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CONTROL FROM AN INTERIOR HYPERSURFACE

JEFFREY GALKOWSKI AND MATTHIEU LÉAUTAUD

Abstract. We consider a compact Riemannian manifold M (possibly with
boundary) and Σ ⊂ M \ ∂M an interior hypersurface (possibly with bound-
ary). We study observation and control from Σ for both the wave and heat

equations. For the wave equation, we prove controllability from Σ in time T
under the assumption (T GCC) that all generalized bicharacteristics intersect
Σ transversally in the time interval (0, T ). For the heat equation we prove
unconditional controllability from Σ. As a result, we obtain uniform lower
bounds for the Cauchy data of Laplace eigenfunctions on Σ under T GCC and
unconditional exponential lower bounds on such Cauchy data.
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1. Introduction

Let (M, g) be a compact n-dimensional Riemannian manifold possibly with
boundary ∂M and denote by Δg the (nonpositive) Laplace-Beltrami operator on
M . We study the observability and controllability questions from interior hyper-
surfaces in M .

To motivate the more involved developments in control theory, let us start by
stating (slightly informally) the counterpart of our observability/controllability re-
sults for lower bounds for eigenfunctions, i.e., solutions to

(1.1) (−Δg − λ2)φ = 0, φ|∂M = 0.

For more precision, see Section 1.3.
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Theorem 1.1. Assume M is connected and let Σ be a nonempty interior hyper-
surface. Then there exists c > 0 so that for all λ ≥ 0 and φ ∈ L2(M) solutions
to (1.1), we have

(1.2) ‖φ|Σ‖L2(Σ) + ‖∂νφ|Σ‖L2(Σ) ≥ ce−λ/c‖φ‖L2(M).

Furthermore, if we assume that all generalized geodesics of some finite length cross
Σ transversally, then there is c > 0 so that for all λ ≥ 0 and φ ∈ L2(M) solutions
to (1.1), we have

(1.3) ‖φ|Σ‖L2(Σ) + ‖〈λ〉−1∂νφ|Σ‖L2(Σ) ≥ c‖φ‖L2(M).

Here, we write 〈λ〉 := (1 + |λ|2)1/2. Generalized geodesics are usual geodesics
of g inside Int(M) and reflect on ∂M according to laws of geometric optics (see
below). As far as the authors are aware (1.2) is the first general lower bound
to appear for restrictions of Laplace eigenfunctions to hypersurfaces and (1.3) is
the first uniform lower bound for such restrictions without either taking a full
density subsequence of eigenfunctions or imposing restrictive assumptions on M .
We will prove Theorem 1.1 in the process of studying controllability for the heat and
wave equations from interior hypersurfaces. Because of this, we postpone further
discussion of Theorem 1.1 (including optimality of (1.2) and (1.3)) to Section 1.3.

We define interior hypersurfaces as follows.

Definition 1.2. We say that Σ is a hypersurface of M if there is Σ0 a compact
embedded submanifold of M of dimension n−1, possibly with boundary, such that
Σ is the closure of an open subset of Σ0. The manifold Σ0 shall be referred to as
an extension of Σ.

- We say that Σ is an interior hypersurface if moreover Σ ⊂ Int(Σ0) ⊂
Int(M).

- We say that Σ is a compact interior hypersurface if it is a compact embedded
submanifold of Int(M) of dimension n− 1, without boundary.

- We say that Σ is cooriented if Σ0 is (i.e., the normal bundle TΣ0
M/TΣ0 is an

orientable vector bundle).1 If not mentioned, all hypersurfaces considered
in this paper are assumed to be coorientable.

Note that an interior hypersurface does not intersect the boundary of M . In
case Σ is a compact interior hypersurface, then it is an interior hypersurface with
Σ0 = Σ. Since M is endowed with a Riemannian structure, the coorientability
assumption is equivalent to that of having a smooth global vector field ∂ν normal
to Int(Σ0). Note that the coorientability condition can be slightly relaxed; see the
discussion in Section 1.5 below.

Given an interior hypersurface Σ, the main goal of this paper is to study the
controllability of some evolution equations with a control force of the form

(1.4) f0δΣ + f1δ
′
Σ,

where the distributions f0δΣ and f1δ
′
Σ are defined by

(1.5) 〈f0δΣ, ϕ〉 =
∫
Σ

f0ϕdσ, 〈f1δ′Σ, ϕ〉 = −
∫
Σ

f1∂νϕdσ.

1In case M is oriented, note that Σ0 is cooriented iff it is oriented. However, if M is not
orientable, Σ0 might be orientable without being coorientable, and vice versa.
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In this expression σ denotes the Riemannian surface measure on Σ induced by the
metric g on M . This contrasts with the usual control problems for PDEs, for which
the control function appears in the equation:

• either as a localized right hand side (distributed or internal control) 1ωf ,
where ω is an open subset of M , and typically, the control function f is in
L2((0, T )× ω)

• or, in case ∂M �= ∅, as a localized boundary term, e.g., under the form
u|∂M = 1Γf , where Γ is an open subset of ∂M , and typically, the control
function f is in L2((0, T )×Γ) (here, u denotes the function to be controlled).

Concerning the wave equation, the main result is the Bardos-Lebeau-Rauch Theo-
rem [BLR92,BG97] providing a necessary and sufficient condition for the exact con-
trollability with such control forces (see also e.g. [DL09,LL16,LRLTT17] for recent
developments). Concerning the heat equation, the question of null-controllability
with internal or boundary control was solved independently by Lebeau-Robbiano
[LR95] and Fursikov-Imanuvilov [FI96]. The aim of the present paper is threefold:

• formulating a well-posedness result as well as an analogue of the Bardos-
Lebeau-Rauch Theorem, for the wave equation with control like (1.4) (see
Section 1.1);

• formulating an analogue of the Lebeau-Robbiano-Fursikov-Imanuvilov
theorem for the heat equation with control like (1.4) (see Section 1.2);

• formulating general lower bounds for restrictions on Σ of eigenfunctions on
M (see Theorem 1.1 above and Section 1.3). These are analogues of the
observability inequalities used to prove the above controllability statements
and are of their own interest.

1.1. Controllability for the wave equation. In this section, we state our main
result concerning the wave equation controlled by an interior hypersurface Σ,
namely,

(1.6)

⎧⎪⎨
⎪⎩
�v = f0δΣ + f1δ

′
Σ on (0, T )× Int(M),

v = 0 on (0, T )× ∂M,

(v, ∂tv)|t=0 = (v0, v1) in Int(M),

where � denotes the D’Alembert operator on R×M ,

� = ∂2
t −Δg.

Before considering the control problem, we need to investigate conditions on f0, f1
under which the Cauchy problem of (1.6) is well-posed. Both the well-posedness
and the control statements require the introduction of some geometric/microlocal
definitions.

For a polyhomogeneous pseudodifferential operator P on R×M , we write

Char(P ) = {q ∈ T ∗(R×M) \ 0 | σ(P )(q) = 0}

and σ(P ) denotes the principal symbol of P . In particular, writing |ξ|g =
√
g(ξ, ξ),

the Riemannian norm of a cotangent vector, we are interested in

σ(�)(t, x, τ, ξ) = −τ2+|ξ|2g, Char(�) = {(t, x, τ, ξ) ∈ T ∗(R×M)\0 | |ξ|2g = τ2}.
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Next, we define the glancing and the elliptic sets as
(1.7)

G = Char(�) ∩ ι(T ∗(R× Int(Σ)), GΣ = ι−1(G),
E = {q ∈ T ∗(R×M) \ 0 | σ(�)(q) > 0} ∩ ι(T ∗(R× Int(Σ))), EΣ = ι−1(E),

where

(1.8) ι : T ∗(R× Int(Σ0)) ↪→ T ∗(R×M)

is the inclusion map. A more explicit expression of these sets in normal coordinates
is given in Section 2.3 below.

