'ig D 2Hess.'/.rg';rg'/:

Thirdly, let us compute L with one integration by parts as

LD

Z
f u.�guC �

2
jrg'j

2
gu/

D

Z
†

hrgu; �igf u�

Z
hrgu;rg.f u/ig C �

2

Z
jrg'j

2
gf juj

2

D

Z
†

hrgu; �igf u�

Z
f jrguj

2
g C �

2

Z
jrg'j

2
gf juj

2
�

Z
uhrgu;rgf ig : (83)

Coming back to (79) and combining the computations of J;K;L in (81)–(83), we have obtained the
statement of Lemma A.7. �
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Remark A.8. We wish to compare the above proof with the more usual proofs of Carleman estimates
[Hörmander 1985b, Chapter 23; Lebeau and Robbiano 1995; Le Rousseau and Lebeau 2012]. Note first
that the fact that operators and functions are real-valued implies, for u2C1c .Int.M//, that .Q1u;Q2u/D
.Q2Q1u; u/D�.u;Q1Q2u/D

1
2
.ŒQ2;Q1�u; u/. Note also that the principal symbol of the conjugated

operator P' is given by

p'.x; �/D �.P'/.x; �/D j�
]
j
2
g � �

2
jrg'j

2
g C 2i�hrg'; �

]
ig D j�j

2
g� � �

2
jd'j2g� C 2i�hd'; �ig� ;

where g� is the dual metric on T �M, i.e., g� D .gij /, and �] is defined by h�]; Xig D �.X/.
Here, a computation shows that we have

fRep' ; Imp'g.x; �/D 4� Hess.'/.�]; �]/C 4�3 Hess.'/.rg';rg'/:

As a consequence, the important quantity in the Carleman estimate of Theorem A.5 is

Bg;';f .�
]/C�2Eg;';f D .f ��g'/.j�

]
j
2
g��

2
jrg'j

2
g/C2Hess.'/.�]; �]/C2�2 Hess.'/.rg';rg'/

D .f ��g'/Rep'C
1

2�
fRep' ; Imp'g:

The main assumption under which the Carleman estimate of Theorem A.5 holds is hence the existence of
a function F D F.x/ (of the position variable only) so that

F Rep' C
1

2�
fRep' ; Imp'g � C.j�j

2
C �2/: (84)

The choice of F under the form F D f ��' is only made in order not to consume regularity of the
metric g; see above Remark A.4.

Of course, assumption (84) is stronger than the usual subellipticity of the Hörmander theorem [1985b,
Chapter 23]:

fRep' ; Imp'g> 0 on the set fRep' D 0; Imp' D 0g:

The proof of the Hörmander theorem [1985b, Section 23.3] then uses a symbol F.x; �/ instead of just a
function F.x/, for instance having the form

F.x; �/D
Rep'
�2C �2

:

We refer to [Le Rousseau and Lebeau 2012, Section 3.1] for a related discussion regarding the
Fursikov–Imanuvilov approach to Carleman estimates.

A3. Constructing weight functions via convexification. In this section, we explain how to construct
weight functions .'; f / that satisfy the assumption of Theorem A.5, via the usual convexification
procedure. In the present context (as opposed to the usual situation), this also requires a very specific
choice of the function f .

Lemma A.9 (explicit convexification). Let ‰ 2W 2;1
loc .M IR/ and G 2W 2;1

loc .R/, and choose

' DG.‰/ and f D 2G00.‰/jrg‰j
2
g : (85)
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Then we have

Bg;';f .X/D 2G
0.‰/Hess.‰/.X;X/C2G00.‰/jhrg‰;Xig j2C

�
G00.‰/jrg‰j

2
g�G

0.‰/�g‰
�
jX j2g ;

Eg;';f DG
0.‰/2

�
2G0.‰/Hess.‰/.rg‰;rg‰/CG00.‰/jrg‰j4gCG

0.‰/�g‰jrg‰j
2
g

�
:

To state the next corollary, for B 2 T 2
L1loc

.M/ an L1loc section of bilinear forms on TM, we define

jBjg.x/D sup
X2TxMn0

jB.x;X;X/j

jX j2g
;

which yields an L1loc function on M.

