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Abstract. We deal with viscous perturbations of scalar conservation laws on a bounded interval
with a general flux function f and a small dissipation coefficient ε. Acting on this system on both
endpoints of the interval, we prove global exact controllability to constant states with nonzero speed.
More precisely, we construct boundary controls so that the solution is driven to the targeted constant
state, and we moreover require these controls to be uniformly bounded as ε → 0+ in an appropriate
space. For general (nonconvex) flux functions this can be done for sufficiently large time, and for
convex fluxes f , we have a precise estimate on the minimal time needed to control.

Key words. controllability, scalar conservation laws, vanishing viscosity limit

AMS subject classifications. 93B05, 93C10, 93C20, 35Q93, 35L65, 35B25

DOI. 10.1137/100803043

1. Introduction.

1.1. Motivation and main results. We are concerned with the controllability
of the nonlinear parabolic equation

(1) ut + [f(u)]x − εuxx = 0 in (0, T )× (0, L),

where T is a positive time, L a positive length, and ε a positive viscosity coefficient. On
both endpoints of the interval, we act on the system through the boundary conditions

(2) u|x=0 = g0(t) in (0, T ), u|x=L = gL(t) in (0, T ).

The problem of exact controllability is the following: given an initial datum

(3) u|t=0 = u0 in (0, L),

a time T > 0, and a prescribed state uT , is it possible to find control functions g0 = gε0
and gL = gεL so that the associated solution u of the system (1), (2), (3) is steered to
uT in time T ? The aim of this paper is to prove such a controllability result uniformly
with respect to the viscosity coefficient ε in a sufficiently small range. That is, is it
possible to find such control functions g0 = gε0, gL = gεL whose norms in a suitable
Banach space remain bounded as ε → 0+? More precisely, we shall only consider
the uniform controllability of constant targets uT = M ∈ R. The relevance of this
assumption is discussed in Remark 1.5.

Uniform controllability problems for singular perturbations of partial differential
equations have already been considered in several works, beginning with [26, Chap-
ter 3]. In the context of a transport/heat equation (i.e., f(u) = V u for some constant
V ∈ R) in a vanishing viscosity limit, this study was initiated by Coron and Guerrero
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†Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie Paris 6, UMR 7598, Paris,

F-75005 France; CNRS, UMR 7598 LJLL, Paris, F-75005 France (leautaud@ann.jussieu.fr), and
Laboratoire POEMS, INRIA Paris-Rocquencourt/ENSTA, CNRS UMR 2706, Paris, France.

1661

D
ow

nl
oa

de
d 

04
/1

0/
19

 to
 1

29
.1

04
.3

.2
20

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1662 MATTHIEU LÉAUTAUD

in [8], where the authors make a conjecture on the minimal time needed to achieve uni-
form controllability. Then, the estimates on this minimal time are improved in [19]
with a complex analytic method. The result of [8] was also generalized in several
space dimensions and for nonconstant transport speed in [21]. Such uniform control
properties in singular limits are also addressed for vanishing dispersion in [17] and
for vanishing dispersion and viscosity in [18]. All these articles deal with singular
perturbations of linear transport equations.

Concerning nonlinear control problems in vanishing viscosity, the only result to
the best of our knowledge has been stated by Glass and Guerrero [16] for the Burgers

equation, i.e., in the case f(u) = u2

2 . Theorems 1.1, 1.2, and 1.3 generalize this
uniform controllability theorem for a large range of flux functions.

Our first result is concerned with convex flux functions f .
Theorem 1.1. There exists α0 ≥ 1 satisfying the following property. For every

flux function satisfying f ∈ W 2,∞
loc (R), f ′′ ≥ 0 a.e., and

(A+)

lim inf
A→+∞

A−γf ′′(A) > 0; lim sup
A→+∞

e−A
2γ+1−δ

f ′′(A) < +∞ for some γ > −1

2
, δ > 0,

(A−)

(
resp., lim inf

A→−∞
|A|−γf ′′(A) > 0;

lim sup
A→−∞

e−|A|2γ+1−δ

f ′′(A) < +∞ for some γ > −1

2
, δ > 0

)
,

there exists a constant C > 0 such that for allM satisfying f ′(M) > 0 (resp., f ′(M) <
0), there exists ε0 = ε0(M) > 0 such that for any u0 ∈ L∞(0, L), any time T >
α0

L
|f ′(M)| , and any ε ∈ (0, ε0), there exist two control functions gε0 and gεL satisfying

‖gε0‖L∞(0,T ) + ‖gεL‖L∞(0,T ) ≤ C
(‖u0‖L∞(0,L) + |M |) ,

such that the solution of (1), (2), and (3) associated to gε0 and gεL satisfies u|t=T =M
on (0, L).

This theorem is the direct generalization of [16, Theorem 1.1]. Note that we shall
see that one can take α0 = 6, or, as found numerically, α0 = 5.3. Even in the case
of a Burgers equation, this improves the minimal control time found in [16] (which is
α0 = 9 or, as found numerically, α0 = 6.3). Having a minimal controllability time is
natural here since the inviscid system (for ε = 0) has a finite propagation speed (see
also Remark 1.4 below).

In this theorem, the second part of assumptions (A+) and (A−) is due to a techni-
cal argument and does not seem to be necessary (see also Remarks 3.2 and 3.9 below).
Under more natural (and weaker) assumptions, we prove the following (weaker) result
for convex flux functions.

Theorem 1.2. There exists α0 ≥ 1 satisfying the following property. For every
flux function satisfying f ∈ W 2,∞

loc (R), f ′′ ≥ 0 a.e., and f ′(u) → +∞ as u → +∞
(resp., f ′(u) → −∞ as u→ −∞), there exists a constant C > 0 such that for all R0 >
0 and all M satisfying f ′(M) > 0 (resp., f ′(M) < 0), there exists ε0 = ε0(R0,M) > 0
such that for any u0 ∈ L∞(0, L) with ‖u0‖L∞(0,L) ≤ R0, any time T > α0

L
|f ′(M)| , and

any ε ∈ (0, ε0), there exist two control functions gε0 and gεL satisfying

‖gε0‖L∞(0,T ) + ‖gεL‖L∞(0,T ) ≤ C (R0 + |M |) ,
such that the solution of (1), (2), and (3) associated to gε0 and gεL satisfies u|t=T =M
on (0, L).
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UNIFORM CONTROLLABILITY OF CONSERVATION LAWS 1663

The only difference from the result of Theorem 1.1 is that here ε0 also depends on
the norm of the initial datum u0. The question of whether the result of Theorem 1.1
still holds only with the assumptions of Theorem 1.2 remains open. In particular,
Theorem 1.1 does not apply for flux functions satisfying f(u) ∼u→+∞ uρ with 1 <
ρ ≤ 3

2 , whereas Theorem 1.2 does.
We also prove a result for nonconvex flux functions, that is, for general nonlinear

transport equations. In this setting, however, we do not estimate the time needed to
control, and our result is less precise. Before stating it, let us define σ(A,B) as the
shock speed between two constant states A and B, given by the Rankine–Hugoniot
condition, i.e., the slope of the chord of f between A and B,

(4) σ(A,B) =
f(B)− f(A)

B −A
if A 	= B, and σ(A,A) = f ′(A).

On the interval (P,N) ⊂ R, the strict Oleinik admissibility conditions for the flux
function f read

(SOC+) σ(P,N) < σ(A,N) for all A ∈ (P,N),

meaning that, on the interval (P,N), the graph of f is below the chord between P
and N , or

(SOC−) σ(P,N) > σ(A,N) for all A ∈ (P,N),

meaning that, on the interval (P,N), the graph of f is above the chord between P and
N . Note that (SOC+) (resp., (SOC−)) is equivalent to having σ(A,P ) < σ(P,N)
(resp., σ(A,P ) > σ(P,N)) for all A ∈ (P,N). Conditions (SOC+) and (SOC−) en-
sure the existence of an admissible shock wave between P andN (see [12, section 8.6]).

We can now state the result concerning nonconvex flux functions.
Theorem 1.3. Suppose that f ∈ C2(R) and u0 ∈ L∞(0, L) satisfy the following

two conditions:
(i) (f ′′)−1({0})∩K has a finite number of connected components for any compact

interval K ⊂ R.
(ii) There exists an open bounded interval I ⊂ R such that [ess inf u0, ess sup u0] ⊂

I and f satisfies (SOC+) or (SOC−) on I.
Then, for all M satisfying f ′(M) 	= 0, there exist C0 > 0, T0 > 0, and ε0 > 0
(depending only on I and M) such that for any time T > T0 and any ε ∈ (0, ε0),
there exist two control functions gε0 and gεL satisfying

‖gε0‖L∞(0,T ) + ‖gεL‖L∞(0,T ) ≤ C0,

such that the solution of (1), (2), and (3) associated to gε0 and gεL satisfies u|t=T =M
on (0, L).

Note that condition (i) actually means that f ′′ vanishes on a finite union of points
and (closed) intervals on each bounded subset of R. This is generally satisfied except
for some pathological examples (for instance, f(u) = u5 cos( 1u )+ u if u 	= 0, f(0) = 0,
and the target is 0). More precisely, this condition is generically satisfied in C3(R)
since, for any compact K ⊂ R, the set

A = {f ∈ C3(K;R), (f ′′(x), f ′′′(x)) 	= (0, 0) for all x ∈ K}
is open and dense in C3(K;R). However, note that this genericity property does not
hold in the space C2(R) (see [3]).
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1664 MATTHIEU LÉAUTAUD

Condition (ii) concerning the initial datum means that there exists an admissible
shock wave allowing us to get rid of the initial condition; condition (ii) is more re-
strictive. For instance, it is not satisfied if f(u) = cos(u) and (ess inf u0, ess sup u0)
contains an interval of the form [kπ, (k + 1)π] for some k ∈ Z. Yet, it is satisfied in a
large range of situations, including, for any u0 ∈ L∞(0, L), the case where f satisfies
limu→+∞ f ′(u) = ±∞.

Since we are interested in the properties of uniform controllability as ε → 0+, it
seems natural to refer to the results that are known both for the viscous problem (for
ε > 0, fixed) and for the inviscid problem (ε = 0).

First, the controllability of the viscous equation (1) for fixed ε > 0 has mainly
been considered for the Burgers equation. Two different types of control results have
been proved. The local exact controllability to trajectories for this equation has
been established in [15]. In this work, the authors also prove that the local exact
controllability does not hold as long as one controls in a subinterval of (0, L), which is
equivalent to controlling at one endpoint. Concerning the global exact controllability
for the viscous Burgers equation, it is proved in [20] that it does not hold even if the
control is acting on both sides of the domain. However, in [11] the author proves a
global controllability result from 0 to constant states. More precisely, he states that
for u0 = 0 and for any T > 0, one can drive the solution of (1), (2), (3) to any constant
M provided that |M | is sufficiently large with respect to T . This result is improved (as
a corollary of the uniform controllability result) in [16], allowing any u0 ∈ L∞(0, L)
and giving a precise condition on the targetM and the minimal control time. Finally,
adding a third control globally distributed on (0, L), and independent on x, the author
of [5] establishes the global controllability of the viscous Burgers equation for any
T > 0. Note that this last result is proved by using both controllability properties of
the nonviscous equation (see below) and a local result.

Second, concerning the inviscid problem

(5) ut + [f(u)]x = 0,

and in the context of entropy solutions, controllability questions have been addressed
by Ancona and Marson for general strictly convex flux functions f in [1]. In this work
the controllability problem is posed in the half real line with null initial condition, and
the set of attainable states is completely described. For the problem on a bounded
interval and with a general initial datum, the controllability of the nonviscous Burgers

equation (f(u) = u2

2 ) was studied in [22], where some conditions are given on the final
state in order to ensure this property. Finally, in the context of classical solutions,
and adding a third control globally distributed on (0, L), independent on x, Chapouly
[4, 5] proved global controllability in arbitrary small time for the nonviscous Burgers
equation. This result was recently generalized in [28] to convex flux functions and
entropy solutions.

We recall that for conservation laws such as (5), classical solutions starting out
from smooth initial data generally develop discontinuities in finite time. As a conse-
quence, only weak solutions may exist for large times. In the context of weak solutions,
however, uniqueness is lost. To overcome the obstacle of nonuniqueness, restrictions
need to be imposed to select the physically relevant weak solution. One criterion for
such a selection is to require that the admissible solution satisfy an entropy condition,
which reads as follows (see [12, Chapter 6], for instance): for any smooth convex
function η : R → R and associated entropy flux q(u) =

∫ u
η′(ω)f ′(ω)dω, the following
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holds in the sense of measures:

η(u)t + q(u)x ≤ 0.

Another selection principle is to require that the admissible solution be the limit of a
family of solutions of equations containing a diffusive term, such as the one considered
here. One can prove (see [25] or [12, Chapter 6]) that both definitions coincide, so
that entropy solutions are those that can be obtained by vanishing viscosity. One
can summarize the situation by saying that the viscosity has disappeared from the
equation and is only effective for the selection of admissible discontinuities. The
Cauchy problem together with the convergence of vanishing viscosity approximations
to the entropy solutions of a general scalar conservation law were studied in the
seminal work of Kružkov [25].

It is therefore very natural, when considering control problems for conservation
laws, to study the cost of the viscosity, that is, to determine if known controllability
properties for the hyperbolic equation are still valid for the model with small viscosity,
and how the size of the control evolves as the viscosity approaches 0.

Another important motivation for studying the singular limit in control problems
is the search for controllability properties for the perturbated system itself. This is well
illustrated by the papers [10], [7], and [6], where the authors investigate the Navier–
Stokes system with Navier slip boundary conditions. They use a global controllability
result for the inviscid equation (in this case the Euler equation) to deduce global
approximate controllability of the the Navier–Stokes system. Note that in [10] and [6],
global exact controllability is then deduced by a local controllability result obtained
by a Carleman inequality. The strategy we use to prove Theorem 1.1 is very close to
that used in these works. We here also provide a controllability result for (1) for a
fixed viscosity (see Proposition 1.7 below).

1.2. Some remarks and further results. Here, we make some remarks con-
cerning the set of uniformly attainable states and state two propositions concerning
the inviscid system (ε = 0) and the viscous system with ε = 1.

Remark 1.4. In general, entropy solutions of (5) cannot reach a state uT (starting,
for instance, from u0 = 0) in a time less than L

inf |f ′(uT )| . In particular, the states uT
satisfying f ′(uT ) = 0 cannot be reached unless one has u0 = uT . This can be proved
by considering generalized backward characteristics (see [1]). Hence the minimal
control time α0

L
|f ′(M)| in Theorem 1.1 is not surprising. Note that even in the cases

of the linear transport equation at speedM ∈ R or the Burgers equation, the uniform
controllability results [8], [19], [18], [21], and [16] consider a time of control of the form
C L

|M| , C > 1.