Roughly speaking, the elliptic set E (resp., EΣ) consists of points (t, x, τ, ξ) in
the whole phase space (resp., in tangential phase space to Σ) such that x ∈ Int(Σ)
in which no “ray of optics” for � lives. The glancing set G (resp., GΣ) consists of
points (t, x, τ, ξ) in the whole phase space (resp., in tangential phase space to Σ)
such that x ∈ Int(Σ), through which “rays of optics” for � may pass tangentially.
The complement of G ∪ E in the characteristic set of � above R × Int(Σ) is the
set of points through which “rays of optics” for � may pass transversally. Note in
particular that E is not the complement of the characteristic set for � above Σ.
(See Section 2.3 for more details on the meaning of these sets.)

With these definitions in hand, our well-posedness result may be stated as fol-
lows.

Theorem 1.3. For all (v0, v1) ∈ L2(M) × H−1(M) and for all f0 ∈
H−1

comp(R
∗
+ × Int(Σ)) and f1 ∈ L2

comp(R
∗
+ × Int(Σ)) such that

WF− 1
2 (f0),WF

1
2 (f1) ∩ GΣ = ∅,(1.9)

there exists a unique v ∈ L2
loc(R

∗
+;L

2(M)) solution of (1.6).

We refer e.g. to [Ler10, Definition 1.2.21] for a definition of the Hs wavefront
set WFs of a distribution. The wavefront condition states roughly that (f0, f1)

should have improved (namely, H− 1
2 ×H

1
2 ) microlocal regularity near the glancing

set GΣ (when compared to the overall H−1(R×Σ)×L2(R×Σ) regularity) for the
Cauchy problem to be well-posed. A more precise version of this result is given in
Theorem 3.8 below (where, in particular, the meaning of “solution” is made precise
in the sense of transposition; see [Lio88]). This wavefront set condition on f0, f1 is
far from sharp because we use a very rough analysis of solutions to the free wave
equation near G. A more detailed analysis near G, similar to that in [Gal16], would
yield sharper regularity requirements.

Next, we define a geometric condition used in our control results.

Definition 1.4. We say that (Σ, T ) satisfies the transverse geometric control
condition (T GCC) if every generalized bicharacteristic of � intersects
T ∗
(0,T )×Int(Σ)(R × M) \ G. We say that Σ satisfies T GCC if (Σ, T ) does for some

T > 0.

Definition 1.4 roughly says that T GCC is satisfied if every ray of geometric
optics intersects Int(Σ) in the time interval (0, T ) at a transversal point, i.e., a non-
tangential point. In case ∂M = ∅, “generalized bicharacteristics” are only bichar-
acteristics of � and project on geodesics on M (see e.g. [DLRL14, Section 2.2]).
For a precise definition of generalized bicharacteristics in case ∂M �= ∅ (and the
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Figure 1. Here M is the standard unit sphere S2 in R3, and Σ
gives an example where (Σ, 2π + ε) satisfies T GCC for ε > 0.

geodesics of M have no contact of infinite order with ∂M), we refer to [MS78, Sec-
tion 3], [Hör85, Chapter 24], or [LRLTT17, Section 1.3.1]. For a simple example of
a compact manifold M and a compact interior hypersurface Σ satisfying T GCC,
see Figure 1. We remark that if M ⊂ Rn (with the Euclidean metric) is strictly
convex, then no interior hypersurface satisfies T GCC since there are generalized
bicharactersics which stay in ∂M . This leaves open the interesting problem of un-
derstanding control where a hypersurface intersects ∂M , e.g., if Σ ⊂ B(0, 1) ⊂ R2

is a diameter.
With the well-posedness result, Theorem 1.3 and the definition of T GCC, we

now give a sufficient condition for the null-controllability of (1.6) from Σ.

Theorem 1.5. Assume that the geodesics of M have no contact of infinite order
with ∂M and that (Σ, T ) satisfies T GCC. Then for any (v0, v1) ∈ L2(M)×H−1(M)
there exist (f0, f1) ∈ H−1

comp((0, T )× Int(Σ))× L2
comp((0, T )× Int(Σ)) with

WF(f0),WF(f1) ∩ (GΣ ∪ EΣ) = ∅,

so that the solution to (1.6) has v ≡ 0 for t ≥ T .

Here, WF stands for the usual C∞ wavefront set. Theorem 1.5 follows from
an observability inequality given in Theorem 4.1 below. A more precise version of
Theorem 1.5 with estimates on (f0, f1) in terms of (v0, v1) is given in Theorem 4.9.

Standard propagation of singularities estimates (see e.g. [Ral69]) show that a
necessary condition for controllability to hold is that all generalized bicharacteristics
intersect T ∗

(0,T )×Σ(R × M). As for the well-posedness problem, the issue of rays

touching R× Σ only at points of GΣ is very subtle and will be addressed in future
work. See the discussion in Section 1.4 below.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3182 JEFFREY GALKOWSKI AND MATTHIEU LÉAUTAUD

1.2. Controllability from a hypersurface for the heat equation. We next
consider the controllability of the heat equation from a hypersurface, namely,

(1.10)

⎧⎪⎨
⎪⎩
(∂t −Δg)v = f0δΣ + f1δ

′
Σ on (0, T )× Int(M),

v = 0 on (0, T )× ∂M,

v|t=0 = v0 in Int(M).

Well-posedness in the sense of transposition follows from the standard parabolic
estimates and is proved in Section 5.1. We only state a null-controllability result
for (1.10).

Theorem 1.6. Suppose M is connected and Σ is any nonempty interior hypersur-
face. Then there exist C, c > 0 such that for all T > 0 and all v0 ∈ H−1(M), there
exist f0, f1 ∈ L2((0, T )× Σ) with

‖f0‖L2((0,T )×Σ) + ‖f1‖L2((0,T )×Σ) ≤ Ce
c
T ‖v0‖H−1(M)

such that the solution v of (1.10) satisfies v|t=T = 0.

Note that we also provide an estimate of the cost of the control as T → 0+,
similar to the one in case of internal/boundary control [FI96,Mil10]. If M is one-
dimensional, i.e., M = [0, 1], then Σ = ϑ is a point in (0, 1). The controllability
(resp., observability) question has been considered by Dolecki in [Dol73] in case
f1 = 0 and f0 = f0(t) (resp., observation of the pointwise Dirichlet trace at ϑ
only). The author proves in particular that controllability/observability might not
hold (if ϑ is a nodal point of an eigenfunction) or a minimal time of controllabil-
ity/observability might appear, depending on fine number theoretic properties of
ϑ. The higher dimensional problem with one control force (f1 = 0) has been con-
sidered in [CZ05]. There, the authors allow the hypersurface to vary in time, so as
to avoid the obstruction of having Σ contained in the nodal set of an eigenfunction.
Theorem 1.6 shows that no such subtle behavior happens when using both the
Dirac mass and its normal derivative as controls (resp., both traces as observation
terms).

1.3. Eigenfunction restriction bounds. As usual, the above two control results
(or rather, the equivalent observability estimates) have related implications concern-
ing eigenfunctions stated in Theorem 1.1 above. We now formulate these results un-
der the (stronger) form of resolvent estimates. Below, we write 〈λ〉 := (1+ |λ|2)1/2.

Theorem 1.7 (Universal lower bound for eigenfunctions). Assume M is connected
and Σ is a nonempty interior hypersurface. Then there exist C, c > 0 so that for
all λ ≥ 0 and all u ∈ H2(M) ∩H1

0 (M) we have

(1.11) ‖u‖L2(M) ≤ Cecλ
(
‖u|Σ‖L2(Σ)+‖ 〈λ〉−1

∂νu|Σ‖L2(Σ)+‖(−Δg−λ2)u‖L2(M)

)
.

As far as the authors are aware, estimates (1.2)-(1.11) are the first general lower
bounds to appear for restrictions of eigenfunctions. Moreover, these estimates are
sharp in the sense that simultaneously neither the growth rate ecλ nor the presence
of both u and ∂νu can be improved in general. This is demonstrated by the following
example.

