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Abstract This work is devoted to the analysis of the linear Boltzmann equation on
the torus, in the presence of a force deriving from a potential. The collision operator
is allowed to be degenerate in the following two senses: (1) the associated collision
kernel may vanish in a large subset of the phase space; (2) we do not assume that it is
bounded below by a Maxwellian at infinity in velocity. We study how the association
of transport and collision phenomena can lead to convergence to equilibrium, using
concepts and ideas from control theory. We prove two main classes of results. On the
one hand, we show that convergence towards an equilibrium is equivalent to an almost
everywhere geometric control condition. The equilibria (which are not necessarily
Maxwellians with our general assumptions on the collision kernel) are described in
terms of the equivalence classes of an appropriate equivalence relation involving trans-
port and collisions. On the other hand, we characterize the exponential convergence
to equilibrium in terms of the Lebeau constant, which involves some averages of the
collision frequency along the flow of the transport. We also explain how to handle the
case of linear Boltzmann equations posed on the phase space associated to a compact
Riemannian manifold without boundary.
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1 Introduction

This paper is concerned with the study of the linear Boltzmann equation

∂t f +v · ∇x f −∇x V · ∇v f =
∫
Rd

[
k(x, v′, v) f (v′)− k(x, v, v′) f (v)

]
dv′, (1.1)

for x ∈ T
d , v ∈ R

d , d ∈ N
∗, where T

d := R
d/Zd is the flat torus. The linear

Boltzmann equation is a classical model of statistical physics, allowing to describe the
interaction between particles and a fixed background [11–13]. Among many possible
applications, we mention the modeling of semi-conductors, cometary flows, or neutron
transport. We refer the reader interested by further physical considerations or by a
discussion of the validity of (1.1) in these contexts to [11, Chapter IV, §3] or [12,
Chapter I, §5]. We also point out that this equation can be derived in various settings:
see for instance [21] in the context of quantum scattering, or [9] in the context of a
gas of interacting particles.

In (1.1), the unknown function f = f (t, x, v) is the so-called distribution function;
the quantity f (t, x, v) dvdx can be understood as the (non-negative) density at time
t of particles whose position is close to x and velocity close to v. The function V is a
potential which drives the dynamics of particles; we shall assume throughout this work
that V is smooth, more precisely that V ∈ W 2,∞(Td). We normalize the potential so
that

∫
Td

e−V dx = 1.
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This may always be assumed by changing the potential V (which only appears in (1.1)
through ∇x V ) into V + log

(∫
Td e−V dx

)
. The linear Boltzmann equation (1.1) is a

typical example of a so-called hypocoercive equation, in the sense of Villani [42]. It is
made of a conservative part, namely the kinetic transport operator v · ∇x −∇x V · ∇v
associated to the hamiltonian H(x, v) = 1

2 |v|2 + V (x), and a degenerate dissipative
part which is the collision operator (i.e. the right hand-side of (1.1)). According to
the hypocoercivity mechanism of [42], only the interaction between the two parts can
lead to convergence to some global equilibrium.

The function k is the so-called collision kernel, which describes the interaction
between the particles and the background. In the following, we shall denote by C ( f )
the collision operator, which can be split as

C ( f )(x, v) = C+( f )(x, v)+ C−( f )(x, v),

where

C+( f )(x, v) =
∫
Rd

k(x, v′, v) f (v′) dv′,

C−( f )(x, v) = −
(∫

Rd
k(x, v, v′) dv′

)
f (v)

are respectively the gain and the loss term. A first property of this operator is that, due
to symmetry reasons, the formal identity holds:

for all x ∈ T
d ,

∫
Rd

∫
Rd

[
k(x, v′, v) f (v′)− k(x, v, v′) f (v)

]
dv′ dv = 0. (1.2)

This, together with the fact that the vector field v · ∇x −∇x V · ∇v is divergence free,
implies that the mass is conserved: any solution f of (1.1) satisfies

for all t ≥ 0,
d

dt

∫
Td×Rd

f (t, x, v) dvdx = 0. (1.3)

We shall now list the assumptions we make on the collision kernel k.
A1. The collision kernel k belongs to the class C0(Td ×R

d ×R
d) and is nonnegative.

A2. Introducing the Maxwellian distribution

M(v) := 1

(2π)d/2
e−

|v|2
2 ,

we assume that M cancels the collision operator, that is

for all (x, v) ∈ T
d × R

d ,

∫
Rd

[
k(x, v′, v)M(v′)− k(x, v, v′)M(v)

]
dv′ =0.

(1.4)
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A3. Assume that

x �→
∫
Rd×Rd

k2(x, v′, v)M(v′)
M(v)

dv′dv ∈ L∞(Td).

It will sometimes be convenient to work with the function

k̃(x, v′, v) := k(x, v′, v)
M(v)

. (1.5)

With this notation, Assumptions A2 and A3 may be rephrased in a more symmetric
way as

for all (x, v) ∈ T
d × R

d ,

∫
Rd

k̃(x, v′, v)M(v′) dv′ =
∫
Rd

k̃(x, v, v′)M(v′) dv′;

x �→
∫
Rd×Rd

k̃2(x, v′, v)M(v′)M(v) dv′dv ∈ L∞(Td).

Note that with assumption A2, the function (x, v) �→ M(v)e−V (x) = 1
(2π)d/2

e−H(x,v), which we shall call the Maxwellian equilibrium, cancels both the transport
operator and the collision operator and thus is a stationary solution of (1.1).

Assumption A3 is a mild growth condition that is in particular satisfied in the
standard cases where k̃ is bounded or has a polynomial growth in the variables v and
v′. One of its interests is that the gain operator C+ is then a bounded operator in the
functional spaces under interest (see Section 4.1). In particular, this assumption will
allow to prove well-posedness on appropriate weighted Lebesgue spaces and to justify
the associated dissipation identity.

Assumption A3 is satisfied by kernels k(x, v, v′) = k̃(x, v, v′)M(v′) for instance
as soon as we have a bound of the form

k̃(x, v, v′) ≤ λeε1|v|2+ε2|v′|2 , with ε1 <
1

4
, ε2 <

1

4
.

Before going any further, let us present usual classes of examples of collision kernels
covered by Assumptions A1–A3 and addressed in the present article.
E1. “Symmetric” collision kernels. Let k be a collision kernel verifying A1 and
A3. We moreover require k̃ to be symmetric with respect to v and v′, i.e. k̃(x, v, v′) =
k̃(x, v′, v) for all (x, v, v′) ∈ T

d × R
d × R

d . Notice that for these kernels, A2 is
automatically satisfied.

A classical example of such a kernel is the following.
E1’. Linear relaxation kernel. Taking k(x, v, v′) = σ(x)M(v′), with σ ≥ 0, not
identically vanishing and σ ∈ C0(Td) provides the simplest example of kernel in the
class E1. This corresponds to the following equation (often called linearized BGK):

∂t f + v · ∇x f −∇x V · ∇v f = σ(x)
((∫

Rd
f dv

)
M(v)− f

)
.
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This example also belongs to the following class.
E2. “Factorized” collision kernels Let k be a collision kernel verifying A1–A3. We
require k to be of the form

k(x, v, v′) = σ(x)k∗(x, v, v′),

with σ ∈ C0(Td), σ ≥ 0, not identically vanishing and k∗ ∈ C0(Td × R
d × R

d),
satisfying for some λ > 0, for all x ∈ T

d , v, v′ ∈ R
d ,

k∗(x, v′, v)
M(v)

+ k∗(x, v, v′)
M(v′)

≥ λ.

The sub-class of E2 which is the most studied in the literature (see e.g. [20]) consists
in the following non-degenerate case.
E2’. Non-degenerate collision kernels. Let k be a collision kernel verifying A1–A3.
The classical non-degeneracy condition consists in assuming that there exists λ > 0
such that for all x ∈ T

d , v, v′ ∈ R
d

k(x, v′, v)
M(v)

+ k(x, v, v′)
M(v′)

= k̃(x, v′, v)+ k̃(x, v, v′) ≥ λ.

Later in the paper (see Section 6), we will introduce other classes of collision
kernels, that are interesting for our purposes.

Under assumptions A1-A3, the linear Boltzmann equation (1.1) is well-posed in
appropriate Lebesgue spaces and some weighted L2 norm of its solutions, that is the
quantity

∫
Td×Rd

| f (t, x, v)|2 eV (x)

M(v)
dv dx,

is dissipated (i.e. decreasing with respect to time, see Lemma 4.1).
This work aims at describing the large time behavior of solutions of (1.1), under

assumptions A1–A3. This large framework aims at encompassing collision kernels k
which are degenerate in the following two senses:

• the collision kernel k may vanish in a large subset of the phase space T
d × R

d ;
• we do not assume that k̃ is bounded below by a fixed positive constant at infinity

in velocity.

However, still in the spirit of Villani’s hypocercivity, one may hope that the transport
term in (1.1) compensates for this strong degeneracy. Our goal is to find geometric
criteria (on the hamiltonian H and the collision kernel k) to:

• P1 characterize convergence to a global equilibrium,
• P1’ characterize exponential convergence to this global equilibrium.

The study of these questions naturally leads to another problem:

123
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• P2 describe the structure and the localization properties of the spectrum of the
underlying linear Boltzmann operator.

In recent works [4–6,16], Bernard, Desvillettes and Salvarani investigated P1 and
P1’ in a framework close to that of E2. In particular, in [5], the authors have shown that
in the case where V = 0, (x, v) ∈ T

d × S
d−1, and k∗(x, v, v′) = k∗(v, v′) (where k∗

is defined in E2), the exponential convergence to equilibrium (in the Lebesgue space
L1) was equivalent to a geometric control condition (similar to that of Bardos-Lebeau-
Rauch-Taylor in control theory [3,37]).

Previous works on this topic, for the non-degenerate class of collision kernels E2’
include [33,38–41] (spectral approach), [10,17,20,35,42] (hypocoercivity methods),
[28] (Lie techniques), and references therein. There are also several related works
which concern the non-linear Boltzmann equation, but we do not mention them since
that equation is not studied in this paper.

In this article, we introduce another point of view on these questions (in particular
different from [4–6,16]), by implementing in this context different methods coming
from control theory. We borrow several ideas from the seminal paper of Lebeau [32],
which concerns the decay rates for the damped wave equation.

The goal of this paper is to give necessary and sufficient geometric conditions
ensuring P1 and P1’. We also show that the methods we develop here are sufficiently
robust to handle a general Riemannian setting.

In the companion paper [27], we shall explain how to adapt our methods for the case
of specular reflection in bounded domains. The related question P2 will be studied as
well in [26]. These results were announced in [25].

We now give a detailed overview of the main results of the present work.

2 Overview of the Paper

In this Section, we give an overview of the results contained in this paper. We state
our results on the torus, i.e. when the phase space is T

d × R
d , but they can all be

generalized to Riemannian manifolds (see Sections 9 and 10).

2.1 Some Definitions

In this section, we introduce the notions needed to characterize convergence and
exponential convergence to equilibrium. Given a collision kernel k satisfying Assump-
tions A1–A3, we first introduce the set ω where the collisions are effective.

Definition 2.1 Define the open set of Td × R
d

ω :=
{
(x, v) ∈ T

d × R
d ,

∫
Rd

k(x, v, v′) dv′ > 0

}
. (2.1)
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Note that because of A1–A2, we also have

ω =
{
(x, v) ∈ T

d × R
d , ∃v′ ∈ R

d , k(x, v, v′) > 0
}

=
{
(x, v) ∈ T

d × R
d , ∃v′ ∈ R

d , k(x, v′, v) > 0
}
.

(2.2)

Let us recall the definition of the hamiltonian flow associated to H , and associated
characteristic curves (or characteristics) in the present setting.

Definition 2.2 The hamiltonian flow (φt )t∈R associated to H(x, v) = |v|2
2 + V (x)

is the one parameter group of diffeomorphisms on T
d × R

d defined by φt (x, v) :=
(Xt (x, v), 	t (x, v)) with (x, v) ∈ T

d × R
d and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dXt (x, v)

dt
= 	t (x, v),

d	t (x, v)

dt
= −∇x V (Xt (x, v)),

Xt=0 = x, 	t=0 = v.

(2.3)

The characteristic curve stemming from (x, v) ∈ T
d × R

d is the curve {φt (x, v), t ∈
R
+}.
Recall that throughout the paper, we assume that V ∈ W 2,∞(Td), so that the

Cauchy-Lipshitz theorem ensures the local existence and uniqueness of the solutions
of (2.3). Global existence follows from the fact that H is preserved along any char-
acteristic curve. Note in particular that each energy level {H = R} is compact (V
being continuous on T

d , it is bounded from below). Hence, each characteristic curve
is contained in a compact set of Td × R

d .
The notions needed to understand the interaction between collisions and trans-

port are of two different nature. We start by expressing purely geometric definitions.
Then, we formulate structural-geometric definitions. We finally introduce the weighted
Lebesgue spaces used in this paper, as well as a definition of a unique continuation
type property.

2.1.1 Geometric Definitions

We start by introducing the following definitions:

• The Geometric Control Condition of [3,37], in Definition 2.3,
• The Lebeau constants of [32], C−(∞) and C+(∞), in Definition 2.4,
• The almost everywhere in infinite time Geometric Control Condition, in Defini-

tion 2.5.

Let us first recall the Geometric Control Condition, which is a classical notion
in the context of control theory. It is due to Rauch-Taylor [37] and Bardos-Lebeau-
Rauch [3].
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3 Page 8 of 84 D. Han-Kwan, M. Léautaud

Definition 2.3 Let U be an open subset of Td × R
d and T > 0. We say that (U, T )

satisfies the Geometric Control Condition (GCC) with respect to the hamiltonian

H(x, v) = |v|2
2 + V (x) if for any (x, v) ∈ T

d × R
d , there exists t ∈ [0, T ] such that

φt (x, v) = (Xt (x, v),	t (x, v)) ∈ U .
We shall say that U satisfies the Geometric Control Condition with respect to the

hamiltonian H(x, v) = |v|2
2 + V (x) if there exists T > 0 such that the couple (U, T )

does.

We now define two important constants in view of the study of the large time behav-
ior of the linear Boltzmann equation, which involve averages of the damping function
(usually called collision frequency in kinetic theory) b(x, v) := ∫

Rd k(x, v, v′) dv′
along the flow φt .

Definition 2.4 Define the Lebeau constants ([32]) in R
+ ∪ {+∞} by

C−(∞) := sup
T∈R+

C−(T ),

C−(T ) = inf
(x,v)∈Td×Rd

1

T

∫ T

0

(∫
Rd

k(φt (x, v), v
′) dv′

)
dt, (2.4)

C+(∞) := inf
T∈R+

C+(T ),

C+(T ) = sup
(x,v)∈Td×Rd

1

T

∫ T

0

(∫
Rd

k(φt (x, v), v
′) dv′

)
dt, (2.5)

where φt denotes the hamiltonian flow of Definition 2.2.

It is not clear at first sight that C−(∞) and C+(∞) are well defined: see [32] and
the beginning of Section 7 for a short explanation. It turns out that only C−(∞) will
be useful in this paper (but C+(∞) will be interesting in the companion paper [26]).

Finally, we introduce a weaker version of the Geometric Control Condition, which
will also plays an important role in this work.

Definition 2.5 Let U be an open subset of T
d × R

d . We say that U satisfies the
almost everywhere infinite time (a.e.i.t.) Geometric Control Condition with respect

to the hamiltonian H(x, v) = |v|2
2 + V (x) if for almost every (x, v) ∈ T

d × R
d ,

there exists s ≥ 0 such that the characteristics (Xt (x, v), 	t (x, v))t≥0 associated to
H satisfy (Xt=s, 	t=s) ∈ U .

Using this terminology, the usual Geometric Control Condition of Definition 2.3
could be called “everywhere finite time” GCC.

Remark 2.1 We have the following characterization of the different geometric prop-
erties introduced here.

• The couple (U, T ) satisfies GCC if and only if
⋃

s∈(0,T ) φ−s(U ) = T
d × R

d .
• The set U satisfies the a.e.i.t. GCC if and only if there exists N ⊂ T

d × R
d with

zero Lebesgue measure such that
⋃

s∈R+ φ−s(U )∪N = T
d ×R

d . Note that this
implies in particular that N is a closed subset of Td ×R

d satisfying φs(N ) ⊂ N
for all s ≥ 0.
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2.1.2 Structural-Geometric Definitions

In the sequel, the above geometric definitions are used with U = ω. They hence
involve joint properties of the flow φt together with the open set ω, i.e. of the damping
function b = ∫

Rd k(·, ·, v′) dv′. As such, they do not take into account the fine structure
of the Boltzmann operator, and in particular the non-local property with respect to the
velocity variable of the gain operator f �→ ((x, v) �→ ∫

Rd k(x, v′, v) f (x, v′) dv′
)
.

The next definitions aim at describing how the information may travel between the
different connected components of ω. Let us first define two basic binary relations on
the open sets of Td × R

d .

Definition 2.6 Let U1 and U2 be two open subsets of Td ×R
d . We say that U1 Rφ U2

if there exist s ∈ R such that φs(U1) ∩U2 �= ∅.

Definition 2.7 Let U1 and U2 be two open subsets of Td ×R
d . We say that U1 Rk U2

if there exist (x, v1, v2) ∈ T
d × R

d × R
d with (x, v1) ∈ U1, (x, v2) ∈ U2 such that

k(x, v1, v2) > 0 or k(x, v2, v1) > 0.

Both relations are symmetric and Rφ is moreover reflexive. When restricted to
open sets intersecting ω, the relation Rk also becomes reflexive. The relation Rφ
expresses the fact that the open sets are “connected through” the flow φs , whereas the
relation Rk means that the open sets are “connected through” a collision.

We also define another convenient x-dependent binary relation.

Definition 2.8 Let x ∈ T
d and O1 and O2 be two open subsets of Rd . We say that

O1 Rx
k O2 if there exists (v1, v2) ∈ R

d × R
d with v1 ∈ O1, v2 ∈ O2 such that

k(x, v1, v2) > 0 or k(x, v2, v1) > 0.

Given now an open subset U of Td ×R
d , we define U (x) = {v ∈ R

d , (x, v) ∈ U }.
With this notation, notice that U1 Rk U2 if and only if there exists x ∈ T

d such that
U1(x)Rx

k U2(x).
Given U an open set of Td × R

d , we denote by CC(U ) the set of connected com-
ponents of U . Note that from the separability of Td ×R

d , it follows that for any open
set U ⊂ T

d × R
d , the cardinality of the set CC(U ) is at most countable.

In the sequel, the main open sets U we are interested in are ω and
⋃

s∈R+ φ−s(ω).
We now define the key equivalence relation on CC(ω).
Definition 2.9 Givenω1 andω2 two connected components ofω, we say thatω1 � ω2
if there are N ∈ N

∗ and N connected components (ω(i))1≤i≤N of ω such that

• we have ω1 Rφ ω(1) or ω1 Rk ω
(1),

• for all 1 ≤ i ≤ N − 1, we have ω(i)Rφ ω(i+1) or ω(i)Rk ω
(i+1),

• we have ω(N )Rφ ω2 or ω(N )Rk ω2.

The relation � is an equivalence relation on the set CC(ω) of connected components
of ω. For ω1 ∈ CC(ω), we denote its equivalence class for � by [ω1].

This definition means that the two connected components ω1 and ω2 are linked by
Rφ or Rk through a chain of connected components of ω.

Remark 2.2 We will introduce later in Section 3.2 a related equivalence relation on
CC (⋃t≥0 φ−tω

)
.
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2.1.3 Weighted Lebesgue Spaces and a Unique Continuation Type Property

Let us now introduce the weighted Lebesgue spaces that will be used throughout this
paper.

Definition 2.10 (Weighted L p spaces). We define the Banach spaces Lp(Td × R
d)

(for p ∈ [1,+∞)) and L∞(Td × R
d) by

Lp(Td × R
d) :=

{
f ∈ L1

loc(T
d × R

d),

∫
Td×Rd

| f |p eV

M(v)
dv dx < +∞

}
,

‖ f ‖Lp =
(∫

Td×Rd
| f |p eV

M(v)
dv dx

)1/p

.

L∞(Td × R
d) :=

{
f ∈ L1

loc(T
d × R

d), sup
Td×Rd

| f | eV

M(v)
< +∞

}
,

‖ f ‖L∞ = sup
Td×Rd

| f | eV

M(v)
.

The space L2 is a (real) Hilbert space endowed with the inner product

〈 f, g〉L2 :=
∫
Td×Rd

eV
f g

M(v)
dv dx .

We finally define a Unique Continuation Property for (1.1).

Definition 2.11 We say that the set ω satisfies the Unique Continuation Property if
the only solution f ∈ C0

t (L2) to

{
∂t f + v · ∇x f −∇x V · ∇v f = 0,
C ( f ) = 0,

(2.6)

is f = (∫
Td×Rd f dv dx

)
e−VM.

It is actually possible to reformulate in a more explicit form the second equation
in (2.6), involving the value of f on connected components of ω (see Remark 4.1).

2.2 Convergence to Equilibrium

Recall that the main goal of this paper is to provide necessary and sufficient geometric
conditions to ensure P1 and P1’. Our results can be formulated as follows.

We first give a general characterization of convergence to some equilibrium.

Theorem 2.1 The following statements are equivalent.

(1) The set ω satisfies the a.e.i.t. GCC with respect to H.
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(2) For all f0 ∈ L2, there exists a stationary solution P f0 of (1.1) such that

‖ f (t)− P f0‖L2 →t→+∞ 0,

where f (t) is the solution of (1.1) with initial datum f0.

Theorem 2.1 is actually a weak version of Theorem 5.1, which is our main result in
this direction. If (1) or (2) holds, we can actually describe precisely the stationary
solution P f0. Note that this description is a key step of the proof of Theorem 5.1 (and
thus, that of Theorem 2.1). It involves the equivalence classes of another equivalence
relation, which is related to � (see Definition 3.1 and Lemma 3.1): we refer to the
statement of Theorem 5.1. In particular, in several cases, the stationary solution P f0
is not the Maxwellian equilibrium

(∫
Td×Rd

f0 dv dx

)
e−V (x)M(v). (2.7)

As a matter of fact, we will see that the dimension of the vector space of stationary
solutions is equal to the number of equivalence classes for �. An explicit example of
linear Boltzmann equation with several equivalence classes for � (and thus, for which
P f0 is not given by (2.7)) is exhibited in Section 6.2.

Among all possible stationary solutions of the linear Boltzmann equation, the
Maxwellian equilibrium (2.7) of course particularly stands out. In the next theorem
(which is actually also a particular case of Theorem 5.1), we characterize the situation
for which the stationary solution ultimately reached is precisely the projection to the
Maxwellian.

Theorem 2.2 The following statements are equivalent.

(i.) The set ω satisfies the Unique Continuation Property.
(ii.) The set ω satisfies the a.e.i.t. GCC and there exists one and only one equivalence

class for �.
(iii.) For all f0 ∈ L2(Td×R

d), denote by f (t) the unique solution to (1.1) with initial
datum f0. We have

∥∥∥∥ f (t)−
(∫

Td×Rd
f0 dv dx

)
e−V (x)M

∥∥∥∥L2
→t→+∞ 0. (2.8)

As already mentioned in the introduction, our proofs are inspired by ideas which
originate from control theory. For the sake of brevity, we shall not give a detailed
explanation of the proof of these results in this introduction. Nevertheless, we would
like to comment on an important aspect of the proof of (i.) implies (i i i.) in Theorem 2.2.
Our approach is based on the fact that the square of the L2 norm of a solution f (t)
of (1.1), which we shall sometimes refer to as the energy, is damped via an explicit
dissipation identity, see Lemma 4.1:

for all t ≥ 0,
d

dt
‖ f (t)‖2

L2 = −D( f ), (2.9)
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with D( f ) ≥ 0, which we shall call the dissipation term.
The idea of the proof is to assume by contradiction that there exists an initial

condition g0 in L2, with zero mean, such that the associated solution g(t) to (1.1) does
not decay to 0. This yields the existence of ε > 0 and of a sequence of times (tn)n≥0
going to +∞ such that ‖g(tn)‖L2 ≥ ε.