Remark 1.5. Here, we are looking for the set ET of states that are reachable uni-
formly in the asymptotics ε→ 0+ at time t = T . This implies, in particular, that ET is
contained in the reachable set E0

T for the nonviscous equation (5) and in the reachable
set EεT for the viscous equation (1) for any ε ∈ (0, ε0): ET ⊂ ⋂0<ε<ε0

EεT ∩E0
T . In gen-

eral, this intersection seems difficult to describe since the solutions of (1) are very reg-
ular, whereas the solutions of (5) can have discontinuities. We thus restrict ourselves
to equilibrium points of the system, which are the most interesting states to control.
Let uT (x) be a uniformly controllable stationary state as ε→ 0+. It satisfies both

f(uT )x = 0 and f(uT )x − εuT,xx = 0 on (0, L),

so that we have, for some constants c and d,

uT (x) = cx+ d and f ′(cx+ d)c = 0 on (0, L).
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As a consequence, either c = 0 and uT is constant, or c 	= 0, uT (x) = cx + d, and
f ′(uT ) = 0 on (0, L). Referring to Remark 1.4, we see that states satisfying f ′(uT ) = 0
are not attainable for the inviscid system (5), and necessarily uT = d is a constant.
Finally, the set of uniformly attainable stationary states for (1) is exactly the set of
constant states with nonzero speed.

In the vanishing viscosity limit ε → 0+, (the proof of) Theorem 1.3 gives a con-
trollability result to constant states for entropy solutions of (5), which is new as well.

Corollary 1.6. Suppose that f ∈ C2(R) and u0 ∈ L∞(0, L) satisfy conditions
(i) and (ii) of Theorem 1.3. Then, for all M satisfying f ′(M) 	= 0, there exist T0 > 0
and an entropy solution u ∈ C0(R+;L

1
loc(R)) of

ut + [f(u)]x = 0 in R+ × R,

such that

u|t=0 = u0 and u|t=T =M on (0, L)

for any time T > T0.
Even if this result can be viewed as a consequence of Theorem 1.3, it can also be

proved directly constructing entropy solutions. Such a proof follows the construction
of section 2.4 using shock waves in place of traveling waves and rarefaction waves in
place of viscous ones. This type of direct proof of Corollary 1.6 would already contain
all the ideas and the difficulties of Theorem 1.3 since the vanishing viscosity problem
is addressed separately in section 3.

Note that this proposition can be seen as a boundary control result for conser-
vation laws on the interval (0, L). However, in this case, one has to take care of the
sense we give to boundary conditions. Indeed, they must not be understood in the
sense of Dirichlet, which is not the adapted notion for conservation laws, but rather
in the sense of [2] or [1].

Note also that even in the case of a constant viscosity, the analogue of Theo-
rem 1.3 provides a new global controllability result to constant states in large time
for semilinear heat equations.

Proposition 1.7. Suppose that f ∈ C2(R) and u0 ∈ L∞(0, L) satisfy conditions
(i) and (ii) of Theorem 1.3. Then, for all M satisfying f ′(M) 	= 0, there exists T0 > 0
such that for any time T > T0, there exist two control functions g0, gL ∈ L∞(0, T )
such that the solution of⎧⎨

⎩
ut − uxx + [f(u)]x = 0 in (0, T )× (0, L),
u|x=0 = g0(t) and u|x=L = gL(t) in (0, T ),
u|t=0 = u0 in (0, L)

satisfies u|t=T =M in (0, L).
To prove this proposition, it suffices to follow the proof of Theorem 1.3 line by

line and replace the argument “ε small” by “T large.” It works since all the constants
we obtain in the approximate controllability arguments are of the form e−K

T
ε (see

also Remark 3.5 below).

1.3. Structure of the paper and idea of the proofs. The main idea for
proving Theorems 1.1, 1.2, and 1.3 is to combine global approximate controllability
results relying on the hyperbolic nature of the problem and local exact controllability
relying on the parabolic perturbation term.

The proofs of Theorems 1.1 and 1.2 follow the strategy of the article [16]. One of
the main ingredients is the use of the return method of Coron, which consists in finding
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a particular trajectory of the system which moves far away from the initial state to
get back to the final state afterward (see [9, Chapter 6] for a general presentation).
This strategy to prove global controllability results is, for instance, very close to that
used in [10], [7], and [6] for the Navier–Stokes equations and in [5] for the Burgers
equation. In the situation of Theorems 1.1 and 1.2, we steer the system to a large
constant state N (such that f ′(N) has the same sign as f ′(M)), and then we get back
to the constant target M . The first step (reaching N) can be done as fast as needed,
taking N sufficiently large.

The main difference between our proofs of Theorems 1.1 and 1.2 and that in [16] is
concerned with the global approximate controllability results (see sections 3.1 and 3.2).
The proofs given in [16] for the Burgers equation rely on the Hopf formula, which gives
an explicit expression of the solution of the viscous Burgers equation on the real line.
To the best of our knowledge, this formula does not exist for general flux functions,
and so we have to develop different arguments. We hence have to study the conver-
gence rate of some particular solutions of viscous conservation laws (namely, viscous
shock waves and viscous rarefaction waves) in the vanishing viscosity limit ε → 0+.
This is done in section 3.

Then, the proof of Theorem 1.3 relies on an iterative version of the proof of
Theorem 1.2. In a first step, we use assumption (ii) to get rid of the initial condition
thanks to a viscous shock wave (see a definition in the next paragraph). After that,
under assumption (i), there is between the initial datum and the target a finite number
of zones on which f ′′ ≥ 0 or f ′′ ≤ 0. In each of these intervals we can develop the same
type of arguments as in the proof of Theorem 1.2. We also have to study how to pass
from one zone to another. Note that in this proof, the difficulty does not come from
the uniformity with respect to ε. The problem here is handling the nonmonotonicity
of the speeds (i.e., the nonconvex flux function) and is hence of hyperbolic nature.
The inviscid framework (for ε = 0) already contains the difficulties encountered here,
and the proof still holds in this case (see Corollary 1.6 above).

The outline of the paper is the following. In section 2, we prove the three main
theorems (Theorems 1.1, 1.2, and 1.3) assuming three key propositions (stated in in
section 2.1). The first two intermediate propositions are concerned with two different
global approximate controllability results, corresponding to the two control phases
used in Theorems 1.1 and 1.2—global approximate controllability using a traveling
wave and global approximate controllability using a rarefaction wave. The third
intermediate proposition deals with the local exact controllability argument, which
will be used systematically after both approximate controllability results. Note that
the local exact controllability result is proved using a fixed point argument for which
we need to have a small parameter (ε in the three theorems) or a large parameter (T
in Proposition 1.7 or N in the first step of the proof of Theorem 1.1). In section 2.2,
we combine these arguments and give the global strategy allowing us to conclude
the proofs of Theorems 1.1 and 1.2 in section 2.3 and of Theorem 1.3 in section 2.4.
Finally, in section 3, we prove the three key propositions.

In the appendix, we collect some technical or classical results used throughout
the paper.

To conclude this section, let us introduce the traveling wave (or viscous shock
wave) solutions of (1) and recall some of their basic properties (see [12, section 8.6]).
In the following, we shall make intensive use of these solutions. Searching a solution
ǔ of (1) on whole R, under the form

ǔ(t, x) = U

(
x− st

ε

)
, (t, x) ∈ R+ × R,
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that approximates as ε→ 0+ a shock wave between N and P leads us to consider the
ordinary differential equation

U̇ = f(U)− f(N)− s(U −N),(6)

s = σ(P,N),(7)

lim
ξ→+∞

U(ξ) = P, and lim
ξ→−∞

U(ξ) = N,(8)

once having replaced ǔ by U in (1) and integrated. Here U̇ denotes the derivative
with respect to ξ, U = U(ξ), ξ ∈ R is the wave profile, and s is the speed of the
wave. This speed is exactly the speed of the associated shock wave and is prescribed
by the Rankine–Hugoniot condition (7). Under the assumptions (SOC+) and P < N
(resp., (SOC−) and P > N), system (6)–(8) admits a solution (see [12, section 8.6])
that moreover has the following properties:

• U is decreasing (resp., increasing) from N to P , since the Rankine–Hugoniot
condition (7) together with the fact that P < U(ξ) < N (resp., N < U(ξ) <
P ) for all ξ ∈ R implies that the vector field in the right-hand side of (6) is
always negative (resp., positive);

• limξ→±∞ U̇(ξ) = 0 as a consequence of (6)–(8);
• for any ξ0 ∈ R, Uξ0 = U(· − ξ0) is still a solution of (6)–(8) since (6) is
autonomous;

• U ∈W 3,∞(R) for f ∈ W 2,∞
loc (R) by a bootstrap argument in (6).

In the following, we shall say that a solution U of (6)–(8) is a traveling wave “from P
to N” if the vector field in the right-hand side of (6) is oriented from P to N . More
precisely, if (SOC+) is satisfied between P and N , we shall say that U is a traveling
wave “from P to N” if P < N and s > 0 or if P > N and s < 0. Similarly, if (SOC−)
is satisfied between P and N , we shall say that U is a traveling wave “from P to N”
if P < N and s < 0 or if P > N and s > 0.

Remark 1.8. In what follows, during proofs, C will denote a generic positive
constant, whose value may change from line to line. Writing C = C(p, β, . . . ) means
that this constant depends on the parameters p, β, . . . .

2. Proofs of the three theorems.

2.1. Three intermediate propositions. We first formulate the three interme-
diate key propositions, proved in section 3.

First, we give an approximate controllability result to a large state N , using a
traveling wave. Given A,B ∈ R, let us recall that σ(A,B) is defined in (4) and denotes
the slope of the chord of f between A and B. It represents the speed of the shock wave
between A and B, if it is admissible. Since f ∈W 2,∞

loc (R), we have σ ∈W 1,∞
loc (R2). On

the interval (P,N ] ⊂ R, we shall use the following particular version of the Oleinik
condition for the flux function f , which is a sufficient admissibility condition for a
shock wave between P and N :

(POC) σ(P,N) < σ(A,N) for all A ∈ (P,N ].

This is the strict Oleinik condition (SOC+) with the additional assumption σ(P,N) <
f ′(N). Note that (POC) implies in particular the existence of a traveling wave (with
speed σ(P,N)) between P and N (which is equivalent to the usual nonstrict Oleinik
condition; see [12, section 8.6]). Under the additional assumption f(N) > f(P ), the
speed of this traveling wave is positive. According to the convention described at the
end of section 1.3, it is a traveling wave from P to N .
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Proposition 2.1. For all ε > 0 and all constant states P and N such that
• P < ess inf u0 ≤ ess sup u0 < N ,
• (POC) holds on (P,N ], and
• f(N) > f(P ),

there exist control functions g0 and gL with

(9) ‖g0‖L∞(0,+∞) ≤ max(|N |, |P |) and ‖gL‖L∞(0,+∞) ≤ max(|N |, |P |),
such that the solution u of (1), (2), (3) satisfies, for any κ > 0, ν ∈ (0, 1) and
t∗ > L+κ

(1−ν)s ,

(10) ‖u(t∗, ·)−N‖H1(0,L) ≤ D∗ e−
ν
ε s(σm−s)t∗ ,

where s = σ(P,N), σm = min{σ(A,N), A ∈ [ess inf u0, N ]}, and D∗ is a constant
D∗ = D∗(f, ε, t∗, N, P, κ) > 0. Moreover, for all ε0 > 0, there exists C = C(f,N, P, κ)
such that

D∗ ≤ C

ε
5
2

(1 + t∗6)

for all ε ∈ (0, ε0). The explicit value of the constant D∗ is given in (31).
This proposition is proved in section 3.1.
Remark 2.2. Note that s > 0 and σm > s under assumptions (POC) and

f(N) > f(P ) so that u converges exponentially to N on the interval considered as
ε → 0+ or t∗ → +∞. In the case where f is convex, we have σm = σ(ess inf u0, N)
since σ(·, N) is nondecreasing.

For a general flux function f , if we replace (POC) by (SOC+) in the assumptions
of Proposition 2.1, then σm = inf{σ(A,N), A ∈ [ess inf u0, N)}, and σm = s can
occur if s = f ′(N). In this case, our proof fails at the very beginning (see the proof of
Lemma 3.1 below): it is known that the convergence of the traveling wave to the state
N is no longer exponential but polynomial (see [27, Lemma 1] or [24, Proposition 2.1]).
The obstruction to exponential convergence is hence natural in this situation.

This justifies the introduction of the particular version of the Oleinik condi-
tion (POC).

Second, we give an approximate controllability result from a large state N to the
state M < N , thanks to a rarefaction wave.

Proposition 2.3. Suppose that f ′′ ≥ 0 on the interval (M,N) and f ′(M) >
0. Then, for all ε0 > 0, κ > 0, and t∗ > L+κ

f ′(M) , there exists a constant δ(t∗) =

δ(f, t∗, κ, ε0,M,N) > 0 such that for all ε ∈ (0, ε0), there exist control functions g0
and gL with

(11) ‖g0‖L∞(0,t∗) ≤ max(|M |, |N |) and ‖gL‖L∞(0,t∗) ≤ max(|M |, |N |),
such that the solution u of (1), (2) with initial condition u|t=0 = N satisfies

(12) ‖u(t∗, ·)−M‖H1(0,L) ≤ δ(t∗)
ε

3
2

exp

(
− 1

4εt∗
(f ′(M)t∗ − L− κ)2

)
.

This proposition is proved in section 3.2.
Finally, we give a local controllability result. We suppose that the initial condition

u0 is H1-exponentially close (in terms of ε) to the constant target, say, N , and we
want to reach it exactly. This will be done after both the “shock phase” and the
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“rarefaction phase,” i.e., for an initial datum that satisfies the estimate (10) or (12).
More precisely, we prove the following proposition, where we assume that f ′(N) > 0
for simplicity (the case f ′(N) < 0 follows the same procedure).

Proposition 2.4. There exists α1 > 0 satisfying the following property. For
every f ∈ W 2,∞

loc (R), N ∈ R, and u0 ∈ H1(0, L) such that f ′(N) > 0 and

‖u0 −N‖H1(0,L) ≤ e−
K0
ε

for some K0 > 0, there exist ε0 > 0 such that for all T ≥ α1
L

f ′(N) and 0 < ε < ε0,

there exist two control functions g0 and gL, with

‖g0‖L∞(0,T ) ≤ 2|N | and ‖gL‖L∞(0,T ) ≤ 2|N |,
such that the solution u of (1), (2), and (3) satisfies

u|t=T = N in (0, L).

This proposition is proved in section 3.3. A variation of this result is given in
Proposition 3.8 below, where the local exact controllability is achieved by taking the
state N large instead of ε small. The statement of this proposition, used in the
proof of Theorem 1.1, is very close to that of Proposition 2.4, and we postpone it to
section 3.3.

2.2. Combining approximate global and exact local controllability re-
sults. With the use of Propositions 2.1, 2.3, and 2.4 (resp., 3.8), we are now able to
prove Theorems 1.2 and 1.3 (resp., 1.1). Before that, we combine the global approx-
imate controllability results and the local one to provide two different global exact
controllability results using a traveling wave (see Proposition 2.5 below) or a rarefac-
tion wave (see Proposition 2.6 below). After that, we can conclude the proofs of the
theorems.