Proposition 1.8. Consider the manifold

M = [−π, π]× T
1,
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with variables (z, θ), endowed with the warped product metric

g(z, θ) = dz2 +R(z)2dθ2.

Assume that R is smooth and that

R(z) = R(−z), R(z) > 0 for all z ∈ [0, π], R(0) < max
z∈[0,π]

R(z).

Let Σ = {z = 0} × T
1 ⊂ M . Then, there exist C, c > 0 and sequences λ

e/o
j → +∞

and φ
e/o
j ∈ L2(M) such that

(−Δg − (λ
e/o
j )2)φ

e/o
j = 0, ‖φ

e/o
j ‖L2(M) = 1, φ

e/o
j |∂M = 0,

with

∂νφ
e
j |Σ=0, ‖φe

j |Σ‖L2(Σ)≤Ce−cλe
j , and φo

j |Σ=0, ‖∂νφo
j |Σ‖L2(Σ)≤Ce−cλo

j .

This result is proved in Appendix B.
We expect that the symmetry in this example is the obstruction for removing one

of the traces in the right hand side of (1.2) and formulate the following conjecture.

Conjecture 1. Let (M, g) be a Riemannian manifold and let Σ be an interior
hypersurface with positive definite second fundamental form. Then there exist
C, c, λ0 > 0 so that for all (λ, φ) ∈ [λ0,∞)× L2(M) satisfying (1.1), we have

‖φ‖L2(M) ≤ Cecλ‖φ|Σ‖L2(Σ) and ‖φ‖L2(M) ≤ Cecλ‖λ−1∂νφ|Σ‖L2(Σ).

Note that if Σ has positive definite second fundamental form, then it is geodesi-
cally curved and, in particular, not fixed by a nontrivial involution. This prevents
the construction of counterexamples via the methods used to prove Proposition 1.8.

Under the geometric control condition T GCC the estimate (1.11) can be im-
proved.

Theorem 1.9 (Improved lower bound for eigenfunctions under T GCC). Assume
that the geodesics of M have no contact of infinite order with ∂M and that Σ
satisfies T GCC. Then there exists C > 0 so that for all λ ≥ 0 and u ∈ H2(M) ∩
H1

0 (M), we have
(1.12)
‖u‖L2(M) ≤ C

(
‖u|Σ‖L2(Σ) + ‖〈λ〉−1∂νu|Σ‖L2(Σ) + 〈λ〉−1‖(−Δg − λ2)u‖L2(M)

)
.

Conjecture 2. Let (M, g) be a Riemannian manifold and let Σ be an interior
hypersurface with positive definite second fundamental form satisfying T GCC. Then
there exist C, c, λ0 > 0 so that for all (λ, φ) ∈ [λ0,∞)× L2(M) satisfying (1.1) we
have

‖φ‖L2(M) ≤ C‖φ|Σ‖L2(Σ) and ‖φ‖L2(M) ≤ C‖λ−1∂νφ|Σ‖L2(Σ).

Other known lower bounds come from the quantum ergodic restriction theorem
and apply to a full density subsequence of eigenfunctions rather than to the whole
sequence [TZ12,TZ13,DZ13,TZ17,HR18]. These hold under an ergodicity assump-
tion on the geodesic (or the billiard) flow, together with a microlocal asymmetry
condition for the surface Σ. This assumption states roughly that the measure of
the set of geodesics through Σ whose tangential momenta agree at adjacent in-
tersections with Σ is zero. In addition, under an ergodicity assumption [CTZ13]
shows that a full density sequence of eigenfunctions satisfies (1.12). In another di-
rection, the work of Bourgain-Rudnick [BR12,BR11,BR09] shows that on the torus
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Td, d = 2, 3, for any hypersurface Σ with positive definite curvature, (1.3) holds
with the normal derivative removed from the left hand side. While the results of
Bourgain-Rudnick do not hold on a general Riemannian manifold, we expect that
either of the terms in the left hand side of (1.2) can be removed whenever Σ has
positive definite second fundamental form.

1.4. Weakening assumption T GCC. One might hope that Theorem 1.9 and its
analogue for the wave equation (the control result of Theorem 1.5 above and the
observability inequality of Theorem 4.1 below) still hold true when the assumption
T GCC is replaced by the (weaker) assumption that

(1.13) every generalized bicharacteristic of � intersects T ∗((0, T )× Int(Σ))

(rather than T ∗((0, T ) × Int(Σ)) \ GΣ). The following example shows that this is
more subtle (see Appendix C for the proof).

Proposition 1.10. Assume M = S2 and Σ is a great circle. Then there exists a
sequence (λj , φj) satisfying (−Δg − λ2

j)φj = 0 together with λj → +∞ and

φj |Σ = 0, ‖λ−1
j ∂νφj |Σ‖L2(Σ) ≤ λ

−1/4
j ‖φj‖L2(M).

In particular, this shows that Theorem 1.9 and associated observability inequality
for the wave equation cannot hold under only (1.13). Moreover, the proof shows that
φj is microlocalized λ−1

j close to the glancing set on Σ. This calculation suggests
that one must scale the normal derivative and restriction of an eigenfunction as in
[Gal16] to obtain an analogue of Theorem 1.9 under (1.13). More precisely,

Conjecture 3. Suppose that Σ is a compact interior hypersurface. Then there
exists C > 0 so that if (λ, φ) satisfies (1.1), then

‖(1 + λ−2ΔΣ)
1/4
+ φ|Σ‖L2 + ‖[(1 + λ−2ΔΣ)+ + λ−1]−1/4λ−1∂νφ|Σ‖L2(Σ) ≤ ‖φ‖L2(M).

Suppose moreover that Σ satisfies (1.13). Then there exists C > 0 so that if (λj , φj)
satisfies (1.1), then

‖φ‖L2(M) ≤ C(‖(1+λ−2ΔΣ)
1/4
+ φ|Σ‖L2+‖[(1+λ−2ΔΣ)++λ−1]−1/4λ−1∂νφ|Σ‖L2(Σ),

where ΔΣ is the Laplace-Beltrami operator on Σ induced from (M, g), and the oper-
ator (1+λ−2ΔΣ)+ is defined via the functional calculus; see also [Gal16, Section 1].

1.5. Finite unions of hypersurfaces. In all of our results, one may replace Σ by
any finite union of cooriented interior hypersurfaces

⋃m
i=1 Σi where we replace the

distribution f0δΣ + f1δ
′
Σ by

m∑
i=1

(
f i
0δΣi

+ f i
1δ

′
Σi

)
.(1.14)

Then, all the above results generalize with the sole modification that generalized
bicharacteristics need only intersect one of the Σi’s transversally. This furnishes
several simple examples for which our controllability/observability results for waves
holds. Take e.g. T2 � [−π, π]2 with Σ1 = {0} × T1 and Σ2 = T1 × {0}.

This remark can also be used to remove the coorientability assumption. If the
interior hypersurface Σ is not coorientable, we can cover it by a union of overlapping
cooriented hypersurfaces Σ =

⋃m
i=1 Σi and control from Σ by a sum like (1.14). In

this context, we still obtain controllability results with controls supported by the
hypersurface Σ, but the form of the control is changed slightly.
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1.6. Sketch of the proofs and organization of the paper. We start in Sec-
tion 2 with the introduction of coordinates, some geometric definitions, and Sobolev
spaces on Σ.