We then study the sequence of shifted functions hn(t) := g(t + tn). This is the
core of our analysis, which basically consists in a uniqueness-compactness argument.
We study the weak limit of hn and show, using the identity (2.9) and the unique
continuation property, that it is necessarily trivial. Then, we consider the associated
sequence of defect measures and prove that it is also necessarily trivial, yielding a
contradiction.

A difficulty in the analysis comes from the fact that in general, the dissipation
term does not control neither the L2 distance to the projection on the set of stationary
solutions, nor the L2 norm of the collision operator. However, what holds true is the
weak coercivity property

for f ∈ L2, D( f ) = 0 �⇒ C ( f ) = 0, (2.10)

see Lemma 4.5. This turns out to be sufficient for our needs. Denoting by

A := T − C (2.11)

the linear Boltzmann operator, where T f = (v ·∇x−∇x V ·∇v) f andC is the collision
operator, the property (2.10) together with the skew-adjointness of T then implies that
Ker(A) = Ker(T ) ∩ Ker(C ). This precise structure, together with the equivalence
relation �, allows to identify Ker(A), i.e. the space of stationary solutions of (1.1).

Besides, when studying defect measures, the analysis relies on another peculiar
structure of (1.1), which is, loosely speaking, made of a propagative and dissipative
part (transport and the loss term) and a relatively compact part (the gain term). That
the gain term is relatively compact is proved via averaging lemmas (see Appendix 2
and the references therein).

2.3 Exponential Convergence to Equilibrium

For what concerns exponential convergence, we need to introduce a technical assump-
tion, which implies an additional mild growth condition on the kernel k at infinity,
with respect to A3:
A3’. Assume that there exists a continuous function ϕ(x, v) := � ◦ H(x, v) with
� : R→ [1,+∞), such that for all (x, v) ∈ T

d × R
d , we have

∫
Rd

k(x, v, v′) dv′ ≤ ϕ(x, v),
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and

sup
x∈Td

∫
Rd×Rd

k2(x, v′, v)M(v′)
M(v)

(
ϕ(x, v)

ϕ(x, v′)
− 1

)2

dvdv′ < +∞.

As for A3, this assumption is satisfied in the standard case where k̃ has a polynomial
growth in the variables v and v′. Once A3 is assumed, it can be rephrased as

∫
Rd

k(x, v, v′) dv′ ≤ ϕ(x, v),

sup
x∈Td

∫
Rd×Rd

k2(x, v′, v)M(v′)
M(v)

ϕ(x, v)2

ϕ(x, v′)2
dvdv′ < +∞.

The assumption is satisfied by kernels k(x, v, v′) = k̃(x, v, v′)M(v′) for instance as
soon as we have a bound of the form

k̃(x, v, v′) ≤ λeε1|v|2+ε2|v′|2 , with ε1 + ε2 <
1

4
, λ > 0,

with ϕ = � ◦ H and �(t) = Ce2 max{ε1,0}t , C large enough. Furthermore, for some
C0,C1 > 0, we have C0emax{ε1,0}|v|2 ≤ ϕ(x, v) ≤ C1emax{ε1,0}|v|2 . Of course, in the
case ε1 + ε2 = 1

4 , this can be refined with a polynomial correction.
We have the following criterion, assuming that A3’ is satisfied in addition to A1–A3.

Theorem 2.3 (Exponential convergence to equilibrium). Assume that the collision
kernel satisfies A3’. The following statements are equivalent:

(a.) C−(∞) > 0.
(b.) There exist C > 0, γ > 0 such that for any f0 ∈ L2(Td × R

d), the unique
solution to (1.1) with initial datum f0 satisfies for all t ≥ 0,

∥∥∥∥ f (t)−
(∫

Td×Rd
f0 dv dx

)
e−V (x)M

∥∥∥∥L2

≤ Ce−γ t
∥∥∥∥ f0 −

(∫
Td×Rd

f0 dv dx

)
e−V (x)M

∥∥∥∥L2
. (2.12)

(c.) There exists C > 0, γ > 0 such that for any f0 ∈ L2(Td × R
d), there exists a

stationary solution P f0 of (1.1) such that the unique solution to (1.1) with initial
datum f0 satisfies for all t ≥ 0,

‖ f (t)− P f0‖L2 ≤ Ce−γ t ‖ f0 − P f0‖L2 . (2.13)

Remark 2.3 If we do not assume that A3’ is satisfied, then we still have that (a.) implies
(b.) and (c.).
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If C−(∞) > 0, note in particular that the Geometric Control Condition of Defini-
tion 2.3 is satisfied.

One interesting consequence of Theorem 2.3 is a rigidity property of the Maxwellian
equilibrium with respect to exponential convergence: loosely speaking, given a linear
Boltzmann equation with a collision kernel satisfying A1-A2-A3-A3’, if uniform con-
vergence to (some) equilibrium holds, then the stationary solution ultimately reached
is necessarily the projection of the initial datum on the Maxwellian equilibrium.

The assumption A3’ is used in the proof of (b.) �⇒ (a.) to solve an issue due to the
combined effect of the nonlocality of the operator C+ (which, from small velocities,
can instantaneously create arbitrary large ones), together with the unboundedness of
the multiplication operator C− (still for large velocities).

As an immediate consequence of Theorem 2.3, we deduce the following result.

Corollary 2.1 Assume that there is x ∈ T
d such that ∇x V (x) = 0 and∫

k(x, 0, v′) dv′ = 0. Then C−(∞) = 0 and there is no uniform exponential rate
of convergence to equilibrium.

In particular we get in the free transport case:

Corollary 2.2 Assume that V = 0 and that px (ω) �= T
d , where

px (ω) = {x ∈ T
d , there exists v ∈ R

d such that (x, v) ∈ ω} (2.14)

denotes the projection on the space of positions. Then there is no uniform exponential
rate of convergence to equilibrium.

The proof of Theorem 2.3 is as well inspired by ideas coming from control theory.
The proof of (a.) �⇒ (b.) relies on the following facts.

• By (2.9), the exponential decay (i.e. (i i.) in Theorem 2.3) can be rephrased as a
certain observability inequality relating the dissipation and the energy at time 0,
see Lemma 11.1: there exist K , T > 0 such that for all f0 ∈ L2(Td × R

d) with
zero mean, we have

K
∫ T

0
D( f ) dt ≥ ‖ f0‖2

L2 ,

where f is the solution of (1.1) with initial datum f0.
• This inequality is proved using a contradiction argument, following Lebeau [32],

which also consists in a uniqueness-compactness argument. The analysis follows
the same lines as those of (i.) implies (i i i.) in the proof of Theorem 2.2. In
particular, it also relies on the weak coercivity property (2.10). The main difference
is that we need to use here the fact that the Lebeau constant is positive in order to
show that the sequence of defect measures becomes trivial at the limit, yielding a
contradiction.

For what concerns (b.) �⇒ (a.), the idea is to contradict the observability
condition: we construct a sequence of initial conditions in L2(Td × R

d) for (1.1),
which concentrate to a trapped ray (whose existence is guaranteed by the cancellation
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of the Lebeau constant). Loosely speaking, this corresponds to a geometric optics
type construction. In order to justify this procedure, we need that the collision kernel
satisfies A3’. Finally, we mention that the proof of (c.) �⇒ (a.) is similar but relies
on an additional argument based on the precise version of Theorem 2.1.

Remarks 2.1 (1) As for the damped wave equation [3,31,32,37], the study of asymp-
totic decay rates relies on “phase space” analysis. However, as opposed to the wave
equation, the Boltzmann equation is directly set on the phase space. As a conse-
quence, the study of associated propagation and damping phenomena only uses
“local” analysis, whereas that of the wave equation (see [3,31,32,37]) requires
the use of microlocal analysis.

(2) One technical difficulty here is to handle the lack of compactness of the phase
space Td ×R

d in the variable v. It is also possible to consider the equations on a
compact phase space. In this case, all our proofs apply, sometimes with significant
simplifications. We refer to Section 10.

2.4 Organization of the Paper

The main part of this paper is dedicated to the proof of Theorems 2.1, 2.2 and 2.3.
Before this, we start with two preliminary sections, namely Sections 3 and 4. In Sec-
tion 3, we provide several comments on the results, the assumptions, and illustrate
some geometric definitions; we also introduce another key equivalence relation used
in the main proofs. In Section 4, we then give some preliminaries in the analysis; in
Section 4.1, we start by proving the well-posedness of (1.1) and the associated dis-
sipation identity, while Section 4.2 is dedicated to a detailed study of the kernel of
the collision operator, which leads to the weak coercivity property (2.10). Section 5
is mainly devoted to the proofs of Theorems 2.2 and 2.1; in Section 5.1, we start by
proving Theorem 2.2. Then, in Section 5.2, we state and prove Theorem 5.1, which is
the precise version of Theorem 2.1. Section 6 is dedicated to the application of these
results to some particular classes of collision kernels. In Section 7, we prove Theo-
rem 2.3. In Section 8, we briefly revisit the recent work of Bernard and Salvarani [4]
in our framework, in order to give some abstract lower bounds on the convergence rate
when C−(∞) = 0. Finally, we adapt our analysis in order to handle other geomet-
ric situations. In Section 9, we deal with the case of a general compact Riemannian
manifold (without boundary): we first explain how to express the linear Boltzmann
equation in this setting and generalize Theorems 5.1 and 2.3 to this context. Also,
in Section 10, we explain very shortly how to adapt all these results to the case of
compact phase spaces.

This paper ends with five appendices. In Appendix 1, we give the equivalence
between exponential decay and the observability inequality, used crucially in the proof
of Theorem 2.3. In Appendix 2 we give a reminder about classical averaging Lemmas
and adapt them to our purposes. In Appendix 3, we provide reformulations of some
geometric properties. In Appendix 4, we provide the proof of Proposition 3.2, which
relates the two equivalence relations, which are key notions in our analysis. In Appen-
dix 5, to stress the robustness of our methods, we explain how the results of this paper
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concerning large time behavior can be adapted to other Boltzmann-like equations (e.g.
relativistic Boltzmann equation or general linearized BGK equation).

Note added in proof After completion of this paper, we learnt about the work of
Mokhtar-Karroubi [34] who studied question P1’ in the case where V = 0, (x, v) ∈
T
d ×U , and U is a bounded open set of Rd ; he also introduced some quantities in his

analysis which are the same as the Lebeau constants.

3 Remarks and Examples

In this section, we provide several comments on the different geometric definitions
introduced in Sections 2.1.1 and 2.1.2.

3.1 About a.e.i.t. GCC in the Torus

A first natural question is to understand the a.e.i.t. GCC in the usual situation of free
transport (i.e. V = 0), when ω, i.e. the set where collisions are effective, is of the
simple form ωx × R

d . We prove that this condition is satisfied for any nonempty
ωx ⊂ T

d . We also prove that this situation is very particular, and unstable with respect
to small perturbations of the potential.

Proposition 3.1 Suppose that V = 0 and thatω = ωx×R
d , whereωx is a non-empty

open subset of Td . Then (i.)− (i i.)− (i i i.) in Theorem 2.2 hold.

Such a result is in particular relevant for the study of the linearized BGK equation
(class E1’). Proposition 3.1 shows that there is convergence to the Maxwellian equi-
librium (2.7) as soon as σ does not vanish identically.

On the other hand, ω being fixed, we give an example of dynamics (i.e. exhibit
a potential V ) for which the a.e.i.t. GCC fails. More precisely, we prove that this
property is very unstable with respect to small perturbations of the potential: for
ω = ωx ×R

d �= T
d ×R

d there exist arbitrary small potentials (in any Ck-norm) such
that ω does not satisfy a.e.i.t. GCC for the associated Hamiltonian. This illustrates the
fact that the dynamics associated to free transport in the torus is not generic.

Proposition 3.2 Assume that px (ω) �= T
d , where px (ω) denotes the projection of ω

on T
d defined in (2.14). Then there exists a potential V ∈ C∞(Td) such that for any

ε > 0, ω does not satisfy a.e.i.t. GCC for the Hamiltonian Hε(x, v) = |v|2
2 + εV (x).

The proof of Proposition 3.1 and Proposition 3.2 are given respectively in Sec-
tion 6.3 and Appendix 4.

3.2 The Equivalence Relation on CC (⋃
t≥0 φ−t(ω)

)

We define here another key equivalence relation∼ on the set of connected components
of
⋃

s∈R+ φ−s(ω). We then explain the link between the two equivalence relations ∼
on CC (⋃t≥0 φ−t (ω)

)
and � on CC(ω).
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Definition 3.1 Given 
1,
2 two connected components of
⋃

s∈R+ φ−s(ω), we say
that 
1 ∼ 
2 if there are N ∈ N and N connected components (
i )1≤i≤N of⋃

s∈R+ φ−s(ω) such that

• we have 
1 Rk 

(1),

• for all 1 ≤ i ≤ N − 1, we have 
(i)Rk 

(i+1),

• we have 
(N )Rk 
2.

The relation ∼ is an equivalence relation on the set of CC (⋃s∈R+ φ−s(ω)
)

of con-
nected components of

⋃
s∈R+ φ−s(ω). For 
1 ∈ CC (⋃s∈R+ φ−s(ω)

)
, we denote its

equivalence class for ∼ by [
1].
The following lemma gives the link between the two equivalence relations. We

define the function

� : CC(ω)→ CC
(⋃

s∈R+ φ−s(ω)
)

ω0 �→ 
0, such that ω0 ⊂ 
0.

The application � maps ω0 ∈ CC(ω) to the connected component 
0 of⋃
s∈R+ φ−s(ω) containing ω0.

Lemma 3.1 Given ω1, ω2 ∈ CC(ω), we have ω1 � ω2 if and only if �(ω1) ∼
�(ω2). As a consequence, � goes to the quotient defining a bijection �̃ between the
equivalence classes of � and ∼:

�̃ : CC(ω)/ � → CC
(⋃

s∈R+ φ−s(ω)
)
/ ∼ .

In particular, the numbers of equivalence classes for � in CC(ω) and for ∼ in

CC
(⋃

s∈R+ φ−s(ω)
)
are equal.

The proof of Lemma 3.1 is given in Appendix 3.1. As a consequence of this lemma,
all the results of this paper (together with their proofs) can be formulated with � or
with ∼ equivalently.

3.3 Comparing C−(∞) > 0 and GCC

The statement that C−(∞) > 0 is in general stronger than the fact that ω satisfies the

Geometric Control Condition with respect to the hamiltonian H(x, v) = |v|2
2 + V (x).

This is due to the the non-compactness of the phase space T
d × R

d .
Assume for instance that V = 0 so that φt (x, v) = (x + tv, v): the characteristic

curves are straight lines and the velocity component v is preserved by the flow. Take
k(x, v′, v) > 0 on the whole T

d × R
d × R

d . In this situation, ω = T
d × R

d and
so, it satisfies automatically GCC in any positive time. Assume further that k does
not depend on the space variable, i.e. k(x, v′, v) = k(v′, v) and that there exists a
sequence (vn) such that

∫
Rd k(vn, v′)dv′ → 0. Then, we have

(∫
Rd k(·, v′)dv′

) ◦
φt (x, v) =

∫
Rd k(v, v′)dv′ (as the flow preserves v) and hence, for any n ∈ N, we
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have C−(∞) ≤ ∫
Rd k(vn, v′)dv′. This yields C−(∞) = 0 although ω satisfies GCC.

As an explicit example, one can take k(x, v′, v) =M(v′)M(v)2.
Note finally that if

∫
Rd k(x, v, v′)dv′ is uniformly bounded from below at infinity

(i.e. there exists C, R > 0 such that
∫
Rd k(x, v, v′)dv′ ≥ C for all (x, v) ∈ T

d ×
B(0, R)c), then C−(∞) > 0 and GCC become equivalent.

The next paragraph shows that our assumption is indeed more general.

3.4 Example of Exponential Convergence Without a Bound from Below
at Infinity

Here, we produce a simple example of dynamics and collision kernel such that
C−(∞) > 0, but neither k̃ nor

∫
Rd k(x, v, v′)dv′ are uniformly bounded from below

at infinity.
For this, assume (x, v) ∈ T × R (we could construct similar examples in higher

dimensions as well) and take V = 0, so that φt (x, v) = (x + tv, v). We identify T to
[−1/2, 1/2) with periodic boundary conditions. Define α ∈ C0(T;R+) with support
contained in (−1/3, 1/3) and satisfying α = 1 on [−1/4, 1/4] and ψ ∈ C0(R;R+)
such that ψ(v) →|v|→+∞ 0, ψ > 0 and ψ = 1 on [−2, 2]. Consider the collision
kernel in the class E1

k(x, v, v′) = k̃(x, v, v′)M(v′), k̃(x, v, v′) = [α(x)+ ψ(v)ψ(v′)] .
We first readily check that k̃ > 0 on T×R×R and hence ω = T×R. We also remark
that for any R > 0,

inf
(x,v,v′)∈T×B(0,R)c×B(0,R)c

k̃(x, v, v′)=0, and inf
(x,v)∈T×B(0,R)c

∫
R

k(x, v, v′)dv′ =0.

Nevertheless, we can prove that C−(∞) ≥ C−(1) > 0, and thus, by Theo-
rem 2.3, there is exponential convergence to the Maxwellian equilibrium. We set
β := ∫

R
ψ(v′)M(v′) dv′ > 0 and take (x, v) ∈ T× R.

• Ifv ∈ [−2, 2], then we have k(φt (x, v), v′) = k(x+tv, v, v′) ≥ ψ(v)ψ(v′)M(v′)
so that

∫ 1

0

∫
R

k(φt (x, v), v
′) dv′ dt ≥ β

∫ 1

0
ψ(v) dt = β > 0.

• If v /∈ [−2, 2], then, denoting by �v� the integer part of v, we have

∫ 1

0

∫
R

k(φt (x, v), v
′) dv′ dt ≥

∫ 1

0
α(x + tv) dt ≥

∫ �v�
|v|

0
α(x + tv) dt

≥ 1

2

�v�
|v| ≥

1

4
.

This proves that C−(1) > 0 and thus C−(∞) > 0.
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4 Preliminary Results

4.1 Well-Posedness and Dissipation

For readability, we shall sometimes denote

C ( f ) := C ( f )(x, v) =
∫
Rd

[
k(x, v′, v) f (v′)− k(x, v, v′) f (v)

]
dv′.

The following dissipation identity holds for sufficiently smooth and decaying solu-
tions to (1.1).

Lemma 4.1 Let k be collision kernel satisfying A1–A3. Let f be a smooth and suffi-
ciently decaying (at infinity in the variable v) solution to (1.1). The following identity
holds, for all t ∈ R

+:

d

dt
‖ f (t)‖2

L2 = −D( f ), (4.1)

where D( f ) = −2〈C ( f ), f 〉L2 satisfies

D( f ) = 1

2

∫
Td

eV
∫
Rd

∫
Rd

(
k(x, v′, v)
M(v)

+ k(x, v, v′)
M(v′)

)
M(v)M(v′)

×
(

f (t, x, v)

M(v)
− f (t, x, v′)

M(v′)

)2

dv′ dv dx . (4.2)

The term D( f ) will often be referred to as the dissipation term in the following.
The proof is rather classical and follows [15].

Proof of Lemma 4.1 Multiply (1.1) by f eV

M(v)
and integrate with respect to x and v.

This yields

1

2

d

dt
‖ f (t)‖2

L2 +
∫
Td×Rd

(v · ∇x f −∇x V · ∇v f ) f eV

M(v)
dv dx

=
∫
Td

eV
∫
Rd

C ( f )
f

M dv dx .

On the one hand, the contribution of the transport term vanishes

∫
Td×Rd

(v · ∇x f −∇x V · ∇v f ) f eV

M(v)
dv dx

= 1

2

∫
Td×Rd

(v · ∇x − ∇x V · ∇v) | f |2 eV

M(v)
dv dx

= −1

2

∫
Td×Rd

| f |2 (v · ∇x −∇x V · ∇v) eV

M(v)
dv dx

= 0,

123



3 Page 20 of 84 D. Han-Kwan, M. Léautaud

since (v · ∇x −∇x V · ∇v) eV

M(v)
= 0. On the other hand, following [15], we have for

any x ∈ T
d the identity

∫
Rd

C ( f )(x, v)
f

M dv

=
∫
Rd

∫
Rd

[
k(x, v′, v) f (v′)− k(x, v, v′) f (v)

]
dv′ f (v)

M(v)
dv

=
∫
Rd

∫
Rd

k(x, v′, v) f (v′) f (v)

M(v)
dv′ dv −

∫
Rd

∫
Rd

k(x, v, v′) | f (v)|
2

M(v)
dv′ dv.

(4.3)

Symmetrizing the first term in the right hand-side of (4.3) yields

∫
Rd

∫
Rd

k(x, v′, v) f (v′) f (v)

M(v)
dv′ dv

= 1

2

∫
Rd

∫
Rd

k(x, v′, v) f (v′) f (v)

M(v)
dv′ dv

+1

2

∫
Rd

∫
Rd

k(x, v, v′) f (v) f (v′)
M(v′)

dv′ dv.

Concerning the second term in the right hand-side of (4.3), we use (1.4) to obtain

−
∫
Rd

∫
Rd

k(x, v, v′) | f (v)|
2

M(v)
dv′ dv

= −1

2

∫
Rd

∫
Rd

k(x, v, v′) | f (v)|
2

M(v)
dv′ dv

− 1

2

∫
Rd

∫
Rd

k(x, v, v′)M(v)
| f (v)|2
M(v)2

dv′ dv

= −1

2

∫
Rd

∫
Rd

k(x, v, v′) | f (v)|
2

M(v)
dv′ dv

− 1

2

∫
Rd

∫
Rd

k(x, v′, v)M(v′) | f (v)|
2

M(v)2
dv′ dv

= −1

4

∫
Rd

∫
Rd

k(x, v, v′) | f (v)|
2

M(v)
dv′ dv − 1

4

∫
Rd

∫
Rd

k(x, v′, v) | f (v
′)|2

M(v′)
dv′ dv

− 1

4

∫
Rd

∫
Rd

k(x, v′, v)M(v′) | f (v)|
2

M(v)2
dv′ dv

− 1

4

∫
Rd

∫
Rd

k(x, v, v′)M(v)
| f (v′)|2
M(v′)2

dv′ dv.

Combining the last two identities, we can now collect together the terms with
k(x, v′, v) (resp. k(x, v, v′)) and rewrite the right hand-side of (4.3) as a sum of two
squares. Namely, this provides
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∫
Rd

C ( f )(x, v)
f

M dv = −1

4

∫
Rd

∫
Rd

(
k(x, v′, v)
M(v)

+ k(x, v, v′)
M(v′)

)
M(v)M(v′)

×
(

f (v)

M(v)
− f (v′)

M(v′)

)2

dv′ dv.

This yields (4.1) and concludes the proof of the Lemma. ��
We have the following useful lemma for the dissipation functional D .

Lemma 4.2 Assume that (hn) is a sequence of measurable functions such that

sup
n

∫ T

0
D(hn(t)) dt < +∞, (4.4)

and such that hn ⇀ h in the sense of distributions. Then, we have

∫ T

0
D(h(t))dt ≤ lim inf

n→+∞

∫ T

0
D(hn(t))dt.

Proof of Lemma 4.2 We denote

dλ := 1[0,T ](t)
(
k(x, v′, v)
M(v)

+ k(x, v, v′)
M(v′)

)
M(v)M(v′)dvdv′dxdt.

Then, introducing

h̃n(t, x, v, v
′) := hn(t, x, v)

M(v)
− hn(t, x, v′)

M(v′)
,

we observe that ‖h̃n‖2
L2(dλ)

= ∫ T0 D(hn) dt and thus, by (4.4), we deduce that

h̃n(t, x, v, v′) is uniformly bounded in L2(dλ). Consequently, up to extracting a sub-
sequence, h̃n weakly converges in L2(dλ) to some function h̃. By uniqueness of the
limit in the sense of distributions, we have

h̃ = h(t, x, v)

M(v)
− h(t, x, v′)

M(v′)
.