Proposition 2.5. Let α1 be the constant given by Proposition 2.4. Suppose that
there exist constant states P and N , such that one of these conditions is satisfied:

(a) P < ess inf u0 ≤ ess sup u0 < N , f(N) > f(P ), and (SOC+) holds on
(P,N);

(b) N < ess inf u0 ≤ ess sup u0 < P , f(N) > f(P ), and (SOC+) holds on
(N,P );

(c) P < ess inf u0 ≤ ess sup u0 < N , f(N) < f(P ), and (SOC−) holds on
(P,N);

(d) N < ess inf u0 ≤ ess sup u0 < P , f(N) < f(P ), and (SOC−) holds on
(N,P ).

Then, setting s = σ(P,N), there exist C > 0 depending only on f and ε0 > 0 such
that for all T > α1

L
|f ′(N)| +

L
|s| and 0 < ε < ε0, there exist two control functions g0

and gL, with

‖g0‖L∞(0,T ) ≤ C(|N |+ |P |) and ‖gL‖L∞(0,T ) ≤ C(|N |+ |P |),
such that the solution u of (1), (2), and (3) satisfies

u|t=T = N in (0, L).

Proof. Here, we prove the proposition only in case (a). The proofs of cases (b)–(d)
follow that of (a) for a modified Proposition 2.1, since the conditions that we write
are the conditions of existence of a traveling wave from P to N .
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Since P andN satisfy the strict condition (SOC+) and f(N) > f(P ), one can find
P ′ close to P , and N ′ close to N , such that the stronger condition (POC) is satisfied
on (P ′, N ′), together with P ′ < ess inf u0 ≤ ess sup u0 < N ′ and f(N ′) > f(P ′).
As a consequence, Proposition 2.1 applies, and hence one can find control functions
that drive u0 to a state u1 which is H1-exponentially close to N in any time T1 >

L
|s| .

After that, the assumptions of Proposition 2.4 are satisfied, and thus u1 can be steered
exactly to N in any time T2 ≥ α1

L
|f ′(N)| . Finally, the result of Proposition 2.5 holds

for any time T ≥ T1 + T2.
Proposition 2.6. Let α1 be the constant given by Proposition 2.4. Suppose that

one of these conditions is satisfied:
(a) M < N , f ′′ ≥ 0 on the interval (M,N) and f ′(M) > 0;
(b) N < M , f ′′ ≥ 0 on the interval (N,M) and f ′(M) < 0;
(c) M < N , f ′′ ≤ 0 on the interval (M,N) and f ′(M) < 0;
(d) N < M , f ′′ ≤ 0 on the interval (N,M) and f ′(M) > 0.

Then, there exist C > 0 only depending on f and ε0 > 0 such that for all T >
(α1 + 1) L

|f ′(M)| and 0 < ε < ε0, there exist two control functions g0 and gL, with

(13) ‖g0‖L∞(0,T ) ≤ C(|M |+ |N |) and ‖gL‖L∞(0,T ) ≤ C(|M |+ |N |),

such that the solution u of (1), (2) with initial condition u|t=0 = N satisfies

u|t=T =M in (0, L).

Proof. Here, we prove the proposition only in case (a). The proofs of cases (b)–(d)
follow that of (a) for a modified Proposition 2.3, since the conditions we write are
the conditions of existence of a rarefaction wave steering N to M , having a speed of
nonvanishing fixed sign.

In case (a), the assumptions of Proposition 2.3 are satisfied, and hence one can
find control functions that drive u0 to a state u1 which is H1-exponentially close toM
in any time T1 >

L
|f ′(M)| . After that, the assumptions of Proposition 2.4 are satisfied,

and thus u1 can be steered exactly to N in a time T2 ≥ α1
L

|f ′(M)| . Finally, the result

of Proposition 2.5 holds for any time T ≥ T1 + T2.

2.3. Proof of Theorems 1.1 and 1.2: The convex case. In this section, we
suppose f ′′ ≥ 0. Let us first prove Theorem 1.2, using Propositions 2.5 and 2.6.

Proof of Theorem 1.2. We first suppose that f ′(M) > 0 and choose some
P < ess inf u0. Since limu→+∞ f ′(u) = +∞, and setting s = σ(N,P ), we have
limN→+∞ s = +∞. As a consequence, for any time T1 > 0 there exists N > ess sup u0
sufficiently large so that f(N) > f(P ) and 0 < α1

L
f ′(N) + L

s < T1. As a conse-

quence of Proposition 2.5, one can reach N exactly, uniformly with ε in time T1.
Then Proposition 2.6 holds between N and M , and for any T2 > α0

L
f ′(M) (with

α0 = α1 + 1), there exist two control functions bounded uniformly with respect to
ε such that u|t=T1+T2 = M . Finally, the result of Theorem 1.1 holds for any time
T ≥ T1 + T2.

In the case f ′(M) < 0, exactly the same proof still holds using limu→−∞ f ′(u) =
−∞, together with Proposition 2.5 (b) and Proposition 2.6 (b).

In Theorem 1.1, however, we do not want ε0 to depend on the initial datum u0.
For this, we use the following proposition instead of Proposition 2.5.

Proposition 2.7. Suppose that condition (A+) holds. Then, for all ε0 > 0 and
T > 0, there exists a state N0 > 0, such that for all ε ∈ (0, ε0) and N > N0, there
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I2 J2 J3 I4

M0

I3 J4 I5I1 J1

T+

R−

R+

T −

T+

R−

f(u)

u

T+

R−

M

R−

I6 J6J5

Fig. 1. Global control strategy for nonconvex f . R+: Convex rarefaction wave. R−: Concave
rarefaction wave. T+: Convex traveling wave. T−: Concave traveling wave.

exist control functions g0 and gL with

‖g0‖L∞(0,T ) ≤ ‖u0‖L∞(0,L) + 2|N | and ‖gL‖L∞(0,T ) ≤ ‖u0‖L∞(0,L) + 2|N |,
such that the solution u of (1), (2), and (3) satisfies

u|t=T = N in (0, L).

The proof of this proposition combines the approximate controllability result to
the large state N of Proposition 2.1 and the local exact controllability result of Propo-
sition 3.8. Both results hold for any ε > 0, for N sufficiently large, and for control
times T > L

s and T ≥ α1
L

f ′(N) , both vanishing as N → +∞.

The proof of Theorem 1.1 then exactly follows that of Theorem 1.2, using both
Proposition 2.7 to reach the large constant N and Proposition 2.6 to come back to
the state M with a rarefaction wave.

2.4. Proof of Theorem 1.3: The nonconvex case. For the sake of brevity
in the following proof, we do not mention that every control step is done uniformly
with respect to ε, as a consequence of Propositions 2.5 and 2.6.

Proof of Theorem 1.3. The first step is to get rid of the initial condition u0,
and that is the only role of assumption (ii). This assumption, together with Proposi-
tion 2.5, gives the controllability from u0 to some constant stateM0 with f ′(M0) 	= 0.
The entire proof is now reduced to a controllability problem between two constant
states (M0 and M) and is illustrated in Figure 1.

Let us suppose that M0 < M (the case M0 > M follows from the same argu-
ments). From assumption (i), (f ′′)−1({0})∩ [M0,M ] can be written as

⋃m
j=1 Ij , where

the union is disjoint and ordered. Note that each Ij is a segment (possibly reduced to
a point) since f ′′ is supposed to be continuous here. Let us denote (Jk)1≤k≤p as the
connected components of (M0,M) \ ⋃mj=1 Ij , so that (M0,M) \⋃mj=1 Ij =

⋃p
k=1 Jk,

where this last union is disjoint and ordered. As a consequence, Jk is an open interval
on which either f ′′ > 0 or f ′′ < 0.

1. Driving A to B with A,B ∈ Jk. We first prove that, for any A ∈ Jk and
B ∈ Jk satisfying f ′(A) 	= 0 and f ′(B) 	= 0, one can steer A to B in a finite time. We
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suppose that f ′′ > 0 on Jk (the case f ′′ < 0 follows from the same arguments) and
denote by Lk (resp., Rk) the left (resp., right) endpoint of Jk.

• If f ′(Lk) > 0, then, as a consequence of Lemma 2.8 below, and using the fact
that f is strictly convex on (Lk, Rk), there exists L

′
k < Lk such that f satisfies (SOC+)

on (L′
k, Rk). Thus, there exists a traveling wave from L′

k to Rk, and, according to
Proposition 2.5 (a), A can be driven to Rk in finite time (see the situation in J1 in
Figure 1). Then, we are in the situation of Proposition 2.6 (a), and a rarefaction wave
drives Rk to B in finite time. Note that if f ′(Lk) = 0, we have Lk < A, and the same
strategy holds.

• If f ′(Rk) ≤ 0, f has no local minimum on Jk, and this case follows the same
reasoning.

• If f ′(Lk) < 0 and f ′(Rk) > 0, there exists Ck ∈ Jk satisfying f ′(Ck) = 0. The
situation f ′(A)f ′(B) > 0 has already been treated, so we have only to consider the
case f ′(A) < 0 and f ′(B) > 0 (the cases f ′(A) > 0 and f ′(B) < 0 follow exactly
the same arguments). According to Proposition 2.6 (b), A can be brought to A′

as close to Ck as needed, by means of a rarefaction wave (see the situation in J3
in Figure 1). It suffices to take A′ so that f(A′) < f(B), and as a consequence of
Proposition 2.5 (a), we can steer A′ to B thanks to a traveling wave (f is convex on
Jk and hence satisfies (SOC+) on this interval).

2. Driving A to B with A,B ∈ Ij . Next, we prove that, if f
′ 	= 0 on Ij for some j,

then for any A,B ∈ Ij , one can steer A to B in finite time. Recall that f ′′ = 0 on Ij .
If f ′ > 0 on Ij and B < A, we are in the context of Proposition 2.6 (a), and a “convex
rarefaction wave” drives A to B (see the situation in I3 in Figure 1). If f ′ > 0 on
Ij and A < B, Proposition 2.6 (d) applies, and a “concave rarefaction wave” drives
A to B (see the situation in I1 in Figure 1). We can do the same if f ′ < 0 on Ij
using Proposition 2.6 (b) and (c). Note that in this case, (1) is only a linear transport
equation with constant speed, which we control on both endpoints of the interval, and
the result is also a consequence of [8].

3. Driving A to B with A ∈ Jk and B ∈ Jk+1 when f ′ vanishes between Jk
and Jk+1. The last case to consider is the case where Jk = (Lk, Lj), Ij = [Lj , Rj ],
Jk+1 = (Rj , Rk+1), f

′ = 0 on Ij , A ∈ Jk, B ∈ Jk+1, and we want to steer A to
B. Suppose that f ′(A) > 0 (the case f ′(A) < 0 follows the same reasoning). Then,
according to Proposition 2.6 (d), a “concave rarefaction wave” can bring A to some
A′ as close as we want from Lj (see the situation in J4 in Figure 1).

• If f ′(B) < 0, we can choose A′ < Lj such that f(A′) > f(B), so that Proposi-
tion 2.5 (c) holds, and we can steer A′ to B by means of a concave traveling wave.

• If f ′(B) > 0, the continuity of f ′ yields that we can choose A′ < Lj such
that 0 < f ′(A′) < σ(A′, B) so that (SOC+) holds on (A′, B), and, according to
Proposition 2.5 (a), we can steer A′ to B by means of a “convex traveling wave” (see
the situation in I5 in Figure 1).

Therefore, using iteratively the three arguments above, one can pass from each
zone Ij to the neighboring zone Jk (case 2) and to each Jk to the neighboring Ij (case
1) since Ij ∩ Jk 	= ∅, provided that f ′ 	= 0 on Ij . If f

′ = 0 on Ij , one can jump from
Jk before Ij to Jk+1 after Ij (case 3). Finally, from assumption (i), there is a finite
number of Ij and Jk between M0 and M , so that we can steer M0 to M with a finite
number of such iterations, i.e., in finite time. This global strategy is illustrated in
Figure 1.

Note that this proof does not provide an estimate on the minimal time T0 needed
to control. Moreover, the strategy developed here is clearly not optimal in time since
it is mainly a local strategy. For instance, in Figure 1, we see that one can steer the
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point I3 ∩J3 directly to a point in J6 with a single traveling wave, a strategy which is
much faster than that described in the proof. Optimizing this strategy in time seems
to be an interesting open problem.

We end this section by proving a lemma used in the Proof of Theorem 1.3.
Lemma 2.8. Suppose that f ∈ C1(R) satisfies (SOC+) on the interval (L,R)

and that f ′(L) < σ(L,R). Then, there exists ρ0 > 0 such that for all ρ ∈ (0, ρ0), the
function f satisfies (SOC+) on (L− ρ,R).

Proof. First, we have

∂

∂u
σ(u,R)|u=L =

1

R− L
(σ(L,R)− f ′(L)) > 0.

Hence, there exists ρ1 > 0 such that for all ρ ∈ (0, ρ1), σ(L − ρ,R) < σ(L,R).
Since (SOC+) reads σ(L,R) < σ(u,R) for all u ∈ (L,R), we now have

(14) σ(L− ρ,R) < σ(u,R) for all ρ ∈ (0, ρ1), u ∈ (L,R).

Second, the assumption f ′(L) < σ(L,R) together with the continuity of f ′ and
σ(·, R) gives the existence of ρ2 > 0 such that for all ρ ∈ (0, ρ2) and all v ∈ (L−ρ, L),
we have f ′(v) < σ(L−ρ,R). Integrating this inequality with respect to v on (L−ρ, u)
for u ∈ (L−ρ, L) and dividing by (u− (L− ρ)) yields σ(L−ρ, u) < σ(L−ρ,R). This
is equivalent to having

(15) σ(L − ρ,R) < σ(u,R) for all ρ ∈ (0, ρ2), u ∈ (L− ρ, L).

Finally, setting ρ0 = min{ρ1, ρ2} and combining (14) and (15) concludes the proof of
the lemma.

3. Proofs of the three intermediate propositions.

3.1. Proof of Proposition 2.1: Approximate controllability using a trav-
eling wave. The solution u in Proposition 2.1 is constructed as the restriction to
(0, t∗) × (0, L) of the solution defined on the whole R+ × R (still denoted u) of the
following problem (see Figure 2):

(16)

{
ut + [f(u)]x − εuxx = 0 in R+ × R,
u|t=0 = ũ0 in R,

with

(17) ũ0(x) =

⎧⎨
⎩
N if x ≤ 0,
u0 if x ∈ (0, L),
ess inf u0 if x ≥ L.

Then, the control functions g0 and gL are obtained by taking the trace of u along
the lines (0, t∗)× {0} and (0, t∗)× {L}. The estimates on the control cost (9) follow
directly from the comparison principle [12, Theorem 6.3.2], and, hence, we have only
to prove (10).

The first step of the proof (see Lemma 3.1 below) consists in giving an L∞ estimate
of the convergence rate of traveling waves (viscous shock waves) to the associated
nonviscous shock wave as ε→ 0+. Then a comparison principle gives an L∞ estimate
of the convergence rate of u to N . This strategy is illustrated in Figure 2. To conclude
the proof of Proposition 2.1, we use a bootstrap argument relying on the parabolic
nature of (16) to estimate the H1 norm in terms of the L∞ norm (losing a polynomial
factor of ε).
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P

N

xL

u0

P

ess inf u0

N

xL0

0

u(t)
s

U0

Fig. 2. Comparison principle during the traveling wave. Initial data and solution after a time
t > L

s
has gone by.