Section 3 is devoted to the proof of (a slightly more precise version of) the
well-posedness result of Theorem 1.3. The definition of solutions in the sense of
transposition follows [Lio88]. The well-posedness result relies on a priori estimates
on an adjoint equation, the free wave equation. The well-posedness statement then
reduces to the proof of regularity bounds for restrictions on Σ. This is done in
Section 3.1. Namely, we show that if u is an H1 solution to �u = 0, then the

restriction (u|Σ, ∂νu|Σ) belongs to H
1
2 ×H− 1

2 overall R×Σ and has the additional
(microlocal) regularity H1×L2 everywhere except near glancing points (GΣ). This
fact is already known (see e.g. [Tat98]), but we rewrite a short proof for the conve-
nience of the reader. Then, Section 3.2 is aimed at defining the appropriate spaces
for the statement of the precise version of the well-posedness result. These are
needed in particular to state the stability result associated to well-posedness, as
well as to formulate the duality between the control problem and the observation
problem. They are (loc and comp) Sobolev spaces on R × Σ that have different
regularities near and away from the glancing set GΣ. With these spaces in hand,
we define properly solutions of (1.6) and prove well-posedness in Section 3.3.

Section 4 is devoted to the proof of the control result of Theorem 1.3. Before
entering the proofs, we briefly explain how Theorem 1.9 is deduced from the observ-
ability inequality of Theorem 4.1. Firstly, we prove in Section 4.1 that the condition
T GCC implies a stronger geometric statement. Namely, using the openness of the
condition and a compactness argument, we prove that all rays intersect in (ε, T −ε)
an open set of Σ “ε-transversally” (i.e., ε far away from the glancing region) for
some ε > 0. Secondly, this condition is used in Section 4.2 to prove an observabil-
ity inequality, stating roughly that the observation of both traces (u|Σ, ∂νu|Σ) of
microlocalized ε far away from the glancing region in the time interval (ε, T − ε)
determines the full energy of solutions of �u = 0 (in appropriate spaces). The
proof proceeds as in [Leb96] by contradiction, using microlocal defect measures.
It contains two steps: first, we prove that the strong convergence of a sequence
(uk|Σ, ∂νuk|Σ) → 0 near a transversal point of Σ implies the strong convergence of
the sequence uk in a microlocal neighborhood of the two rays passing through this
point (using the hyperbolic Cauchy problem). Then, a classical propagation argu-
ment (borrowed from [Leb96,BL01] in case ∂M �= ∅) implies the strong convergence
of (uk) everywhere, which yields a contradiction with the fact that the energy of
the solution is normalized. This observability inequality contains, as in the usual
strategy of [BLR92], a lower order remainder term (in order to force the weak limit
of the above sequence to be 0). The latter is finally removed in Section 4.3 by the
traditional compactness uniqueness argument of [BLR92], concluding the proof of
the observability inequality. Finally, in Section 4.4, we deduce the controllability
statement Theorem 1.5 (or its refined version, Theorem 4.9) from the observability
inequality (Theorem 4.1) via a functional analysis argument. The latter is not com-
pletely standard, since we do not know whether the solution of the controlled wave
equation (1.6) has the usual C0(0, T ;L2(M)) ∩ C1(0, T ;H−1(M)) regularity, but
only prove L2(0, T ;L2(M)). As a consequence, we cannot use data of the adjoint
equation at time t = T as test functions. The test functions we use are rather
forcing terms F in the right hand side of the adjoint equation that are supported
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in t ∈ (T, T1), that is, outside the time interval (0, T ). Also, we construct control
functions having HN regularity near GΣ and prove that they do not depend on N ,
yielding the statement with the C∞ wavefront set.

Section 5 deals with the case of the heat equation and the universal lower bound
of Theorem 1.7, in the spirit of the seminal article [LR95]. First, Section 5.1
states the well-posedness result, in the sense of transposition. Again, it relies on
the regularity of restrictions to Σ of solutions of the adjoint free heat equations.
The latter are deduced from standard parabolic regularity combined with Sobolev
trace estimates. Then, to prove observability/controllability, we proceed with the
Lebeau-Robbiano method [LR95]. The starting point is a local Carleman estimate
near Σ, borrowed from [LR97], from which we deduce in Section 5.2 a global inter-
polation inequality for the operator −∂2

s −Δg. Theorem 1.7 directly follows from
this interpolation inequality. To deduce the observability of the heat equation,
we revisit slightly (in an abstract semigroup setting) the original Lebeau-Robbiano
method (as opposed to the simplified one [LZ98,Mil06,LRL12], relying on a stronger
spectral inequality) in Section 5.3. The interpolation inequality yields as usual an
observability result for a finite dimensional elliptic evolution equation (i.e., cutoff
in frequency), from which we deduce observability for the finite dimensional para-
bolic equation, with precise dependence of the constant with respect to the cutoff
frequency and observation time. The latter argument simplifies the original one by
using an idea of Ervedoza-Zuazua [EZ11b,EZ11a]. The observability of the full par-
abolic equation is finally deduced using the iterative Lebeau-Robbiano argument
combining high-frequency dissipation with low-frequency control/observation. We
in particular use the method as refined by Miller [Mil10]. We explain in Section 5.4
how the heat equation observed by/controlled from Σ fits into the abstract setting.

Appendix A contains some background information on pseudodifferential oper-
ators used in Sections 3 and 4 for the wave equation. Appendix B proves Propo-
sition 1.8, i.e., constructs an example showing that Theorem 1.7 is sharp. Finally,
Appendix C gives a proof of Proposition 1.10.

2. Preliminary definitions

2.1. Fermi normal coordinates in a neighborhood Σ0. Throughout the article
we shall use Fermi normal coordinates in a (sufficiently small) neighborhood, say
Vε, of Σ0. Namely, since Σ0 is cooriented, for ε sufficiently small, there exists a
diffeomorphism (see [Hör85, Appendix C.5])

[−ε, ε]× Int(Σ0) → Vε

(x1, x
′) �→ x,

so that the differential operator −Δg takes the form

−∂2
x1

+ r(x1, x
′, Dx′) + c(x,D),

where c(x,D) is a first order differential operator and r(x1, x
′, Dx′) is an x1-family

of second-order elliptic differential operators on Int(Σ0), i.e., a tangential operator,
with principal symbol r(x1, x

′, ξ′), ξ′ ∈ T ∗
x′ Int(Σ0), that satisfies

(2.1) r(x1, x
′, ξ′) ∈ R and C1|ξ′|2 ≤ r(x1, x

′, ξ′) ≤ C2|ξ′|2

for some 0 < C1 ≤ C2 < ∞.
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In these coordinates, note that we have in particular |x1(p)| = d(p,Σ0), ∂ν = ∂x1

(up to changing x1 into −x1), as well as

σ(−Δg) = ξ21 + r(x1, x
′, ξ′)

and

−ΔΣ0
= r(0, x′, Dx′), with σ(−ΔΣ0

)(x′, ξ′) = r(0, x′, ξ′) =: r0(x
′, ξ′),

where −ΔΣ0
is the Laplacian on Int(Σ0) given by the induced metric on Σ0. We

also recall that

σ(�) = −τ2 + σ(−Δg) = −τ2 + |ξ|2g = −τ2 + ξ21 + r(x1, x
′, ξ′).

With a slight abuse of notation, we shall also denote by (x1, x
′) ∈ R × Rn−1 (and

(ξ1, ξ
′) ∈ R×R

n−1 associated cotangent variables) local coordinates in a neighbor-
hood of a point in Int(Σ0).

In these coordinates, the Hamiltonian vector field of � is given by
(2.2)
Hσ(�) = −2τ∂t + 2ξ1∂x1

−∂x1
r(x1, x

′, ξ′)∂ξ1 + ∂ξ′r(x1, x
′, ξ′)∂x′−∂x′r(x1, x

′, ξ′)∂ξ′

and generates the Hamiltonian flow of � (these coordinates being away from the
boundary R× ∂M).

2.2. The compressed cotangent bundle over M . This section is independent
of the hypersurface Σ and is only intended to define, in case ∂M �= ∅, the space
Z on which the Melrose-Sjöstrand bicharacteristic flow is defined, as well as some
properties of the flow. In case ∂M = ∅, this set is simply Char(�) ⊂ T ∗(R×M)\0,
the flow is the usual bicharacteristic flow of �, and this section is not needed and
may be skipped. We refer to [MS78], [Leb96, Appendix A2], [Vas08] for more
complete treatments.