Then, by (4.4) and weak lower semi-continuity, we deduce that for any T > 0, we
have

‖D(h)‖L1(0,T ) = ‖h̃‖2
L2(dλ) ≤ lim inf

n→+∞ ‖h̃n‖
2
L2(dλ) = lim inf

n→+∞ ‖D(hn)‖L1(0,T ) .

��
We can now state the main well-posedness result (which uses all assumptions A1-

A2-A3).
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Proposition 4.1 (Well-posedness of the linear Boltzmann equation). Assume that
f0 ∈ L2. Then there exists a unique solution f ∈ C0(R+;L2) of (1.1) satisfying
f |t=0 = f0. Moreover, the solution f satisfies

∫ +∞
0

D( f (s)) ds ≤ ‖ f0‖2
L2 < +∞,

∫ t

0

∫
Td×Rd

(∫
Rd

k(x, v, v′)dv′
) | f (s, x, v)|2eV (x)

M(v)
dv dx ds<+∞, for all t≥0,

and we have

for all 0 ≤ t ′ ≤ t, ‖ f (t)‖2
L2 − ‖ f (t ′)‖2

L2 = −
∫ t

t ′
D( f (s)) ds, (4.5)

where D( f ) is defined in (4.2). If moreover f0 ≥ 0 a.e., then for all t ∈ R we have
f (t, ·, ·) ≥ 0 a.e. (Maximum principle).

Note that in the case where
∫
Rd k(x, v, v′)dv′ is not a bounded function (in the

variable v ∈ R
d ), then this proposition in particular states a gain of integrability of

solutions of (1.1).
Let us start with a preliminary description of the operators (on the space L2) that

are involved. We write

(A0 f )(x, v) = (v · ∇x −∇x V · ∇v) f (x, v)+
(∫

Rd
k(x, v, v′) dv′

)
f (x, v),

(K f )(x, v) = −
∫
Rd

k(x, v′, v) f (x, v′) dv′,

A f = A0 f + K f.

The domain of A0 is given by

D(A0) =
{
f ∈ L2, (v · ∇x −∇x V · ∇v) f +

(∫
Rd

k(·, v′) dv′
)

f ∈ L2
}
.

The following lemma describes the very first properties enjoyed by functions of
D(A0).

Lemma 4.3 For all f ∈ D(A0), we have

∫
Td×Rd

(∫
Rd

k(x, v, v′) dv′
)
| f (x, v)|2 eV (x)

M(v)
dx dv ≤ ‖A0 f ‖L2‖ f ‖L2 < +∞,

and

〈(v · ∇x −∇x V · ∇v) f, f 〉L2 = 0.
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Proof of Lemma 4.3 Let � ∈ C∞c (R, [0, 1]), with � ≡ 1 on [−1, 1] and � ≡ 0 on

(−∞, 2) ∪ (2,+∞). Let f ∈ D(A0). We set �n(x, v) := �
(
H(x,v)

n

)
, where we

recall that H is the hamiltonian. Hence,�n is compactly supported. Note also that we
have

(v · ∇x −∇x V · ∇v)�n = 0.

We define the compactly supported functions fn := �n f . Using a dominated conver-
gence argument, we have

‖ fn − f ‖L2 → 0, ‖A0 fn − A0 f ‖L2 → 0,

noticing that A0 fn = �n A0 f . We deduce that

〈A0 fn, fn〉L2 → 〈A0 f, f 〉L2 .

Furthermore, since f ∈ D(A0), we have (v · ∇x − ∇x V · ∇v) f ∈ L2
loc and thus

(v · ∇x −∇x V · ∇v) fn ∈ L2.

We can hence compute (using a classical density argument)

〈(v · ∇x − ∇x V · ∇v) fn, fn〉L2 = 〈(v · ∇x −∇x V · ∇v) | fn|
2

2
, �n〉L2

=
〈 | fn|2

2
, (v · ∇x −∇x V · ∇v)�n

〉
L2

= 0.

Therefore, we deduce

〈A0 fn, fn〉L2 =
∫
Td×Rd

(∫
Rd

k(x, v, v′) dv′
)
| fn(x, v)|2 eV (x)

M(v)
dx dv,

and thus by a weak lower semi-continuity argument, that

∫
Td×Rd

(∫
Rd

k(x, v, v′) dv′
)
| f (x, v)|2 eV (x)

M(v)
dx dv ≤ C‖A0 f ‖L2‖ f ‖L2 .

We can therefore finally pass to the limit in the identity

〈A0 fn, fn〉L2 −
〈(∫

Rd
k(·, v′) dv′

)
fn, fn

〉
L2
= 0
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to infer that

〈A0 f, f 〉L2 −
〈(∫

Rd
k(·, v′) dv′

)
f, f

〉
L2
= 0,

that is to say

〈(v · ∇x −∇x V · ∇v) f, f 〉L2 = 0.

This concludes the proof of the lemma.

Lemma 4.4 The operator K is bounded on L2 and D(A) = D(A0). The Boltzmann
operator A generates a strongly continuous semigroup e−t A on L2 and we have the
Duhamel type formula

e−t A = e−t A0 +
∫ t

0
e−(t−s)A0 Ke−s A ds.

Note that this only uses A1 and A3.

Proof of Lemma 4.4 On the one hand, we have the explicit formula, for t ≥ 0,

e−t A0u(x, v)=exp

(
−
∫ t

0

∫
Rd

k(φ−(t−s)(x, v), v′) dv′ ds
)
u ◦ φ−t (x, v), (4.6)

whereφs(x, v) = (Xs(x, v),	s(x, v)) denotes the hamiltonian flow of Definition 2.2.
Using k ≥ 0 and remarking that the change of variables φ−t (x, v)→ (x, v) preserves
eV

M and has unit Jacobian, we obtain

‖e−t A0u‖L2 ≤ ‖u‖L2 , for t ≥ 0. (4.7)

Moreover, for u ∈ C∞c (Td × R
d), with S = supp (u), we have

‖e−t A0u − u‖2
L2

=
∫
K

∣∣∣∣e
(
− ∫ t0

∫
Rd k(φ−(t−s)(x,v),v′) dv′ ds

)
u ◦ φ−t (x, v)− u(x, v)

∣∣∣∣
2 eV (x)

M(v)
dx dv,

where K = S ∪ φt (S). The regularity of the flow φt yields φ−t (x, v) = (x, v) +
O(t) where O(t) is uniform on the compact set S as t → 0+. Therefore, using the
smoothness of u, a Taylor expansion proves that limt→0+ ‖e−t A0u − u‖L2 = 0.

Next, take any u ∈ L2 and fix ε > 0. There is uε ∈ C∞c (Td × R
d) such that

‖u − uε‖L2 < ε/3, and according to (4.7), ‖e−t A0(u − uε)‖L2 ≤ ‖u − uε‖L2 < ε/3.
We also have ‖e−t A0uε − uε‖2

L2 → 0 as t → 0+ and thus, there exists δ > 0 such

that ‖e−t A0uε − uε‖L2 < ε/3 for 0 < t < δ. Finally, we have for 0 < t < δ

‖e−t A0u − u‖L2 ≤ ‖e−t A0(u − uε)‖L2 + ‖u − uε‖L2 + ‖e−t A0uε − uε‖L2 < ε.
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This means that limt→0+ ‖e−t A0u − u‖L2 = 0 so that the operator A0 generates a
strongly continuous semigroup of contraction on L2, explicited by (4.6).

On the other hand, using the assumption A3, the operator K is bounded on L2.
Indeed, by the Cauchy-Schwarz inequality, we have

‖K f ‖2
L2 =

∫
Td×Rd

(∫
Rd

k(x, v′, v) f (x, v′)dv′
)2 eV (x)

M(v)
dx dv

≤
∫
Td×Rd

eV (x)

M(v)

(∫
Rd

k(x, v′, v)2M(v′)dv′
)(∫

Rd

f (x, v′)2

M(v′)
dv′
)
dx dv

≤
(

sup
x∈Td

∫
Rd

∫
Rd

k2(x, v′, v)M(v′)
M(v)

dv′ dv
)
‖ f ‖2

L2 .

The operator K is hence bounded in L2, with

‖K‖L2→L2 ≤
(

sup
x∈Td

∫
Rd

∫
Rd

k2(x, v′, v)M(v′)
M(v)

dv′ dv
) 1

2

.

Therefore D(A) = D(A0) and according to [36, Chapter 3, Theorem 1.1], A there-
fore generates a strongly continuous semigroup e−t A on L2. The Duhamel formula
also follows from the boundedness of K . ��
Proof of Proposition 4.1 Lemma 4.4 implies the existence of a unique solution f (t) ∈
C0(R+;L2) to (1.1) with initial condition f0. For what concerns the maximum princi-
ple, we can argue as follows. Assume that f0 ≥ 0 a.e. We may denote byC0(0, T ;L2)+
the subset of C0(0, T ;L2) of almost everywhere nonegative functions, and define the
map

J+ : C0(0, T ;L2)+ → C0(0, T ;L2)+
ϕ �→ e−t A0 f0 +

∫ t
0 e−(t−s)A0 (Kϕ(s, ·)) ds.

We have the contraction estimate

‖J (ϕ1)− J (ϕ2)‖L∞(0,T ;L2) ≤ T ‖K‖L2→L2‖ϕ1 − ϕ2‖L∞(0,T ;L2). (4.8)

For T > 0 small enough, J is contracting in the Banach space C0(0, T ;L2)+, and
therefore admits a unique fixed point in C0(0, T ;L2)+, which is f by uniqueness of
the solution to (1.1). Thus, f ≥ 0 a.e. on [0, T ], and then onR+ by the time translation
invariance of (1.1).

Let us finally prove the dissipation identity (4.5). We rely on Lemma 4.1 and an
approximation argument.

Note first that if f0 ∈ D(A), it follows from [36, Chapter 1, Theorem 2.4 c)] that the
associated solution f satisfies f ∈ C1(R+;L2) ∩ C0(R+; D(A)), and, in particular,
for all t ≥ 0, f (t) ∈ D(A). This entails that for all t ≥ 0, we have
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∫
Td×Rd

(∫
Rd

k(x, v, v′) dv′
)
| f (t, x, v)|2 eV (x)

M(v)
dx dv < +∞,

〈(v · ∇x −∇x V · ∇v) f (t), f (t)〉L2 = 0.

For f ∈ C0(R+; D(A)), the quantity D( f (t)) is well defined for every t , remarking
that (1.4) gives

∫
Rd k(x, v′, v)M(v′)

M(v)
dv′ = ∫

Rd k(x, v, v′) dv′.
Moreover, for f ∈ C1(R+;L2) ∩ C0(R+; D(A)) all computations of the proof of

Lemma 4.1 can be performed, so that for any f0 ∈ D(A), we have

∫ t

0
D( f (s)) ds = ‖ f0‖2

L2 − ‖ f (t)‖2
L2 for all t ≥ 0. (4.9)

Then, note that C∞c (Td×R
d) ⊂ D(A) ⊂ L2, so that D(A) is dense in L2. Let thus

( f n0 )n>0 be a sequence such that f n0 ∈ D(A) and ‖ f n0 − f0‖L2 → 0 as n → +∞.
Denote by f n(t) ∈ C1(R+;L2) ∩ C0(R+; D(A)) the solution of (1.1) with initial
condition f n0 obtained from Lemma 4.4. We have in particular

‖ f n − f ‖L∞(0,t;L2)→ 0, for all t ≥ 0.

Since f n0 ∈ D(A), the dissipation identity (4.9) holds for f n . From Lemma 4.2, we
then deduce that for all t ≥ 0,

∫ t

0
D( f ) ds ≤ lim inf

n→+∞

∫ t

0
D( f n) ds = lim inf

n→+∞
(
‖ f n0 ‖2

L2 − ‖ f n(t)‖2
L2

)

= ‖ f0‖2
L2 − ‖ f (t)‖2

L2 .

Using this information, we obtain from the definition of D( f ) that

∫ t

0

∫
Td×Rd

(∫
Rd

k(x, v, v′)dv′
) | f (s, x, v)|2eV (x)

M(v)
dv dx ds

≤ 1

2

∫ t

0
D( f ) ds + t‖K‖L2→L2‖ f ‖2

L∞(0,t;L2)

≤ 1

2
(‖ f0‖2

L2 − ‖ f (t)‖2
L2)+ t‖K‖L2→L2‖ f ‖2

L∞(0,t;L2)
.

We now want to prove the dissipation identity for any solution f ∈ C0(R+;L2).
For this, introduce ρ ∈ C∞c (R) such that ρ ≥ 0,

∫
R
ρ = 1 so that ρδ = 1

δ
ρ( t
δ
) is

an approximation of identity. We define f (t) such that f (t) = f (t) for t ≥ 0 and
f (t) = 0 for t < 0, and set f δ = ρδ ∗ f where the convolution is only in the variable
t ∈ R. Since f ∈ C0(R+;L2), we have (in particular) f δ ∈ C1(R+;L2), and in the
sense of distributions, we have

(∂t + A) f δ = ρδ ∗ (∂t + A) f = 0 on R
+∗ × T

d × R
d .
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Since f δ ∈ C1(R+;L2), this equation yields A f δ = −∂t f δ ∈ C0(R+∗ ;L2), so that
f δ ∈ C0(R+∗ ; D(A)). As a consequence, the following dissipation identity holds for
f δ:

∫ t

t ′
D( f δ(s)) ds = ‖ f δ(t ′)‖2

L2 − ‖ f δ(t)‖2
L2 for all t ≥ t ′ > 0. (4.10)

Next, the usual proofs for approximations of identity show that

• ‖ f δ(t)− f (t)‖L2 → 0 for all t > 0;
• If f ∈ L2(t ′, t;L 2), with L 2 = L2(Td × R

d , �(x, v)dx dv) where � ≥ 0 is
a measurable real valued function, then f δ ∈ L2(t ′, t;L 2) and we have ‖ f δ −
f ‖L2(t ′,t;L 2)→ 0.

The first item allows to pass to the limit δ→ 0+ in the right hand-side of (4.10).
Moreover, we have proved that the solution f ∈ C0(R+;L2) is such that the two

quantities
∫ t
t ′ D( f ) ds and

∫ t
t ′
∫
Td×Rd

(∫
Rd k(x, v, v′)dv′

) | f (s,x,v)|2eV (x)
M(v)

dv dx ds are
finite. In particular, we have

∫ t

t ′
D( f ) ds =

∫ t

t ′

∫
Td×Rd

(∫
Rd

k(x, v, v′)dv′
) | f (s, x, v)|2eV (x)

M(v)
dv dx ds

−
∫ t

t ′
〈K f (s), f (s)〉L2ds,

and the same identity holds with f replaced by f δ ∈ C0(R+∗ ; D(A)). We estimate
separately the two different terms appearing in

∫ t
t ′ D( f

δ) ds − ∫ tt ′ D( f ) ds. First, we
have∣∣∣∣
∫ t

t ′
〈K f (s), f (s)〉L2ds −

∫ t

t ′
〈K f δ(s), f δ(s)〉L2ds

∣∣∣∣
=
∣∣∣∣
∫ t

t ′
〈K ( f (s)− f δ(s)), f (s)〉L2ds +

∫ t

t ′
〈K f δ(s), ( f (s)− f δ(s))〉L2ds

∣∣∣∣
≤ ‖K ( f − f δ)‖L2(t ′,t;L2)‖ f ‖L2(t ′,t;L2) + ‖K f δ‖L2(t ′,t;L2)‖ f − f δ‖L2(t ′,t;L2)

≤ ‖K‖L2→L2‖ f − f δ‖L2(t ′,t;L2)

(‖ f ‖L2(t ′,t;L2) + ‖ f δ‖L2(t ′,t;L2)

)
.

Using the second item above with L 2 = L2 (i.e. � = eV

M ) together with the fact that
‖ f δ‖L2(t ′,t;L2) ≤ C‖ f0‖L2 , this implies

∣∣∣∣
∫ t

t ′
〈K f (s), f (s)〉L2ds −

∫ t

t ′
〈K f δ(s), f δ(s)〉L2ds

∣∣∣∣→ 0

as δ → 0+. Second, taking L 2 = L2(Td × R
d , �(x, v)dx dv) with � =(∫

Rd k(x, v, v′)dv′
) eV (x)

M(v)
in the second item above, we obtain ‖ f δ− f ‖L2(t ′,t;L 2)→

0 and in particular
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∫ t

t ′

∫
Td×Rd

(∫
Rd

k(x, v, v′)dv′
) | f δ(s, x, v)|2eV (x)

M(v)
dv dx ds

→
∫ t

t ′

∫
Td×Rd

(∫
Rd

k(x, v, v′)dv′
) | f (s, x, v)|2eV (x)

M(v)
dv dx ds,

as δ→ 0+. This finally yields
∫ t
t ′ D( f

δ) ds → ∫ tt ′ D( f ) ds, and we can take the limit
δ → 0+ in (4.10), providing the dissipation identity (4.5) for 0 < t ′ ≤ t . Both terms
in this identity are continuous as t ′ → 0+ so that it remains valid for t ′ = 0, which
concludes the proof of the proposition. ��

A useful consequence of the maximum principle, of the linearity of the equation,
and of Assumption A2 is the following statement. If f0 ∈ L2 ∩ L∞, then the unique
solution of (1.1) starting from f |t=0 = f0, satisfies

sup
t≥0
‖ f (t)‖L∞ ≤ ‖ f0‖L∞ . (4.11)

4.2 Weak Coercivity

In this section, we describe some properties of the collision kernel C and associated
dissipation D. In several proofs of the paper, we shall need to exploit some local
coercivity properties of the dissipation. In particular, we would like to have the weak
coercivity property

∀ f ∈ L2, D( f ) = 0 �⇒ C ( f ) = 0 (4.12)

(and thus, D( f ) = 0 is equivalent to C ( f ) = 0). A difficulty comes from the fact
that in general the dissipation term does not control neither the L2 distance to the
projection on the set of stationary solutions, nor the L2 norm of the collision operator.

The main result is the following lemma.

Lemma 4.5 Let k be a collision kernel satisfying A1–A3. Let T ∈ (0,+∞] and
denote ω = ∪i∈Iωi the partition of ω in connected components. Then, the following
three properties are equivalent

(1) f ∈ C0(0, T ;L2) satisfies C ( f (t)) = 0 for all t ∈ [0, T ].
(2) f ∈ C0(0, T ;L2) satisfies D( f (t)) = 0 for all t ∈ [0, T ].
(3) • for all i ∈ I , we have f (t, x, v) = ρi (t, x)M(v) on [0, T ] × ωi ;

• for i, j ∈ I and x ∈ T
d , we have: ωi (x)Rx

k ω j (x) �⇒ ρi (t, x) = ρ j (t, x)
for all t ∈ [0, T ].

This lemma only states properties of the collision kernel. As such, it is not concerned
with the time dependence, that we shall drop in the proof.

Proof of Lemma 4.5 By definition, we have D( f ) = −2〈C ( f ), f 〉L2 so that (1) �⇒
(2).
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Then, from D( f ) = 0, Equation (4.2) implies that

f (x, v)

M(v)
= f (x, v′)

M(v′)
almost everywhere in

S := {(x, v, v′), k(x, v′, v)+ k(x, v′, v) > 0}, (4.13)

Let (x, v) ∈ ω. Thus, there exists v′ ∈ R
d such that (x, v, v′) ∈ S. By continuity

of k, there exists a neighborhood U of (x, v) such that for all (y, w) ∈ U , we have
(y, w, v′) ∈ S. Thus, for all (y, w) ∈ U , we have

f (y, w)

M(w)
= f (y, v′)

M(v′)
,

that is to say that locally, (y, w) �→ f (y,w)
M(w)

is function of y only. Therefore, for all

i ∈ I , there is a function ρi such that f (x,v)
M(v)

= ρi (x) on ωi .

Furthermore, take i, j ∈ I and x ∈ T
d such that ωi (x)Rx

k ω j (x). There exists
vi , v j ∈ R

d × R
d such that (x, vi ) ∈ ωi , (x, v j ) ∈ ω j , and (x, vi , v j ) ∈ S. It then

follows from (4.13) and f (x,vi )
M(vi )

= ρi (x), f (x,v j )
M(v j )

= ρ j (x) that ρi (x) = ρ j (x). This

concludes the proof of (2) �⇒ (3).
Finally, let us check that a function satisfying the two assumptions of (3) cancels

the collision operator, i.e. that for all x, v, we have C ( f )(x, v) = 0.
Let (x, v) ∈ ω (if (x, v) /∈ ω, thenC ( f )(x, v) = 0). Let i ∈ I such that (x, v) ∈ ωi .

We have

C ( f )(x, v) =
∫

k̃(x, v′, v) f (x, v′) dv′M(v)−
∫

k̃(x, v, v′)M(v′) dv′ f (x, v)

=
∫

k̃(x, v′, v) f (x, v′) dv′M(v)−
∫

k̃(x, v, v′)M(v′) dv′ρi (x)M(v)

=
∑
j∈Ji

∫
k̃(x, v′, v)1ω j (x, v

′) f (x, v′) dv′M(v)

−
∫

k̃(x, v, v′)M(v′) dv′ρi (x)M(v)

=
∑
j∈Ji

∫
k̃(x, v′, v)1ω j (x, v

′)M(v′) dv′ρ j (x)M(v)

−
∫

k̃(x, v, v′)M(v′) dv′ρi (x)M(v),

where Ji is the largest subset of I such that for all j ∈ Ji , there exists v′ ∈ R
d such

that (x, v′) ∈ ω j and k̃(x, v′, v) > 0. According to the second property satisfied by
f , for all j ∈ Ji ,

ρ j (x) = ρi (x),
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and thus we deduce

C ( f )(x, v) =
∑
j∈Ji

∫
k̃(x, v′, v)1ω j (x, v

′)M(v′) dv′ρi (x)M(v)

−
∫

k̃(x, v, v′)M(v′) dv′ρi (x)M(v)

=
(∫

k̃(x, v′, v)M(v′) dv′ −
∫

k̃(x, v, v′)M(v′) dv′
)
ρi (x)M(v)

= 0.

The last line comes from the fact that k satisfies A2. This concludes the proof of
(3) �⇒ (1). ��

Remark 4.1 Another benefit of Lemma 4.5 is that it allows to rephrase the Unique
Continuation Property, in a slightly more explicit way.

Denote ω = ∪i∈Iωi the partition of ω in connected components. The set ω satisfies
the Unique Continuation Property if and only if the following holds. The only solution
f ∈ C0(R;L2) to

∂t f + v · ∇x f −∇x V · ∇v f = 0,

satisfying the following properties

• for all i ∈ I , f (t, x, v) = ρi (t, x)M(v) on [0, T ] × ωi ;
• for i, j ∈ I and x ∈ T

d ,ωi (x)Rx
k ω j (x) �⇒ ρi (t, x) = ρ j (t, x) for all t ∈ [0, T ],

is f = (∫
Td×Rd f dv dx

)
e−V (x)M(v).

Remark 4.2 If k̃ is in L∞ (but only in this case), we can actually prove a stronger result,
namely that the dissipation controls the norm of a “symmetrized” collision operator.
To state and prove such a result, we introduce the symmetrized collision kernel

k(x, v′, v) := k̃(x, v′, v)+ k̃(x, v, v′)
2

, k∗(x, v′, v) :=k(x, v′, v)M(v). (4.14)

Note in particular that k(x, v′, v) ∈ L∞(Td ×R
d ×R

d) if k̃ ∈ L∞(Td ×R
d ×R

d).

We also introduce the associated collision operator

C( f ) :=
∫
Rd

[
k∗(x, v′, v) f (v′)− k∗(x, v, v′)) f (v)

]
dv′. (4.15)

Note that we have C( f ) = C ( f ) if and only if k(x, v′, v) = k̃(x, v′, v), i.e. if
k̃(x, v′, v) is symmetric with respect to v and v′ (this corresponds to the class E1).
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Lemma 4.6 Let k be a collision kernel satisfying A1–A2, and such that k̃ ∈ L∞. For
any f ∈ L2, we have

‖k‖L∞D( f ) ≥ ‖C( f )‖2
L2 , (4.16)

Proof of Lemma 4.6 According to the definition of the dissipation (4.2) and the sym-
metry of k, we have

D( f ) ≥
∫
Td

eV
∫
Rd

∫
Rd

k(x, v′, v)MM′
(

f

M − f ′

M′

)2

dv′ dv dx,

and hence

‖k‖L∞D( f ) ≥
∫
Td

eV
∫
Rd

∫
Rd

k
2
(x, v′, v)MM′

(
f

M − f ′

M′

)2

dv′ dv dx .