Corollary A.10. Let ‰ 2W 2;1
loc .M IR/, � > 0, and define '; f as in (85) with G.t/D e�t. Then, for

any � > 0 and any vector field X, we have almost everywhere on M

Bg;';f .X/� �e
�‰
jX j2g

�
�jrg‰j

2
g � 2jHess.‰/jg ��g‰

�
;

Eg;';f � �e
�‰
jrg'j

2
g

�
�jrg‰j

2
g � 2jHess.‰/jg C�g‰

�
:

Proof of Corollary A.10. With this choice of G, Lemma A.9 gives

Bg;';f .X/D �e
�‰Œ2Hess.‰/.X;X/C 2�jhrg‰;Xig j2��g‰jX j2g C�jrg‰j

2
g jX j

2
g �;

together with

Eg;';f D �
3e3�‰Œ2Hess.‰/.rg‰;rg‰/C�jrg‰j4g C�g‰jrg‰j

2
g �;

which yields the sought result. �

Proof of Lemma A.9. We first have d' D G0.‰/d‰ and rg' D G0.‰/rg‰. We then compute the
Hessian and the Laplacian as

Hess.'/.X; Y /D hDXrg'; Y ig D hDX .G0.‰/rg‰/; Y ig

DG0.‰/hDXrg‰; Y ig CG
00.‰/d‰.X/hrg‰; Y ig

DG0.‰/Hess.‰/.X; Y /CG00.‰/hrg‰;Xighrg‰; Y ig ;
and

�g' D divg.G0.‰/rg‰/DG0.‰/�g‰CG00.‰/jrg‰j2g :

In particular, we have

Hess.'/.rg';rg'/DG0.‰/Hess.‰/.rg';rg'/CG00.‰/jhrg‰;rg'ig j2

DG0.‰/2
�
G0.‰/Hess.‰/.rg‰;rg‰/CG00.‰/jjrg‰j2g j

2
�
;

together with
�g'jrg'j

2
g DG

0.‰/2jrg‰j
2
g

�
G0.‰/�g‰CG

00.‰/jrg‰j
2
g

�
:

As a consequence, we obtain

Bg;';f .X/D 2G
0.‰/Hess.‰/.X;X/C 2G00.‰/jhrg‰;Xig j2

C
�
�G0.‰/�g‰�G

00.‰/jrg‰j
2
g Cf

�
jX j2g ;
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as well as

Eg;';f .x/DG
0.‰/2

�
2G0.‰/Hess.‰/.rg‰;rg‰/C 2G00.‰/jrg‰j4g

C
�
G0.‰/�g‰CG

00.‰/jrg‰j
2
g �f

�
jrg‰j

2
g

�
:

Now, recalling the choice f D 2G00.‰/jrg‰j2g concludes the proof of the lemma. �

Remark A.11. Note that in this proof, the choice f D ˛G00.‰/jrg‰j2g yields a useful lower bound only
if ˛ 2 .1; 3/. See also [Le Rousseau and Lebeau 2012, Section 3.1] for a related discussion.

A4. Uniformity with respect to the metric. Until this point, all calculations are exact for a fixed metric.
In the present section, we prove uniform estimates in a class of metrics. For this, even though the manifold
with boundary M is not assumed compact, we will consider only open subsets U of M such that U is
compact in M (not in Int.M/). On the compact set K, the spaces W k;1.K/ are defined intrinsically,
even if the associated norms may depend on the metric or the charts chosen. We fix one of these norms
k � kW 1;1.K/ for functions on M, as well as for forms on M (still denoted by k � kW 1;1.K/).

Now, given a reference metric g0 and two constants D � � > 0, we consider the class

��;D.K; g0/D fg metric in T 2

W
1;1

loc
.M/ W kgkW 1;1.K/ �D; �g0 � g �Dg0g:

Lemma A.12. Let U be an open subset of M such that U is compact (in the topology of M � @M ) and
define †D @M \U. Given a metric g0 2 T 2

W 1;1
loc

.M/, D � � > 0, and a function ‰ 2W 2;1.U / such
that jrg0‰j

2
g0
> 0 on U, there exists C0 > 0 and � > 0 such that for any g 2 ��;D.U ; g0/, the functions

' D e�‰, f D 2�2jrg‰j2g satisfy

Bg;';f .X/� 2C0jX j
2
g for all vector fields X; (86)

Eg;';f � 2C0jrg'j
2
g (87)

almost everywhere in U.

Note that the constant C0 involved is explicitly computable in terms of D and �, which we do not write
for the sake of readability. Yet, if one is interested in obtaining explicit constants, the choice G.t/D e�t

of convexifying function is probably not the best one.