Note that the exponential convergence of traveling waves at infinity (under con-
dition (POC)) is a well-known phenomenon (see, for instance, [27, Lemma 1] or [24,
Proposition 2.1]).

Similarly, the problem of the convergence of solutions toward traveling waves,
initiated by Il’in and Oleinik [23], has now been widely studied. Results in this area
(see [23, 27, 24] and the references therein) are of the following type: suppose that
the initial datum u|t=0 is sufficiently close to the traveling wave U(xε ) (especially
as x → ±∞); then the associated solution of (16) converges toward the traveling
wave U(x−stε ) as t → +∞. The rate of convergence is also studied and is in general
exponential (with respect to the time t). These results are stated for a for fixed
viscosity ε.

For our purposes, all these results are not precise enough (no explicit decay rate,
no explicit minimal time, etc.) and much too general (here, the initial condition ũ0
we use, given in (17), is very specific). In particular, in Proposition 2.1, we have to
give explicit constants (especially for the decay rate and the minimal time for (10) to
hold) and hence keep track of the dependencies with respect to all the parameters of
our problem. To summarize, the result of Lemma 3.1 is much more precise than the
convergence results of [23, 27, 24] in a much more restrictive setting.

Lemma 3.1. Suppose that there exist constant states P and N , with P <
ess inf u0 ≤ ess sup u0 < N , such that (POC) holds on (P,N ], and f(N) > f(P ).
Then, for every ε > 0 and β ∈ R, the solution u of (16), (17) satisfies

(18) ‖N − u(t, ·)‖L∞(−∞,β) ≤ (N − ess inf u0)e
− s

ε (σm−s)(t− β
s ) for t >

β

s
,

where s = σ(P,N) and σm = min{σ(A,N), A ∈ [ess inf u0, N ]}.
Proof. We introduce the family of traveling waves from P to N , given by

ǔ(t, x) = U

(
x− st

ε

)
, (t, x) ∈ R+ × R,
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whose existence is ensured by assumption (POC) (see [12, section 8.6]). Here, U =
U(ξ), ξ ∈ R, is the wave profile, satisfying (6), (8), and s = σ(P,N) > 0 is the speed
of the wave. The ordinary differential equation (6) satisfied by U can be reformulated
as

d

dξ
(U −N) = (−s+ σ(U,N))(U −N),

which yields, for any ξ, ξ0 ∈ R,

(U(ξ)−N) = (U(ξ0)−N) exp

(∫ ξ

ξ0

(−s+ σ(U(τ), N))dτ

)
.

From now on, we select the traveling wave that satisfies

U0(0) = ess inf u0 > P

(which is unique since it now solves a Cauchy problem), so that

(19) 0 < N − U0(ξ) = (N − ess inf u0) exp

(∫ ξ

0

(−s+ σ(U0(τ), N))dτ

)
.

Note also that U(ξ) → P when ξ → +∞, and the solution U0 can also be characterized
by ∫ +∞

0

(−s+ σ(U0(τ), N))dτ = log

(
N − P

N − ess inf u0

)
.

For ξ < 0 and τ ∈ [ξ, 0], we have U0(τ) ∈ [U0(0), U0(ξ)] ⊂ [U0(0), N ]. On the
compact interval [U0(0), N ], the function A → σ(A,N) is continuous and satisfies
σ(A,N) > s, so that

−s+ σ(U0(τ), N) ≥ σm − s > 0 for all ξ < 0, τ ∈ [ξ, 0].

As a consequence,

∫ ξ

0

−s+ σ(U0(τ), N)dτ ≤ ξ(σm − s) for all ξ < 0,

so that (19) now yields

0 < N − U0(ξ) ≤ (N − ess inf u0)e
ξ(σm−s) for all ξ < 0.

Coming back to the variables t, x, we obtain for x ∈ (−∞, β)

(20) 0 < N − U0

(
x− st

ε

)
≤ (N − ess inf u0)e

1
ε (σm−s)(β−st) for t >

β

s
.

We conclude the proof by comparing the traveling wave U0 and the solution u of (16)–
(17). From the choice of U0(0), we have at time t = 0

U0

(x
ε

)
≤ ũ0(x) ≤ N for all x ∈ R, ε > 0.
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The comparison principle [12, Theorem 6.3.2] then implies that for every (t, x) ∈
R+ × R,

U0

(
x− st

ε

)
≤ u(t, x) ≤ N,

so that estimate (20) now yields

‖N − u(t, ·)‖L∞(−∞,β) ≤ (N − ess inf u0)e
− s

ε (σm−s)(t− β
s ) for t >

β

s
,

and the lemma is proved.
Remark 3.2. If f is convex on (P,N), the decay rate obtained does not seem to

be optimal. In this case, under the assumptions of Lemma 3.1, one can prove that for
any θ < 1, there exist ξ0 = ξ0(N) > 0 and C > 0 such that

‖N − u(t, ·)‖L∞(−∞,β) ≤ Ce−
θ
ε s(f

′(N)−s)(t− β
s ) for t >

β + ξ0ε

s
.

The convergence rate that we can expect is thus in the convex case of the form
θs(f ′(N)− s). This plays an important role when taking N large, as in the first part
of the proof of Theorem 1.1, since θs(f ′(N) − s) is much larger than s(σm − s). For
the Burgers equation [16], for instance, θs(f ′(N)− s) ∼ θN2/4, whereas s(σm − s) ∼
(ess inf u0−P )N as N → +∞. The problem for general convex functions f is to give
the asymptotic behavior of ξ0(N). If ξ0(N)/s → 0, then assumption (A+) can be
replaced by the more general (and somehow more natural) assumption

lim inf
A→+∞

A−γf ′′(A) > 0; lim sup
A→+∞

e−A
2γ+2−δ

f ′′(A) < +∞ for some γ > −1, δ > 0.

Such a condition would include in particular flux functions satisfying f(u) ∼u→+∞ uρ

with 1 < ρ ≤ 3
2 , for which assumption (A+) does not hold.

We can now conclude the proof of Proposition 2.1 by a bootstrap argument.
End of the proof of Proposition 2.1. We study the evolution of (16), (17) for

t ∈ (0, t∗), where t∗ is the time at which we want to obtain estimate (10). First, we
set

v(t, x) = (u−N) ◦ π(t, x), π(t, x) = (t, x + f ′(N)t),

so that, for any β ∈ R,

‖v(t, ·)‖L∞(−∞,β) = ‖u(t, ·)−N‖L∞(−∞,β+f ′(N)t).

Estimate (18) of Lemma 3.1 gives

(21) ‖v(t, ·)‖L∞(−∞,β) ≤ (N − ess inf u0) exp

(
−s
ε
(σm − s)

(
t− β + f ′(N)t

s

))

for t > β+f ′(N)t
s , i.e., t < −β

f ′(N)−s . For some μ > 1 that will be chosen later on, we

fix β = β∗ = −(f ′(N)− s)μt∗ < 0, so that estimate (21) holds for every t ∈ (0, μt∗).
Estimate (21) now becomes

(22) ‖v(t, ·)‖L∞(−∞,β∗) ≤ (N − ess inf u0) exp

(
−1

ε
(σm − s)(f ′(N)− s) (μt∗ − t)

)

for all t < μt∗.
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We denote by Ω1 = (a1, b1) a bounded open interval of (−∞, β∗) and χ1 ∈
C∞
c (Ω1) a cut-off function satisfying χ1 = 1 on some Ω2, with Ω2 ⊂ Ω1. The function
w1(t, x) = χ1(x)v(t, x) satisfies⎧⎨
⎩
w1,t − εw1,xx = [f ′(N)− f ′(u ◦ π)](w1,x − χ′

1v)− ε(χ′′
1v + 2χ′

1vx) in (0, t∗)× Ω1,
w1 = 0 on ∂Ω1,
w1(0, x) = 0 in Ω1.

The parabolic regularizing effect (see Lemma A.2 for m = 0) gives for this system

(23) ε

∫ t∗

0

‖w1‖2H1
0 (Ω1)

dt

≤ 1

ε

∫ t∗

0

‖[f ′(N)− f ′(u ◦ π)](w1,x − χ′
1v)− ε(χ′′

1v + 2χ′
1vx)‖2H−1(Ω1)

dt.

Let us now estimate each of the terms on the right-hand side. Using the Poincaré
inequality (86), together with estimate (89) of section A.1 (where a definition of the
H−1 norm is given), the first term can be dominated as

(24)∫ t∗

0

‖[f ′(N)−f ′(u◦π)]w1,x(t, ·)‖2H−1(Ω1)
dt

≤ C

∫ t∗

0

(
‖f ′‖2L∞(P,N) + (1 + |Ω1|2)‖(ux ◦ π)f ′′(u ◦ π)‖2L2(Ω1)

)
‖w1,x(t, ·)‖2H−1(Ω1)

dt

≤ C

∫ t∗

0

(
‖f ′‖2L∞(P,N) + (1 + |Ω1|2)‖f ′′‖2L∞(P,N)‖ux ◦ π‖2L2(Ω1)

)
‖w1(t, ·)‖2L2(Ω1)

dt

≤ C

∫ t∗

0

(
‖f ′‖2L∞(P,N) + (1 + |Ω1|2)‖f ′′‖2L∞(P,N)‖ux ◦ π‖2L2(Ω1)

)
|Ω1|‖v‖2L∞(Ω1)

dt.

It remains only to estimate ‖ux ◦ π(t, ·)‖2L2(Ω1)
. For this, we consider another

bounded open set Ω̃1 = (a1 − 1, b1 + f ′(N)t∗ + 1), so that Ω1 = (a1, b1) ⊂ [a1, b1 +
f ′(N)t∗] ⊂ Ω̃1. We take χ̃1 ∈ C∞

c (Ω̃1) such that χ̃1 = 1 on [a1, b1 + f ′(N)t∗] and set
y1(t, x) = χ̃1(x)u(t, x). Since y1 satisfies

y1,t − εy1,xx = −χ̃1[f(u)]x − ε(χ̃′′
1u+ 2χ̃′

1ux),

the parabolic regularizing effect (see Lemma A.2 for m = 0) gives

ε2
∫ t∗

0

‖y1‖2H1
0 (Ω̃1)

dt ≤ ε‖u0‖2L2(Ω̃1)
+ C

∫ t∗

0

‖χ̃1[f(u)]x‖2H−1(Ω̃1)
dt

+ Cε2
∫ t∗

0

‖χ̃′′
1u+ 2χ̃′

1ux‖2H−1(Ω̃1)
dt.

Using then (86) and (89), we obtain

ε2
∫ t∗

0

‖y1‖2H1
0(Ω̃1)

dt ≤ εmax(|P |2, |N |2)

+ C(1 + |Ω̃1|2)
(∫ t∗

0

‖f(u)‖2
L2(Ω̃1)

dt+ ε2
∫ t∗

0

‖u‖2
L2(Ω̃1)

dt

)
,
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and hence, since P ≤ u(t, x) ≤ N ,

∫ t∗

0

‖ux ◦ π‖2L2(Ω1)
dt ≤

(
1

ε
+ C(|Ω̃1|+ |Ω̃1|3)t∗

)
max(|P |2, |N |2)

+
C

ε2
(|Ω̃1|+ |Ω̃1|3)t∗‖f‖2L∞(P,N).

Coming back to (24) and using estimate (22) on v, this yields

(25)

∫ t∗

0

‖[f ′(N)− f ′(u)]w1,x(t, ·)‖2H−1(Ω1)
dt

≤ CD1|Ω1|(N − P )2e−
2
ε (σm−s)(f ′(N)−s)(μ−1)t∗ ,

with

D1 = D1(f, P,N, |Ω1|, |Ω̃1|, t∗, ε) = ‖f ′‖2L∞(P,N)

+
1

ε
(1 + |Ω1|2)‖f ′′‖2L∞(P,N)max(|P |2, |N |2)

+ (|Ω̃1|+ |Ω̃1|5)‖f ′′‖2L∞(P,N)t
∗
(
max(|P |2, |N |2) + 1

ε2
‖f‖2L∞(P,N)

)
.

Concerning the other terms in (23), we simply have

(26)∫ t∗

0

‖[f ′(N)− f ′(u ◦ π)]χ′
1v − ε(χ′′

1v + 2χ′
1vx)‖2H−1(Ω1)

dt

≤ C

∫ t∗

0

(
|Ω1|2‖f ′‖2L∞(P,N) + ε2(1 + |Ω1|2)

)
‖v‖2L2(Ω1)

dt

≤ C|Ω1|
(
|Ω1|2‖f ′‖2L∞(P,N) + ε2(1 + |Ω1|2)

)
t∗(N − P )2e−

2
ε (σm−s)(f ′(N)−s)(μ−1)t∗

after using estimate (22) on v.
Now, replacing (25) and (26) in (23), we obtain

∫ t∗

0

‖w1‖2H1
0 (Ω1)

dt ≤ C

ε2

(
D1 +

(|Ω1|2‖f ′‖2L∞(P,N) + ε2(1 + |Ω1|2)
)
t∗
)

(27)

× |Ω1|(N − P )2e−
2
ε (σm−s)(f ′(N)−s)(μ−1)t∗ .

We now take χ2 ∈ C∞
c (Ω2) and set w2(t, x) = χ2(x)w1(t, x) = χ2(x)v(t, x), which

satisfies⎧⎨
⎩
w2,t − εw2,xx = [f ′(N)− f ′(u)]χ2w1,x − ε(χ′′

2w1 + 2χ′
2w1,x) in (0, t∗)× Ω1,

w2 = 0 on ∂Ω1,
w2(0, x) = 0 in Ω1.

The parabolic regularizing effect (see Lemma A.2 for m = 1) gives for this system

‖w2(t
∗, ·)‖2H1

0 (Ω1)
≤ 1

ε

∫ t∗

0

‖[f ′(N)− f ′(u)]χ2w1,x − ε(χ′′
2w1 + 2χ′

2w1,x)‖2L2(Ω1)
dt,
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which directly yields

‖w2(t
∗, ·)‖2H1

0 (Ω1)
≤ C

(
1

ε
‖f ′‖2L∞(P,N) + ε(1 + |Ω1|2)

)∫ t∗

0

‖w1‖2H1
0 (Ω1)

dt.

As a consequence of (27), we thus have, for t∗ > 0,

(28) ‖w2(t
∗, ·)‖2H1(Ω2)

≤ CD2e
− 2

ε (σm−s)(f ′(N)−s)(μ−1)t∗ ,

with

D2 = D2(f, P,N, |Ω1|, |Ω̃1|, t∗, ε)

=
|Ω1|
ε2

(N − P )2(1 + |Ω1|2)
(
1

ε
‖f ′‖2L∞(P,N) + ε(1 + |Ω1|2)

)

×
{
‖f ′‖2L∞(P,N) +

1

ε
(1 + |Ω1|2)‖f ′′‖2L∞(P,N) max(|P |2, |N |2)

+ (|Ω̃1|+ |Ω̃1|5)‖f ′′‖2L∞(P,N)t
∗
(
max(|P |2, |N |2) + 1

ε2
‖f‖2L∞(P,N)

)

+
(|Ω1|2‖f ′‖2L∞(P,N) + ε2(1 + |Ω1|2)

)
t∗
}
.(29)

The constant C in (28) depends only on the derivatives of the cut-off functions

‖χ(j)
1 ‖L∞ , ‖χ̃(j)

1 ‖L∞ , and ‖χ(j)
2 ‖L∞ for j ≤ 2.