By Jensen’s inequality it follows that

‖k‖L∞D( f )≥
∫
Td

eV
∫
Rd

M(v)

(∫
Rd
k(x, v′, v)M(v′)

(
f (v)

M(v)
− f (v′)

M(v′)

)
dv′
)2

dv dx

=
∫
Td

eV
∫
Rd

1

M(v)
C( f )2 dv dx

= ‖C( f )‖2
L2 ,

where we used again the symmetry of k. This concludes the proof of the lemma. ��

5 Characterization of Convergence to Equilibrium

In this Section, we shall first give a proof of Theorem 2.2; then we will provide a proof
of Theorem 2.1, which will be a consequence of our main result in this direction,
namely Theorem 5.1.

We start with a technical lemma concerning the evolution under the flow of the
connected components of

⋃
s∈R+ φ−s(ω).

Lemma 5.1 Set 
̃ = ⋃s∈R+ φ−s(ω) and denote by (
i )i∈I the partition of 
̃ in
connected components, and A = T

d × R
d \ 
̃. Then we have for all t ≥ 0, for all

i ∈ I ,

φ−t (
̃) ⊂ 
̃, φt (A) ⊂ A, φ−t (
i ) ⊂ 
i . (5.1)

If moreover ω satisfies a.e.i.t. GCC (i.e. A has zero Lebesgue measure), then for all
i ∈ I , for all t ∈ R,

φt (
i ) = 
i up to a set of measure zero. (5.2)
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Proof of Lemma 5.1 First, we just remark that for all t ≥ 0, we have φ−t (
̃) =⋃
s∈R+ φ−t−s(ω) ⊂ 
̃. Taking the complement of this inclusion yields for t ≥ 0,

φt (A) ⊂ A.
Let us now fix i ∈ I and prove that

for all t ≥ 0, φ−t (
i ) ⊂ 
i . (5.3)

Take (x, v) ∈ 
i and t > 0. If φ−t (x, v) /∈ 
i , then there exists t0 ∈ (0, t] such that
φ−t0(x, v) /∈ 
̃ since
i is a connected component of this set. This is in contradiction
with φ−t0(
̃) ⊂ 
̃. This implies (5.3).

Finally, if A has zero Lebesgue measure, then |φ−t (A)| = 0 as well. As a conse-
quence, the identity

T
d × R

d = φ−t (Td × R
d) = φ−t

(⋃
i∈I

i ∪A

)
=
⋃
i∈I
φ−t (
i ) ∪ φ−t (A)

yields Td × R
d = ⋃i∈I φ−t (
i ) up to a set of measure zero. Since for all i ∈ I and

t ≥ 0, φ−t (
i ) ⊂ 
i , we obtain (still for t ≥ 0) φ−t (
i ) = 
i up to a set of measure
zero, from which the conclusion of the lemma follows. ��
Remark 5.1 Note that if V = 0 and ω satisfies the following property: (x, v) ∈ ω⇔
(x,−v) ∈ ω, then the inclusions in (5.1) become equalities. Hence, all sets considered
in (5.1) are then invariant by φt for all t ∈ R.

5.1 Proof of Theorem 2.2

We shall prove that (i.) �⇒ (i i i.), that (i i i.) �⇒ (i i.) and finally that (i i.) �⇒
(i.).
(i.) �⇒ (i i i.)We prove that the Unique Continuation Property (of Definition 2.11)
implies the decay.

We first prove the expected convergence for data enjoying more regularity, i.e. we
prove

for all f0∈L2∩L∞,
∥∥∥∥ f (t)−

(∫
Td×Rd

f0 dv dx

)
e−VM

∥∥∥∥L2
→t→+∞ 0. (5.4)

Since (1.1) is linear,

g(t) := f (t)−
(∫

Td×Rd
f0 dv dx

)
e−VM

is a solution to (1.1) with initial datum

g(0) = f (0)−
(∫

Td×Rd
f0 dv dx

)
e−VM ∈ L2 ∩ L∞,

123



Geometric Analysis of the Linear Boltzmann Equation I... Page 33 of 84 3

satisfying
∫
g(0) dv dx = 0. Therefore proving (5.4) is equivalent to proving that

‖g(t)‖L2 → 0.
We argue by contradiction. Assume that there exists an initial datum g0 in L2∩L∞

(with
∫
g0 dv dx = 0), ε > 0 and an increasing sequence (tn)n∈N such that:

tn ≥ en, and ‖g0‖L2 ≥ ‖g(tn)‖L2 > ε. (5.5)

From this sequence, we may extract a subsequence (still denoted (tn)) satisfying

tn+1 − tn →+∞. (5.6)

According to the Maximum Principle of Proposition 4.1, we have

for all t ≥ 0, ‖g(t)‖L∞ ≤ ‖g0‖L∞ . (5.7)

We introduce the shifted function

hn(t, x, v) := g(tn + t, x, v).

By the time translation invariance of (1.1), hn is still a solution to (1.1), with initial
datum hn(0) = g(tn). Using (5.5), up to some extraction, we can assume that there is
α ∈ [ε, ‖g0‖L2 ] such that

‖hn(0)‖L2 →n→+∞ α. (5.8)

Note also that by conservation of the mass, for all n ∈ N and all t ≥ 0,

∫
hn(t) dvdx =

∫
g0 dvdx = 0. (5.9)

Using the dissipation identity (4.5) for g, we have:

‖g(tn+1)‖2
L2 − ‖g(tn)‖2

L2 = −
∫ tn+1

tn
D(g) dt,

that is (using the time translation invariance):

‖hn+1(0)‖2
L2 − ‖hn(0)‖2

L2 = −
∫ tn+1−tn

0
D(hn) dt.

This, together with (5.6) and (5.8), implies that for any T > 0,

∫ T

0
D(hn) dt → 0. (5.10)
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Now, up to another extraction, since for any n ∈ N,

for all t ≥ 0, ‖hn(t)‖L2 ≤ ‖g0‖L2 , (5.11)

we can assume that hn ⇀ h weakly in L2
t,locL2. Let us now prove that h = 0. First,

since hn is a solution to (1.1), by linearity, h also satisfies (1.1). Then, according to
Lemma 4.2, we have

‖D(h)‖L1(0,T ) ≤ lim inf
n→+∞ ‖D(hn)‖L1(0,T ) = 0.

Thus, by weak coercivity (see Lemma 4.5), we infer that C (h) = 0 on [0, T ], for any
T > 0, and therefore h satisfies the kinetic transport equation (2.6). Using the Unique
Continuation Property (see Definition 2.11), we deduce that

h =
(∫

h dvdx

)
eV

M .

Since hn ⇀ h weakly in L2
t L2, using (5.9), we obtain in particular that for any T > 0

∫ T

0

(∫
h dvdx

)
dt = 0.

Since
∫ T

0

(∫
h dvdx

)
dt = T

(∫
h(0) dvdx

)
, we deduce that

∫
h dvdx = 0 so that

h = 0.
Let us now consider the sequence of defect measures νn := |hn|2, which, according

to (5.11) and (5.7) satisfies, for all n ∈ N,

for all t ≥ 0, ‖νn(t)‖L1 ≤ ‖g(0)‖2
L2 , ‖νn(t)‖L∞ ≤ C0‖g(0)‖2

L∞,

for C0 = max(x,v)∈Td×Rd e−V (x)M(v). We have that, up to another subsequence
νn ⇀ ν weakly-� in L∞t,locL∞. Let us compute the equation satisfied by ν: to this
purpose, we consider (1.1) satisfied by hn and multiply it by hn . We obtain:

∂tνn + v · ∇xνn −∇x V · ∇vνn
= 2

[∫
Rd

[
k(x, v′, v)hn(v′)− k(x, v, v′)hn(v)

]
dv′
]
hn

= 2

(∫
Rd

k(x, v′, v)hn(v′) dv′
)
hn − 2

(∫
Rd

k(x, v, v′) dv′
)
νn .

(5.12)

Using the averaging lemma of Corollary 12.2 and the fact that hn weakly converges
to 0, we deduce that

∫
Rd

k(x, v′, v)hn(t, x, v′) dv′ → 0 (5.13)
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strongly in L2
t,locL2. On the other hand, according to (5.11), the sequence (hn) is

uniformly bounded in L2
t,locL2. We hence obtain

(∫
Rd

k(x, v′, v)hn(t, x, v′)dv′
)
hn → 0 strongly in L1

t,locL1. (5.14)

The second term, by definition of ν, weakly converges to−2
(∫

Rd k(x, v, v′) dv′
)
ν in

the sense of distributions, so that ν satisfies the equation

∂tν + v · ∇xν −∇x V · ∇vν = −2

(∫
Rd

k(x, v, v′) dv′
)
ν. (5.15)

Moreover, writing

(∫
Rd

k(x, v, v′) dv′
)
|hn|2 = −C (hn)hn +

(∫
Rd

k(x, v′, v)hn(t, x, v′)dv′
)
hn,

(5.16)

and using (5.10) together with (5.14), we deduce that

(∫
Rd

k(x, v, v′) dv′
)
ν = 0. (5.17)

Thus, (5.15) combined with (5.17) entails that ν satisfies the kinetic transport equation

∂tν + v · ∇xν − ∇x V · ∇vν = 0,

which also shows that ν ∈ C0
t (L2). This, combined with the fact that ν = 0 on R

+×ω
(again coming from (5.17)) and the Unique Continuation Property, implies

ν =
(∫

ν(0) dv dx

)
e−V (x)M(v).

According to (5.17), this means that ν = 0.
We now prove that there is no loss of mass at infinity. Let R > 0. We have:

∫
Td×Rd

νn(0)
eV

M1v∈Rd\B(0,R) dv dx ≤ ‖g(0)‖2
L∞
∫
Td×Rd

M
eV

1v∈Rd\B(0,R) dv dx

≤ ‖g(0)‖2
L∞
∫
Td

e−V dx
∫
|v|≥R

M(v) dv,

which is exponentially converging to zero as R→∞. This yields

lim
R→∞

∫
Td×Rd

νn(0)
eV

M1v∈Rd\B(0,R) dv dx = 0. (5.18)
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Therefore, on the one hand, up to a subsequence, we can assume that νn(0) e
V

M ⇀

ν(0) e
V

M tightly in M+
x,v and thus

∫
Td×Rd

νn(0)
eV

Mdv dx →
∫
Td×Rd

ν(0)
eV

Mdv dx = 0.

On the other hand, using (5.8), we have

∫
Td×Rd

νn(0)
eV

Mdv dx → α > 0.

This yields a contradiction, and concludes the proof of (5.4).
We finally deduce (2.8) by an approximation argument. Let f0 ∈ L2 and f (t)

be the solution associated to f0. Let ε > 0. There exists f0,ε ∈ L2 ∩ L∞ such that
‖ f0− f0,ε‖L2 ≤ ε. Let fε(t)be the solution associated to f0,ε. Since f− fε is a solution
of (1.1) with initial datum f0− f0,ε we also have for any t ≥ 0, ‖ f (t)− fε(t)‖L2 ≤ ε.

By (5.4), there exists t0 ≥ 0 such that for all t ≥ t0,

∥∥∥∥ fε(t)−
∫
Td×Rd

f0,ε dv dxe
−V (x)M(v)

∥∥∥∥L2
≤ ε.

Thus, it follows that for all t ≥ t0,

∥∥∥∥ f (t)−
(∫

Td×Rd
f0 dv dx

)
e−V (x)M(v)

∥∥∥∥L2

≤ ‖ f (t)− fε(t)‖L2 +
∥∥∥∥ fε(t)−

∫
Td×Rd

f0,ε dv dxe
−V (x)M(v)

∥∥∥∥L2

+
∥∥∥∥
∫
Td×Rd

( f0,ε − f0)dv dxe
−V (x)M(v)

∥∥∥∥L2

≤ 2ε +
∫
Td×Rd

| f0 − f0,ε| dv dx .

Besides, we have

(∫
Td×Rd

| f0 − f0,ε| dv dx
)2

≤ ‖ f0 − f0,ε‖2
L2

(∫
Td×Rd

e−VM(v) dx dv

)
.

The last two inequalities together yield, for all t ≥ t0,

∥∥∥∥ f (t)−
(∫

Td×Rd
f0 dv dx

)
e−V (x)M(v)

∥∥∥∥L2
≤ 3ε,

which concludes the proof of (2.8).
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(i i i) ⇒ (i i.) Assume that (i i.) does not hold. Either Td × R
d \⋃s∈R+ φ−s(ω) has

positive Lebesgue measure, or the equivalence relation � has two or more equiva-
lence classes (or equivalently, by Lemma 3.1, the binary relation ∼ has two or more
equivalence classes).

Suppose first that A := T
d ×R

d \⋃s∈R+ φ−s(ω) has positive Lebesgue measure.
We set

f0(x, v) = 1A(x, v) e−V (x)M(v).

Note that f0 satisfies
∫
Td×Rd f0(x, v)dx dv > 0 asA is of positive Lebesgue measure.

We consider f (t, ·) the solution to (5.20) with initial datum f0, given by

f (t, x, v) = f0 ◦ φ−t (x, v) = 1φt (A)(x, v) e
−V (x)M(v)

Moreover, for all t ≥ 0, we have φt (A) ∩ ω = ∅ since A ∩ φ−t (ω) = ∅. Therefore,
f = 0 on R

+ × ω so that, according to the characterization of ω in (2.2), C ( f ) = 0
and f is also a solution of (1.1). Moreover, this implies that

∥∥∥∥ f (t)−
(∫

Td×Rd
f0 dvdx

)
e−V (x)M(v)

∥∥∥∥L2
�→t→+∞ 0

Thus, (i i i.) does not hold.
Suppose now that Td × R

d \⋃s∈R+ φ−s(ω) has zero Lebesgue measure and that
the equivalence relation∼ has (at least) two distinct equivalence classes, say [
1] and
[
2].

We define now a function f (x, v) as follows

f (x, v) =
∑


′∈[
1]
1
′(x, v)e

−V (x)M(v). (5.19)

Using (5.2) in Lemma 5.1, we deduce that for all t ≥ 0,

f ◦ φt (x, v) =
∑


′∈[
1]
1
′
(
φt (x, v)

)
e−V (x)M(v) =

∑

′∈[
1]

1
′(x, v)e
−V (x)M(v)

= f (x, v),

so that f is a stationary solution of the Vlasov equation ∂t f +v ·∇x f −∇x V ·∇v f = 0.
There remains to prove that f cancels the collision operator. Denote ω = ∪i∈Iωi

the partition of ω in connected components.
By Lemma 4.5, f cancels the collision operator if and only if f satisfies the fol-

lowing two properties.

(1) For all i ∈ I ,

f = ρi (x)M(v) on ωi ,
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(2) For i, j ∈ I , and x ∈ T
d , ωi (x)Rx

k ω j (x) �⇒ ρi (x) = ρ j (x).
We check now that the function f defined in (5.19) satisfies these two properties.
Let i ∈ I . If for all 
′ ∈ [
1], ωi ∩ 
′ = ∅, then f = 0 on ωi (and hence

satisfies (1) with ρi = 0). If there is 
′ ∈ [
1] such that ωi ∩ 
′ �= ∅, then since

′ is a connected component of

⋃
s∈R+ φ−s(ω), we have ωi ⊂ 
′. Thus we have

f = e−VM on ωi (and hence f satisfies (1) with ρi = e−V ). We deduce that for all
i ∈ I , f is of the form ρi (x)M(v) on ωi .

Take now i, j ∈ I and x ∈ T
d such that ωi (x)Rx

k ω j (x). Let 
(i) (resp. 
( j))
be the connected component of

⋃
s∈R+ φ−s(ω) which contains ωi (resp. ω j ). By

definition of the relations Rk and Rx
k , this directly yields
(i)Rk 


( j), and a fortiori
we deduce that 
(i) ∼ 
( j): in other words, these are in the same equivalence class
for∼. According to the definition of f , this implies ρi (x) = ρ j (x) (which is equal to
e−V (x) if 
(i, j) ∈ [
1] and to 0 if not).

Therefore, the function f satisfies the two properties and, by Lemma 4.5, cancels
the collision operator.

However, we have

∪
′∈[
2]
′ ⊂
(
T
d × R

d \ ∪
′∈[
1]
′
)
,

and ∪
′∈[
2]
′ has a positive Lebesgue measure. Consequently, the measure of Td ×
R
d \ ∪
′∈[
1]
′ is positive, so that f is a stationary solution of (1.1) which is not a

uniform Maxwellian. As a consequence, (i i i.) does not hold.

(i i.)⇒ (i.) Assume that (i i.) holds. Let f ∈ C0
t (L2) be a solution to

∂t f + v · ∇x f −∇x V · ∇v f = 0, (5.20)

C ( f ) = 0. (5.21)

As usual, without loss of generality, we can assume that
∫
Td×Rd f dv dx = 0. The

goal is to show that f = 0.
Since f cancels the collision operator, by Lemma 4.5, the restriction of f to ω is

necessarily of the form

f|ω(t, x, v) =
∑
i∈I

1ωi (x, v)ρi (t, x)M(v), (5.22)

where ω = ⋃i∈I ωi is the partition of ω in connected components. Furthermore, for
i, j ∈ I , if there is x ∈ T

d such that ωi (x)Rx
k ω j (x), then ρi (t, x) = ρ j (t, x).

Consider now ω̃ a connected component of ω. For (t, x, v) ∈ R
+ × ω̃, remark that

the function g(t, x) := eV

M(v)
f does not depend on the variable v according to (5.22).

We have, in the sense of distributions in R
+ × ω̃,

∂t g + v · ∇x g = eV

M(v)
[∂t f + v · ∇x f + (v · ∇x V ) f ] .

123



Geometric Analysis of the Linear Boltzmann Equation I... Page 39 of 84 3

Since f satisfies (5.20), this implies that g satisfies the free transport equation

∂t g + v · ∇x g = 0, (5.23)

in the sense of distributions in R
+ × ω̃.

Let (x, v) ∈ ω̃. Since ω̃ is open, there exists δ > 0 such that B(x, δ)× B(v, δ) ⊂ ω̃
and η > 0 such that for all t ∈ (−η, η), for all (x ′, v′) ∈ B(x, δ)× B(v, δ), we have
(x ′ + tv′, v′) ∈ ω̃. Integrating (5.23) along characteristics we obtain

g(t, x ′)=g(0, x ′ + tv′), for (t, x ′, v′) ∈ (−η, η)× B(x, δ)× B(v, δ). (5.24)

SettingUx := {x− η2v+ η2v′, v′ ∈ B(v, δ)}, we remark thatUx is an open set containing
x . Moreover, for all y ∈ Ux , we have y = x − η

2v + η
2v
′ for some v′ ∈ B(v, δ) so

that, using (5.24), we have

g(0, y) = g
(

0, x − η
2
v + η

2
v′
)
= g
(
η/2, x − η

2
v
)
.

Hence, g(0, ·) is constant on Ux , and therefore constant on ω̃ (since ω̃ is connected).
Using the time translation invariance of (5.23), we also have that for all t ≥ 0,

g(t, ·) is locally constant on ω. As a consequence, for all t ≥ 0, eV

M f (t, ·) is locally
constant on ω, which means that ρi (t, x) = κi (t), i.e.

f|ω(t, x, v) = e−V (x)M(v)
∑
i∈I
κi (t)1ωi (x, v).

Since f satisfies the transport equation (5.20) on R
+×ωi , we infer that κi is constant,

so that

f|ω(t, x, v) = f|ω(0, x, v) = e−V (x)M(v)
∑
i∈I
κi1ωi (x, v).

Using again the transport equation (5.20), we deduce that eV

M f (t, x, v) = eV

M f (0, ·)◦
φ−t (x, v). Since there is only one equivalence class for �, we first deduce that f =
κe−V (x)M(v) on ω and then that f = κe−V (x)M(v) on

⋃
s∈R+ φ−s(ω). Since ω

satisfies a.e.i.t. GCC, this is a full measure set and we deduce that f = κe−VM.
Since

∫
Td×Rd f dv dx = 0, necessarily there holds f = 0.

This concludes the proof of Theorem 2.2.

Remark 5.2 Note that the proof of (i.) �⇒ (i i i.) relies on the maximum principle
for the linear Boltzmann equation (1.1) (i.e. the L∞ bound). This was in particu-
lar useful to prevent loss of mass at infinity for the sequence of solutions under
study. This will turn out to be also very useful to overcome another issue in the
proof of the analogous theorem in the case of a bounded domain of Rd with specular
reflection [27].
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If ω satisfies the Geometric Control Condition of Defintion 2.3, we can actually
show a slightly stronger property than the Unique Continuation Property. The above
proof of (i i.) �⇒ (i.) in Theorem 2.2 together with the fact that there is a unique
equivalence class for∼under GCC (indeed,

⋃
s∈(0,T ) φ−s(U ) = T

d×Rd is connected)
yields the following proposition.

Proposition 5.1 Assume that (ω, T ) satisfies the Geometric Control Condition. If
f ∈ C0

t (L2) is a solution to

{
∂t f + v · ∇x f − ∇x V · ∇v f = 0,

C ( f ) = 0 on I × ω,

where I is an interval of time of length larger than T , then f = (∫
Td×Rd f dv dx

)
e−V (x)M(v).

This will be useful for the proof of Theorem 2.3.

5.2 Proof of Theorem 2.1

We start by describing the vector space of stationary solutions of the linear Boltzmann
equation (1.1), when the associated set ω satisfies the a.e.i.t. GCC.

For the sake of readability, we set here


̃ :=
⋃
s∈R+

φ−s(ω).

We denote 
̃ = ∪i∈I
i the partition of 
̃ in connected components. We write
([
 j ]) j∈J the equivalence classes for the equivalence relation ∼. We denote for all
j ∈ J

U j :=
⋃


′∈[
 j ]

′. (5.25)

We have the following description of the vector space of stationary solutions of (1.1).

Proposition 5.2 Assume that ω satisfies the a.e.i.t. GCC. Then a Hilbert basis of the
subspace of stationary solutions to the linear Boltzmann equation (1.1) (or, equiva-
lently of Ker(A), where A is the linear Boltzmann operator defined in (2.11)) is given
by the family ( f j ) j∈J , with

f j =
1Uj e

−VM
‖1Uj e

−VM‖L2
. (5.26)
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In particular, the cardinality of the set of equivalence classes for ∼ is equal to the
dimension of the vector space of stationary solutions to the linear Boltzmann equa-
tion (1.1), i.e.

dim(Ker(A)) = �(CC(
̃)/ ∼) = �(CC(ω)/ �).

We can introduce a generalized Unique Continuation Property, as follows.

Definition 5.1 We say that the set ω satisfies the generalized Unique Continuation
Property if the only solutions f ∈ C0

t (L2) to

{
∂t f + v · ∇x f −∇x V · ∇v f = 0,
C ( f ) = 0,

(5.27)

are of the form f = ∑ j∈J 〈 f, f j 〉L2 f j = ∑ j∈J 1
‖1U j e

−VM‖L2

(∫
Uj

f dvdx
)
f j ,

where (Uj ) j∈J is defined in (5.25) and ( f j ) j∈J in (5.26).

We can now state the precise version of Theorem 2.1:

Theorem 5.1 We keep the notations of Proposition 5.2. The following statements are
equivalent.

(i.) The set ω satisfies the generalized Unique Continuation Property (see Defini-
tion 5.1).