Proof. Denote by g� D .gij / the metric on T �M induced by g. For g 2 ��;D.U ; g0/, we have
1
D
g�0 � g

� �
1
�
g�0 . With this notation, we have

1

D
jrg0‰j

2
g0
D
1

D
jd‰j2

g�0
� jrg‰j

2
g D jd‰j

2
g� �

1

�
jd‰j2

g�0
D
1

�
jrg0‰j

2
g0
; (88)

where j!j2g� D h!;!ig� is the cotangent squared norm. Next, using the uniform W 1;1.U / bound in
��;D.U ; g0/, we have

j�g‰j � C.�;D/k‰kW 2;1.U /; jHess.‰/jg � C.�;D/k‰kW 2;1.U /:
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Now, the compactness of U with the assumption yields c0 > 0 such that jrg0‰j
2
g0
� c0 everywhere on U.

According to Corollary A.10 and the above two estimates, we obtain for any �> 0 and any vector field X

Bg;';f .X/� �e
�‰
jX j2g.�jrg‰j

2
g � 2jHess.‰/jg ��g‰/;

� �e�minK‰jX j2g

�
�
c0

D
� 3C.�;D/k‰kW 2;1.U /

�
;

which yields (86) when taking � large enough. Similarly, (87) follows from taking � large enough in

Eg;';f � �e
�minK‰jrg'j

2
g

�
�
c0

D
� 3C.�;D/k‰kW 2;1.U /

�
: �

We directly deduce the following uniform Carleman estimate in the class ��;D.U ; g0/. We only state
it with the Dirichlet boundary condition here for conciseness (the case without boundary condition can be
written similarly).

Theorem A.13 (uniform Lipschitz Carleman estimate). Let U be an open subset of M such that U
is compact (in the topology of M � @M ) and define † D @M \U. Given a metric g0 2 T 2

W 1;1
loc

.M/,
D � � > 0, and a function ‰ 2 W 2;1.U / such that jrg0‰j

2
g0
> 0 on U, there exist � > 0, C1 > 0,

�0 > 0 such that for ' D e�‰ and for any g 2 ��;D.U ; g0/, for all � � �0 and all v 2 C1c .U / such that
v D 0 on † we have

C1.�
3
ke�'vk2

L2.U /
C �ke�'rgvk

2
L2.U /

/� ke�'�gvk
2
L2.U /

C �

Z
†

e2�'@�'j@�vj
2; (89)

C1.�
3
ke�'vk2

L2.U /
C �ke�'rg0vk

2
L2.U /

/� ke�'�gvk
2
L2.U /

C �

Z
†

e2�'@�'j@�vj
2: (90)

Note that in the second inequality (90), we implicitly wrote

ke�'rg0vk
2
L2.U /

D

Z
U

e2�' jrg0vj
2
g0
d Volg0

in the left-hand side, which no longer depends on the metric g. Hence, the sole dependence on the
metric g in (90) is through �g and @� .

Proof. We choose f D 2�2jrg‰j2g and according to Lemma A.12, the bounds (70)–(71) with constant C0
are satisfied for � large enough uniformly in the class g 2 ��;D.U ; g0/. According to Theorem A.5, this
implies (89) with C1 D 1

3
C0c.'/ for all � � �0.g/, with

�0.g/D
c.'/

C0

�
kf ��g'k

2
L1.U /C

1
2
krgf kL1.U /

�
;

with c.'/Dmaxf1; .minU jrg'j
2
g/
�1g. Now, (88) implies that

max
˚
1; �

�
min
U

je�‰rg0‰j
2
g0

��1	
� c.'/�max

˚
1;D

�
min
U

je�‰rg0‰j
2
g0

��1	
uniformly for g 2 ��;D.U ; g0/, and, similarly

�0.g/� C.�;D;‰; g0/
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uniformly for g 2 ��;D.U ; g0/. This concludes the proof of (89). The proof of (90) follows again
from (88) (applied to v) and the fact that d Volg0 � �

�d=2d Volg (recall that d D dimM ). �

Note that for the application that we have in Proposition A.14 below, it is sufficient to have some
stability results in the following sense: if an interpolation inequality or a Carleman inequality is true for
some metric g0, it is still true for any metric in a suitable neighborhood. This is of course a byproduct of
our results.