Note that we could have proved the same type of estimate for the H2 norm but
not more since we only supposed f ∈ W 2,∞

loc . However, if f is more regular, we can
prove the estimate in higher regularity spaces.

Now, to come back to u, we choose the sets Ω1, Ω2 and the function χ2 such that
χ2 = 1 on (−f ′(N)t∗, β∗ − κ) ⊂ Ω2 ⊂ Ω1 = (−f ′(N)t∗ − κ, β∗) for some constant
κ > 0 and for t∗ > 0 satisfying β∗ − κ > −f ′(N)t∗ (i.e., [μs + (1 − μ)f ′(N)]t∗ > κ).
Note that |Ω1| = β∗ + κ + f ′(N)t∗ = κ + [μs + (1 − μ)f ′(N)]t∗ depends on t∗, on
f ′(N), and on s. Similarly, |Ω̃1| = f ′(N)t∗ + 2 + |Ω1|. Estimate (28) now yields for
all κ > 0 and t∗ > κ

μs+(1−μ)f ′(N)

‖v(t∗, ·)‖H1(−f ′(N)t∗,β∗−κ) ≤ D e−
1
ε (σm−s)(f ′(N)−s)(μ−1)t∗ ,

with D = Cκ
√
D2, where Cκ depends only on κ, and D2 is defined in (29). Recalling

the expression of β∗ and v, we obtain

(30)
‖u(t∗, ·)−N‖H1(0,−μ(f ′(N)−s)t∗+f ′(N)t∗−κ) ≤ D e−

1
ε (σm−s)(f ′(N)−s)(μ−1)t∗

‖u(t∗, ·)−N‖H1(0,[(1−μ)f ′(N)+μs]t∗−κ) ≤ D e−
1
ε (σm−s)(f ′(N)−s)(μ−1)t∗ .

We now choose μ = 1 + ν s
f ′(N)−s with ν ∈ (0, 1), so that

{
(μ− 1) = ν s

f ′(N)−s > 0,

(1− μ)f ′(N) + μs = (1− ν)s > 0.

Replacing this in (30) gives for any κ > 0, ν ∈ (0, 1), and t∗ > κ
(1−ν)s

‖u(t∗, ·)−N‖H1(0,(1−ν)st∗−κ) ≤ D e−
ν
ε s(σm−s)t∗ .
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xL

N

M

u0

u(t)

0−k

Fig. 3. Rarefaction wave. Initial data and solution after a time t > L
f ′(M)

has gone by.

Finally, on (0, L) we obtain, for any κ > 0, ν ∈ (0, 1), and t∗ > L+κ
(1−ν)s ,

‖u(t∗, ·)−N‖H1(0,L) ≤ D e−
ν
ε s(σm−s)t∗ .

It remains only to estimate D to conclude the proof. As a consequence of (29) and
the choice of the different parameters, we have

D ≤ D∗ := Cκ
N − P

ε

(
1 + (‖f ′‖L∞(P,N)t

∗)
3
2

)
×
(

1

ε
1
2

‖f ′‖L∞(P,N) + ε
1
2 (1 + ‖f ′‖L∞(P,N)t

∗)
)

×
{
‖f ′‖L∞(P,N) +

1

ε
1
2

(1 + ‖f ′‖L∞(P,N)t
∗)‖f ′′‖L∞(P,N)max(|P |, |N |)

+
(
1 + (‖f ′‖L∞(P,N)t

∗)
5
2

)‖f ′′‖L∞(P,N)(t
∗)

1
2

×
(
max(|P |, |N |) + 1

ε
‖f‖L∞(P,N)

)
+
(
(1 + ‖f ′‖L∞(P,N)t

∗)‖f ′‖L∞(P,N) + ε(1 + ‖f ′‖L∞(P,N)t
∗)
)
(t∗)

1
2

}
.(31)

In particular, we have D ≤ C

ε
5
2
(1 + t∗6) for all ε ≤ ε0 and all t∗ ≥ 0.

3.2. Proof of Proposition 2.3: Approximate controllability using a
rarefaction wave. As for the proof of Proposition 2.3, the solution u is obtained by
taking the restriction to (0, t∗)× (0, L) of the solution defined on whole R+ ×R (still
denoted u) of the following problem (see Figure 3):

(32)

{
ut + [f(u)]x − εuxx = 0 in R+ × R,
u|t=0 = u0 in R,

with

(33) u0(x)

⎧⎨
⎩
=M if x ≤ −k,
= N if x ≥ 0,
∈ C∞([−k, 0]), increasing,

for some (small) k > 0.
Then, the control functions g0 and gL are obtained by taking the traces of u along

the lines (0, t∗) × {0} and (0, t∗) × {L}. As in section 3.1, (11) follows directly from
the comparison principle [12, Theorem 6.3.2], and we hence have only to prove (12).
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To that purpose, we first prove the following lemma, which gives an L2 estimate
of the convergence rate of a viscous rarefaction wave to the associated nonviscous
one. Its proof is inspired by [13, Theorem 1.1], where the author proves dissipation
results for the Navier–Stokes equations and associated vortex patches in the vanishing
viscosity limit.

Lemma 3.3. Let u be the solution of the problem (32), (33). Then for all ε0 > 0,
k > 0, and t∗ ≥ 0, there exists γ(t∗) = γ(f, t∗, k, ε0,M,N) > 0 (nondecreasing with
respect to t∗) such that for any ε ∈ (0, ε0) and η > 0,
(34)

‖u(t∗, ·)−M‖L2(−∞,−η−k+f ′(M)t∗) + ‖u(t∗, ·)−N‖L2(η+f ′(N)t∗,+∞) ≤ γ(t∗)e−
η2

4εt∗ .

Note that the function γ(t∗) is relatively explicit, i.e.,

(35) γ(t∗) =
(‖wt‖L2(0,t∗;L2(R)) + f ′(N)‖wx‖L2(0,t∗;L2(R)) + ε0‖wxx‖L2(0,t∗;L2(R))

)
× e

t∗
2 (‖f ′′‖L∞(M,N)‖u0,x‖L∞(R)+1),

where the function w is defined in (36).
Proof. We first consider a function w ∈ C∞(R+ × R) satisfying

(36)

⎧⎪⎪⎨
⎪⎪⎩
w(t, x) =M if x ≤ −k + f ′(M)t, t ≥ 0,
w(t, x) = N if x ≥ f ′(N)t, t ≥ 0,
w(t, ·) is increasing on [−k + f ′(M)t, f ′(N)t], t ≥ 0,
w|t=0 = u0 in R.

We shall make estimates on v := u− w, which satisfies the equation

(37)

{
vt + f ′(u)vx − εvxx = −wt − f ′(u)wx + εwxx in R+ × R,
v|t=0 = 0 in R.

We set

X(t, x) := −wt − f ′(u)wx + εwxx

and notice that for all t ≥ 0, X has a compact support with respect to x, included in
[−k + f ′(M)t, f ′(N)t]. Hence, for t ≥ 0, X(t, ·) ∈ L2(R), and we have the estimate

(38) ‖X(t, ·)‖L2 ≤ ‖wt(t, ·)‖L2 + f ′(N)‖wx(t, ·)‖L2 + ε0‖wxx(t, ·)‖L2 .

Moreover, the right-hand side of (38) is continuous with respect to t, so that X ∈
L2
loc(R+;L

2(R)) uniformly with ε.
We define ψ as the flow associated with the vector field f ′(u), i.e., the solution of

(39) ψ(t, x) = x+

∫ t

0

f ′(u)(s, ψ(s, x))ds,

and ψ−1 as the associated backward flow. Following [13], we set, for α ∈ R,

(40) Φ(t, x) = exp
(
αg
(
ψ−1(t, x)

))
,

so that the function Φ is constant along flow lines, that is, d
dt (Φ(t, ψ(t, x))) = 0.

Here, the function g ∈ W 1,∞
loc (R) and the constant α = α(t∗) > 0 will be chosen

later. We suppose, moreover, that g is equal to a constant R outside a compact
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set (see the definition in (43)). In particular, this yields Φ ∈ C0(R+;W
1,∞(R)) and

Φv ∈ C0(R+;H
1(R)) since v ∈ C0(R+;H

1(R)) from (37). As a consequence of (37),
Φv satisfies the following equation:

(Φv)t + f ′(u)(Φv)x − ε(Φv)xx = v(Φt + f ′(u)Φx)− εvΦxx − 2εvxΦx +X.

Since Φ is constant along flow lines, the first term on the right-hand side vanishes.
Next, taking the inner product of this equation with Φv yields
(41)
1

2

d

dt
‖Φv‖2L2+

∫
R

f ′(u)(Φv)xΦv+ε‖(Φv)x‖2L2 = −ε
∫
R

v2ΦxxΦ−2ε

∫
R

vxΦxΦv+

∫
R

XΦv.

In this expression, we have, after integrations by parts,∫
R

f ′(u)(Φv)xΦv = −1

2

∫
R

(f ′(u))x(Φv)2

and

−ε
∫
R

v2ΦxxΦ− 2ε

∫
R

vxΦxΦv = 2ε

∫
R

vxΦxΦv + ε

∫
R

(vΦx)
2 − 2ε

∫
R

vxΦxΦv

= ε

∫
R

(vΦx)
2.

Now (41) yields

(42)
1

2

d

dt
‖Φv‖2L2 ≤ 1

2

∫
R

(f ′(u))x(Φv)2 + ε‖vΦx‖2L2 +

∫
R

XΦv.

We choose the function g in (40) as

(43) g(x) = min{R, d(x, [−k, 0])} ∈ W 1,∞(R)

for some constantR > 0. Notice that we have ‖g′‖L∞(R) = 1. Then, Φx = α(ψ−1)xg
′◦

ψ−1 Φ can be estimated thanks to the following lemma.
Lemma 3.4. Let u be the solution of (32), (33), and let ψ−1 be the backward flow

associated with the vector field f ′(u). Then we have, for any t ≥ 0 and ε > 0,

(44) 0 ≤ ux(t, x) ≤ ‖u0,x‖L∞(R)

and

(45) ‖(ψ−1)x(t, ·)‖L∞(R) ≤ 1.

Note that the estimates (44) and (45) are consequences of the fact that the solution
of (32), (33) is a rarefaction wave. The proof of this lemma is postponed to the end
of this proof.

As a consequence of Lemma 3.4, we now have

(46) ‖(f ′(u))x‖L∞(R) ≤ ‖f ′′‖L∞(M,N)‖u0,x‖L∞(R)

from (44) and

(47) ‖α (ψ−1)x g
′ ◦ ψ−1‖L∞(R+×R) ≤ α‖(ψ−1)x‖L∞‖g′‖L∞ ≤ α
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from (45). Coming back to (42), estimates (46) and (47) yield
(48)
1

2

d

dt
‖Φv‖2L2

x
≤ ‖f ′′‖L∞(M,N)‖u0,x‖L∞(R)

2
‖Φv‖2L2

x
+ εα2‖Φv‖2L2

x
+

1

2
‖X‖2L2

x
+

1

2
‖Φv‖2L2

x
.

Now, using Gronwall’s lemma in

d

dt
‖Φv‖2L2

x
≤ (2εα2 + ‖f ′′‖L∞(M,N)‖u0,x‖L∞(R) + 1

) ‖Φv‖2L2
x
+ ‖X‖2L2

x

yields, for any t∗ > 0,
(49)
‖Φv(t∗, ·)‖2L2 ≤ ‖X‖2L2(0,t∗;L2(R)) exp

[(
2εα2 + ‖f ′′‖L∞(M,N)‖u0,x‖L∞(R) + 1

)
t∗
]
,

since (Φv)|t=0 = 0. We define γ(t∗) as in (35) so that (49) and (38) read

(50) ‖Φv(t∗, ·)‖2L2 ≤ γ(t∗)2e2εα
2t∗ .

Note that γ(t∗) does not depend on ε, α, but only on ε0 and k through the initial
condition u0 and w.

Let us now take η ∈ (0, R). If x ∈ ψ (t∗, (−∞,−k − η) ∪ (η,+∞)), then

ψ−1(t∗, x) ∈ (−∞,−k − η) ∪ (η,+∞),

and g ◦ ψ−1(t∗, x) ≥ η. Thus, Φ(t∗, x) = eαg◦ψ
−1(t∗,x) ≥ eαη so that

‖Φv(t∗, ·)‖L2(R) ≥ eαη‖v(t∗, ·)‖L2(ψ(t∗,(−∞,−k−η)∪(η,+∞))).

This together with (50) gives

(51)
‖v(t∗, ·)‖L2(ψ(t∗,(−∞,−k−η)∪(η,+∞))) ≤ γ(t∗)eεα

2t∗−αη,

‖v(t∗, ·)‖L2((−∞,ψ(t∗,−k−η))∪(ψ(t∗,η),+∞)) ≤ γ(t∗)e−
η2

4εt∗

after having chosen α = η
2εt∗ . This inequality does not depend on R, so making

R → +∞, we see that (51) holds for any η > 0.
It remains only to prove that (−∞,−k − η + f ′(M)t∗) ∪ (η + f ′(N)t∗,+∞) ⊂

(−∞, ψ(t∗,−k − η)) ∪ (ψ(t∗, η),+∞)). Actually, this is a direct consequence of

ψ(t∗, η) = η +

∫ t∗

0

f ′(u)(t, ψ(t, η))dt ≤ η + f ′(N)t∗,

ψ(t∗,−k − η) = −k − η +

∫ t∗

0

f ′(u)(t, ψ(t,−k − η))dt ≥ −k − η + f ′(M)t∗,

where we have used the convexity of f and the comparison principle [12, Theo-
rem 6.3.2] for the solutions of viscous conservation laws. This concludes the proof
of Lemma 3.3.

We now have to prove Lemma 3.4.
Proof of Lemma 3.4. First, we check that for any ε > 0 and t ≥ 0, the speed

f ′(u) is nondecreasing, i.e., (f ′(u))x ≥ 0. Since f ′′ ≥ 0, we have only to prove that
ux is nonnegative. The function y = ux is solution of

(52)

{
yt − εyxx + f ′(u)yx + f ′′(u)y2 = 0 in R+ × R,
y|t=0 = ux|t=0 ≥ 0 in R.
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As a consequence of the weak maximum principle for parabolic equations (see, for
instance, [14, p. 368]), we have ux(t, x) = y(t, x) ≥ 0 in R+ × R and

(53) (f ′(u))x(t, x) ≥ 0, (t, x) ∈ R+ × R.

Second, since f ′′ ≥ 0, (52) yields{
yt − εyxx + f ′(u)yx ≤ 0 in R+ × R,
y|t=0 = ux|t=0 ∈ L∞(R).

For this system, the same maximum principle gives

ux(t, x) = y(t, x) ≤ ‖y|t=0‖L∞(R) = ‖ux|t=0‖L∞(R).