We first embed M ↪→ M̃ into a manifold, M̃ , without boundary and write

T ∗(R×M) := T ∗
R×M (R× M̃).

Let bṪ ∗(R×M) �
(
T ∗(R× Int(M))\0

)
�
(
T ∗(R×∂M)\0

)
denote the compressed

cotangent bundle of R×M and let

j : T ∗(R×M) → bṪ ∗(R×M)

be the natural “compression” map. In any coordinates (x′, xn) on M where xn

defines ∂M and xn > 0 on M , j has the form

(2.3) j(t, x, τ, ξ) = (t, x, τ, ξ′, xnξn).

The map j endows bṪ ∗(R×M) with a structure of homogeneous topological space.
We then write

(2.4) Z = j(Char(�)), Ẑ = Z ∪ j
(
T ∗
R×∂M (R×M)

)
,

and

(2.5) SẐ =
(
Ẑ \ (R×M)

)
/R∗

+,

the associated sphere bundle, which, endowed with the induced topology, are locally
compact metric spaces.

Away from the boundary, j is a bijection, and we shall systematically identify
bṪ ∗(R× Int(M)) with T ∗(R× Int(M)) and Z ∩ bṪ ∗(R× Int(M)) with Char(�) ∩
T ∗(R× Int(M)). This will be the case in particular near the hypersurface R× Σ.
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Remark 2.1. Note that the compressed cotangent bundle is a proper subset of the
b-cotangent bundle (see e.g. [Vas08, Section 1]).

Under the assumption that the geodesics of M have no contact of infinite order
with ∂M , and with Z as in (2.4), the (compressed) generalized bicharacteristic flow
for the symbol 1

2 (−τ2 + |ξ|2g) is a (global) map

ϕ : R× Z → Z, (s, p) �→ ϕ(s, p).(2.6)

We refer to [MS78, Section 3], [Hör85, Chapter 24], [BL01, Section 3.1], or
[LRLTT17, Section 1.3.1] for a definition. In particular, it has the following prop-
erties:

• ϕ coincides with the usual bicharacteristic flow of � (i.e., the Hamiltonian
flow of σ(�)) in the interior Char(�) ∩ T ∗(R× Int(M));

• ϕ satisfies the flow property

ϕ(t, ϕ(s, p)) = ϕ(t+ s, p) for all t, s ∈ R, p ∈ Z;(2.7)

• ϕ is homogeneous in the fibers of Z, in the sense that

Mλ ◦ ϕ(sλ, ·) = ϕ(s,Mλ·),(2.8)

where Mλ denotes multiplication in the fiber by λ > 0. Hence, it induces a
flow on SẐ;

• ϕ : R× Z → Z is continuous; see [MS78, Theorem 3.34].

2.3. Glancing sets over Σ. For the following definitions, we use the above iden-
tification bṪ ∗

R×Σ0
(R×M) ∼= T ∗

R×Σ0
(R × M) for the cotangent bundle of R × M

with foot points at R×Σ0, since in this case, we may assume in Definition 1.2 that
Σ0∩∂M = ∅. Using the coordinates of Section 2.1, the map ι defined in (1.8) reads

ι(t, x′, τ, ξ′) = (t, 0, x′, τ, 0, ξ′).

Still in coordinates, we define for ε ≥ 0 the sets

Gε := {(t, 0, x′, τ, ξ1, ξ
′) ∈ T ∗

R×Int(Σ)(R×M) \ 0 | ξ21 + r(0, x′, ξ′) = τ2, ξ21 ≤ ετ2},
Tε := {(t, 0, x′, τ, ξ1, ξ

′) ∈ T ∗
R×Int(Σ)(R×M) \ 0 | ξ21 + r(0, x′, ξ′) = τ2, ξ21 > ετ2}.

Let also
(2.9)
GΣ
ε := {(t, x′, τ, ξ′) ∈ T ∗(R× Int(Σ0)) \ 0 | x′ ∈ Int(Σ),

−ετ2 ≤ τ2 − r0(x
′, ξ′) ≤ ετ2

}
,

T Σ
ε :=

{
(t, x′, τ, ξ′) ∈ T ∗(R× Int(Σ0)) \ 0 | x′ ∈ Int(Σ), ετ2 < τ2 − r0(x

′, ξ′)
}
,

EΣ
ε :=

{
(t, x′, τ, ξ′) ∈ T ∗(R× Int(Σ0)) \ 0 | x′ ∈ Int(Σ), τ2 − r0(x

′, ξ′) < −ετ2
}
.

Observe that GΣ
ε �= π(Gε) (although GΣ

0 = π(G0)) where
(2.10)
π : T ∗

Int(Σ0)
(R×M) → T ∗(R× Int(Σ0)) is the projection along N∗(R× Int(Σ0)).

In the above coordinates, π(t, 0, x′, τ, ξ1, ξ
′) = (t, x′, τ, ξ′). Observe also that G0 = G,

E0 = E , and GΣ
0 = GΣ, EΣ

0 = EΣ, where G, E , GΣ, and EΣ are defined in (1.7).

Remark 2.2. In these coordinates, Σ0 = {x1 = 0}, and, according to (2.2), we have
〈dx1, Hσ(�)〉 = 〈dx1, 2ξ1∂x1

〉 = 2ξ1. Since ξ1 �= 0 on T0 this implies in particular
that the vector field Hσ(�) is transverse to the hypersurface R×Σ on this set (which
explains its name T0).
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With these definitions, T GCC can be written as follows.

Assumption GC-(0,T ). For all p ∈ Z,⋃
s∈R

{ϕ(s, p)} ∩ T0 ∩ T ∗((0, T )×M) �= ∅.

Remark 2.3 (Example in the flat case). In order to better understand the different
zones defined above, let us note that if we simply consider the flat Euclidean Laplace
operator −Δ in Rn and Σ ⊂ {x1 = 0}, we have

r(x1, x
′, ξ′) = |ξ′|2 and σ(�) = −τ2 + |ξ|2 = −τ2 + ξ21 + |ξ′|2.

In this case, the sets defined in (2.9) are simply

GΣ
ε =

{
(t, x′, τ, ξ′) ∈ R

2n \ 0 | x′ ∈ Int(Σ), (1− ε)τ2 ≤ |ξ′|2 ≤ (1 + ε)τ2
}
,

T Σ
ε =

{
(t, x′, τ, ξ′) ∈ R

2n \ 0 | x′ ∈ Int(Σ), |ξ′|2 < (1− ε)τ2
}
,

EΣ
ε =

{
(t, x′, τ, ξ′) ∈ R

2n \ 0 | x′ ∈ Int(Σ), |ξ′|2 > (1 + ε)τ2
}
.

In particular, the set GΣ
ε is a conical ε-neighborhood of the glancing set GΣ = GΣ

0

in T ∗(R × Int(Σ)). Note that if (t, x′, τ, ξ′) ∈ GΣ
0 , then τ2 = |ξ′|2 (one may think

of 1
τ as a semiclassical parameter and describe the glancing region GΣ as |ξ′|

τ = 1).

In particular, the associated point (t, 0, x′, τ, ξ1, ξ
′) is in Char(σ(�)) = {−τ2+ ξ21 +

|ξ′|2 = 0} if and only if ξ1 = 0.

2.4. Spaces on interior hypersurfaces. In case Σ is a compact interior hy-
persurface, the Sobolev spaces Hs(Σ) have a natural definition. Here, we give a
definition adapted to the case ∂Σ �= ∅.

Definition 2.4. Let S be an interior hypersurface of a d-dimensional manifold X,
and let S0 be an extension of S (see Definition 1.2). Given s ∈ R, we say that
u ∈ H̄s(S) (extendable Sobolev space) if there exists u ∈ Hs

comp(S0) such that
u|S = u.