A5. Uniform interpolation estimate at the boundary. In this section, we consider a very particular case
of the above Carleman estimate to prove a local interpolation estimate in a neighborhood of a boundary
point for metrics g in the neighborhood of the constant flat metric. The manifold M considered is
RnC1
C
DRn�RC (that is, d D nC1) and the reference metric is g0D Id. The proof follows [Lebeau and

Robbiano 1995; Lebeau and Zuazua 1998; Le Rousseau and Lebeau 2012]. Note that the above sections
prove much more than what is actually needed for this argument.

Below, we set Br D B.0; r/� RnC1 and BCr D B.0; r/\RnC1
C

.

Proposition A.14. There exists �>0, C >0 and ˛02 .0; 1/ so that for any metric g2��;D.BRn.0; 2/; Id/
we have

kvk
H1.B

C

1 /
� C

�
k.�@2s ��g/vkL2.BC2 /

Ck@svjsD0kL2.B2\f0g�Rn/

�˛0
kvk

1�˛0

H1.B
C

2 /

for any v 2H 2.BC2 / such that vjsD0 D 0.

Proof. In the proof, we shall denote (with a slight abuse of notation) by x D .s; x/ 2 RC�Rn the overall
variable and recall that all balls are centered at zero. We choose a point xa D .�a; 0; : : : ; 0/ … RnC1

C
. We

define the weight function ‰.x/D�jx� xaj, which is smooth and satisfies ‰ < 0 and d‰ ¤ 0 in BC2 .
For a sufficiently small, there exist 0 < �1 < �2 such that we have

BC1 �W1 �W 1 �W2 �W 2 � B
C
2 ; with Wj D f‰ > ��j g\RnC1

C
; j D 1; 2: (91)

As a consequence of Theorem A.13, there exist � > 0, C1 > 0, �0 > 0 such that for ' D e�‰ and for
any gD Id˝g 2 ��;D.BC2 ; Id/, for all � � �0 and all u 2C1c .B

C
2 / such that uD 0 on fsD 0g, we have

C1.�
3
ke�'uk2

L2.B
C

2 /
C �ke�'ruk2

L2.B
C

2 /
/� ke�'�guk

2

L2.B
C

2 /
C �

Z
fsD0g

e2�'@�'j@�uj
2: (92)

Here, the ball, the gradient and the volume element are taken with respect to the Euclidean metric.
Moreover, the normal vector field @� is that associated to the metric gD Id˝g, and hence @� D�@s (and
does not depend on g). The sole dependence on the metric in (92) is thus in �g D @2s C�g.

Note that level sets of ' are those of ‰, i.e., pieces of spheres. Note also that we have ' � '.0/ on
BC2 and define

'.0/ > '1 WDmin
B
C

1

' > '01 WDmin
W 1

' D e���1 D max
W 2nW1

';

which only depend the geometric setting (not on the metric).
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We let �2C1c .R
nC1/ such that, withWj as in (91), �D1 onW1 and �D0 onBC2 nW2, and apply (92)

to u D �v 2 C1c .B
C
2 / with v 2 C1.BC2 / satisfying vjsD0 D 0. We have @�ujsD0 D ��jsD0@svjsD0

since vjsD0 D 0 and henceZ
fsD0g

e2�'@�'j@�uj
2
� Ce2�'.0/k�jsD0@svjsD0k

2
L2.W2\fsD0g/

:

Using that �D 1 on W1 � BC1 , we have

�3ke�'uk2
L2.B

C

2 /
C �ke�'ruk2

L2.B
C

2 /
� �3ke�'uk2

L2.B
C

1 /
C �ke�'ruk2

L2.B
C

1 /

� �e2�'1kvk2
H1.B

C

1 /
:

Finally, we have �g�v D ��gv C Œ�g ; ��v, where Œ�g ; �� (recall �g D @2s C �g) is a first-order
differential operator with L1 coefficients supported in W 2 nW1, and such that kŒ�g ; ��kH1!L2 � CD

on that set uniformly for g2��;D.BRn.0; 2/; Id/. Moreover, we have ' � '01 on W 2 nW1. Thus, we have

ke�'�guk
2

L2.B
C

2 /
� ke�'��gvk

2

L2.B
C

2 /
Cke�' Œ�g ; ��vk

2

L2.B
C

2 /

� e2�'.0/k�gvk
2

L2.B
C

2 /
CCDe2�'