Hence, we have

0 ≤ ux(t, x) ≤ ‖ux|t=0‖L∞(R), (t, x) ∈ R+ × R,

and (44) is proved.
Finally, to prove (45), we recall that the backward flow ψ−1 is given by

ψ−1(t, x) = x−
∫ t

0

f ′(u)(s, ψ−1(s, x))ds, (t, x) ∈ R+ × R,

which yields, taking the derivative with respect to x and t,⎧⎨
⎩
d

dt
(ψ−1)x(t, x) = −(ψ−1)x(t, x) · (f ′(u))x(t, ψ−1(t, x)), (t, x) ∈ R+ × R,

(ψ−1)x(0, x) = 1.

This can be rewritten under the form

(ψ−1)x(t, x) = exp

(
−
∫ t

0

(f ′(u))x(s, ψ−1(s, x))ds

)
,

which, thanks to (53), yields

0 ≤ (ψ−1)x(t, x) ≤ 1, (t, x) ∈ R+ × R,

and Lemma 3.4 is proved.
As a consequence of Lemma 3.3 and using a bootstrap argument, we are now able

to prove the central result of this section.
Proof of Proposition 2.3. We study the evolution of (32), (33) for t ∈ (0, t∗).

First, we set

v(t, x) = (u−M) ◦ π(t, x), π(t, x) = (t, x + f ′(M)t),

for which estimate (34) of Lemma 3.3 yields, for any η > 0,

(54) ‖v(t, ·)‖L2(−∞,−k−η) ≤ γ(t)e−
η2

4εt , t ≥ 0.

As in the proof of Proposition 2.1, we denote by Ω1 a bounded open interval of
(−∞,−k − η) and by χ1 ∈ C∞

c (Ω1) a cut-off function satisfying χ1 = 1 on Ω2 with
Ω2 ⊂ Ω1. The function w1(t, x) = χ1(x)v(t, x) satisfies⎧⎨
⎩
w1,t − εw1,xx = [f ′(M)− f ′(u ◦ π)]χ1vx − ε(χ′′

1v + 2χ′
1vx) in (0, t∗)× Ω1,

w1 = 0 on ∂Ω1,
w1(0, x) = 0 in Ω1.
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The parabolic regularizing effect (see Lemma A.2 for m = 0) gives for this system
(55)

ε

∫ t∗

0

‖w1‖2H1
0 (Ω1)

dt ≤ 1

ε

∫ t∗

0

‖[f ′(M)− f ′(u ◦ π)]χ1vx − ε(χ′′
1v + 2χ′

1vx)‖2H−1(Ω1)
dt.

Let us now estimate each of the terms on the right-hand side as in the proof of
Proposition 2.1. Here, however, we see that thanks to Lemma 3.4, it is not necessary
to perform a preliminaryH1 estimate on u, as opposed to the proof of Proposition 2.1.
Using Estimate (89), the first term is

‖[f ′(M)− f ′(u ◦ π)]χ1vx‖H−1(Ω1) ≤ C
(
‖f ′‖L∞(M,N)

+ (1 + |Ω1| 32 )‖(f ′(u ◦ π))x‖L∞(Ω1)

)
‖v‖L2(Ω1).

As a consequence of Lemma 3.4, we have

‖(f ′(u ◦ π))x‖L∞(R) ≤ ‖f ′′‖L∞(M,N)‖u0,x‖L∞(R),

so that

‖[f ′(M)− f ′(u ◦ π)]χ1vx‖H−1(Ω1) ≤ C(1 + |Ω1| 32 )‖v‖L2(Ω1),

where the constant C > 0 depends only on f , u0,x, M , and N . Concerning the other
terms, we have, using (86),

ε‖χ′′
1v + 2χ′

1vx‖H−1(Ω1) ≤ εC(|Ω1|+ 1)‖v‖L2(Ω1),

where the constants denoted by C do not depend on Ω1. Coming back to (55) and
using (54), we now have, for ε ∈ (0, ε0),
(56)∫ t∗

0

‖w1‖2H1
0 (Ω1)

dt ≤ C

ε2
(
1 + |Ω1|3

) ∫ t∗

0

‖v‖2L2(Ω1)
dt ≤ C

ε2
(
1 + |Ω1|3

)
t∗γ(t∗)2e−

η2

2εt∗ ,

since Ω1 ⊂ (−∞,−k − η), and the functions γ(t) and e−
η2

2εt are nondecreasing with
respect to t.

We now take χ2 ∈ C∞
c (Ω2) and set w2(t, x) = χ2(x)w1(t, x) = χ2(x)v(t, x), which

satisfies⎧⎨
⎩
w2,t − εw2,xx = [f ′(M)− f ′(u ◦ π)]χ2w1,x − ε(χ′′

2w1 + 2χ′
2w1,x) in (0, t∗)× Ω1,

w2 = 0 on ∂Ω1,
w2(0, x) = 0 in Ω1.

The parabolic regularizing effect (see Lemma A.2 for m = 1) directly yields, for
ε ∈ (0, ε0),

‖w2(t
∗, ·)‖2H1

0 (Ω1)
≤ C

ε

∫ t∗

0

‖w1,x‖2L2(Ω1)
+ ε2‖w1‖2L2(Ω1)

dt

≤ C

(
1

ε
+ |Ω1|2

)∫ t∗

0

‖w1‖2H1
0 (Ω1)

dt.

As a consequence of (56), we thus have, for ε ∈ (0, ε0),

(57) ‖w2(t
∗, ·)‖2H1

0 (Ω1)
≤ C

ε3
(
1 + |Ω1|5

)
t∗γ(t∗)2e−

η2

2εt∗ .
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Now, to come back to u, we choose the sets Ω1, Ω2 and the function χ2 such that
χ2 = 1 on (−f ′(M)t∗,−η−2k) ⊂ Ω2 ⊂ Ω1 = (−f ′(M)t∗−k,−η−k) ⊂ (−∞,−η−k).
With this choice, we have |Ω1| = f ′(M)t∗−η, and estimate (57) yields, for any t∗ > 0
and 0 < η < f ′(M)t∗,

‖u(t∗, ·)−M‖H1(0,−η−2k+f ′(M)t∗) ≤ C

ε
3
2

(
1 + |f ′(M)t∗ − η| 52

)√
t∗γ(t∗)e−

η2

4εt∗ .

It remains to choose η so that −η− 2k+ f ′(M)t∗ = L, that is, η = f ′(M)t∗ −L− 2k,
which is positive as soon as t∗ > L+2k

f ′(M) . Finally, we have for any t∗ > L+2k
f ′(M)

‖u(t∗, ·)−M‖H1(0,L)

≤ C

ε
3
2

(
1 + (L + 2k)

5
2

)√
t∗γ(t∗) exp

(
− 1

4εt∗
(f ′(M)t∗ − L− 2k)2

)
,

and Proposition 2.3 is proved, setting κ = 2k and δ(t∗) = C(1 + (L + 2k)
5
2 )
√
t∗

γ(t∗).
Remark 3.5. This proposition and its proof need slight modifications when prov-

ing Proposition 1.7, since the right-hand side of (12) needs to be exponentially de-
creasing as t∗ → +∞. For this, we first replace 1

2‖X‖2L2
x
+ 1

2‖Φv‖2L2
x
in estimate (48)

with 1
2μ‖X‖2L2

x
+ μ

2 ‖Φv‖2L2
x
for all μ > 0. Choosing u0 such that ‖u0,x‖L∞(R) = C

k ,

estimate (12) for ε = 1 now reads, for all k, μ > 0,

‖u(t∗, ·)−M‖H1(0,L)

≤ C(L + 2k)

√
t∗

μ
‖X‖L2(0,t∗;L2(R))e

( C
2k ‖f ′′‖L∞(M,N)+

μ
2 )t

∗− 1
4t∗ (f ′(M)t∗−L−2k)2 .

Noting that ‖X‖L2(0,t∗;L2(R)) increases at most linearly in t∗ and fixing k large enough

and μ small enough so that ( C2k‖f ′′‖L∞(M,N) +
μ
2 ) <

f ′(M)2

4 , we obtain the sought
exponential decay as t∗ → +∞.

3.3. Proof of Proposition 2.4: Local exact controllability. The proof of
Proposition 2.4 follows the steps of [16]. When doing this, we shall see that one can
take α1 = 5 (or, as found numerically, α1 = 4.3).

We first set y(t, x) = u(t, x)−N so that y satisfies

(58)

⎧⎨
⎩
yt + [f(N + y)]x − εyxx = 0 in (0, T )× (0, L),
y|t=0 = y0 = u0 −N in (0, L),

‖y0‖H1(0,L) ≤ e−
K0
ε .

Now, our objective is to find boundary controls y|x=0 = g0(t) − N and y|x=L =
gL(t)−N such that y|t=T = 0 and

‖g0 −N‖L∞(0,T ) ≤ |N | and ‖gL −N‖L∞(0,T ) ≤ |N |.

More precisely, we prove the existence of a controlled solution y, satisfying (58) and
y|t=T = 0 and then take the traces of y on (0, T ) × {0} and (0, T ) × {L} to obtain
the controls. The existence of such a controlled solution is proved by means of a fixed
point argument. For this, let us first consider the following linearization of system (58)
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1688 MATTHIEU LÉAUTAUD

for some z ∈ L1(0, T ;W 1,∞(0, L)) ∩ L∞((0, T )× (0, L)):

(59)

⎧⎨
⎩
yt − εyxx + [σ(N + z(t, x), N)y]x = 0 in (0, T )× (0, L),
y|x=0 = g̃0, y|x=L = g̃L in (0, T ),
y|t=0 = y0 in (0, L),

where we have denoted σ(N + z,N) = f(N+z)−f(N)
z , with σ(N + ·, N) ∈ W 1,∞

loc (R).
Note that formally, a fixed point of a map z → y, where y is a solution of (59) asso-
ciated to some controls g̃0, g̃L, is a solution of the problem (58). It will be convenient
to extend this control problem to (a, b) for some a < 0 and b > L and introduce ỹ0
and z̃ smooth extensions of y0 and z, satisfying

(60)
ỹ0 = y0 on (0, L), ỹ0(a) = ỹ0(b) = 0, and ‖ỹ0‖H1

0 (a,b)
≤ CE‖y0‖H1(0,L),

z̃ = z on (0, T )× (0, L), and ‖z̃‖L1W 1,∞∩L∞L∞ ≤ CE‖z‖L1W 1,∞∩L∞L∞

(see, for instance, [14, section 5.4]). We now consider the extended linear system

(61)

⎧⎨
⎩
ỹt − εỹxx + [(f ′(N) + ζ(t, x)) ỹ]x = 0 in (0, T )× (a, b),
ỹ|x=a = g̃(t), ỹ|x=b = 0 in (0, T ),
ỹ|t=0 = ỹ0 in (a, b),

where ζ is defined by

ζ(t, x) = σ(N + z̃(t, x), N)− f ′(N).

To prove the null-controllability of this system, we shall prove an observability esti-
mate for its adjoint. We set

(62) λ = b − a > L.

We have the following controllability lemma.
Lemma 3.6. There exist α1 > 0 and ε0 > 0 such that for all

ζ ∈ L1(0, T ;W 1,∞(0, L)) ∩ L∞((0, T )× (0, L))

satisfying

(63) ‖ζx‖L1L∞ + ‖ζ‖L∞L∞ ≤ CE e−
K0
2ε

(where K0 is introduced in Proposition 2.4 and CE is the norm of the extension
operator introduced in (60)), all T ≥ α1

λ
f ′(N) , all ε ∈ (0, ε0), and ỹ0 ∈ H1

0 (a, b)

satisfying ‖ỹ0‖H1
0 (a,b)

≤ CE e−
K0
ε , there exists a control function g̃ ∈ L2(0, T ) with

‖g̃‖L2(0,T ) ≤ e−
K0
ε such that the associated solution to (61) satisfies

ỹ|t=T = 0 on (a, b).

Note that the constant α1 here is the same as the one in Proposition 2.4. In the
course of the proof, we shall see that one can take α1 = 5 or α1 = 4.3, as claimed
before.

Proof. For this linear control problem (61), we use the classical approach, which
consists in obtaining a suitable observability inequality for the adjoint system of (61),
which reads

(64)

⎧⎨
⎩
−ϕt − εϕxx − (f ′(N) + ζ(t, x))ϕx = 0 in (0, T )× (a, b),
ϕ|x=a = 0, ϕ|x=b = 0 in (0, T ),
ϕ|t=T = ϕT in (a, b),
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where ϕT ∈ L2(a, b) is the final condition of this backward problem. We aim to prove
the following observability inequality for the solutions of (64):

(65) ‖ϕ|t=0‖L2(a,b) ≤ K(T, ε)‖ϕx|x=a‖L2(0,T ).

Then, classical duality arguments give the null-controllability of system (61) with a
control function g̃ whose L2 norm is bounded by

K(T, ε)

ε
‖ỹ0‖H1

0(a,b)
≤ CE

K(T, ε)

ε
e−

K0
ε .

To prove (65), we mostly follow [16] and use two of their technical estimates. More
precisely, once rescaled with respect to the parameters, the dissipation estimate and
the Carleman estimate read as follows (λ is defined in (62)).

Dissipation result. For every t ∈ ( λ
f ′(N)−‖ζ‖L∞L∞ , T ), we have

(66)

‖ϕ(0, ·)‖2L2(a,b)

≤ exp

{
λ2‖ζx‖L1L∞

4
− ((f ′(N)− ‖ζ‖L∞L∞)t− λ)2

2εt
e−4λ2‖ζx‖L1L∞

}
‖ϕ(t, ·)‖2L2(a,b).

Note that f ′(N)−‖ζ‖L∞L∞ > 0 for ε sufficiently small (or f ′(N) sufficiently large in
the proof of Proposition 3.8 below).

Carleman inequality. Assume that ζ satisfies (63) and T > 3
2

λ
f ′(N)−‖ζ‖L∞L∞ .

Then, we have

(67)

∫ b

a

∫ 5T/6

2T/3

|ϕ|2dt dx ≤ Ce
κλ2

εT

(∫ T

0

|ϕx(t, a)|2dt+
∫ b

a

|ϕ(0, x)|2dx
)
.

These two estimates are proved in [16, section 4], with κ = 4 or κ = 2.61 as found
numerically.

To obtain the observability inequality (65), we suppose that

T >
3

2

λ

f ′(N)− ‖ζ‖L∞L∞
.

As a consequence (66) holds on (2T3 ,
5T
6 ) ⊂ ( λ

f ′(N)−‖ζ‖L∞L∞ , T ). Integrating (66) on

(2T3 ,
5T
6 ), we hence obtain

T

6
‖ϕ(0, ·)‖2L2(a,b) ≤ exp

{
λ2‖ζx‖L1L∞

4

}

×
∫ 5T/6

2T/3

exp

{
− ((f ′(N)− ‖ζ‖L∞L∞)t− λ)2

2εt
e−4λ2‖ζx‖L1L∞

}
‖ϕ(t, ·)‖2L2(a,b)dt.