To put a norm on H̄s(S), let χ ∈ C∞
c (Int(S0)) such that χ = 1 in a neighborhood

of S. We denote by (Uj , ψj)j∈J an atlas of S0 such that for all j ∈ J ,

Uj ∩ suppχ = ∅ or Uj ∩ ∂S0 = ∅

and write JS = {j ∈ J, Uj ∩ suppχ �= ∅} and J∂ = {j ∈ J, Uj ∩ (suppχ \ Int(S)) �=
∅} ⊂ JS (possibly empty). Let (χj)j∈J be a partition of unity of S0 subordinated
to (Uj)j∈J . We then define
(2.11)

‖u‖H̄s(S) =
∑

j∈JS\J∂

‖(χju) ◦ ψ−1
j ‖Hs(Rd−1) + inf

u∈Eu

∑
j∈J∂

‖(χjχu) ◦ ψ−1
j ‖Hs(Rd−1),

Eu := {u ∈ Hs
comp(Int(S0)), u|S = u}.

The definition of the norm H̄s(S) depends on S0, χ, the choice of charts (Uj , ψj),
and the partition of unity (χj). One can however prove that, once S0 and χ are fixed,
two such choices of charts (Uj , ψj) and partition of unity (χj) lead to equivalent
norms H̄s(S). In what follows, (Uj , ψj , χj) shall be traces on S0 of charts and
partition of unity on X. In case S is a compact interior hypersurface, the spaces
H̄s(S), ‖ · ‖H̄s(S) coincide with the usual Hs(S) space.
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3. Regularity of traces and well-posedness for the wave equation

The ultimate goal of the present section is to prove the well-posedness result
for (1.6), see Theorem 1.3. Defining solutions by transposition as in [Lio88], this
amounts to proving regularity of traces on Σ of solutions to the free wave equation.

3.1. Regularity of traces. We start by giving estimates on the restriction to Σ
of a solution to

(3.1)

⎧⎪⎨
⎪⎩
�u = F on R× Int(M),

u = 0 on R× ∂M,

(u, ∂tu)|t=0 = (u0, u1) (u0, u1) ∈ H1(M)× L2(M).

These bounds, indeed stronger bounds, can be found in [Tat98], but we choose
to give the proof of the simpler estimates here for the convenience of the reader.
They are closely related to the semiclassical restriction bounds from [BGT07,Tac10,
Tac17,CHT15,Gal16].

Proposition 3.1. Fix T > 0. Then for any A ∈ Ψ0
phg(R× Int(Σ)), with principal

symbol vanishing in a conic neighborhood of GΣ
0 and all ϕ ∈ C∞

c (R), there exists
C > 0 so that for any (u0, u1) ∈ H1(M) × L2(M) and F ∈ L2(R × M) with
suppF ⊂ [0, T ]×M the solution u to (3.1) satisfies

‖ϕ(t)u|Σ‖2H̄1/2(R×Σ) + ‖ϕ(t)∂νu|Σ‖2H̄−1/2(R×Σ) + ‖Aϕ(t)(u|Σ)‖2H̄1(R×Σ)(3.2)

+ ‖Aϕ(t)(∂νu|Σ)‖2L2(R×Σ)

≤ C(‖(u0, u1)‖2H1(M)×L2(M) + ‖F‖2L2).

The definition of the classes Ψm
phg is recalled in Appendix A.

To prove Proposition 3.1 we need the following elementary lemma.

Lemma 3.2. Suppose that S is an interior hypersurface of the d-dimensional man-
ifold X (in the sense of Definition 1.2) and P ∈ Ψm

phg(Int(X)) is elliptic on the

conormal bundle to Int(S0), N
∗ Int(S0). Then for any s ∈ R, k ≥ 0, and ε > 0,

there exists C = C(ε, k, s) > 0 so that for all u ∈ C∞(M),

‖∂k
νu|S‖H̄s(S) ≤ C(‖u‖Hs+k+1/2(X) + ‖Pu‖H1/2+k+ε−m(X)).

Proof. We start by proving the case k = 0. In case s > 0, the stronger inequality
‖u|S‖H̄s(S) ≤ C‖u‖Hs+1/2(X) holds as a consequence of standard trace estimates

[Hör85, Theorem B.2.7] (that the H̄s(S) norm is the appropriate one in case S is
not compact is made clear below).

We now assume that s ≤ 0 and estimate each term in the definition (2.11)
of ‖u|S‖H̄s(S) in local charts. For this, we use charts (Ωi, κi)i∈I of Int(X) such

that S0 ⊂
⋃

i∈I Ωi and such that (Ωi ∩ S0, κi|S0
)i∈I satisfy the assumptions of

Definition 2.4. In a neighborhood of S0, we have u =
∑

i χ̃iu (where (χ̃i) is now a
partition of unity of S0 associated to Ωi, and hence (χ̃i|S0

) satisfies the assumptions
of Definition 2.4), and estimating ‖u|S‖H̄s(S) amounts to estimating each

‖((χ̃ju)|S0
) ◦ κ−1

j ‖Hs(Rd−1) = ‖(χ̌w)|x1=0‖Hs(Rd−1)

with χ̌ = χ̃j ◦ κ−1
j and w = u ◦ κ−1

j . We may now work locally, where S is a subset

of {x1 = 0}, and estimate the trace of z = χ̌w.
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Let χ ∈ C∞
c (R) have χ ≡ 1 on [−1, 1] with suppχ ⊂ [−2, 2], 0 ≤ χ ≤ 1, and fix

δ > 0 small enough so that P (which, by abuse of notation, we use for the operator
in local coordinates) is elliptic on a conic neighborhood of

{|ξ1| ≥ δ−1|ξ′|} ⊃ N∗({0} × R
d−1) = {ξ′ = 0}

and let χδ(ξ1, ξ
′) = χ

(
2|ξ′|
δξ1

)
for ξ1 �= 0 and χδ(0, ξ

′) = 0. Then, we have

‖z|x1=0‖2Hs(Rd−1) =

∫
Rd−1

〈ξ′〉2s
∣∣∣∣
∫
R

ẑ(ξ1, ξ
′)dξ1

∣∣∣∣
2

dξ′ ≤ 2(A+B),

with

A =

∫
Rd−1

〈ξ′〉2s
∣∣∣∣
∫
R

(1− χδ)ẑ(ξ1, ξ
′)dξ1

∣∣∣∣
2

dξ′

and

B =

∫
Rd−1

〈ξ′〉2s
∣∣∣∣
∫
R

χδ ẑ(ξ1, ξ
′)dξ1

∣∣∣∣
2

dξ′.

We now estimate each term. With the Cauchy Schwarz inequality, the first term is
estimated by

A =

∫
〈ξ′〉2s

∣∣∣∣
∫

(1− χδ)

〈ξ〉s+1/2
〈ξ〉s+1/2ẑ(ξ1, ξ

′)dξ1

∣∣∣∣
2

dξ′

≤
∫
Rd−1

(∫
R

〈ξ′〉2s(1− χδ)
2

〈ξ〉2s+1
dξ1

)(∫
R

〈ξ〉2s+1|ẑ|2(ξ1, ξ′)dξ1
)
dξ′

≤ Cs,δ‖z‖2Hs+1/2(Rd),

since ∫
R

〈ξ′〉2s(1− χδ)
2

〈ξ〉2s+1
dξ1 =

∫
R

1

(1 + t2)s+1/2

(
1− χ

(
2|ξ′|
δ〈ξ′〉t

))2

dt

≤
∫
|t|≤2/δ

1

(1 + t2)s+1/2
dt =: Cs,δ

(which is large since s ≤ 0).
Again with the Cauchy Schwarz inequality, the second term is estimated by