(ii.) The set ω satisfies the a.e.i.t. GCC.
(iii.) For all f0 ∈ L2(Td × R

d), denoting by f (t) the unique solution to (1.1) with
initial datum f0, we have

‖ f (t)− P f0‖L2 →t→+∞ 0, (5.28)

where

P f0(x, v) =
∑
j∈J

1

‖1Uj e
−VM‖L2

(∫
Uj

f0 dvdx

)
f j , (5.29)

with (Uj ) j∈J defined in (5.25) and ( f j ) j∈J defined in (5.26).
(iv.) For all f0 ∈ L2(Td × R

d), there exists a stationary solution P f0 of (1.1) such
that we have

‖ f (t)− P f0‖L2 →t→+∞ 0, (5.30)

where f (t) is the unique solution to (1.1) with initial datum f0.

Note that Theorem 2.2 is a particular case of Theorem 5.1, when there is only one
equivalence class for ∼ (or equivalently for �).

This section is devoted to the proof of Theorem 5.1 and is organized as follows:
in Paragraph 5.2.1, we prove Proposition 5.2. Then, in Paragraph 5.2.2, we prove
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that (iv.) implies (i i.). Finally, in Paragraph 5.2.3, we show that (i.)–(i i.)–(i i i.) are
equivalent. Since the implication (i i i) �⇒ (iv.) is straightforward, this will conclude
the proof of Theorem 5.1.

5.2.1 Proof of Proposition 5.2

We start by checking that for all i ∈ J , f j is a stationary solution of (1.1). From
Lemma 5.1, we know that for any connected component 
′ of 
̃ and any t ≥ 0,
φ−t (
′) = 
′ up to a set of zero measure. Thus for all t ≥ 0, φ−t (Uj ) = Uj up to a
set of zero measure. The function f j hence cancels the kinetic transport part.

We now check that f j cancels the collision operator, i.e. C (1Ui e
−VM) = 0. We

use for this Lemma 4.5.
Denote ω = ∪i∈Iωi the partition of ω in connected components. Let i ∈ I . If

ωi ∩Uj = ∅, then f j = 0 on ωi . If ωi ∩Uj �= ∅, then there exists
′ ∈ [
 j ] such that
ωi ∩
′ �= ∅. Since
′ is a connected component of

⋃
s∈R+ φ−s(ω), we have ωi ⊂ 
′

and thus f j = e−V (x)M(v)

‖1U j e
−VM‖L2

= ρ j (x)M(v) on ωi , with ρ j (x) = e−V (x)
‖1U j e

−VM‖L2
.

Assume now that there exist k, l ∈ I and x ∈ T
d such that ωk(x)Rx

k ωl(x). Denote
by
′ ∈ [
 j ], the connected component of 
̃ such thatωl ⊂ 
′, and
′′ the connected
component of 
̃ such that ωk ⊂ 
′′. Note then that ωk(x)Rx

k ωl(x) implies
′ ∼ 
′′.
By definition of f j , this implies thatρk(x) = ρl(x). Therefore, by Lemma 4.5, we infer
that the function f j cancels the collision operator. We deduce that f j is a stationary
solution of (1.1).

Furthermore, since the supports of the ( f j ) j∈J are disjoint, ( f j ) j∈J is an orthonor-
mal family of L2.

Finally, let ϕ be a stationary solution of (1.1). Then ϕ satisfies

v · ∇xϕ − ∇x V · ∇vϕ = C (ϕ).

Taking theL2 scalar product with ϕ, we deduce thatD(ϕ) = 〈C (ϕ), ϕ〉L2 = 0, so that
by Lemma 4.5, C (ϕ) = 0. Then, with the same analysis as the proof of (i i.) �⇒ (i.)

in Theorem 2.2, we deduce that eV

Mϕ is constant on each Uj . Using the fact that ω
satisfies a.e.i.t. GCC, we deduce that we can write

ϕ =
∑
j∈J
λ j1Uj e

−VM(v), λ j ∈ R,

that is

ϕ =
∑
j∈J
〈ϕ, f j 〉L2 f j ,

and this concludes the proof.
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5.2.2 Necessity of the a.e.i.t. Geometric Control Condition

We prove here that (iv.) implies (i i.) in Theorem 5.1.
We argue by contradiction. Assume that the a.e.i.t. Geometric Control Condition

does not hold. Then A := T
d ×R

d \⋃s∈R+ φ−s(ω) has positive Lebesgue measure.
We set

f0(x, v) = �(x)1A(x, v) e−V (x)M(v),

with � to be determined later on. We define

f (t, x, v) := f0 ◦ φ−t (x, v) = � ◦ φ−t (x, v)1φt (A)(x, v) e−V (x)M(v) (5.31)

which satisfies, by construction,

∂t f + v · ∇x f −∇x V · ∇v f = 0. (5.32)

Note that for all t ≥ 0, we have φt (A) ∩ ω = ∅ since A ∩ φ−t (ω) = ∅, which yields
C ( f (t)) = 0 for all t ≥ 0 and thus f is also a solution of (1.1). We now fix� in order
to ensure that f (t) is not stationary.

• If (v · ∇x −∇x V · ∇v)(1A) �= 0, then we take � = 1.
• If (v · ∇x −∇x V · ∇v)(1A) = 0, we take� to be a Morse function on T

d , so that,
in particular, � is smooth and ∇�(x) �= 0 for almost every x ∈ T

d . Note that
with such a function �, we have f0 ∈ L2. We compute

[v · ∇x� − ∇x V · ∇v�]1A = (v · ∇x�(x))1A(x, v).

Therefore for almost all (x, v) ∈ A, this is not null, which shows that f (t) is not
stationary.

Finally if there existed a stationary solution f∞ of (1.1) such that

‖ f (t)− f∞‖L2 →t→+∞ 0, (5.33)

then since for all t ≥ 0, f (t) is supported in A, we also have f∞ supported in A.
Thus f∞ cancels the collision operator, i.e. C ( f∞) = 0. We deduce that f (t) − f∞
satisfies

∂t ( f − f∞)+ v · ∇x ( f − f∞)−∇x V · ∇v( f − f∞) = 0.

This yields for all t ≥ 0,

‖ f (t)− f∞‖L2 = ‖ f0 − f∞‖L2 . (5.34)

Moreover, the solution f defined in (5.31) is a non-stationary solution of (5.32)
according to the definition of �. In conclusion, we have f0 �= f∞. This yields
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‖ f0 − f∞‖L2 > 0, which, together with (5.34) contradicts (5.33). This concludes
the proof of (iv.) �⇒ (i i.) in Theorem 5.1.

5.2.3 End of the Proof of Theorem 5.1

We have the following key lemma.

Lemma 5.2 Let f be a solution in C0
t (L2) of (1.1). Then for all j ∈ J ,

d

dt
〈 f, f j 〉L2 = 1

‖1Uj e
−VM‖L2

d

dt

∫
Uj

f dvdx = 0.

Proof of Lemma 5.2 Let f be a solution in C0
t (L2) of (1.1); denote by f0 its initial

datum. Let j ∈ J . We take the L2 scalar product with f j in (1.1) to obtain

d

dt
〈 f, f j 〉L2 = −〈(v · ∇x − ∇x V · ∇v) f, f j 〉L2 + 〈C ( f ), f j 〉L2

= 〈 f, (v · ∇x − ∇x V · ∇v) f j 〉L2 + 〈 f,C ∗( f j )〉L2 ,

where C ∗ is the collision operator of collision kernel defined by

C ∗(g)(x, v) =
∫
Rd

[
k̃(x, v, v′)M(v)g(v′)− k̃(x, v′, v)M(v′)g(v)

]
dv′

with k̃(x, v, v′) = k(x,v,v′)
M(v′) . This follows from Property A2 satisfied by k.

We then use the following two facts.

(1) We have (v · ∇x −∇x V · ∇v) f j = 0 (see the proof of Proposition 5.2).
(2) We have C ∗( f j ) = 0. This follows from Property A2, the fact that C ( f j ) = 0

(see again the proof of Proposition 5.2) and Lemma 4.5.

We conclude that d
dt 〈 f, f j 〉L2 = 0. ��

We therefore infer that if f (t) satisfies (1.1) with an initial datum f0, then for all
t ≥ 0,

∫
Uj

f (t) dv dx =
∫
Uj

f0 dv dx

Equipped with this result, we can prove the equivalence between (i.)–(i i.)–(i i i.)
exactly as for Theorem 2.2, with only minor adaptations. The details are left to the
reader.

6 Application to Particular Classes of Collision Kernels

In this section, we introduce different classes of collision kernels to illustrate the
main results of the previous sections. We then draw consequences of the additional
assumptions made in these examples.

123



Geometric Analysis of the Linear Boltzmann Equation I... Page 45 of 84 3

E3. Let k be a collision kernel verifying A1–A3. Let ω be the set where collisions are
effective, defined in (2.1). We moreover require that for all (x, v), (x, v′) ∈ ω, there
exist N ∈ N

∗ and a “chain” v1, · · · , vN ∈ R
d such that the following hold.

• For all i , 1 ≤ i ≤ N , (x, vi ) ∈ ω.
• The points (x, v) and (x, v1) belong to the same connected component of ω.
• The points (x, v′) and (x, vN ) belong to the same connected component of ω.
• For all i , 1 ≤ i ≤ N − 1, we have

k(x, vi , vi+1) > 0 or k(x, vi+1, vi ) > 0.

As a subclass of E3, we have
E3’. Let k be a collision kernel verifying A1–A3. We require that for all y ∈ px (ω)
(where px (ω) is the projection of ω on T

d ), the set p−1
x ({y}) is included in one single

connected component of ω.
A trivial subclass of E3’ is the case where ω is connected. Another subclass of E3’

is given in the following example.
E3”. Let k be a collision kernel verifying A1–A3. We require that

ω = ωx × R
d ,

where ωx is an open subset of Td .
Remark that E2 is a subclass of E3”.
In what follows, we explain the interest of these classes of collision kernels regarding

the geometric definitions introduced before.

6.1 The Case of Collision Kernels in The Class E3

The interest of E3 lies in the simple description of the kernel of the associated collision
operator C .

Using Lemma 4.5 and the “chain” in the definition of a collision kernel in E3, we
deduce the following result.

Lemma 6.1 Let k be a collision kernel in the class E3. Let T ∈ (0,+∞] and assume
that f ∈ L2(0, T ;L2) satisfies C ( f (t)) = 0 for almost every t ∈ [0, T ]. Then there
is a function ρ ∈ L2(0, T ; L2(Td)) such that

f = ρ(t, x)M(v) on [0, T ] × ω.

Reciprocally, any function f satisfying this property satisfies C ( f ) = 0.

In other words, the kernel of the associated collision operator is equal to the set of
functions which are Maxwellians on ω:

Ker(C ) = { f ∈ L2, f|ω = ρ(x)M(v)}. (6.1)

We recall that this property, which is usual in the non degenerate case ω = T
d × R

d ,
is not true in general for collision kernels satisfying merely A1, A2 and A3.
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This allows us to reformulate in a very simple way the Unique Continuation Property
for collision kernels in E3.

Lemma 6.2 Let k be a collision kernel in the class E3. Then the set ω satisfies the
Unique Continuation Property if and only if the only solution f ∈ C0

t (L2) to
{
∂t f + v · ∇x f −∇x V · ∇v f = 0,
f = ρ(t, x)M(v) on R+ × ω, (6.2)

is f = (∫
Td×Rd f dv dx

)
e−V (x)M(v).

Conversely, using again Lemma 4.5, we have the following result.

Lemma 6.3 Let k be a collision kernel satisfying A1–A3. If any function f ∈ L2

cancelling the collision operator has its restriction to ω satisfying

f|ω = 1ωρ(x)M(v)

for some ρ ∈ L2(Td), then k necessarily belongs to the class E3.

Therefore, E3 is the largest class of collision kernels such that the kernel of the asso-
ciated collision operator is equal to the set of functions which are Maxwellians on ω,
i.e. for which (6.1) holds.

6.2 The Case of Collision Kernels in the Class E3’

To explain the interest of E3’, let us introduce now another geometric condition:

(iv.) The set ω satisfies the a.e.i.t. GCC and
⋃

s∈R+ φ−s(ω) is connected.

This condition is compared to other geometric conditions in Appendix 3.2. It has to
be confronted to the geometric condition of Theorem 2.2 (rephrased using Lemma 3.1):

(i i.) The set ω satisfies the a.e.i.t. GCC and there is only one equivalence class for∼.

In what follows, we shall adopt the notations of Theorem 2.2. It is clear that (iv.)
implies (i i.), as (iv.)means that there is a single equivalence class for an equivalence
relation defined as in Definition 2.9 with Rφ only. However, it is false in general that
items (i.)–(i i i.) in Theorem 2.2 and (iv.) above are equivalent; see Proposition 6.1
below for an example of collision kernel such that (i.)–(i i i.) are satisfied, but not (iv.).

Proposition 6.1 For V = 0, there exists a collision kernel k in the class E1 and E3,
for which (i i) holds, but not (iv).

Proof of Proposition 6.1 Consider (x, v) ∈ T × R (a similar example can be con-
structed in higher dimension as well). We take a function ϕ ∈ C0(R), such that
ϕ(0) = 0 and ϕ(v) > 0 for all v ∈ R \ {0}. Define

k(x, v, v′) = ϕ(v)ϕ(v′)M(v′), i.e. k̃(x, v, v′) = ϕ(v)ϕ(v′).
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By construction, A1 and A3 are satisfied and we notice that k̃ is symmetric (so that k
is in E1). We can also readily check that k is in E3 (with N = 2).

We have

ω := {T× R
−∗ } ∪ {T× R

+∗ }

and so

⋃
t≥0

φ−t (ω) = {T× R
−∗ } ∪ {T× R

+∗ },

from which we deduce that a.e.i.t. GCC is satisfied, but ∪t≥0φ−t (ω) is not connected.
On the other hand, the set ω satisfies the unique continuation property. Indeed, let

f satisfying

∂t f + v · ∇x f = 0, ∀(x, v) ∈ T× R

and C ( f ) = 0. Using Lemma 6.1 and the definition of k, we deduce that f =
ρ(t, x)M(v) on R

+ × T× R \ {0}, and thus almost everywhere in R
+ × T× R.

As f satisfies the transport equation (6.2), this implies that f = CM(v) for some
C > 0 and we conclude that the unique continuation property holds.

Therefore, by Theorem 2.2, we deduce that (i i.) holds. ��
However, when restricting to collision kernels in the class E3’, Conditions (i i.) and

(iv.) become equivalent.

Proposition 6.2 Let k be a collision kernel in the class E3’. Then (i.)–(iv.) are equiv-
alent.

Proof of Proposition 6.2 We consider k a collision kernel in the class E3’. Assume
that (i i.) holds. The aim is to prove that (iv.) holds. By contradiction, assume that
there are at least two connected components 
1, 
2 of

⋃
t≥0 φ−t (ω).

By (i i.), 
1 and 
2 belong to the same equivalence class for ∼. Thus, there exist
x, v1, v2 with (x, v1) ∈ 
1, (x, v2) ∈ 
2 and

k(x, v1, v2) > 0 or k(x, v2, v1) > 0.

But since k is in the class E3’, the set p−1
x ({x}) is included in one connected component

of ω. Thus we cannot have (x, v1) ∈ 
1 and (x, v2) ∈ 
2. This is a contradiction and
this concludes the proof. ��
More generally, we observe that for collision kernels in E3’, the equivalence classes
for ∼ are exactly the connected components of

⋃
t≥0 φ−t (ω). Thus Theorem 5.1 can

be reformulated as follows.

Corollary 6.1 Let k be a collision kernel in the class E3’. The following statements
are equivalent.
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(1) The set ω satisfies the generalized Unique Continuation Property.
(2) The set ω satisfies the a.e.i.t. GCC.
(3) Let (
i )i∈I be the connected components of ∪t≥0φ−t (ω). For all f0 ∈ L2(Td ×

R
d), denote by f (t) the unique solution to (1.1) with initial datum f0. We have

‖ f (t)− P f0‖L2 →t→+∞ 0, (6.3)

where

P f0 =
∑
i∈I

1

‖1
i e
−VM‖L2

(∫

i

f0 dvdx

)
g j ,

with for all i ∈ I ,

gi = 1
i e
−VM

‖1
i e
−VM‖L2

.

We close this section by exhibiting an example of collision kernel in E3’, for which
Corollary 6.1, and thus Theorem 5.1, are relevant.

We restrict ourselves to the case T×R (this can be easily adapted to higher dimen-
sions). We consider the free transport case, i.e. V = 0. We identify T to [−1/2, 1/2).
Consider α ∈ C0(T) supported in [−1/2, 0) and β ∈ C0(T) supported in [0, 1/2)
that do not vanish identically.

Let ϕ ∈ L∞ ∩ C0(R) such that ϕ > 0 on R
−∗ and ϕ = 0 on R

+. Likewise, let
� ∈ L∞ ∩C0(R) such that � > 0 on R

+∗ and � = 0 on R
−. We define the collision

kernel

k(x, v, v′) := [α(x)ϕ(v)ϕ(v′)+ β(x)�(v)�(v′)]M(v′).

Note that k̃(x, v, v′) = α(x)ϕ(v)ϕ(v′) + β(x)�(v)�(v′) is symmetric in v and v′,
and belongs to L∞. Thus k is in the class E1. Furthermore, we readily check k is in
the class E3’.

Moreover, we have ω = {{α > 0} × R
−∗ } ∪ {{β > 0} × R

+∗ }, and

⋃
s∈R+

φ−s(ω) = {T× R
−∗ } ∪ {T× R

+∗ }.

Thus ω satisfies the a.e.i.t. GCC but
⋃

s∈R+ φ−s(ω) is not connected.
The basis of the subspace of stationary solutions of (1.1) is given by ( f j ) j=1,2 with

f1 =
1
T×R−∗ e

−VM
‖1

T×R−∗ e
−VM‖L2

, f2 =
1
T×R+∗ e

−VM
‖1

T×R+∗ e
−VM‖L2

.
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6.3 The Case of Collision Kernels in the Class E3”

We finally study collision kernels in the class E3”. Because of the remarkable prop-
erties of the geodesic flow on the torus Td , the following holds.

Lemma 6.4 Suppose that V = 0 and that the collision kernel belongs to the class
E3”. Then ω satisfies a.e.i.t. GCC.

Proof of Lemma 6.4 Define T t
v : x �→ x + t v; then (T t

v x)t≥0 is dense in T
d for

almost every (x, v) ∈ T
d × R

d (with respect to the Lebesgue measure). This proves
the lemma. ��

We deduce a proof of Proposition 3.1.

Proof of Proposition 3.1 Take ω0
x a connected component of ωx . According to

Lemma 6.4, ω0
x × R

d satisfies a.e.i.t. GCC. The result then follows from Proposi-
tion 13.1, (i.)⇒ (i i i.), and Theorem 2.2. ��

7 Characterization of Exponential Convergence

Let us first briefly recall why C−(∞) is well-defined (see [32]). We can first define
for all T > 0,

C−(T ) := inf(x,v)∈Td×Rd
1

T

∫ T

0

(∫
Rd

k(φt (x, v), v
′) dv′

)
dt,

which is a continuous nonnegative function since k is. We then remark that the function
T �→ −TC−(T ) is subadditive. This entails that C−(∞) = limT→+∞ C−(T ) exists.

In this section, we assume that k satisfies A3’ and provide the proof of Theorem 2.3.
To this end, we first prove that (a.) and (b.) are equivalent, and finally that (c.) implies
(a.). This will conclude the proof, noticing that (b.) implies (c.) is straightforward. One
can also readily check that in the proof of (a.) implies (b.), the assumption A3’ is not
used.

7.1 Proof of Theorem 2.3, (a.) ⇐⇒ (b.)

Since the equation (1.1) is linear, if f (t) satisfies (1.1) then

g(t) := f (t)−
(∫

Td×Rd
f (0) dv dx

)
e−VM,

is still a solution to (1.1). Thus we can deal only with initial data which have zero
average.

By conservation of the mass, the Boltzmann equation (1.1) is well-posed in the
space

L2
0 :=
{
f ∈ L2,

∫
f dvdx = 0

}
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and we can use Lemma 11.1 for solutions in L2
0, which yields that (b.) is equivalent

to

(b’.) There exists T > 0 and K > 0 such that for all f0 ∈ L2
0, the associated solution

f to (1.1) satisfies

K
∫ T

0
D( f (t)) dt ≥ ‖ f0‖2

L2 .

We first prove that (a.) implies (b′.), then that (b′.) implies (a.).

(a.) �⇒ (b′.) Assume that (a.) holds.
We argue by contradiction. Denying (b′.) is equivalent to assuming for all T > 0

and all C > 0, the existence of gC,T0 ∈ L2
0, such that

C
∫ T

0
D(gC,T (t)) dt < ‖gC,T0 ‖2

L2 ,

where gC,T (t) is the unique solution to (1.1) with initial datum gC,T0 . Taking T = n
and C = n, this yields for all n ∈ N

∗, the existence of g0,n ∈ L2
0 such that

∫ n

0
D(gn(t)) dt <

1

n
‖g0,n‖2

L2 . (7.1)

where gn(t) is the unique solution to (1.1) with initial datum g0,n . Furthermore, by
linearity of (1.1), we can normalize the initial data so that for all n ∈ N

∗,

‖g0,n‖L2 = 1. (7.2)

Recall that by (4.5), we have, for all t ≥ 0,

‖gn(t)‖2
L2 − ‖g0,n‖2

L2 = −
∫ t

0
D(gn(s)) ds. (7.3)

In particular, the sequence (gn)n∈N∗ is uniformly bounded in L∞t L2; thus, up to some
extraction, we can assume that gn ⇀ g weakly in L2

t,locL2. Let us prove that g = 0.
By linearity of (1.1), g still satisfies (1.1) since gn does.

Note also that by conservation of the mass, for all n ∈ N and all t ≥ 0, we have

∫
gn(t) dvdx =

∫
g0,n dvdx = 0. (7.4)

Take T ′ > 0 such that (ω, T ′) satisfies GCC. By (7.1), we have
∫ T ′

0 D(gn(t)) dt →
0 and therefore by Lemma 4.2, we deduce

‖D(g)‖L1(0,T ′) ≤ lim inf
n→+∞ ‖D(gn)‖L1(0,T ′) = 0.
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As a consequence, by weak coercivity (see Lemma 4.5), we infer that C (h) = 0
on [0, T ′], and therefore h satisfies the kinetic transport equation (2.6). The Unique
Continuation Property of Proposition 5.1 then implies that

g =
(∫

Td×Rd
g dv dx

)
e−V (x)M(v). (7.5)

Since gn ⇀ g weakly in L2
t,locL2, using (7.4), we obtain in particular that

∫ T ′

0

(∫
g dvdx

)
dt = 0.

Since
∫ T ′

0

(∫
g dvdx

)
dt = T ′

(∫
g(0) dvdx

)
, we deduce that

∫
g dvdx = 0, so that

g = 0. Therefore, this leads to g = 0.
Now, let us study the sequence of defect measures νn := |gn|2 and ν0,n := |g0,n|2.

Consider the equation (1.1) satisfied by gn and multiply it by gn to get:

∂tνn + v · ∇xνn −∇x V · ∇vνn
= 2

(∫
Rd

k(x, v′, v)gn(v′) dv′
)
gn − 2

(∫
Rd

k(x, v, v′) dv′
)
νn .

By Duhamel’s formula, we infer

νn(t, x, v) = e−2
∫ t

0

∫
Rd k(φs−t (x,v),v′) dv′ dsν0,n(φ−t (x, v))

+
∫ t

0
2C+(gn(s))(φs−t (x, v))gn(s, φs−t (x, v))e−2

∫ t
s

∫
Rd k(φτ−t (x,v),v′) dv′ dτ ds,

(7.6)

where, more explicitely, we have

C+(gn(s))(φs−t (x, v))=
∫
Rd

k(Xs−t (x, v), v′, 	s−t (x, v))gn(s, Xs−t (x, v), v′) dv′.