Using the fact that

t → ((f ′(N)− ‖ζ‖L∞L∞)t− λ)2

2εt

is an increasing function as soon as t > λ
f ′(N)−‖ζ‖L∞L∞ , together with (67), we have

(68) ‖ϕ(0, ·)‖2L2(a,b) ≤ Ce−
D(ε,T,λ,ζ)

εT

(∫ T

0

|ϕx(t, a)|2dt+
∫ b

a

|ϕ(0, x)|2dx
)
,
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with

D(ε, T, λ, ζ) =
3e−4λ2‖ζx‖L1L∞

4

(
(f ′(N)− ‖ζ‖L∞L∞)

2T

3
− λ

)2

− κλ2.

Now we see that for T sufficiently large, i.e., T ≥ α1
λ

f ′(N) , we have D(ε, T, λ, ζ) > 0

and we can absorb the last term in (68) by the left-hand side, taking ε0 = ε0(α1)
sufficiently small so that it works with T = α1

λ
f ′(N) . We also notice that we can

take α1 = 5 if κ = 4 or α1 = 4.30 if κ = 2.61. Finally, we obtain the observ-

ability inequality (65) with K(T, ε) = Ce−
D(ε,T,λ,ζ)

εT . This concludes the proof of
Lemma 3.6.

Now given this result for the linearized system, we are able to implement a fixed
point strategy to conclude the proof of Proposition 2.4.

Proof of Proposition 2.4. We first recall Kakutani’s fixed point theorem as pre-
sented in [29, Theorem 9.2.2].

Theorem 3.7. Let Z be a Banach space, E a subset of Z, and Λ : E → 2Z a
multivalued mapping. Suppose the following:

(i) E is compact, convex, and nonempty, and for every z ∈ E, Λ(z) ⊂ E.
(ii) For every z ∈ E, Λ(z) is a compact, convex, and nonempty subset of Z.
(iii) Λ is “upper-semicontinuous”; i.e., if zn → z in E and yn ∈ Λ(zn) satisfies

yn → y in Z, then y ∈ Λ(z).
Then Λ has a fixed point in E; i.e., there exists z ∈ E such that z ∈ Λ(z).

Let us now define the appropriate space Z, subset E, and mapping Λ. We choose

(69) Z = H
3
4 (0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L))

for the Banach space and

Eε =
{
z ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0, L)), ‖z‖H1L2∩L2H2 ≤ e−

K0
2ε

}
⊂ Z.

Given a fixed y0 ∈ H1(0, L) such that ‖y0‖H1(0,L) ≤ e−
K0
ε , we set

Λ(z) =
{
y ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0, L)) satisfying (70)–(73)

}
with

yt − εyxx = −[σ(N + z,N)y]x in (0, T )× (0, L),(70)

y|t=0 = y0 in (0, L),(71)

y|t=T = 0 in (0, L),(72)

‖y‖H1L2∩L2H2 ≤ e−
K0
2ε(73)

and check that Kakutani’s theorem applies with Z, Eε, and Λ for ε > 0 sufficiently
small.

To prove (i), note that the compact injection of H1L2 ∩ L2H2 in Z gives the
compactness of Eε in Z, and the fact that it is a ball yields its convexity. Moreover,
Eε is nonempty since it contains the null function, and Λ(z) ⊂ Eε if z ∈ Eε, as a
consequence of their definition.

To prove (ii), notice first that Λ(z) is convex since the conditions (70)–(72) are
linear and (73) is convex. To prove that it is closed (and hence compact), let us con-
sider a sequence (yn)n∈N ⊂ Λ(z) converging to y in Z. Since Z ⊂ C0([0, T ];L2(0, L)),
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conditions (71) and (72) are still valid for the limit y. Since the right-hand side
of (73) does not depend on n, this estimate also holds for y. Moreover, yn converges
to y in D′((0, T ) × (0, L)), and, hence, the linear equation (70) is satisfied by y in
D′((0, T )×(0, L)). As a consequence of (73), y ∈ H1L2∩L2H2, so that y satisfies (70)
in L2L2, and Λ(z) is closed.

Let us now prove that Λ(z) is nonempty if z ∈ Eε. We denote by z̃ and ỹ0
extensions of z and y0 on (a, b) satisfying (60). Denoting ỹ as the associated solution
of (61) (for any control g̃), we see that ỹ|(0,L) solves (70)–(71). Moreover, we have

‖ỹ0‖H1
0 (a,b)

≤ Ce−
K0
ε and

‖z̃‖L1W 1,∞(a,b)∩L∞L∞(a,b) ≤ C‖z̃‖L1W 1,∞(0,L)∩L∞L∞(0,L)

≤ C‖z‖H1L2(0,L)∩L2H2(0,L) ≤ Ce−
K0
2ε .

Hence, denoting ζ(t, x) = σ(N + z̃, N)− f ′(N), we have

(74) ‖ζ‖L∞L∞ ≤ ‖f ′′‖L∞(K)

2
‖z̃‖L∞L∞ ≤ Ce−

K0
2ε

for some compact K ⊂ R containing N , and

(75) ‖ζx‖L1L∞ = ‖[σ(N + z̃, N)]x‖L1L∞ ≤ ‖f ′′‖L∞(K)‖z̃x‖L1L∞ ≤ Ce−
K0
2ε .

As a consequence of (74) and (75), estimate (63) holds, and Lemma 3.6 applies as soon
as T ≥ α1

λ
f ′(N) (which we shall suppose in the following). In particular, for ε < ε0,

there exists a control function g̃ such that ‖g̃‖L2(0,T ) ≤ Ce−
K0
ε and the associated

solution of (61) satisfies ỹ|t=T = 0, and thus ỹ|(0,L) fulfills (72). Moreover, ỹ is defined
as a transposition solution of (61) so that the regularity estimate (96) of Lemma A.3
gives, for some C > 0 independent of ε,

(76) ‖ỹ‖L2L2(a,b) ≤ C√
ε

(‖g̃‖L2(0,T ) + ‖ỹ0‖L2(a,b)

)
.

We now take open intervals Ω1 and Ω2 such that [0, L] ⊂ Ω2 ⊂ Ω2 ⊂ Ω1 ⊂ Ω1 ⊂ (a, b)
and a cut-off function χ1 ∈ C∞

c (Ω1) defined as before. The function w1 = χ1ỹ satisfies⎧⎨
⎩
w1,t − εw1,xx = −χ1[σ(N + z̃, N)ỹ]x − 2εχ′

1ỹx − εχ′′
1 ỹ in (0, T )× Ω1,

w1 = 0 in (0, T )× ∂Ω1,
w1|t=0 = χ1ỹ0 ∈ H1

0 (Ω1),

so that the parabolic regularity result of Lemma A.2, taken for m = 0, gives

‖w1‖L2H1
0 (Ω1) ≤

C

ε

(
‖χ1ỹ0‖L2(Ω1) + ‖χ1[σ(N + z̃, N)ỹ]x

+ 2εχ′
1ỹx + εχ′′

1 ỹ‖L2H−1(Ω1)

)
.

The last two terms on the right-hand side can be estimated by C‖ỹ‖L2L2(Ω1), and we
have

‖χ1[σ(N + z̃, N)ỹ]x‖L2H−1(Ω1) ≤ C‖σ(N + z̃, N)ỹ‖L2L2(Ω1) ≤ C‖ỹ‖L2L2(a,b),

since σ(N + ·, N) ∈ L∞ and z̃ ∈ L∞L∞. As a consequence of (76), we now obtain

(77) ‖w1‖H1H−1(Ω1)∩L2H1
0 (Ω1)∩L∞L2(Ω1) ≤

C

ε
3
2

(‖g̃‖L2(0,T ) + ‖ỹ0‖L2(a,b)

)
.
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Taking another cut-off function χ2 ∈ C∞
c (Ω2) as before, the function w2 = χ2w1 = χ2ỹ

satisfies⎧⎨
⎩
w2,t − εw2,xx = −χ2[σ(N + z̃, N)w1]x − 2εχ′

2w1,x − εχ′′
2w1 in (0, T )× Ω2,

w2 = 0 in (0, T )× ∂Ω2,
w2|t=0 = χ2w1 ∈ H1

0 (Ω2),

so that the parabolic regularity result of Lemma A.2, taken for m = 1, gives

(78) ‖w2‖L2(H2∩H1
0 (Ω2))∩H1L2(Ω2)

≤ C

ε

(‖χ2w1‖H1
0 (Ω2) + ‖χ2[σ(N + z̃, N)w1]x + 2εχ′

2w0,x + εχ′′
2w1‖L2L2(Ω2)

)
.

In this expression, we can estimate

‖χ2[σ(N + z̃, N)w1]x‖L2L2(Ω2) ≤ ‖σ(N + z̃, N)w0,x‖L2L2(Ω1)

+ ‖[σ(N + z̃, N)]xw1‖L2L2(Ω1)

≤ ‖σ(N + z̃, N)‖L∞L∞‖w1‖L2H1
0 (Ω1)

+ ‖σ(N + z̃, N)‖L2W 1,∞‖w1‖L∞L2(Ω1),

where all the terms in the right-hand side are finite, since σ(N + ·, N) ∈ L∞, z̃ ∈
L∞L∞ ∩ L2W 1,∞, and w1 satisfies (77). Replacing this in (78) and using (77) yields

‖w2‖L2(H2∩H1
0 (Ω2))∩H1L2(Ω2) ≤

C

ε
5
2

(‖g̃‖L2(0,T ) + ‖ỹ0‖L2(a,b)

)
,

and thus

‖ỹ|(0,L)‖L2H2(0,L)∩H1L2(0,L) ≤ ‖w2‖L2(H2∩H1
0 (Ω2))∩H1L2(Ω2)

≤ C

ε
5
2

(
2e−

K0
ε + e−

K0
ε

)
≤ e−

K0
2ε

for 0 < ε < ε0. This implies that ỹ|(0,L) satisfies (73) for 0 < ε < ε0 and hence all
conditions (70)–(73), and Λ(z) is nonempty.

To prove (iii), let us consider two sequences, zn → z in Eε for the topology of
H1L2 ∩L2H2, and yn ∈ Λ(zn) satisfying yn → y in Z, and check that y ∈ Λ(z). The
three assertions (71)–(73) still hold for y since (71)–(73) do not depend on zn, and in
particular y ∈ H1L2 ∩ L2H2. Let us denote Rn as the right-hand side of (70) for zn
and yn and R as its counterpart for z and y. We have

Rn −R = [σ(N + z,N)]xy+ σ(N + z,N)yx− [σ(N + zn, N)]xyn − σ(N + zn, N)yn,x,

and hence ‖Rn −R‖L2L2 ≤ An +Bn, with

An = ‖[σ(N + z,N)]xy − [σ(N + z,N)]xyn‖L2L2

+ ‖[σ(N + z,N)]xyn − [σ(N + zn, N)]xyn‖L2L2

≤ ‖[σ(N + z,N)]x‖L2L∞‖y − yn‖L∞L2

+ ‖[σ(N + z,N)]x − [σ(N + zn, N)]x‖L2L∞‖yn‖L∞L2

and

Bn = ‖σ(N + z,N)yx − σ(N + z,N)yn,x‖L2L2

+ ‖σ(N + z,N)yn,x − σ(N + zn, N)yn,x‖L2L2

≤ ‖σ(N + z,N)‖L∞L∞‖yx − yn,x‖L2L2

+ ‖σ(N + z,N)− σ(N + zn, N)‖L∞L∞‖yn,x‖L2L2 .
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Recalling that zn → z in Eε and yn → y in Z, we deduce limn→+∞An = 0 since
yn → y in H

3
4L2 ⊂ L∞L2 and σ(N + zn, N) → σ(N + z,N) in L2W 1,∞. Moreover,

limn→+∞Bn = 0 since yn → y in L2H1 and σ(N + zn, N) → σ(N + z,N) in L∞L∞.
We can now write (70) for zn and yn as

(79) yn,t − εyn,xx = Rn,

where the right-hand side Rn satisfies Rn → R in L2L2. This together with (73)
implies that when n→ +∞ we have

(80) yt − εyxx = R in L2L2,

so that (70) holds for the limit y. Finally, y ∈ Λ(z), and condition (iii) is fulfilled.
Consequently, Kakutani’s theorem applies, and there exists y ∈ Λ(y); that is, for

y0 satisfying ‖y0‖H1(0,L) ≤ e−
K0
ε , we have found a function y satisfying⎧⎪⎪⎨

⎪⎪⎩
yt − εyxx + [σ(N + y,N)y]x = 0 in (0, T )× (0, L),
y|t=0 = y0 in (0, L),
y|t=T = 0 in (0, L),

‖y‖H1L2∩L2H2 ≤ e−
K0
2ε .

It suffices now to take the control functions

g0(t) := y|x=0(t) +N and gL(t) := y|x=L(t) +N.

With this choice, we have g0, gL ∈ L∞(0, T ) since H1L2 ∩ L2H2 ⊂ H
3
5H

4
5 and

max(‖g0‖L∞(0,T ), ‖gL‖L∞(0,T )) ≤ |N |+ Ce−
K0
2ε ≤ 2|N |

for 0 < ε < ε0. In addition, this proof works for any time of control T ≥ α1
λ

f ′(N)

for any λ > L (but all the constants depend on λ). This yields the result for any
T ≥ α1

L
f ′(N) and concludes the proof of Proposition 2.4.

To conclude this section, we give a slight modification of Proposition 2.4, adapted
to the first phase of the proof of Theorem 1.1, which consists in reaching exactly a
large state N , without assuming ε small. To this aim, the strategy adopted here is the
same as that of Proposition 2.4 except that we take “N large” instead of “ε small” in
the fixed point argument. To do so, we carefully keep track of the dependence with
respect to the parameter N , as N → +∞.

Proposition 3.8. There exists α1 > 0 satisfying the following property. For
every f ∈ W 2,∞

loc (R) satisfying assumption (A+), for all ε0 > 0, there exist N0 > 0
such that for all ε ∈ (0, ε0), N > N0, T ≥ α1

L
f ′(N) , and u0 ∈ H1(0, L) satisfying for

some P < N0

(81) ‖u0 −N‖H1(0,L) ≤ D∗ e−K0s(σm−s)

(where D∗ is defined in (31)) with s = σ(P,N), σm = σ(E,N), and P < E, there
exist two control functions g0 and gL such that the result of Proposition 2.4 holds.

To use this after Proposition 2.1, we take E = ess inf u0 > P . We now sketch the
proof of this proposition.

Proof. Here, we only replace the argument “ε small” in the previous proof by
“N large.” This is possible since assumption (A+) implies the existence of Q ∈ R,
l0, C > 0, γ > − 1

2 , and δ > 0 such that

f ′′(A) ≥ l0A
γ and f ′′(A) ≤ CeA

2γ+1−δ
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for all A > Q. A first consequence is that

‖f ′′‖L∞(P,N) ≤ CeN
2γ+1−δ

; ‖f ′‖L∞(P,N) ≤ CeCN
2γ+1−δ

; ‖f‖L∞(P,N) ≤ CeCN
2γ+1−δ

.

As the quantity D∗ (defined in (31)) is bounded by some polynomial of N and
‖f (j)‖L∞(P,N), with j = 0, 1, 2, this yields the existence of a constant C such that

(82) D∗ ≤ CeCN
2γ+1−δ

.