B =

∫
Rd−1

〈ξ′〉2s
∣∣∣∣
∫
R

〈ξ〉1/2+εχδ

〈ξ〉1/2+ε
ẑ(ξ1, ξ

′)dξ1

∣∣∣∣
2

dξ′

≤
∫
Rd−1

(∫
R

〈ξ′〉2s
〈ξ〉1+2ε

dξ1

)(∫
R

〈ξ〉1+2εχ2
δ |ẑ|2(ξ1, ξ′)dξ1

)
dξ′

≤ Cε‖χδ(D)z‖2H1/2+ε(Rd),

since ∫
R

〈ξ′〉2s
〈ξ〉1+2ε

dξ1 = 〈ξ′〉2s−2ε

∫
R

1

(1 + t2)1/2+ε
dt = 〈ξ′〉2s−2εCε,

with Cε finite as soon as ε > 0, and 〈ξ′〉2s−2ε ≤ 1 since s ≤ 0. Combining the last
three estimates and recalling that z = χ̌w yield

‖χ̌w|x1=0‖2Hs(Rd−1) ≤ Cs,δ‖χ̌w‖2Hs+1/2(Rd) + Cε‖χδ(D)χ̌w‖2H1/2+ε(Rd).(3.3)
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Now, according to the definition of χδ, the operator P is elliptic on a conic
neighborhood of supp(χ̌) × supp(χδ). A classical parametrix construction (see for
instance [Hör85, Theorem 18.1.9]) implies, for any N ∈ N, that

‖χδ(D)χ̌w‖H1/2+ε(Rd) ≤ CN (‖ ˇ̌χPw‖H1/2+ε−m(Rd) + ‖ ˇ̌χw‖H−N (Rd)),(3.4)

where ˇ̌χ is supported in the local chart and equal to one in a neighborhood of
supp(χ̌). Recalling that w is the localization of u and summing up the esti-
mates (3.3)-(3.4) in all charts yield the sought result for k = 0.

We now show that the k = 0 case implies the k > 0 case. Let P̃ ∈ Ψm
phg(Int(X))

be elliptic on N∗(Int(S0)) with WF(P̃ ) ⊂ {σ(P ) �= 0} (see e.g. Appendix A for a
definition of WF(A) for a pseudodifferential operator A). Then, applying the case

k = 0 to the operator P̃ , we obtain

‖∂k
νu|Σ‖H̄s(Σ) ≤ C

(
‖∂k

νu‖Hs+1
2
+ ‖P̃ ∂k

νu‖H 1
2
+ε−m

)
(3.5)

≤ C
(
‖u‖

Hs+k+ 1
2
+ ‖P̃ ∂k

νu‖H 1
2
+ε−m

)
.

Now, we write

P̃ ∂k
νu = ∂k

ν P̃ u+ [P̃ , ∂k
ν ]u.

Since P is elliptic on WF(P̃ ), by the elliptic parametrix construction, we can find

E1 ∈ Ψk
phg(Int(X)) and E2 ∈ Ψk−1

phg (Int(X)) so that

∂k
ν P̃ = E1P +R1, [P̃ , ∂k

ν ] = E2P +R2

with Ri ∈ Ψ−∞
phg (Int(X)). Hence, we obtain

‖P̃ ∂k
νu‖H 1

2
+ε−m ≤ C

(
‖E1Pu‖

H
1
2
+ε−m + ‖E2Pu‖

H
1
2
+ε−m + ‖u‖

Hs+k+1
2

)
≤ C

(
‖Pu‖

H
1
2
+k+ε−m + ‖u‖

Hs+k+1
2

)
,

which, combined with (3.5), yields the result. �

We now proceed with the proof of Proposition 3.1.

Proof of Proposition 3.1. First, observe that standard estimates for the Cauchy
problem imply that for any ϕ̃ ∈ C∞

c (R),

‖ϕ̃u‖H1 ≤ CT,ϕ̃(‖(u0, u1)‖H1(M)×L2(M) + ‖F‖L2(0,T ;L2(M))),

so we may estimate by terms of the form ‖ϕ̃u‖H1 .
Second, notice that N∗(R × Int(Σ0)) ⊂ {τ = 0}, so � is elliptic on

N∗(R× Int(Σ0)), and hence Lemma 3.2 implies that

‖ϕ(t)u|Σ‖H̄1/2(R×Σ) + ‖ϕ(t)∂νu|Σ‖H̄−1/2(R×Σ) ≤ C(‖ϕ̃(t)u‖H1 + ‖ϕ̃F‖L2),

where ϕ̃ ∈ C∞
c (R) with ϕ̃ ≡ 1 on suppϕ.

Now, observe that since Σ is an interior hypersurface, we may work in a fixed
compact subset, K of Int(M). Note also that there exists Σ̃ an interior hypersurface

with Σ̃ ⊂ Int(Σ) so that A = 1Σ̃A1Σ̃.
We proceed by making a microlocal partition of unity on a neighborhood

T ∗(R×K). It suffices to obtain the estimate

‖A(Op(χ)ϕ(t)u|Σ)‖2H̄1(R×Σ) + ‖A(∂ν Op(χ)ϕ(t)u|Σ)‖2L2(R×Σ)(3.6)

≤ C(‖(u0, u1)‖2H1(M)×L2(M) + ‖F‖2L2)
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for χ supported in a conic neighborhood of an arbitrary point, q0 = (t0, τ0, x0, ξ0)
in T ∗(R × K). We will focus on four regions: q0 /∈ Char(�) (an elliptic point),
q0 ∈ Char(�) but away from Σ, q0 ∈ T ∗

R×Σ̃
(R×M) ∩ T0 (a transversal point), and

q0 ∈ T ∗
R×Σ̃

(R×M) ∩ G0 (a glancing point).

In all regions, we shall use that given χ ∈ S0
phg a cutoff to a conic neighborhood,

U of q0, we have
(3.7)
‖�Op(χ)ϕu‖L2 ≤ ‖[�,Op(χ)ϕ]u‖L2 + ‖Op(χ)ϕ�u‖L2 ≤ C (‖ϕ̃u‖H1 + ‖ϕ̃F‖L2) .

First start with q0 in the elliptic region: q0 /∈ Char(�). Shrinking the neighbor-
hood if necessary, the microlocal ellipticity of � near q0 with (3.7) yields

‖Op(χ)ϕu‖H2 ≤ C (‖ϕ̃u‖H1 + ‖ϕ̃F‖L2) .

Hence, rough trace estimates imply that

‖(∂ν Op(χ)ϕu)|Σ‖L2(R×Σ) + ‖(Op(χ)ϕu)|Σ‖H̄1(R×Σ) ≤ C (‖ϕ̃u‖H1 + ‖ϕ̃F‖L2) ,

and boundedness of A proves (3.6) in this case.
Second, suppose that q0 ∈ Char(�) but x0 /∈ Σ. Then clearly there is a neigh-

borhood U of q0 and χ elliptic at q0 with suppχ ⊂ U so that

‖(∂ν Op(χ)ϕu)|Σ‖L2(R×Σ) + ‖(Op(χ)ϕu)|Σ‖H̄1(R×Σ) ≤ C‖ϕ̃u‖L2 ,

and again boundedness of A proves (3.6).
Third, suppose q0 ∈ T ∗

R×Σ(R × M) is a transversal point. In that case, we use
local Fermi normal coordinates (see Section 2.1) near Σ0 so that x0 �→ (0, 0). Note
that since q0 ∈ Char(�), we have σ(�)(q0) = −τ20 + (ξ0)

2
1 + r(x0, ξ

′
0) = 0. Since

q0 ∈ T0, we have moreover r0(0, ξ
′
0) < τ20 , and hence ∂ξ1σ(�)(q0) = 2(ξ0)1 �= 0.

Therefore, by the implicit function theorem, there exist a neighborhood U of q0
and real valued symbols b(τ, x, ξ′) ∈ C∞((−ε, ε);S1

phg(T
∗(R × {x1 = 0}))) and

e(τ, x, ξ) ∈ S1
phg(T

∗R× Rn) elliptic near q0 so that in U we have

σ(�) = e(τ, x, ξ)(ξ1 − b(τ, x, ξ′)).