As a consequence, we get for all t ≥ 0,

‖νn(t)‖L1 ≤ An(t)+ Bn(t) with

An(t) =
∫
Td×Rd

e−2
∫ t

0

∫
Rd k(φs−t (x,v),v′) dv′ dsν0,n(φ−t (x, v))

eV (x)

M(v)
dv dx

Bn(t) =
∫
Td×Rd

(∫ t

0
2
∣∣C+(gn(s))(φs−t (x, v))∣∣ |gn(s, φs−t (x, v))|

× e−2
∫ t
s

∫
Rd k(φτ−t (x,v),v′) dv′ dτ ds

)
eV (x)

M(v)
dv dx (7.7)
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By definition of C−(∞), there exists T0 > 0 large enough such that for all t ≥
T0,C−(t) ≥ C−(∞)/2 > 0. We infer, after the change of variables φ−t (x, v) �→
(x, v), which has unit Jacobian (recall also that the hamiltonian is left invariant by this
transform), that for all t ≥ T0,

An(t) =
∫
Td×Rd

e−2
∫ t

0

∫
Rd k(φs (x,v),v′) dv′ dsν0,n(x, v)

eV (x)

M(v)
dv dx

≤ e−tC−(t)‖ν0,n‖L1 ≤ e−tC−(∞)/2‖ν0,n‖L1

and thus we can choose T1 ≥ T0 large enough such that (we recall that ‖ν0,n‖L1 = 1)

An(T1) ≤ 1

4
‖ν0,n‖L1 = 1

4
,

which tackles the first term in (7.7).
We now study the second term in (7.7) on the time interval (0, T1). Since gn ⇀ 0,

by the averaging lemma of Corollary 12.2, we deduce that

C+(gn(s))(x, v) =
(∫

Rd
k(x, v′, v)gn(s, x, v′) dv′

)
→ 0 in L2(0, T1;L2).

Hence, by the weak/strong convergence principle,

C+(gn(s))(x, v)gn(s, x, v)

=
(∫

Rd
k(x, v′, v)gn(s, x, v′) dv′

)
gn → 0, in L1(0, T1;L1). (7.8)

We may now estimate the second term in (7.7) by

Bn(t)≤
∫
Td×Rd

(∫ t

0
2
∣∣C+(gn(s))(φs−t (x, v))∣∣ |gn(s, φs−t (x, v))| ds

)
eV (x)

M(v)
dv dx,

change variable t − s �→ s in the time integral, apply the Fubini theorem, and finally
use the change of variables φs(x, v) �→ (x, v), which has unit Jacobian, to obtain, for
t = T1,

Bn(T1) ≤
∫ T1

0

∫
Td×Rd

2
∣∣C+(gn(s))(x, v)∣∣ |gn(s, x, v)| e

V (x)

M(v)
dv dx ds → 0,

according to (7.8). Thus, coming back to (7.7), for n large enough, we finally obtain

‖νn(T1)‖L1 ≤ 1

2
. (7.9)
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But integrating with respect to time (7.3) and using (7.2)-(7.1), we also have

‖νn(T1)‖L1 = 1−
∫ T1

0
D(gn(s)) ds

≥ 3

4
for n large enough,

which is a contradiction with (7.9). This concludes the proof of (a.) �⇒ (b′.).

(b′.) �⇒ (a.)We show that if (a.) does not hold (i.e. C−(∞) = 0), then (b′.) does
not either. Assume that (a.) does not hold. The goal is to show that for all T > 0, for
all ε > 0, there exists g0,ε ∈ L2

0 such that

‖g0,ε‖L2 = 1,
∫ T

0
D(gε)(t) dt < ε, (7.10)

where gε is the solution to (1.1) with initial datum g0,ε.
Fix T > 0 and ε > 0. Since C−(∞) = 0, there exists (x0, v0) ∈ T

d × R
d , such

that

∫ T

0

∫
Rd

k(φt (x0, v0), v
′) dv′ dt e

V (x0)

M(v0)
< ε/3. (7.11)

Let χ be a smooth compactly supported cutoff function defined from R
+ to R such

that χ ≡ 1 on [0, 1] and χ ≡ 0 on [2,∞) and such that
∫
R+ χ(r)r

d−1 dr = 0.
Consider

g̃0,n = χ(n|x − x0|)χ(n|v − v0|).

Then notice that there is α > 0 independent of n such that

‖g̃0,n‖2
L2 = n−2dα.

The function g0,n := nd
α
g̃0,n is thus normalized in L2. Note that by construction,

∫
g0,n dvdx = nd

α

(∫
χ(n|x − x0|) dx

)(∫
χ(n|v − v0|) dv

)
= 0,

and thus g0,n ∈ L2
0.

We call gn the solution to (1.1) with initial datum g0,n . By construction, we observe
that g0,n ⇀ 0 weakly in L2 and we deduce that gn ⇀ 0 weakly in L2

t,locL2. As in the
previous proofs, by the averaging lemma of Corollary 12.2, this implies that

C+(gn(t))(x, v)=
∫

k(x, v′, v)gn(t, x, v′) dv′→0, strongly in L2
t,locL2. (7.12)
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Now, consider νn := |gn|2. By construction, we have, in the sense of distributions,

νn(0) ⇀ δx=x0,v=v0 , (7.13)

where δ denotes as usual the Dirac measure. As in (7.6), we have the Duhamel’s
formula

νn(t, x, v)=e−2
∫ t

0

∫
Rd k(φs−t (x,v),v′) dv′ dsν0,n(φ−t (x, v))

+
∫ t

0
2C+(gn(s))(φs−t (x, v))gn(s, φs−t (x, v))e−2

∫ t
s

∫
Rd k(φτ−t (x,v),v′) dv′ dτ ds,

(7.14)

where, more explicitely, we have

C+(gn(s))(φs−t (x, v))=
∫
Rd

k(Xs−t (x, v), v′, 	s−t (x, v))gn(s, Xs−t (x, v), v′) dv′.

We now want to prove that
∫ T

0 D(gn(t))dt → 0. To this end, we recall that

1

2
D(gn) = −〈C (gn), gn〉L2 = −〈C+(gn), gn〉L2 − 〈C−(gn), gn〉L2 ,

and study each term separately. Using (7.12), we directly obtain that

∫ T

0
〈C+(gn), gn〉L2dt → 0, (7.15)

and it only remains to prove
∫ T

0 〈C−(gn), gn〉L2dt → 0. We have

−〈C−(gn(t)), gn(t)〉L2 =
〈(∫

Rd
k(x, v, v′) dv′

)
gn(t), gn(t)

〉
L2

=
∫
Td×Rd

(∫
Rd

k(x, v, v′) dv′
)
νn(t, x, v)

eV

M ds dvdx

= An(t)+ Bn(t),

with, according to (7.14),

An(t)=
∫
Td×Rd

(∫
Rd

k(x, v, v′) dv′
)
e−2
∫ t

0

∫
Rd k(φs−t (x,v),v′) dv′ dsν0,n(φ−t (x, v))

eV

Mdvdx

Bn(t) =
∫
Td×Rd

(∫
Rd

k(x, v, v′) dv′
)∫ t

0
2C+(gn(s))(φs−t (x, v))gn(s, φs−t (x, v))

× e−2
∫ t
s

∫
Rd k(φτ−t (x,v),v′) dv′ dτ ds

eV

Mdvdx .

123



Geometric Analysis of the Linear Boltzmann Equation I... Page 55 of 84 3

We first have

0 ≤
∫ T

0
An(t)dt ≤

∫ T

0

∫
Td×Rd

(∫
Rd

k(x, v, v′) dv′
)
ν0,n(φ−t (x, v))

eV

Mdvdx dt

≤
∫ T

0

∫
Td×Rd

(∫
Rd

k(φt (x, v), v
′) dv′

)
ν0,n(x, v)

eV

Mdvdx dt

≤
∫
Td×Rd

(∫ T

0

∫
Rd

k(φt (x, v), v
′) dv′ dt

)
ν0,n(x, v)

eV

Mdvdx .

According to (7.13) (together with the fact that ν0,n is uniformly compactly supported),
we have, as n→∞ the following convergence

∫
Td×Rd

(∫ T

0

∫
Rd

k(φt (x, v), v
′) dv′ dt

)
ν0,n(x, v)

eV

Mdvdx

→
(∫ T

0

∫
Rd

k(φt (x0, v0), v
′) dv′ dt

)
eV (x0)

M(v0)
.

As a consequence of (7.11), there is N0 such that for n ≥ N0, we have

∫ T

0
An(t)dt ≤ 2

3
ε. (7.16)

We now want to study the term
∫ T

0 Bn(t)dt . For this, we define the following new
weighted L2 norm

‖ f ‖2
L2 :=

∫
Td×Rd

| f |2ϕ2 e
V

M dvdx,

where ϕ is the function given by Assumption A3’. We have the following L
2 estimate

for the Boltzmann equation (1.1).

Lemma 7.1 For any function f0 ∈ L2 with ‖ f0‖L2 < +∞, the solution f (t) to the
Boltzmann equation (1.1) with initial datum f0 satisfies, for all t ≥ 0,

‖ f (t)‖L2 ≤ ‖ f0‖L2e�t , (7.17)

where

� :=
(

sup
x∈Td

∫
Rd×Rd

k2(x, v′, v)M(v′)
M(v)

(
ϕ(x, v)

ϕ(x, v′)
− 1

)2

dvdv′
) 1

2

,

which is finite by A3’.
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Proof of Lemma 7.1 The proof follows from an energy estimate for (1.1). We first

multiply (1.1) by f ϕ2(x, v) e
V

M . Recalling that ϕ is a function of the hamiltonian, we
can integrate and argue as in Lemma 4.1 to treat the terms coming from the collision
operator and thus obtain:

1

2

d

dt
‖ f (t)‖2

L2 + 0

=
∫
Td×Rd

(∫
Rd

k(x, v′, v)
(

1− ϕ(x, v
′)

ϕ(x, v)

)
f (t, x, v′) dv′

)
f ϕ2(x, v)

eV

M dvdx

+ 〈C ( f ϕ), f ϕ〉L2

=
∫
Td×Rd

(∫
Rd

k(x, v′, v)
(

1− ϕ(x, v
′)

ϕ(x, v)

)
f (t, x, v′) dv′

)
f ϕ2(x, v)

eV

M dvdx

− 1

2
D( f ϕ)

≤
(∫

Td×Rd

(∫
Rd

k(x, v′, v)
(

1− ϕ(x, v
′)

ϕ(x, v)

)
f (t, x, v′) dv′

)2

ϕ2(x, v)
eV

M dvdx

) 1
2

× ‖ f (t)‖L2 .

Above we have used that the dissipation term D( f ϕ) is non-negative. Using the
Cauchy-Schwarz inequality, we have, for fixed x ∈ T

d

(∫
Rd

k(x, v′, v)
(

1− ϕ(x, v
′)

ϕ(x, v)

)
f (x, v′) dv′

)2

≤
(∫

Rd
f 2(x, v′) ϕ

2(x, v′)
M(v′)

dv′dx
)

×
(∫

Rd
k2(x, v′, v)

(
1− ϕ(x, v

′)
ϕ(x, v)

)2 M(v′)
ϕ2(x, v′)

dv′
)
,

from which we deduce 1
2

d
dt ‖ f (t)‖2

L2 ≤ �‖ f (t)‖2
L2 . This implies (7.17), and concludes

the proof of the lemma. ��

By construction of the sequence (g0,n), it is uniformly compactly supported and
we hence observe that there exists C0 > 0 such that for all n ∈ N,

‖g0,n‖L2 ≤ C0.

We thus use Lemma 7.1 to infer that there exists CT > 0, such that for all n ∈ N, for
all t ∈ [0, T ],

‖gn(t)‖L2 ≤ CT . (7.18)
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To estimate
∫ T

0 Bn(t)dt , we write

0 ≤ Bn(t) ≤
∫
Td×Rd

(∫
Rd

k(x, v, v′) dv′
)

×
∫ t

0
2C+(gn(s))(φs−t (x, v))gn(s, φs−t (x, v))ds

eV

Mdvdx

and use A3’. We notice that since ϕ is a function of the hamiltonian, we have

∫
Rd

k(x, v, v′) dv′ ≤ ϕ(x, v) = ϕ(φs−t (x, v)).

Therefore, using the change of variables φs−t (x, v) �→ (x, v), the Fubini theorem,
and the Cauchy-Schwarz inequality, we obtain

0 ≤ Bn(t) ≤ C

∥∥∥∥
∫
Rd

k(x, v′, v)gn(s, x, v′) dv′
∥∥∥∥
L1([0,t];L2)

sup
[0,t]
‖gn‖L2 .

By (7.12) and (7.18), we deduce that
∫ T

0 Bn(t) → 0 as n → +∞. This, combined
with (7.15) and (7.16) implies that the function g0,ε := g0,n (with n large enough)
satisfies (7.10), which concludes the proof of (b′.) �⇒ (a.).

7.2 Rigidity with respect to exponential convergence of the Maxwellian

We prove here that (c.) implies (a.) in Theorem 2.3.
Assume that (c.) holds. By (1) implies (2) in Theorem 2.1, ω satisfies the a.e.i.t.

GCC. Therefore, by Theorem 5.1, this means that P f0 is of the form defined in (5.29).
We use these notations again.

Recall by Lemma 5.2 that given an equivalence class [
 j ] for∼, denoting as usual
Uj =⋃
′∈[
 j ]


′, we have for all t ≥ 0,

∫
Uj

f (t) dv dx =
∫
Uj

f0 dv dx,

where f (t) is the solution of (1.1) with initial condition f0.
Thus, the linear Boltzmann equation (1.1) is well-posed in the space

L2
00 :=

{
f ∈ L2, ∀ j ∈ J,

∫
Uj

f dvdx = 0

}
,

and we can use Lemma 11.1 for solutions in L2
00, which yields that the exponential

convergence property is equivalent to

123



3 Page 58 of 84 D. Han-Kwan, M. Léautaud

(c’.) There exists T > 0 and K > 0 such that for all f0 ∈ L2
00, the associated solution

f to (1.1) satisfies

K
∫ T

0
D( f (t)) dt ≥ ‖ f0‖2

L2 .

We can then make the same proof as (b′.) �⇒ (a.) in Theorem 2.3 in order to infer
that if C−(∞) = 0, then (c′) does not hold. We keep the notations of that proof. The
only thing to check is that g0,n defined there belongs to L2

00 for n large enough. Let
j ∈ J such that (x0, v0) ∈ Uj . Then for n large enough, supp g0,n ⊂ Uj . Thus for all
i �= j , we have

∫
Ui

g0,n dv dx = 0 and

∫
Uj

g0,n dv dx =
∫
Td×Rd

g0,n dv dx = 0,

by definition of g0,n . Thus g0,n ∈ L2
00 for n large enough, which concludes the proof

of (c.) implies (a.) in Theorem 2.3.

8 Remarks on Lower Bounds for Convergence when C−(∞) = 0

In the situation where ω satisfies a.e.i.t. GCC but C−(∞) = 0, we know by Theo-
rem 5.1 that for all data in L2 there is convergence to some P f0 (defined in (5.29)).
It is natural to wonder if there is a uniform decay rate for smoother data (in an appro-
priately defined way). If so, then the question of the convergence rate one can obtain
becomes particularly interesting.

Let us provide here some a priori results in this direction. The following is nothing
but a rephrasing in a general framework of a result of Bernard and Salvarani [4]. Note
that they consider in their work free transport (V = 0) and velocities on the sphere
S
d−1, but one can readily check that their methods are relevant for (1.1). In their

computations, one should add the weight eV /M in the integrals.

Theorem 8.1 Denote τ(x, v) := inf{t ≥ 0, φ−t (x, v) ∈ ω)}. Assume that there is a
function of time ϕ(t) such that

Leb{(x, v) ∈ T
d × R

d , τ (x, v) > t} � ϕ(t).

Then, there exists a non-negative initial datum f0 of C∞ class and C > 0 such that
for any t ≥ 0, denoting by f (t) the solution of the linear Boltzmann equation (1.1)
with initial datum f0, we have

‖ f (t)− P f0‖L2 ≥ Cϕ(t),

where P f0 is defined in (5.29).

In particular, we obtain
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Corollary 8.1 Assume that V = 0 and that px (ω) �= T
d , where px denotes the

projection on the space of positions. Then there exists a non-negative initial datum f0
of C∞ class and C > 0 such that for any t ≥ 0, denoting by f (t) the solution of the
linear Boltzmann equation with initial datum f0, we have

‖ f (t)− P f0‖L2 ≥ C

(1+ t)d/2
,

where P f0 is defined in (5.29).

Proof of Corollary 8.1 Take x0 ∈ T
d \ px (ω). Let δ := dist(x0, px (ω)). Consider

U := B(x0, δ/2) × B(0, 1); here τ(x, v) := inf{t ≥ 0, x − tv ∈ px (ω)}. Then the
crucial point is the straightforward lower bound

Leb{(x, v) ∈ B(x0, δ/2)× B(0, 1), τ (x, v) > t} � 1

(1+ t)d/2

and we can thus apply Theorem 8.1. ��
Combining with Bernard-Salvarani’s theorem which concerns the case with trapped

trajectories [4], that we recall below, one may deduce that the “worst” lower bound in
the free transport case is due to trapped trajectories, and not to low velocities.

Theorem 8.2 (Bernard-Salvarani [4]). Let k a collision kernel belonging to the class
E3” and V = 0. Assume that there is (x, v) ∈ T

d × R
d such that for all t ∈ R

+,
x+ tv /∈ ωx . Then there exists a non-negative initial datum f0 of C∞ class and C > 0
such that for any t ≥ 0, denoting by f (t) the solution of the linear Boltzmann equation
with initial datum f0, we have

∥∥∥∥ f (t)−
(∫

Td×Rd
f0 dv dx

)
M(v)

∥∥∥∥L2
≥ C/

√
1+ t .

It is natural to conjecture that in this case, the bound in 1/
√
t is optimal (this is

supported by numerical evidence, as shown by De Vuyst and Salvarani [14]).

9 The Case of a General Compact Riemannian Manifold

In this section, we show how the above results adapt to a general Riemannian setting.
More precisely, we explain how they apply to the linear Boltzmann equation written
on the phase space T ∗M (it could be written on T M equivalently) for a compact
Riemannian manifold M , of which T

d is a (very) particular case.
Let (M, g) be a smooth compact connected d-dimensional Riemannian manifold

(without boundary). In local coordinates, the metric g is a symmetric positive definite
matrix such that for all x ∈ M and u, w ∈ TxM , we have

(u, w)g(x) = gi, j (x)u
iw j ,
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where the Einstein summation notations are used. This provides a canonical identifica-
tion between the tangent bundle T M and the cotangent bundle T ∗M via the following
formula. For any covector η ∈ T ∗x M there exists a unique vector u ∈ TxM satisfying

〈η,w〉T ∗x M,Tx M=(u, w)g(x), for all w∈TxM.

In local coordinates, we have

ηi = gi, j (x)u
j .

We can define an inner product on T ∗x M using the above identification, denoted by
(·, ·)g−1(x). In local coordinates, we have

(η, ξ)g−1(x) = gi, j (x)ηiξ j , where gi, j (x) = (g(x)−1)i, j .

For all x ∈ M and all η ∈ T ∗x M , we denote by |η|x = (η, η)
1
2
g−1(x)

the associated
norm. Let d Vol(x) be the canonical Riemannian measure on M . In local charts this
reads

d Vol(x) = √| det(g(x))|dx1 · · · dxd .

Up to a renormalization factor, we may assume that M has unit volume, i.e.
Vol(M) = 1.

The cotangent bundle T ∗M is canonically endowed with a symplectic 2-form ω (in
local charts, ω =∑d

j=1 dx j ∧ dξ j ). Let ωd be the canonical symplectic volume form

on T ∗M and by a slight abuse of notation dωd the associated normalized measure on
T ∗M (see for instance [29, p. 274]). In local coordinates, we have

dωd = dξ1 · · · dξd dx1 · · · dxd .

The canonical projection π : T ∗M → M is measurable from (T ∗M, dωd) to
(M, d Vol). For f ∈ L1(T ∗M, dωd), we define π∗ f ∈ L1(M, d Vol) by

∫
M
ϕ(x)(π∗ f )(x)d Vol(x) =

∫
T ∗M

ϕ ◦ π(x, ξ) f (x, ξ)dωd(x, ξ), for all ϕ ∈ C0(M).

In local charts, we have

(π∗ f )(x) = 1√
det(g(x))

∫
Rd

f (x, ξ)dξ1 · · · dξd .

Note also that we have the following desintegration formula

∫
T ∗M

f (x, ξ)dωd(x, ξ) =
∫
M
d Vol(x)

∫
T ∗x M

f (x, ξ)dmx (ξ),
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where the measure dmx on T ∗x M is given in local charts by

dmx = 1√
det(g(x))

dξ1 · · · dξd .

Let V ∈ W 2,∞(M), normalized so that
∫
M e−V (x) d Vol(x) = 1, and define on

T ∗M the hamiltonian

H(x, ξ) = 1

2
|ξ |2x + V (x), x ∈ M, ξ ∈ T ∗x M.

We define the associated Hamilton vector field XH , given in local coordinates by

XH = ∇ξH · ∇x −∇x H · ∇ξ .

Using the 2-formω, we can also define the Poisson bracket {·, ·}, see again [29, p. 271].
We have XH f = {H, f }.

We denote by � = {(x, ξ, ξ ′), x ∈ M, (ξ, ξ ′) ∈ T ∗x M × T ∗x M} the vector bundle
over M whose fiber above x is T ∗x M × T ∗x M .

With these notations, the Boltzmann equation on T ∗M can be written as follows,
for (t, x, ξ) ∈ R× T ∗M ,

∂t f (t, x, ξ)+ XH f (t, x, ξ)

=
∫
T ∗x M

[
k(x, ξ ′, ξ) f (t, x, ξ ′)− k(x, ξ, ξ ′) f (t, x, ξ)

]
dmx (ξ

′). (9.1)

We recover the key properties of the usual linear Boltzmann collision operator on
flat spaces. We have, for all x ∈ M ,

∫
T ∗x M

∫
T ∗x M

[
k(x, ξ ′, ξ) f (x, ξ ′)− k(x, ξ, ξ ′) f (x, ξ)

]
dmx (ξ

′)dmx (ξ) = 0.

Besides,

∫
T ∗M

(XH f )(x, ξ)dωd(x, ξ) = 0,

since (XH f )(x, ξ)dωd is an exact form (since XH is hamiltonian). As a consequence,
the mass is conserved: any solution f of (9.1) satisfies

for all t ≥ 0,
d

dt

∫
T ∗M

f (t, x, ξ) dωd(x, ξ) = 0. (9.2)

Consider now the (generalized) Maxwellian distribution:

M(x, ξ) := 1

(2π)d/2
e−

|ξ |2x
2 . (9.3)
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Note that for all x ∈ M ,
∫
T ∗x M

1
(2π)d/2

e−
|ξ |2x

2 dmx (ξ) = 1. As usual, we make the
following assumptions on the collision kernel k.
A1. The collision kernel k ∈ C0(�), is nonnegative.
A2. We assume that the Maxwellian cancels the collision operator, that is:

∫
T ∗x M

[
k(x, ξ ′, ξ)M(x, ξ ′)− k(x, ξ, ξ ′)M(x, ξ)

]
dmx (ξ

′) = 0,

for all (x, ξ) ∈ T ∗M. (9.4)

A3. Assume that

x �→
∫
T ∗x M×T ∗x M

k2(x, ξ ′, ξ)M(x, ξ ′)
M(x, ξ)

dmx (ξ
′)dmx (ξ) ∈ L∞(M).

We can define the characteristics in this Riemannian setting as follows.

Definition 9.1 The hamiltonian flow (φt )t∈R associated to H is the one parameter
group of diffeomorphisms on T ∗M defined, for (x, ξ) ∈ T ∗M , by s �→ φs(x, ξ) ∈
T ∗M , where

d

ds
φs(x, ξ) = XH

(
φs(x, ξ)

)
, φ0(x, ξ) = (x, ξ) ∈ T ∗M. (9.5)

The characteristic curve stemming from (x, ξ) ∈ T ∗M is the curve {φt (x, ξ), t ∈ R
+}.

Note also for any function h defined on R, h ◦ H is preserved along these integral
curves, as

(
d

ds
h ◦ H ◦ φs

)
|s=s0 = XH (h ◦ H)(φs0) = {H, h ◦ H}(φs0) = 0.