0
1kvk2

H1.B
C

2 /
:

Combining the last three estimates with (92), we find that there are C; �0 >0 such that for all gD Id˝g2
��;D.B

C
2 ; Id/, for all � � �0 and all v 2 C1.BC2 / such that v D 0 on fs D 0g, we have

e2�'1kvk2
H1.B

C

1 /
� Ce2�'.0/.k@svjsD0k

2

L2.B
C

2 \fsD0g/
Ck�gvk

2

L2.B
C

2 /
/CCe2�'

0
1kvk2

H1.B
C

2 /
:

Recalling that '.0/ > '1 > '01 and after an optimization in the parameter � , see [Robbiano 1995], this
yields the result of the lemma. �

A6. A uniform Lebeau–Robbiano spectral inequality. In this section, we give a proof of Theorem 1.16.
For this, we follow the strategy of proof of [Boyer et al. 2010, Section 2] with our uniform Carleman
estimates (Theorem A.13). The original proof of [Lebeau and Robbiano 1995] also works (see the above
Section 4) but is less straightforward in the present setting. We recall that M is the ambient compact
manifold with boundary @M, and set M D Œ0; S0� �M, having piecewise C 1 and graph-Lipschitz
boundary @M D f0g�M[fS0g�M[ Œ0; S0��@M. We denote by .s; x/ the variable in M. The metric
is gD Id˝g. Note finally that @� D @�x on Œ0; S0��@M, where �x denotes here the outward unit normal
to M at @M, that @� D @s on fS0g �M, and that @� D�@s on f0g �M.

Lemma A.15. Let g0 2 T 2
W 1;1.M/

be a metric on M and write g0D Id˝g0. Then, there exists a function

 2 C 2.M IR/ and c > 0 such that

jrg0 jg0 � c in M; @�x < 0 on Œ0; S0�� @M;

@s � c on f0g � .M n!/; rg0 D 0 and @s � �c on fS0g �M:
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We refer to [Boyer et al. 2010, Appendix C] for the proof of this result in the case M � Rn, and
[Le Rousseau and Robbiano 2011, Section 5] for the adaptation to the case of a manifold. With this
weight function in hand, we obtain the following global uniform Carleman estimate.

Theorem A.16 (global uniform Lipschitz Carleman estimate). Given a metric g0 2 T 2
W 1;1.M/

, and ‰
as in Lemma A.15, for anyD � � > 0, there exist �> 0;C1 > 0; �0 > 0 such that for ' D e�‰ and for any
g 2 ��;D.M; g0/, for all � � �0 and all v 2H 2.Œ0; S0��M/ such that vD 0 on f0g�M[ Œ0; S0��@M,
we have, with M D Œ0; S0��M and g D Id˝g,

�3ke�'vk2
L2.M/

C �ke�'rgvk
2
L2.M/

C�e2�'.S0/
�Z

M
j@sv.S0; � /j

2
C �2

Z
M
jv.S0; � /j

2

�
C �

Z
Mn!

e2�'.0;� /j@sv.0; � /j
2

�C

�
ke�'.�@2s ��g/vk

2
L2.M/

C�

Z
!

e2�'.0;� /j@sv.0; � /j
2
C�e2�'.S0/

Z
M
jrgv.S0; � /j

2
g

�
: (93)

Proof. We use the Carleman estimates (73)–(74) together with Remark A.6 and Lemma A.12 for the
uniformity in the metric. More precisely, on the boundary f0g�M[ Œ0; S0��@M, the Dirichlet boundary
condition is prescribed and the only boundary term is C�

R
† e

2�'@�'j@�vj
2, according to (73). That

@�' � �c < 0 on f0g � .M n!/[ Œ0; S0�� @M implies that the associated integral is dominated on that
set, whereas the only observation term on that part of the boundary is ��

R
! e

2�'.0;� /@s'.0; � /j@sv.0; � /j
2.

Now, on the part fS0g �M of the boundary, we have the observation term

�

Z
†

e2�' jrT vj
2
g D �e

2�'.S0/

Z
M
jrgv.S0; � /j

2
g :

On the other side of the inequality, we have the two observed terms

�

8

m.'/3

M.'/2

Z
†

e2�' j@�vj
2
C �3

m.'/3

4

Z
†

jvj2 � C�e2�'.S0/
�Z

M
j@sv.S0; � /j

2
C �2

Z
M
jv.S0; � /j

2

�
:

Finally, we are left with the existence of C; �0>0 such that for all v 2H 2.Œ0; S0��M/, g2��;D.M; g0/,
and � � �0, we have (93). �

From Theorem A.16, we now deduce a proof of Theorem 1.16, following closely (and carefully)
[Boyer et al. 2010, Proof of Theorem 1.1].