Moreover, since we have

f(N) = f(Q) + (N −Q)f ′(Q) +

∫ N

Q

f ′′(τ)(N − τ)dτ ≥ l0
(γ + 1)(γ + 2)

Nγ+2 +O(N),

as N → +∞, we can estimate

σm−s ≥ (E−P )f(N)

N2
+O

(
1

N

)
≥ (E−P ) l0

(γ + 1)(γ + 2)
Nγ+O

(
1

N

)
, N → +∞,

and

s ≥ (E − P )
f(N)

2N
+O

(
1

N

)
≥ l0

2(γ + 1)(γ + 2)
Nγ+1 +O(1), N → +∞,

so that

(83) e−K0s(σm−s) ≤ Ce
− K0l20(E−P )

2(γ+1)2(γ+2)2
N2γ+1

.

Since we supposed γ > − 1
2 , this expression is exponentially decaying as N → +∞.

It suffices now to follow the proof of Proposition 2.4, replacing the exponential decay

‖u0 −N‖H1(0,L) ≤ e−
K0
ε as ε→ 0+, by the exponential decay

‖u0 −N‖H1(0,L) ≤ D∗e−K0s(σm−s) ≤ CeCN
2γ+1−δ

e
− K0l20(E−P )

2(γ+1)2(γ+2)2
N2γ+1

≤ e−K1N
2γ+1

,

as N → +∞, for some K1 > 0, as a consequence of assumption (A+) and esti-

mates (82) and (83). We also have to systematically use e−
K1
2 N2γ+1

in place of e−
K0
2ε

and N > N0 in place of ε < ε0 in the proof Proposition 2.4. The analogues of esti-
mates (74) and (75) are performed using the fact that, in these expressions, K is the

ball centered on N of radius smaller than e−K1N
2γ+1

.
Remark 3.9. This is the only place where we use the unnatural assumption (A+).

Any other condition on f allowing us to perform the fixed point argument is suf-
ficient for proving Theorem 1.1. Note that if we had proved a decay rate of the
form θs(f ′(N) − s), as mentioned in Remark 3.2, estimate (83) would be replaced

by e−K0s(f
′(N)−s) ≤ Ce−CN

2γ+2

. This explains the more general condition in Re-
mark 3.2.

Appendix. Classical inequalities and parabolic regularity estimates.

A.1. Classical inequalities with explicit constants. In this section, we re-
call some definitions of norms and give classical inequalities with explicit constants in
one space dimension that are used in the main part of the article.

Given that Ω is a bounded domain of Rn with smooth boundary, we denote by
(ω2
j , φj)j∈N∗ the (positive) eigenvalues and associated eigenfunctions of the Laplace–
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Dirichlet operator −ΔD on Ω, forming a Hilbert basis of L2(Ω). We have −Δφj =
ω2
jφj , φj |∂Ω = 0, and (φj , φk)L2(Ω) = δjk.

We denote by H1
0 (Ω) the closure of C∞

c (Ω) in H1(Ω), endowed with the norm

(84) ‖v‖H1
0 (Ω) := ‖(−ΔD)

1/2v‖L2(Ω) = ‖∇v‖L2(Ω) =

( ∑
j∈N∗

ω2
j |vj |2

)1/2

,

where vj = (v, φj)L2(Ω). We also denote by H−1(Ω) the dual space ofH1
0 (Ω), endowed

with the norm

‖v‖H−1(Ω) := ‖(−ΔD)
−1/2v‖L2(Ω) = sup

‖ϕ‖
H1

0
(Ω)

=1

〈v, ϕ〉H−1(Ω),H1
0 (Ω)

=

( ∑
j∈N∗

ω−2
j |vj |2

)1/2

,(85)

where vj = 〈v, φj〉H−1(Ω),H1
0 (Ω).

Proposition A.1. Suppose that Ω = (a, b) with a, b ∈ R, a < b, and set |Ω| =
b− a. Then, we have

‖v‖L2(Ω)(86)

≤ |Ω|
π

‖v‖H1
0 (Ω) for all v ∈ H1

0 (Ω) (Poincaré inequality),

‖v‖2L∞(Ω)(87)

≤ ‖v‖2L2 + ‖v‖2H1
0(Ω) ≤

(
1 +

|Ω|2
π2

)
‖v‖2H1

0(Ω) for all v ∈ H1
0 (Ω),

‖uv‖H1
0(Ω) ≤

(
‖u‖L∞(Ω) +

(
1 +

|Ω|
π

)
‖ux‖L2(Ω)

)
‖v‖H1

0 (Ω),(88)

for all u ∈ H1(Ω), v ∈ H1
0 (Ω),

‖uv‖H−1(Ω) ≤
(
‖u‖L∞(Ω) +

(
1 +

|Ω|
π

)
‖ux‖L2(Ω)

)
‖v‖H−1(Ω),(89)

for all u ∈ H1(Ω), v ∈ H−1(Ω).

Proof. Inequality (86) is a direct consequence of the explicit knowledge of the
eigenvalues of the Laplace–Dirichlet operator in one dimension, namely, ωj = jπ

|Ω| ,
j ∈ N

∗. Inequality (87) is obtained by writing, for v ∈ C1
c (a, b) and x ∈ (a, b),

|v(x)|2 =

∫ x

a

∂y(|v(y)|2)dy =

∫ x

a

2v(y)vy(y)dy ≤
∫ b

a

|v(y)|2dy +
∫ b

a

|vy(y)|2dy

and concluding with a density argument. Inequality (88) then directly follows

‖(uv)x‖2L2 =

∫ b

a

(uxv + uvx)
2

≤ ‖ux‖2L2‖v‖2L∞ + ‖u‖2L∞‖v‖2H1
0
+ 2‖ux‖L2‖v‖L∞‖u‖L∞‖v‖H1

0
,

together with (87) and H1(Ω) ↪→ L∞(Ω) in dimension one. Finally, (89) is a direct
consequence of (88) and the definition (85) of H−1 as the dual space of H1

0 .
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A.2. Parabolic regularity estimates for classical solutions. For the sake
of completeness, we recall here a classical regularity result for the heat equation that
is used in the previous sections. However, we give a precise dependence with respect
to ε and a simple proof. For m ≥ 0, we denote by Hm = D((−ΔD)

m
2 ) the domain

of the fractional Laplace–Dirichlet operator on L2(Ω), and H−m = (Hm)
′
. Here the

duality is taken with respect to H0 = L2(Ω). For instance, we have H1 = H1
0 (Ω),

H2 = H2(Ω) ∩ H1
0 (Ω), and H−1 = H−1(Ω) =

(
H1

0 (Ω)
)′
. We have the following

regularity result.
Lemma A.2. Let u(t, x) be a classical solution of

(90)

⎧⎨
⎩
∂tu− εΔu = f in (0, t∗)× Ω,
u = 0 on (0, t∗)× ∂Ω,
u|t=0 = u0 in Ω,

and let m ∈ R. Suppose that u0 ∈ Hm and f ∈ L2(0, t∗;Hm−1); then

u ∈ C0(0, t∗;Hm) ∩ L2(0, t∗;Hm+1) ∩H1(0, t∗;Hm−1),

and we have, for all t∗ > 0,

(91) ε‖u(t∗)‖2Hm + ε2
∫ t∗

0

‖u(t)‖2Hm+1dt+

∫ t∗

0

‖ut(t)‖2Hm−1dt

= ε‖u0‖2Hm +

∫ t∗

0

‖f(t)‖2Hm−1dt.

Proof. We suppose that m ≥ 1. In the case m ≤ 1, we do the following computa-
tions with smooth functions f and u and conclude with a density argument. Taking
the inner product of (90) with φj , we obtain

{
uj,t + εω2

juj = fj in (0, t∗),
uj |t=0 = uj,0,

where uj = (u, φj)L2 , uj,0 = (u0, φj)L2 and fj = (f, φj)L2 . Multiplying the first
equation by ωm−1

j and squaring it, we have

ω2m−2
j |uj,t|2 + ε2ω2m+2

j |uj|2 + 2εω2m
j ujuj,t = ω2m−2

j |fj|2.

Integrating this equation on (0, t∗), we now obtain

(92) ω2m−2
j

∫ t∗

0

|uj,t|2dt+ ε2ω2m+2
j

∫ t∗

0

|uj |2dt+ εω2m
j |uj |2(t∗)

= εω2m
j |uj,0|2 + ω2m−2

j

∫ t∗

0

|fj|2dt.

The right-hand side is summable over j ∈ N
∗ since we supposed

∑
j∈N∗ ω2m

j |uj,0|2 =

‖u0‖2Hm < +∞ and
∑
j∈N∗ ω

2m−2
j

∫ t∗
0

|fj |2dt = ‖f(t)‖2L2(0,t∗;Hm−1) < +∞. Hence,
the left-hand side is summable. Since its three terms are nonnegative, they are
all summable. Finally, summing (92) over j ∈ N

∗ yields (91), and the lemma is
proved.
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A.3. Well-posedness of an initial-boundary value problem with low reg-
ularity. Here, we prove the well-posedness of problem (61) in some energy space and
give the associated regularity estimates used in (76). More precisely, we consider the
problem

(93)

⎧⎨
⎩
ut − εuxx + [W (t, x)u]x = 0 in (0, T )× (a, b),
u|x=a = g(t), u|x=b = 0 in (0, T ),
u|t=0 = u0 in (a, b),

with W and g having low regularity, and show that (93) is well-posed in a weak sense,
namely, in the sense of transposition solutions. We have the following result.

Lemma A.3. Suppose that W ∈ L∞(0, T ;L∞(a, b))∩L1(0, T ;W 1,∞(a, b)). Then
for any g ∈ L2(0, T ) and u0 ∈ L2(a, b), there exists a unique u ∈ L2(0, T ;L2(a, b))
such that

(94)

∫ T

0

∫ b

a

u(t, x)F (t, x)dx dt =

∫ b

a

u0(x)ϕ(0, x)dx + ε

∫ T

0

g(t)ϕx(t, a)dt

for every test function F ∈ L2(0, T ;L2(a, b)) and associated ϕ satisfying

(95)

⎧⎨
⎩
−ϕt − εϕxx −W (t, x)ϕx = F (t, x) in (0, T )× (a, b),
ϕ|x=a = 0, ϕ|x=b = 0 in (0, T ),
ϕ|t=T = 0 in (a, b)

in the classical sense. Moreover, there exists C = C(T, ‖W‖L∞L∞ , ‖Wx‖L1L∞) > 0
independent of ε such that

(96) ‖u‖L2(0,T ;L2(a,b)) ≤ C√
ε

(‖g‖L2(0,T ) + ‖u0‖L2(a,b)

)
.

The solution u is called the transposition solution of (93). Note that u is in
particular a solution of the first equation of (93) in the sense of distributions.

Proof. First notice that for anyW ∈ L∞(0, T ;L∞(a, b))∩L1(0, T ;W 1,∞(a, b)) and
F ∈ L2(0, T ;L2(a, b)), the backward problem (95) is well-posed in the classical sense
and a regularity estimate for its solution ϕ ∈ H1(0, T ;L2(a, b))∩L2(0, T ;H2∩H1

0 (a, b))
is given in Lemma A.4 below.

We now remark that, given u0 ∈ L2(a, b) and g ∈ L2(0, T ), the mapping

l : F →
∫ b

a

u0(x)ϕ(0, x)dx + ε

∫ T

0

g(t)ϕx(t, a)dt

is linear. Furthermore, we have, using (97) below,

|l(F )| ≤ ‖u0‖L2(a,b)‖ϕ(0, ·)‖L2(a,b) + ε‖g‖L2(0,T )‖ϕx(·, a)‖L2(0,T )

≤ ‖u0‖L2(a,b)‖ϕ‖H1(0,T ;L2(a,b)) + ε‖g‖L2(0,T )‖ϕ‖L2(0,T ;H2(a,b))

≤ C√
ε

(‖u0‖L2(a,b) + ‖g‖L2(0,T )

) ‖F‖L2L2 .

As a consequence l is a continuous linear form on L2L2, and the Riesz representation
theorem gives the existence of a unique u ∈ L2L2 satisfying (94) for every F ∈ L2L2.
In addition, we have

‖u‖L2L2 ≤ C√
ε

(‖u0‖L2(a,b) + ‖g‖L2(0,T )

)
,

and the lemma is proved.
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Note that refining our estimates, we could have proved that u ∈ L2(0, T ;H
1
2−δ(a, b))

for any δ > 0 (which we do not need here).
Lemma A.4. Suppose that W ∈ L∞(0, T ;L∞(a, b)) ∩ L1(0, T ;W 1,∞(a, b)), F ∈

L2(0, T ;L2(a, b)), and ϕ is a solution of the backward problem (95). Then ϕ ∈
L∞(0, T ;H1

0) ∩ L2(0, T ;H2 ∩ H1
0 ) ∩ H1(0, T ;L2), and we have for some C = C(T,

‖W‖L∞L∞ , ‖Wx‖L1L∞), independent of ε,

(97) ε2‖ϕ‖2L∞(0,T ;H1
0 )

+ ε3‖ϕ‖2L2(0,T ;H2∩H1
0 )

+ ε‖ϕt‖2L2(0,T ;L2) ≤ C‖F‖2L2(0,T ;L2).

Proof. Multiplying the first line of (95) by ϕ and integrating on (a, b) yields

−1

2

d

dt
‖ϕ(t, ·)‖2L2 + ε‖ϕx(t, ·)‖2L2 −

∫ b

a

W (t, x)

(
ϕ(t, x)2

2

)
x

dx =

∫ b

a

F (t, x)ϕ(t, x) dx,

which, after an integration by parts, gives the estimate

−1

2

d

dt
‖ϕ(t, ·)‖2L2 + ε‖ϕx(t, ·)‖2L2 ≤ 1

2
‖F (t, ·)‖2L2 +

1

2
‖ϕ(t, ·)‖2L2(98)

+ ‖Wx(t, ·)‖L∞‖ϕ(t, ·)‖2L2 .

Forgetting the term ε‖ϕx(t, ·)‖2L2 and applying Gronwall’s lemma backward in time
yields

(99) ‖ϕ‖2L∞(0,T ;L2) ≤
1

2
exp

(
‖Wx‖L1(0,T ;L∞) +

T

2

)
‖F (t, ·)‖2L2(0,T ;L2)

since ϕ|t=T = 0. Now integrating (98) on (0, T ) and using (99), we obtain

(100) ε‖ϕx‖2L2(0,T ;L2)

≤
[
1

2
+

(
T

4
+

‖Wx‖L1(0,T ;L∞)

2

)
exp

(
‖Wx‖L1(0,T ;L∞) +

T

2

)]
‖F‖2L2(0,T ;L2).

Next, we write the first equation of (95) as

−ϕt − εϕxx =Wϕx + F,

where the right-hand side is in L2(0, T ;L2(a, b)) since W ∈ L∞(0, T ;L∞(a, b)) and
ϕx ∈ L2(0, T ;L2(a, b)). The regularity estimate (91) of Lemma A.2 for the heat equa-
tion (taken backward in time) for m = 1 directly yields estimate (97) and concludes
the proof of the lemma.
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