In particular, this holds for the function eV

M = 1
(2π)d/2

eH .
With this definition of characteristics, we can then properly define

• the set ω where collisions are effective, as in Definition 2.1,
• C−(∞), as in Definition 2.4,
• a.e.i.t. GCC, as in Definition 2.5,
• the Unique Continuation Property, as in Definition 2.11,
• the generalized Unique Continuation Property, as in Definition 5.1,
• the equivalence relations ∼ and �, as in Definitions 3.1 and 2.9,
• the sets Uj as in (5.25).

Note that in this Riemannian setting, the classes of collision operators E1, E2, E3
still make sense, up to some obvious adaptations.

Let us now introduce the relevant weighted Lebesgue spaces.
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Definition 9.2 (Weighted L p spaces). We define the Banach spaces L2 and L∞ by

L2(T ∗M) :=
{
f ∈ L2

loc(T
∗M),

∫
T ∗M

| f |2 e
V

M dωd < +∞
}
,

‖ f ‖L2 =
(∫

T ∗M
| f |2 e

V

M dωd
)1/2

.

L∞(T ∗M) :=
{
f ∈ L1

loc(T
∗M), sup

T ∗M
| f | e

V

M < +∞
}
, ‖ f ‖L∞ = sup

T ∗M
| f | e

V

M

The space L2 is a Hilbert space endowed with the inner product

〈 f, g〉L2 :=
∫
T ∗M

f g
eV

M dωd .

As in the case of the torus, we have the following well-posedness result for the
Boltzmann equation (9.1).

Proposition 9.1 (Well-posedness of the linear Boltzmann equation). Assume that
f0 ∈ L2. Then there exists a unique f ∈ C0(R;L2) solution of (9.1) satisfying
f |t=0 = f0, and we have

for all t ≥ 0,
d

dt
‖ f (t)‖2

L2 = −D( f (t)), (9.6)

where

D( f ) = 1

2

∫
M
eV (x)

∫
T ∗x M

∫
T ∗x M

(
k(x, ξ ′, ξ)
M(x, ξ)

+ k(x, ξ, ξ ′)
M(x, ξ ′)

)

×M(x, ξ)M(x, ξ ′)
(

f (x, ξ)

M(x, ξ)
− f (x, ξ ′)

M(x, ξ ′))

)2

dmx (ξ) dmx (ξ
′) d Vol(x).

If moreover f0 ≥ 0 a.e., then for all t ∈ R we have f (t, ·, ·) ≥ 0 a.e. (Maximum
principle).

More generally, all results of Section 4 (up to obvious adaptations) are still relevant.
The crucial point we have to check now concerns velocity averaging lemmas for

kinetic transport equations on a Riemannian manifold.

Lemma 9.1 Let H be defined as above, and XH the associated vector field. Let T > 0
and � ∈ C∞c (T ∗M). There exists C > 0 a constant such that the following holds.
For any f, h ∈ L2((0, T )× T ∗M) satisfying

∂t f + XH f = h,

we have

‖π∗
(
f�)‖H1/4((0,T )×M) ≤ C(‖ f |t=0‖L2((0,T )×T ∗M) + ‖h‖L2((0,T )×T ∗M)

)
.
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i.e.
∥∥∥∥∥
∫
T ∗x M

f�dmx

∥∥∥∥∥
H1/4((0,T )×M)

≤ C
(‖ f |t=0‖L2((0,T )×T ∗M) + ‖h‖L2((0,T )×T ∗M)

)
.

Remark 9.1 Assuming that V is smooth enough, we may obtain the optimal Sobolev
regularity H1/2 (instead of H1/4), see Remark 12.1.

Proof of Lemma 9.1 In local charts, we have

π∗( f�)(x, ξ) =
∫
Rd

f (x, ξ)�(x, ξ)
1√

det(g(x))
dξ.

and f satisfies the kinetic equation

∂t f + gi, j (x)ξ j∂xi f −
(

1

2
∂xi g

j,k(x)ξ jξk + ∂xi V (x)
)
∂ξi f = h.

We use the change of variables f (t, x, vi ) = f (t, x, gi, jv j ) (we define as well h and
�), which satisfies the equation

∂t f + vi∂xi f −
(
�i

j,k(x)v
jvk + ∂xi V (x)

)
∂vi f = h,

where �i
j,k(x) = 1

2g
i,�(x)

(
∂x j gk,�(x)+ ∂xk g j,�(x)− ∂x�g j,k(x)

)
are the Christoffel

symbols. Using a classical averaging lemma (see (12.1) in Theorem 12.1 in Appendix 2
with m = 1 and s = 0), we deduce that

∥∥∥∥
∫
Rd

f �
√

det(g(x)) dv

∥∥∥∥
H1/4((0,T )×Rd×Rd )

≤ C
(‖ f |t=0‖L2((0,T )×Rd×Rd ) + ‖h‖L2((0,T )×Rd×Rd )

)
.

Going back to the original variables, we deduce that

∥∥∥∥
∫
Rd

f �
1√

det(g(x))
dv

∥∥∥∥
H1/4((0,T )×Rd×Rd )

≤ C
(‖ f |t=0‖L2((0,T )×Rd×Rd ) + ‖h‖L2((0,T )×Rd×Rd )

)
,

which proves our claim. ��
Equipped with this tool (more generally the analogues of all averaging lemmas of

Appendix 2 can be obtained as well), we have the following analogue of the general
convergence result of Theorem 5.1 (which includes Theorems 2.2 and 2.1). The same
proof applies with only minor adaptations. Recall that the sets (Uj ) j∈J are defined
in (5.25).
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Theorem 9.1 The following statements are equivalent.

(i.) The set ω satisfies the generalized Unique Continuation Property.
(ii.) The set ω satisfies the a.e.i.t. GCC.
(iii.) For all f0 ∈ L2, denote by f (t) the unique solution to (9.1) with initial datum

f0. We have

‖ f (t)− P f0‖L2 →t→+∞ 0, (9.7)

where

P f0(x, v) =
∑
j∈J

1

‖1Uj e
−VM‖L2

(∫
Uj

f0 dω
d

)
f j , (9.8)

with (Uj ) j∈J defined in (5.25) and f j = 1U j e
−VM

‖1U j e
−VM‖L2

.

(iv.) For all f0 ∈ L2, denote by f (t) the unique solution to (9.1) with initial datum
f0. We have

‖ f (t)− P f0‖L2 →t→+∞ 0, (9.9)

where P f0 is a stationary solution of (9.1).

We obtain as well the analogue of Theorem 2.3. As in the torus case, we make the
additional technical assumption:
A3’. Assume that there exists a continuous function ϕ(x, ξ) := � ◦ H(x, ξ), with
ϕ ≥ 1, such that for all (x, ξ) ∈ T ∗M , we have

∫
T ∗x M

k(x, ξ, ξ ′) dmx (ξ
′) ≤ ϕ(x, ξ)

and

sup
x∈M

∫
T ∗x M×T ∗x M

k2(x, ξ ′, ξ)M(x, ξ ′)
M(x, ξ)

(
ϕ(x, ξ)

ϕ(x, ξ ′)
− 1

)2

dmx (ξ)dmx (ξ
′) < +∞

Theorem 9.2 (Exponential convergence to equilibrium). Assume that the collision
kernel satisfies A3’. The following statements are equivalent:

(a.) C−(∞) > 0.
(b.) There exists C > 0, γ > 0 such that for any f0 ∈ L2, the unique solution to (9.1)

with initial datum f0 satisfies for all t ≥ 0

∥∥∥∥ f (t)−
(∫

T ∗M
f0 dω

d
)
e−VM

∥∥∥∥L2
≤ Ce−γ t

∥∥∥∥ f0 −
(∫

T ∗M
f0 dω

d
)
e−VM

∥∥∥∥L2
.

(9.10)
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(c.) There exists C > 0, γ > 0 such that for any f0 ∈ L2, there exists P f0 a stationary
solution of (9.1) such that the unique solution to (9.1)with initial datum f0 satisfies
for all t ≥ 0,

‖ f (t)− P f0‖L2 ≤ Ce−γ t ‖ f0 − P f0‖L2 . (9.11)

As a particular case of Theorem 9.1, we have the following corollary.

Corollary 9.1 Assume that V = 0 and ω = T ∗ωx , where ωx is a non-empty open
subset of M. Suppose that the dynamics associated to (φt )t≥0 on

S∗M =
{
(x, ξ) ∈ T ∗M, 1

2
|ξ |2x = 1

}
,

is ergodic. Then for all f0 ∈ L2, denoting by f (t) the unique solution to (9.1) with
initial datum f0, we have

∥∥∥∥ f (t)−
(∫

T ∗M
f0 dω

d
)
M(v)

∥∥∥∥L2
→t→+∞ 0, (9.12)

Note that if the dynamics of (φt )t≥0 is ergodic on S∗M , then it is also ergodic on
cosphere bundles of any positive radius (since for V = 0, the flow is homogeneous of
degree one).

Classical examples of Riemannian manifolds satisfying this dynamical assumption
are given by compact Riemannian manifolds with negative curvature.

10 The case of compact phase spaces

Instead of studying the linear Boltzmann equation on the “whole” phase space T ∗M ,
it is possible to consider this equation set on the “reduced” compact phase spaces

B∗HM={(x, ξ) ∈ T ∗M, H(x, ξ) ≤ R}, S∗HM = {(x, ξ) ∈ T ∗M, H(x, ξ) = R},
or R∗HM = {(x, ξ) ∈ T ∗M, R ≤ H(x, ξ) ≤ R′},

for R′ > R > 0. Note that by continuity, the potential V is always bounded from
below (and above), so that B∗HM , S∗HM and R∗HM are indeed compact.

We focus now on the case of S∗HM (the other cases being handled similarly). We
require that the collision kernel k is defined on

� = {(x, ξ, ξ ′), x ∈ M, (ξ, ξ ′) ∈ T ∗x M × T ∗x M, H(x, ξ) = R, H(x, ξ ′) = R}.

and make the following assumptions
A1. The collision kernel k ∈ C0(�), is nonnegative.
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A2. We assume that the Maxwellian cancels the collision operator, that is:

∫
ξ ′∈T ∗x M, H(x,ξ ′)=R

[
k(x, ξ ′, ξ)M(x, ξ ′)− k(x, ξ, ξ ′)M(x, ξ)

]
dmx (ξ

′) = 0,

for all (x, ξ) ∈ S∗HM. (10.1)

Note that in the compact framework, the former assumption A3 is useless.
Within these assumptions, the linear Boltzmann equation (1.1) is well-posed in

appropriate weighted Lebesgue spaces based on L2(S∗HM), in particular because the
hamiltonian is preserved by the dynamics. The case of S∗HM is for instance relevant
for the equations of radiative transfer or neutronics.

The analogues of Theorems 2.2, 2.3, 5.1 still hold in this framework, up to the appro-
priate modifications of the various geometric conditions. For the sake of conciseness,
we do not write these results again. All proofs remain valid, with some simplifications,
since the phase space is now compact. Note that the fact thatC−(∞) > 0 is equivalent
to GCC in this compact case.

Acknowledgments We wish to thank Diogo Arsénio for several interesting and stimulating discussions
related to this work.

Appendix 1: A Stabilization Criterion

We provide in this appendix a characterization of exponential decay for dissipative
evolution equations. The following lemma is very classical and we reproduce it here
for the convenience of the reader.

Lemma 11.1 Consider the evolution equation

{
∂t f + L f = 0,

f|t=0 = f0,
(11.1)

assumed to be:

• globally wellposed in some functional space X in the sense that for any f0 ∈ X,
there is a unique f ∈ C0

t (X) solution to (11.1),
• invariant by translation in time, in the sense that if f ∈ C0

t (X) is the solution of
(11.1), then for all t0 ≥ 0, g(t) := f (t + t0) is the unique solution of

{
∂t g + Lg = 0,

g|t=0 = f|t=t0 .
(11.2)

Let E ( f ) and D( f ) be two non-negative functionals defined for all f ∈ X, and such
that if f is a solution to (11.1),

for all t ≥ t ′ ≥ 0, E ( f (t))− E ( f (t ′)) = −
∫ t

t ′
D( f (s)) ds. (11.3)
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Then, the following two properties are equivalent:

(1) There exist C, γ > 0 such that for all f (0) ∈ X, the associated solution f to
(11.1) satisfies

for all t ≥ 0, E ( f (t)) ≤ Ce−γ tE ( f (0)). (11.4)

(2) There exists T > 0 and K > 0 such that for all f (0) ∈ X, the associated solution
f to (11.1) satisfies

K
∫ T

0
D( f (t)) dt ≥ E ( f (0)). (11.5)

For the sake of completeness, we provide a short proof of this lemma.

Proof of Lemma 11.1 (1) ⇒ (2) Assume that (1) holds. Let T0 > 0 such that
Ce−γ T0 = 1

2 . Then, using (11.3) betwen 0 and T0, we have:

E ( f (T0))− E ( f (0)) = −
∫ T0

0
D( f (t)) dt,

so that, by (11.4),

∫ T0

0
D( f (t)) dt ≥ E ( f (0))− Ce−γ T0E ( f (0)) = 1

2
E ( f (0)),

and we can therefore take T = T0 and C = 2 in (11.5).
(2) ⇒ (1) Assume that (2) holds. Here (and only here), we need the property of
invariance by time translations for (11.1). By (11.3) and (11.5), we have

E ( f (T )) ≤
(

1− 1

K

)
E ( f (0)).

Note that the assumption E ( f ) ≥ 0 implies in particular that K ≥ 1. We may assume
that K > 1. Indeed, for K = 1, we have E ( f (t)) = 0 for all t ≥ T so that for any
γ > 0, there exists C > 0 such that (1) holds. By invariance by translation in time
of (11.1), one likewise obtains

E ( f (2T )) ≤
(

1− 1

K

)
E ( f (T )).

Thus, by a straightforward induction, for any k ∈ N, we have the bound:

E ( f (kT )) ≤
(

1− 1

K

)k
E ( f (0)).
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Defining γ0 :=
− log

(
1− 1

K

)
T > 0 and C0 :=

(
1− 1

K

)−1 = eγ0T > 0, we can now
check that

for all t ≥ 0, E ( f (t)) ≤ C0e
−γ0tE ( f (0)). (11.6)

Indeed, let t ≥ 0 and k ∈ N such that t ∈ [kT, (k + 1)T [; since E ( f (·)) is decreasing
(see (11.3)), we have

E ( f (t)) ≤ E ( f (kT )) ≤
(

1− 1

K

)k
E ( f (0))=e−γ0kTE ( f (0)) ≤ C0e

−γ0tE ( f (0)),

which concludes the proof. ��

Appendix 2: Velocity Averaging Lemmas

Velocity averaging lemmas play an important role in many proofs of this paper. In this
appendix, we recall some classical results and also state the versions precisely adapted
to our needs.

Kinetic transport equations are hyperbolic partial differential equations and as it
can be seen from Duhamel’s formula, there is propagation of potential singularities
at initial time and/or from a source in the equations. Thus there is no hope that the
solution of a kinetic equation becomes more regular than the initial condition.

It was nevertheless observed by Golse, Perthame and Sentis [24] that the averages
in velocity of the solution of a kinetic transport equation enjoy extra regular-
ity/compactness properties (see also the independent paper of Agoshkov [1]). We
refer to the by now classical paper of Golse, Lions, Perthame, Sentis [23], DiPerna,
Lions [18], DiPerna, Lions, Meyer [19], Bézard [8] for quantitative estimates of this
compactness property in various settings of increasing complexity.

We also refer to the review paper of Jabin [30] and to the recent work of Arsénio
and Saint-Raymond [2].

We start by recalling classical averaging lemmas in the whole space Rd . There are
also versions of these lemmas for p ∈ (1,∞), but we stick to the case p = 2, which
is sufficient for our needs.

Theorem 12.1 (Kinetic averaging lemma [8,18,19,23]). Let s ∈ [0, 1) and m ∈ R
+.

For any T > 0 and any bounded open sets
x ,
v ⊂ R
d , there exists a constant C > 0

such that for all � ∈ C∞c (Rd) supported in 
v and all f, g ∈ L2
loc(R × R

d × R
d)

satisfying

∂t f + v · ∇x f = (1− t,x )
s/2(1− v)m/2g,

we have

‖ρ�‖Hα([0,T ]×
x ) ≤ C
(‖ f ‖L2([0,T ]×
x×
v) + ‖g‖L2([0,T ]×
x×
v)

)
, (12.1)
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where ρ�(t, x) :=
∫
Rd f (t, x, v)�(v)dv and α = (1−s)

2(1+m) .
As a consequence, we obtain

Corollary 12.1 Let T > 0 and ( fn)n∈N and (gn)n∈N be two sequences of
L2(0, T ; L2

loc(R
d × R

d)) such that the following holds

∂t fn + v · ∇x fn = (1− t,x )
s/2(1− v)m/2gn,

with s ∈ [0, 1),m ≥ 0. Assume that for any bounded open sets 
x ,
v ⊂ R
d , there

exists C1 > 0, such that for all n ∈ N,

‖ fn‖L2((0,T )×
x×
v) + ‖gn‖L2((0,T )×
x×
v) ≤ C1. (12.2)

Then, for any � ∈ C∞c (Rd), the sequence (ρ�,n)n∈N defined for n ∈ N by

ρ�,n(t, x) :=
∫
Rd

fn(t, x, v)�(v)dv

is relatively compact in L2(0, T ; L2
loc(R

d)).

Remark 12.1 In the main part of the paper, we apply this averaging lemma to the
Boltzmann equation (1.1) by writing it under the form

∂t f + v · ∇x f = ∇x V · ∇v f +
∫
Rd

[
k(x, v′, v) f (v′)− k(x, v, v′) f (v)

]
dv′.

To this end, we consider the case s = 0,m = 1 in Theorem 12.1. This implies that
the averages in v belong to the Sobolev space H1/4.

Nevertheless, assuming that the potential V is smooth enough, we can also use the
approach of Gérard-Golse [22] or Berthelin-Junca [7] to obtain the optimal Sobolev
space H1/2 for these averages (which is not needed in this paper).

Remark 12.2 We also have a version of these lemmas for kinetic transport equations
set in general Riemannian manifolds, see Lemma 9.1.

We now state the result as needed in the main part of this work. Assuming an extra
uniform integrability, we can deduce some compactness on moments of f without
having to consider compactly supported test functions in v. This is the purpose of the
next result, which is actually the version of averaging lemmas used most of the time
in this work.

Corollary 12.2 Let
x be a bounded open set ofRd , T > 0, and ( fn)n∈N, (gn)n∈N be
two sequences of L2(0, T ; L2

loc(
x×Rd)) satisfying ∂t fn+v·∇x fn = (1− v)m/2gn,
for some m ≥ 0. Suppose that there exists V ∈ L∞ such that for any bounded open
set 
v ⊂ R

d , there exists C0 > 0 such that, for any n ∈ N,

for all t ≥ 0, ‖ fn‖2
L2(
x×Rd )

:=
∫

x

∫
Rd
| fn|2 eV (x)

M(v)
dv dx ≤ C0,

‖gn‖L2((0,T )×
x×
v) ≤ C0. (12.3)
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Assume moreover that there is f ∈ L∞(0, T ; L2(
x × R
d)) such that fn ⇀ f

weakly−� in L∞(0, T ;L2(
x ×R
d)). Consider ρn(t, x) :=

∫
Rd fn(t, x, v) dv. Then

up to a subsequence, we have

ρnM(v)→
(∫

Rd
f dv

)
M(v), strongly in L2(0, T ;L2(
x × R

d)), (12.4)

and for any continuous kernel k(·, ·, ·) : Rd ×R
d ×R

d → R satisfying A3, we have

∫
Rd

k(x, v′, v) fn(t, x, v′) dv′ →
∫
Rd

k(x, v′, v) f (t, x, v′) dv′,

strongly in L2(0, T ;L2(
x × R
d)). (12.5)

Moreover, the same result still holds if we replace 
x by Td .

Proof of Corollary 12.2 Note first that the result for Td can be deduced by a finite
covering of Td by local charts of the form 
x . Hence, it suffices to prove the result
with 
x . By Fatou’s lemma, the function f satisfies:

for all t ≥ 0, ‖ f ‖2
L2 =

∫

x

∫
Rd
| f |2 eV (x)

M(v)
dv dx ≤ C0. (12.6)

Since ρn does not depend on v, proving (12.4) is equivalent to show that:

ρne
V →

∫
Rd

f dv eV , strongly in L2((0, T )×
x ). (12.7)

Let� ∈ C∞c (R) such that� = 1 in a neighborhood of 0, and define�R(v) = �( |v|R ),
v ∈ R

d .
By Corollary 12.1, we can assume, up to a subsequence, that

ρ�R ,n :=
∫
Rd

fn�R dv→
∫
Rd

f�R dv, strongly in L2((0, T )×
x ). (12.8)

Let ε > 0. We can write the decomposition:

ρn −
∫
Rd

f dv = A1 + A2 + A3, with

A1 =
(
ρ�R ,n −

∫
Rd

f�R dv

)
, A2 =

∫
Rd

fn(1−�R) dv,

A3 = −
∫
Rd

f (1−�R) dv.

123



3 Page 72 of 84 D. Han-Kwan, M. Léautaud

By Cauchy-Schwarz inequality, using (12.3), we have for all n ∈ N and all t ∈ (0, T ),
∥∥∥∥
∫
Rd

fn(1−�R) dv e
V
∥∥∥∥

2

L2(
x )

≤
∫ (∫

Rd
| fn|2 1

M(v)
dv

)(∫
Rd
(1−�R)

2M(v) dv

)
e2V (x) dx

≤ C0‖eV ‖L∞(
x )

(∫
Rd
(1−�R)

2M(v) dv

)
.

As a consequence, there exists R0 > 0 large enough such that for all R ≥ R0 and all
n ∈ N, we have

‖eV A2‖2
L2((0,T )×
x )

≤ ε
3
.

Likewise, we use (12.6) to get for all n ∈ N,

‖eV A3‖2
L2((0,T )×
x )

≤ ε
3
.

Using (12.8) (R is now fixed), there is N ≥ 0 such that for any n ≥ N ,

∥∥∥∥
(
ρ�R ,n −

∫
Rd

f�R dv

)
eV
∥∥∥∥
L2((0,T )×
x )

≤ ε/3,

from which we infer that
∥∥∥∥
(
ρn −

∫
Rd

f dv

)
eV
∥∥∥∥
L2((0,T )×
x )

≤ ε (12.9)

and this concludes the proof of (12.4).
For the proof of (12.5), let us first assume for a while that k is smooth (namely for all

x , k(x, ·, ·) belongs to the C∞ class). We first have to be careful about the integration
in the velocity variable. The convergence in (12.5) results from the following two
facts:

• For all v ∈ R
d , we have the following convergence

∫
Rd

k(x, v′, v) fn(t, x, v′) dv′

→
∫
Rd

k(x, v′, v) f (t, x, v′) dv′ strongly in L2(0, T ; L2
x (
x )).

This follows from a truncation argument and Corollary 12.1, exactly as for ρn .
Keeping the same notations, the only difference is that we have to study

(∫
Rd
(1−�R)

2k2(x, v′, v)M(v′) dv′
)
,
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which, using A3, is small for R large enough.
• By the Cauchy-Schwarz inequality and the bound (12.3), we have

∫ T

0

∫

x

(∫
Rd

k(x, v′, v)( fn − f )(t, x, v′) dv′
)2 eV

M(v)
dx dt

≤
∫ T

0

(
sup
x∈
x

∫
Rd

k2(x, v′, v)M(v′)
M(v)

dv′
)

∫

x

(∫
Rd

| fn − f |2(t, x, v′)
M(v′)

dv′
)
eV dx dt

≤ C0T sup
x∈
x

∫
Rd

k2(x, v′, v)M(v′)
M(v)

dv′,

which is independent of n and in L1(dv), since by A3, we have

sup
x∈
x

∫
Rd×Rd

k2(x, v′, v)M(v′)
M(v)

dv′ dv < +∞.