Proof of Theorem 1.16. Given w 2Eg
��

take the function

v.s/D
sinh.s

p
��g/p

��g

…
g
C
wC s…

g
0w;

where �g is the Dirichlet Laplacian, …g
0 the orthogonal projector on ker.�g/ (in the case @M D ∅,

otherwise …g
0 D 0) and …g

C
D Id�…g

0, that is, v is the unique solution to

.�@2s ��g/v D 0; vj.0;S0/�@M D 0; .v; @sv/jsD0 D .0; w/:
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We may now apply (93), keeping only the penultimate term in the left-hand side:

e2�'.S0/�3
Z
M
jv.S0; � /j

2
� C

�
�

Z
!

e2�'.0;� /j@sv.0; � /j
2
C �e2�'.S0/

Z
M
jrgv.S0; � /j

2
g

�
:

Now, we have Z
!

e2�'.0;� /j@sv.0; � /j
2
� e2� supM '.0;� /

kwk2
L2.!/

;

together with (using an integration by parts, together with w 2Eg
��

),Z
M
jrgv.S0; � /j

2
g D .��gv.S0; � /; v.S0; � //L2.M;d Volg/ � �.v.S0; � /; v.S0; � //L2.M;d Volg/:

The last three inequalities imply for all � � �0

�2kv.S0; � /k
2
L2
� C.e2�.supM '.0;� /�'.S0//kwk2

L2.!/
C�kv.S0; � /k

2
L2
/;

and hence, when choosing � Dmaxf2
p
�; �0g, we obtain

kv.S0; � /k
2
L2
� Ce4

p
�.supM '.0;� /�'.S0//kwk2

L2.!/
:

Finally, using sinh.S0`/=`� S0 and the orthogonality of the eigenfunctions, we also haveZ
M
jv.S0; � /j

2
D

�
sinh2.S0

p
��g/

��g
…

g
C
w;…

g
C
w

�
L2.M;d Volg/

CS20k…
g
0wk

2
L2.M;d Volg/

� S20kwk
2
L2
:

The last two inequalities conclude the proof of the theorem. �

Appendix B: Local behavior of vanishing functions

In this appendix, we give an explicit link between the different definitions of the vanishing rate of a
function.

Lemma B.1. Let f 2 C1.BRn.0; 1// and assume that there are C;D > 0 such that we have uniformly
for 0 < r < 1 the estimate

kf kL2.BRn .0;r//
� CrD: (94)

Then, we have @˛f .0/D 0 for all j˛j<D� n
2

.
Conversely, assume f 2 C1.BRn.0; 1// satisfies @˛f .0/D 0 for all j˛j � k, k 2 N. Then we have

(94) with D D kC 1C n
2

.

Proof. Define k D inffj˛j W @˛f .0/¤ 0g 2 N[f1g and, in the case k <1, write the Taylor expansion
of f at zero as f D PkCRk with Pk homogeneous of degree k and jRkj � C jxjkC1. We obtain

kPkkL2.B.0;r// D r
n
2
Ck
kPkkL2.B.0;1// and kRkkL2.B.0;r// � Cr

n
2
CkC1:

Using (94) for r small implies n
2
C k �D and thus @˛f .0/D 0 for all j˛j<D� n

2
.

Conversely, if @˛f .0/D 0 for all j˛j � k, then we have jf .x/j � C jxjkC1 and thus

kf kL2.BRn .0;r//
� CkjxjkC1kL2.BRn .0;r//

� CrkC1C
n
2 : �
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[Nakić et al. 2019] I. Nakić, C. Rose, and M. Tautenhahn, “A quantitative Carleman estimate for second-order elliptic operators”,
Proc. Roy. Soc. Edinburgh Sect. A 149:4 (2019), 915–938. MR Zbl

[Phung 2018] K. D. Phung, “Carleman commutator approach in logarithmic convexity for parabolic equations”, Math. Control
Relat. Fields 8:3-4 (2018), 899–933. MR Zbl
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