Hence, by Lebesgue dominated convergence theorem, we deduce (12.5).
We now use an approximation argument to handle the general case, i.e. when k is

only assumed to be continuous. Consider (φδ)δ>0 a family of mollifiers in C∞c (Rd ×
R
d) for the measure M(v)M(v′) dv′dv. We set for all x, v, v′

k̃δ(x, v, v
′) =
(
k̃(x, ·, ·) � φδ(·, ·)

)
(v, v′), kδ(x, v, v

′) = k̃δ(x, v, v
′)M(v′).

We use the following classical properties of mollifiers:

• for all x , kδ(x, ·, ·) is in the C∞ class;
• we have for all δ > 0

sup
x∈
x

‖k̃ − kδ‖L2(M(v)M(v′) dv′dv)→δ→0 0. (12.10)

Let ε > 0. We write the decomposition

∥∥∥∥
∫
Rd

k(x, v′, v) fn(t, x, v′) dv′ −
∫
Rd

k(x, v′, v) f (t, x, v′) dv′
∥∥∥∥

2

L2
≤ 2A1 + 2A2,

with

A1 =
∥∥∥∥
∫
Rd

kδ(x, v
′, v) fn(t, x, v′) dv′ −

∫
Rd

kδ(x, v
′, v) f (t, x, v′) dv′

∥∥∥∥
2

L2
,

A2 =
∥∥∥∥
∫
Rd
(k − kδ)(x, v

′, v)( fn − f )(t, x, v′) dv′
∥∥∥∥

2

L2
.
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We estimate A2 as follows, using (12.10)

A2 =
∫
Rd

M(v)

∫

x

(∫
Rd
(k̃ − k̃δ)(x, v

′, v)( fn − f )(t, x, v′) dv′
)2

eV dx dv

≤ sup
x∈
x

∫
Rd×Rd

|k̃ − k̃δ|2(x, v′, v)M(v′)M(v) dv′ dv

×
(∫

x

∫
Rd

| fn − f |2(t, x, v′)
M(v′)

eV dv′ dx
)

≤ 4C2
0 sup
x∈
x

∫
Rd×Rd

|k̃ − k̃δ|2(x, v′, v)M(v′)M(v) dv′ dv.

Using (12.10), we fix δ > 0 small enough so that for all n ∈ N,

A2 ≤
(
ε/(4T )

)1/2
.

and thus for all n ∈ N, we have

‖A2‖2
L2(0,T ) ≤ ε/4.

For A1, we use the above analysis in the smooth case to deduce that we can take N
large enough to get for all n ≥ N ,

‖A1‖2
L2(0,T ) ≤ ε/4.

Finally, we have proven that for any ε > 0, there is N such that for all n ≥ N ,

∥∥∥∥
∫
Rd

k(x, v′, v) fn(t, x, v′) dv′ −
∫
Rd

k(x, v′, v) f (t, x, v′) dv′
∥∥∥∥

2

L2(0,T ;L2)

≤ ε,

which concludes the proof of the convergence. ��

Appendix 3: Reformulation of Some Geometric Properties

In this appendix, we first provide a proof of Lemma 3.1, giving the link between the
two equivalence relations � and ∼. Then, we explore related geometric conditions
with additional connectedness assumptions, that are sufficient for having a single
equivalence class for � and ∼.

Appendix 3.1: Proof of Lemma 3.1

We first define another convenient equivalence relation.

Definition 13.1 Given ω1 and ω2 two connected components of ω, we say that ω1 �
ω2 if there are N ∈ N and N connected components (ωi )1≤i≤N of ω such that
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• we have ω1 Rφ ω(1),
• for all 1 ≤ i ≤ N − 1, we have ω(i)Rφ ω(i+1),
• we have ω(N )Rφ ω2.

The relation � is an equivalence relation on the set of connected components of ω.
For ω1 a connected component of ω, we denote its equivalence class for � by {ω1}.

The following result is useful for the proof of Lemma 3.1.

Lemma 13.2 Let 
0 be a connected component of
⋃

s∈R+ φ−s(ω) and let (ω�)�∈L
be the connected components of ω such that for all � ∈ L, there exists t ≥ 0 with
φ−t (ω�) ∩
0 �= ∅. Then, for all �, �′ ∈ L, we have ω� � ω�′ .

Proof of Lemma 13.2 Assume that there exist at least two equivalence classes for �
among the ω�, � ∈ L . Let �0 ∈ L and consider {ω�0} the equivalence class of ω�0 for
�. Defining

U1 :=
⋃

U∈CC(ω),U∈{ω�0 }

⋃
t≥0

φ−t (U ) ∩
0 and

U2 :=
⋃

U∈CC(ω),U /∈{ω�0 }

⋃
t≥0

φ−t (U ) ∩
0,

we have by construction that U1,U2 are two open non-empty subsets of 
0 and that
U1 ∪U2 = 
0.

Let us check U1 ∩ U2 = ∅: otherwise it means that there exist two connected
components 
1 and 
2 of ω such that 
1 ∈ {ω�0}, 
2 /∈ {ω�0} and 
1 Rφ
2, which
is excluded by definition of the equivalence class.

This is a contradiction with the fact that 
0 is connected. ��
We are now in position to prove Lemma 3.1.

Proof of Lemma 3.1 Let us first prove that ω1 � ω2 �⇒ �(ω1) ∼ �(ω2). It suffices
to prove that

(
ω1 Rk ω2 or ω1 Rφ ω2

)
�⇒
(
�(ω1)Rk�(ω2) or �(ω1)Rφ�(ω2)

)
. (13.1)

The conclusion then follows from an iterative use of this argument.
If ω1 Rk ω2, then �(ω1)Rk�(ω2). This follows from the fact that ω j ⊂ �(ω j )

and the definition of Rk . Similarly, if ω1 Rφ ω2, then �(ω1)Rφ �(ω2).
Let us now prove that �(ω1) ∼ �(ω2) �⇒ ω1 � ω2. According to Lemma 13.2,

it is sufficient to prove that 
(1), 
(2) being two given connected components of⋃
t≥0 φ−t (ω), we have


(1)Rk 

(2) �⇒ there exist two connected components ω∗1 and ω∗2 of ω

such that ω∗1 Rk ω
∗
2 and ω∗1 ⊂ 
(1), ω∗2 ⊂ 
(2).

(13.2)

The conclusion then follows from an iterative use of this argument.
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By definition of Rk , there exist (x, v1, v2) ∈ T
d × R

d × R
d with (x, v1) ∈ 
(1)

and (x, v2) ∈ 
(2) such that k(x, v1, v2) > 0 or k(x, v2, v1) > 0.
Note in particular that this implies (x, v1), (x, v2) ∈ ω. Denoting by ω∗1 (resp. ω∗2)

the connected component of ω such that (x, v1) ∈ ω∗1 (resp. (x, v2) ∈ ω∗2), we hence
have ω∗1 Rk ω

∗
2. The conclusion of (13.2) follows from the fact that ω∗j ⊂ 
( j), for

j = 1, 2 and the very definition of Rk . ��

Appendix 3.2: Almost Everywhere Geometric Control Conditions
and Connectedness

In this section, we give sufficient conditions for ω to satisfy the a.e.i.t. GCC with⋃
s∈R+ φ−s(ω) connected. In this case, whatever the collision kernel k, there is a

single equivlence class for � and ∼, so that the dimension of the set of stationary
solutions is one (and the equilibrium ultimately reached is the global Maxwellian).

Proposition 13.1 Let ω ⊂ T
d × R

d be an open subset. Consider the following geo-
metric properties:

(i) There exists ω̃ ⊂ ω, ω̃ connected satisfying the a.e.i.t. Geometric Control Con-
dition;

(ii) The set ω satisfies the a.e.i.t. GCC and for any connected components (ω1, ω2)

of ω, there exists (x0, v0) ∈ ω1 and s ∈ R such that φs(x0, v0) ∈ ω2;
(iii) The set ω satisfies the a.e.i.t. GCC and

⋃
s∈R+ φ−s(ω) is connected.

Then (i) �⇒ (i i i) and (i i) �⇒ (i i i).

Note in particular that (i)− (i i)− (i i i) hold as soon as ω is connected and satisfies
a.e.i.t. GCC.

Proof of Proposition 13.1 Before starting the proof, let us remark that is ω is a con-
nected open subset of 
 × R

d , then
⋃

s∈R+ φ−s(ω) is also a connected open subset.
Indeed it is first an open subset of 
 × R

d , and it is equivalent to show that it is
path-connected. Let y1, y2 ∈ ⋃s∈R+ φ−s(ω); there exists s1, s2 ≥ 0 and z1, z2 ∈ ω
such that y1 = φ−s1(z1) and y2 = φ−s2(z2). Since ω is a connected open subset of

×R

d , it is also path-connected and one can find a continuous path in ω between z1
and z2. Using the application φ−s , we also get a continuous path between y1 and z1
in
⋃

s∈R+ φ−s(ω) (resp. between y2 and z2).
Gluing these paths together, this yields a continuous path in

⋃
s∈R+ φ−s(ω) between

y1 and y2.
• (i) �⇒ (i i i). Since ω̃ ⊂ ω, we have

⋃
s∈R+ φ−s(ω̃) ⊂

⋃
s∈R+ φ−s(ω).

Denote by (
i )i∈I the connected components of
⋃

s∈R+ φ−s(ω). The sets 
i are
connected open sets so that the inclusion

⋃
s∈R+ φ−s(ω̃) ⊂

⋃
s∈R+ φ−s(ω) together

with the connectedness of
⋃

s∈R+ φ−s(ω̃) yields the existence of i0 ∈ I such that⋃
s∈R+ φ−s(ω̃) ⊂ 
i0 . Since

⋃
s∈R+ φ−s(ω̃) is of full measure, this is also the case

for
i0 . As
i is open, we obtain that
i = ∅ for i �= i0, so that
i0 =
⋃

s∈R+ φ−s(ω)
is connected (and of full measure).
• (i i) �⇒ (i i i). Let y1, y2 ∈⋃s∈R+ φ−s(ω); there exists s1, s2 ≥ 0 and z1, z2 ∈ ω
such that y1 = φ−s1(z1) and y2 = φ−s2(z2). If z1, z2 belong to the same connected
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component ω̃ of ω, then since
⋃

s∈R+ φ−s(ω̃) is connected, one can find a continuous
path between z1 and z2.

If z1, z2 belong to two different connected components ω1 and ω2, apply (i) to
find, up to a permutation between the indices 1 and 2, u ∈ ω1 and s ∈ R

+ such that
φ−s(u) ∈ ω2. Then one can find a continuous path between u and z1 inω1, and another
between φ−s(u) and z2 in ω2. We conclude as in the previous subcase by gluing the
paths together. ��

Appendix 4: Proof of Proposition 3.2

In this section, we prove Proposition 3.2.

Proof of Proposition 3.2 Let x0 ∈ T
d \ px (ω) �= ∅ and take η > 0 such that

B(x0, 2η) ∩ px (ω) = ∅. Define the potential V (x) := |x−x0|2
2 �(x), where �

is a “corrector” to ensure V ∈ C∞(Td), and such that � ≡ 1 on B(x0, 2η)
(reduce η if necessary). Denote Vε = εV and notice that ∇Vε(x) = ε(x − x0)

on B(x0, 2η). As a consequence, the hamiltonian flow (φt )t∈R associated to the vector
field v · ∇x − ∇x Vε · ∇v may be explicited in the set B(x0, 2η)× R

d : we have

φt (x, v) =
(
x0 + (x − x0) cos(

√
εt)+ v√

ε
sin(
√
εt),−(x − x0)

√
ε sin(

√
εt)

+ v cos(
√
εt)

)
,

as long as φt (x, v) ∈ B(x0, 2η) × R
d . In particular, note that if (x, v) ∈ B(x0, η) ×

B(0,
√
εη), thenφt (x, v) remains in B(x0, 2η)×B(0, 2

√
εη) for all t ∈ R

+. This reads
φt (B(x0, η)×B(0,

√
εη)) ⊂ B(x0, 2η)×B(0, 2

√
εη), i.e. in particular φt (B(x0, η)×

B(0,
√
εη)) ∩ ω = ∅ for all t ∈ R

+. This proves that a.e.i.t. GCC is not satisfied. ��

Remark 14.1 Notice that in the previous proof, to handle small potential, we consider
small speeds, i.e. v ∈ B(0,

√
εη). In the opposite direction, if one fixes the speeds

in a large Hamiltonian sphere v ∈ SH (0, R) (note that with the particular potential
used in the proof, on the set {� = 1} we have SH (0, R) = S(0, R)) for some R > 0,
then one can find a (large) potential (namely R2/η2V where V is that of the previous
proof) such that a.e.i.t. GCC fails.

Appendix 5: Other Linear Boltzmann Type Equations

The goal of this appendix is to show that the methods developed here can be adapted
to handle other types of Boltzmann-like equations.
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Appendix 5.1: Generalization to a Wider Class of Kinetic Transport Equations

Here, we consider the equation

∂t f + a(v) · ∇x f −∇x V · ∇v f =
∫
Rd

[
k(x, v′, v) f (v′)− k(x, v, v′) f (v)

]
dv′,

(15.1)

where a(v) = ∇vA(v) with A ∈ W 2,∞
loc (R

d) is such that A(v)→+∞ as |v| → +∞
and
∫
Rd e−A(v) dv < +∞.

For simplicity, we assume that (15.1) is set on T
d × R

d .
Assume that a(v) satisfies a non degeneracy property: there exists γ ∈ (0, 2) and

C > 0 such that, for all ξ ∈ S
d−1,

Leb
{
v ∈ R

d , |a(v) · ξ | ≤ ε
}
≤ Cεγ . (15.2)

This assumption prevents from concentration of a(v) in some directions of Sd−1.
The hamiltonian associated to the transport equation is then the following:

H(x, v) = A(v)+ V (x). (15.3)

Define the global Maxwellian associated to a(v) by

MA(v) = CAe
−A(v), (15.4)

with CA = 1/
(∫

Rd e−A(v) dv
)
.

In addition to the usual assumption A1 on the collision kernel k, we shall assume
the following (which replace A2 –A3):
A2’. We assume that MA cancels the collision operator, that is

for all (x, v)∈Td × R
d ,

∫
Rd

[
k(x, v′, v)MA(v

′)− k(x, v, v′)MA(v)
]
dv′ = 0.

(15.5)

A3’. We assume that

k̃(x, v′, v) := k(x, v′, v)
MA(v)

∈ L∞(Td × R
d × R

d). (15.6)

For a(v) = v (for which γ = 1 in (15.2)), we recover the framework which has
been already treated before. One physically relevant case is

arel(v) := v√
1+ |v|2 ,
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(for which we also have γ = 1 in (15.2)), which allows to model relativistic transport.
Note that in this case, we have Arel(v) :=

√
1+ |v|2, and the related Maxwellian is

then the so-called relativistic Maxwellian:

Mrel(v) := Crele
−
√

1+|v|2 , (15.7)

where Crel is a normalizing constant, so that
∫
Rd Mrel(v) dv = 1.

Our aim in this paragraph is to show that our methods are still relevant. The char-
acteristics of the equation are defined in the following way:

Definition 15.1 Let V ∈ W 2,∞
loc (T

d). Let (x0, v0) ∈ T
d × R

d . The characteris-
tics φt (x0, v0) := (Xt (x0, v0), 	t (x0, v0)) associated to the hamiltonian H(x, v) =
A(v)+ V (x) are defined as the solutions to the system:

⎧⎨
⎩

dXt

dt
= a(	t ),

d	t

dt
= −∇x V (Xt ),

Xt=0 = x0, 	t=0 = v0.

(15.8)

With this definition of characteristics, we can then properly define

• the set ω where collisions are effective, as in Definition 2.1,
• the Unique Continuation Property, as in Definition 2.11
• C−(∞), as in Definition 2.4,
• a.e.i.t. GCC, as in Definition 2.5,
• the equivalence relation ∼, as in Definition 3.1.

The next thing to do concerns the local well-posedness of (15.1) in some relevant
weighted spaces, which we introduce below.

Definition 15.2 (Weighted L p spaces). We define the Banach spaces L2
A and L∞A by

L2
A :=

{
f ∈ L1

loc(T
d × R

d),

∫
Td×Rd

| f |2 eV

MA(v)
dv dx < +∞

}
,

‖ f ‖L2
A
=
(∫

Td×Rd
| f |2 eV

MA(v)
dv dx

)1/2

,

L∞A :=
{
f ∈ L1

loc(T
d × R

d), sup
Td×Rd

| f | eV

MA(v)
< +∞

}
,

‖ f ‖L∞A = sup
Td×Rd

| f | eV

MA(v)
.

The space L2
A is a Hilbert space endowed with the inner product

〈 f, g〉L2
A
:=
∫
Td×Rd

eV
f g

MA(v)
dv dx .

As usual, we have
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Proposition 15.3 (Well-posedness of the linear Boltzmann equation with modified
transport). Assume that f0 ∈ L2

A. Then there exists a unique f ∈ C0(R;L2
A) solution

of (15.1) satisfying f |t=0 = f0, and we have

for all t ≥ 0,
d

dt
‖ f (t)‖2

L2
A
= −DA( f (t)), (15.9)

where

DA( f ) = 1

2

∫



eV
∫
Rd

∫
Rd

(
k(x, v′, v)
MA(v)

+ k(x, v, v′)
MA(v′)

)
MA(v)MA(v

′)

×
(

f (v)

MA(v)
− f (v′)

MA(v′)

)2

dv′ dv dx . (15.10)

If moreover f0 ≥ 0 a.e., then for all t ∈ R we have f (t, ·, ·) ≥ 0 a.e. (Maximum
principle).

Then the analogues of Theorems 2.1, 2.2 and 2.3 hold in this setting (with some
obvious modifications); for the sake of conciseness, we omit these statements.

Such results can be proved exactly as Theorems 2.1, 2.2 and 2.3. The crucial addi-
tional ingredient is the fact that averaging lemmas for the operator a(v) · ∇x still hold,
precisely when a satisfies the non degeneracy condition (15.2), see [23]. Note that in
this case, the gain of regularity on averages depends on the index γ in (15.2), but in
any case, this is always sufficient to obtain compactness.

Appendix 5.2: Generalization to linearized BGK operators

Once again, for simplicity, we assume that (x, v) ∈ T
d × R

d . Let V ∈ W 2,∞
loc (T

d).
Let ϕ : R→ R

+∗ be a function in L∞(R) such that

∫
Td×Rd

ϕ

( |v|2
2
+ V (x)

)
dv dx < +∞,

Denote F(x, v) = ϕ
( |v|2

2 + V (x)
)

and ρF (x) =
∫
F(x, v) dv.

Let σ ∈ C0(Td) be a non-negative function. We study in this paragraph the follow-
ing degenerate linearized BGK equation:

∂t f + v · ∇x f − ∇x V · ∇v f = σ(x)
(∫

Rd f dv

ρF (x)
F(x, v)− f

)
. (15.11)

with an initial condition f0 at time 0. The natural equilibrium is given by

(x, v) �→
∫
Td×Rd

f0 dv dx
F(x, v)∫

Td×Rd F(x, v) dv dx
.
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The main feature of this equilibrium is that there is no separation of variables contrary
to the Maxwellian case.

Our aim in this paragraph is again to show that the methods developed in this paper
are still relevant here. For what concerns well-posedness, we introduce the relevant
weighted L p spaces and have the usual result.

Definition 15.4 (Weighted L p spaces). We define the Banach spaces L2
bgk and L∞bgk

by

L2
bgk :=

{
f ∈ L1

loc(T
d × R

d),

∫
Td×Rd

| f |2 1

F(x, v)
dv dx < +∞

}
,

‖ f ‖L2
bgk
=
(∫

Td×Rd
| f |2 1

F(x, v)
dv dx

)1/2

,

L∞bgk :=
{
f ∈ L1

loc(T
d × R

d), sup
Td×Rd

| f | 1

F(x, v)
< +∞

}
,

‖ f ‖L∞ = sup
Td×Rd

| f | 1

F(x, v)

The space L2
bgk is a Hilbert space endowed with the inner product

〈 f, g〉L2
bgk
:=
∫
Td×Rd

f g

F(x, v)
dv dx .

Proposition 15.5 (Well-posedness of the linearized BGK equation).Assume that f0 ∈
L2
bgk . Then there exists a unique f ∈ C0(R;L2

bgk) solution of (15.11) satisfying
f |t=0 = f0, and we have

for all t ≥ 0,
d

dt
‖ f (t)‖2

L2
bgk
= −Dbgk( f (t)), (15.12)

where

Dbgk( f )=
∫
Td

eV σ(x)
∫
Rd

∫
Rd

F(x, v)F(x, v′)
ρF (x)

(
f (v)

F(x, v)
− f (v′)

F(x, v′)

)2

dv′ dv dx .

If moreover f0 ≥ 0 a.e., then for all t ∈ R we have f (t, ·, ·) ≥ 0 a.e. (Maximum
principle).

With the same geometric definitions of Section 2, we have the following results.
Note that the set ω where the collisions are effective is equal to ωx × R

d , where

ωx := {x ∈ T
d , σ (x) > 0}.

Theorem 15.6 (Convergence to equilibrium). The following statements are equiva-
lent.
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(i.) The set ω satisfies the Unique Continuation Property.
(ii.) The set ω satisfies the a.e.i.t. GCC and

⋃
s∈R+ φ−s(ω) is connected.

(iii.) For all f0 ∈ L2
bgk , denote by f (t) the unique solution to (15.11) with initial

datum f0. We have

∥∥∥∥∥ f (t)−
(∫

Td×Rd
f0 dv dx

)
F(x, v)∫

Td×Rd F(x, v) dv dx

∥∥∥∥∥L2
bgk

→t→+∞ 0,

(15.13)

Theorem 15.7 (Exponential convergence to equilibrium). The two following state-
ments are equivalent:

(i.) C−(∞) > 0.
(ii.) There exists C > 0, γ > 0 such that for any f0 ∈ L2(Td × R

d), the unique
solution to (15.11) with initial datum f0 satisfies

∥∥∥∥∥ f (t)−
(∫

Td×Rd
f0 dv dx

)
F(x, v)∫

Td×Rd F(x, v) dv dx

∥∥∥∥∥L2

≤Ce−γ t
∥∥∥∥∥ f0 −

(∫
Td×Rd

f0 dv dx

)
F(x, v)∫

Td×Rd F(x, v) dv dx

∥∥∥∥∥L2

. (15.14)

We shall not dwell on the proofs of Theorems 15.6 and 15.7, since they are very
similar to those of Theorems 2.2 and 2.3. Indeed, we note that the structure of the
equation (15.11) is similar to that of (1.1), in the sense that the “degenerate dissipative”
part is still made of a dissipative term plus a relatively compact term. This compactness,
as usual, comes from averaging lemmas.

Let us just underline a crucial point in the proof (i i.) implies (i.) of Theorem 15.6.
Here, we have to be careful of the fact that F(x, v) does not separate the x and v
variables, contrary to the Maxwellian equilibrium of (1.1). Let us check that the proof
we gave in the Boltzmann case is still relevant (see the proof of (i i.) �⇒ (i.) of
Theorem 2.2).

Let f ∈ C0
t (L2

bgk) be a solution to

∂t f + v · ∇x f −∇x V · ∇v f = 0, (15.15)

f = ρ(t, x)F(x, v) on R
+ × ω. (15.16)

Assume that
∫
Td×Rd f dv dx = 0. The goal is to show that f = 0.

To this purpose, as before, consider for (t, x, v) ∈ R
+ × ω, g(t, x) := 1

F(x,v) f

(note that by (15.16), g does not depend on v). We have, for (t, x, v) ∈ R
+ × ω:

∂t g + v · ∇x g = 1

F(x, v)

[
∂t f + v · ∇x f − v · ∇x F

f

F

]
.
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Since f satisfies (15.15) and (15.16),

∂t f + v · ∇x f = ∇x V · ∇v f = ∇vF · ∇x V
f

F
.

By definition of F , we have

∇x V · ∇vF = v · ∇x F,

from which we deduce that g satisfies the free transport equation on ω:

for all (t, x, v) ∈ R
+ × ω, ∂t g + v · ∇x g = 0. (15.17)

We then conclude as in the proof of (i i.) �⇒ (i.) of Theorem 2.2, mutatis mutandis.
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