Thus, letting χ̃ ∈ S0
phg(R×Rn) with χ̃ ≡ 1 on suppχ and supp χ̃∩N∗({x1 = 0}) = ∅

(this is possible since we have Char(�) ∩N∗({x1 = 0}) = ∅ and q0 ∈ Char(�), so
that we may assume suppχ ∩ N∗({x1 = 0}) = ∅), we have bχ̃ ∈ S1

phg(T
∗R × Rn)

(see [Hör85, Theorem 18.1.35]) and in particular Op(b)Op(χ̃) ∈ Ψ1
phg(R × Rn).

Therefore,

�Op(χ) = Op(e)(Dx1
−Op(b)Op(χ̃))Op(χ) +R,

where R ∈ Ψ1
phg(R × R

n), and hence, using a microlocal parametrix for Op(e) on

suppχ, we have, using (3.7),

‖(Dx1
−Op(b))Op(χ)ϕu‖H1 ≤ C(‖ϕ̃u‖H1 + ‖ϕ̃F‖L2)

and also

‖(Dx1
−Op(b))∂x1

(Op(χ)ϕu)‖L2 ≤ C(‖ϕ̃u‖H1 + ‖ϕ̃F‖L2).

So, by Lemma A.1, we obtain

(3.8)
‖(Op(χ)ϕu)|x1=0‖H1 ≤ C(‖ϕ̃u‖H1 + ‖ϕ̃F‖L2),

‖(∂x1
Op(χ)ϕu)|x1=0‖L2 ≤ C(‖ϕ̃u‖H1 + ‖ϕ̃F‖L2).

Boundedness of A and (3.8) imply (3.6).
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Finally, it remains to show that for q0 ∈ T ∗
R×Σ(R × M) a glancing point (i.e.,

with τ20 − r0(0, ξ
′
0) = 0) and χ supported sufficiently close to q0, we have

‖A(Opχϕu)|x1=0‖H̄1(R×Σ) + ‖A(∂x1
Opχϕu)|x1=0‖L2(R×Σ) ≤ ‖ϕ̃u‖H1(R×M).

Let ψ ∈ C∞
c (R) with ψ ≡ 1 near 0 and define ψε(x1) = ψ(ε−1x1). Then define

Ãεu(x1, x
′) = [ψε(x1)Au(x1, ·)](x′),

so that Ãεu|x1=0 = A(u|x1=0). Then by [Hör85, Theorem 18.1.35], Ãε Op(χ)ϕ(t) ∈
Ψ0

phg(R × M) and for ε > 0 small enough and χ supported sufficiently close to

q0, σ(Ãε Op(χ)) = 0. In particular, Ãε Op(χ)ϕ(t) ∈ Ψ−1
phg(R × M). Similarly,

Ãε∂x1
Op(χ)ϕ(t) ∈ Ψ0

phg(R×M). Rough Sobolev trace estimates thus yield

‖Ãε Op(χ)ϕ(t)u|x1=0‖H̄1(R×Σ) ≤ C‖ϕ̃u‖H1(R×M),

‖Ãε∂x1
Op(χ)ϕ(t)u|x1=0‖L2(R×Σ) ≤ C‖ϕ̃u‖H1(R×M),

and the proof is finished. �

3.2. Microlocal spaces on the hypersurface. This section is intended to define
the appropriate spaces for the statement of the well-posedness and control results
in the present context. Let

(3.9) Γ ⊂ T ∗(R× Int(Σ)) \ 0 be a closed and conic set.

We define spaces adapted to Γ, i.e., measuring different regularities near and away
from Γ. In the applications below, we shall take Γ = GΣ for the study of the Cauchy

problem and Γ = EΣ ∪ GΣ = E
Σ
for the study of the control problem.

In particular, we will define two families of spaces: the spaces Hs,k
comp,Γ(ΣT )

consisting of compactly supported distributions that areHs overall and microlocally

Hk (k ≥ s) near Γ and the spaces Hs,k
loc,Γ(ΣT ) consisting of distributions that are

locally in Hk and microlocally Hs (s ≥ k) outside Γ. We then show that these
spaces are dual to one another. Note that the spaces D′

Γ(ΣT ) [Hör90, Section 8.2]
of distributions

D′
Γ(ΣT ) := {u ∈ D′(ΣT ) | WF(u) ⊂ Γ}

are given by H∞,−∞
loc,Γ (ΣT ).

In order to define the above-mentioned spaces, we need to exclude “ε-neighbor-
hoods” (in a sense made precise below) of the boundary ∂ΣT of ΣT (both in space
and time) and the conic set Γ (in a conic way). To define spaces associated to Γ, we
fix a sequence S = (εj)j∈N ∈ (0, 1)N, εj → 0, and from now on take ε, ε′ ∈ S. This
precision is sometimes omitted for concision. Fix a family of interior hypersurfaces
Σε, ε ∈ (0, 1), with

(3.10) Σε′ ⊂ Int(Σε) ⊂ Σε ⊂ Int(Σ), ε < ε′,
⋃
ε>0

Σε = Int(Σ),

as well as a family of closed conic subsets Γε, ε ∈ (0, 1), of T ∗R × Int(Σ) \ 0 such
that
(3.11)

Γε is closed and conic for any ε, Γε ⊂ Int(Γε′), ε < ε′, Γ =
⋂
ε>0

Γε.
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Next, we need to define appropriate “cutoff functions” to exclude the “ε-neighbor-
hoods” of ∂ΣT and Γ. For this, fix first a family of cutoff functions

(3.12) ϕε ∈ C∞
c ((0, T )× Int Σ), ϕε ≡ 1 on [ε, T − ε]× Σε,

and second fix a family of cutoff operators
(3.13)

BΓ
ε ∈ Ψ0

phg((0, T )× Int(Σ)), BΓ
ε selfadjoint on L2(R× Σ),

WF(BΓ
ε ) ∩ Γε = ∅, WF(ϕε(1−BΓ

ε )) ∩ T ∗
[ε,T−ε]×Σε

(R× Int(Σ)) \ Γ2ε = ∅,
WF(BΓ

ε′) ⊂ Ell(BΓ
ε ), ε < ε′ ∈ S, BΓ

ε ϕε = BΓ
ε = ϕεB

Γ
ε .

Note that once Γ is fixed (see Sections 3.3 and 4), a more explicit expression for
the symbol of the operators BΓ

ε will be given.
Next, we define for k ≥ s, the Banach space

Hs,k
comp,Γ,ε(ΣT ) =

{
f ∈ Hs

comp((0, T )× Int(Σ)), supp(f) ⊂ [ε, T − ε]× Σε,

(1−BΓ
ε )f ∈ Hk

comp((0, T )× Int(Σ))
}
,

normed by

‖f‖2
Hs,k

comp,Γ,ε(ΣT )
:= ‖f‖2H̄s([0,T ]×Σ) + ‖(1−BΓ

ε )f‖2H̄k([0,T ]×Σ).

Notice that (1 − BΓ
ε ) measures regularity in Γε, and therefore, for f ∈ Hs,k

comp,Γ,ε,

we have f = ϕεf and WFk(f) ⊂ T ∗(R× Int(Σ)) \ Γε. We define the space

Hs,k
comp,Γ(ΣT )=

⋃
ε>0

Hs,k
comp,Γ,ε(ΣT )=

{
f ∈Hs

comp((0, T )× Int(Σ)),WFk(f) ∩ Γ = ∅
}

endowed with the inductive limit topology induced by Hs,k
comp,Γ,ε(ΣT ) (taken for a

sequence of ε going to zero). Functions/distributions in the space Hs,k
comp,Γ(ΣT ) are

Hs overall and microlocally Hk (k ≥ s) near Γ. In case k = s, we simply have

Hs,k
comp,Γ(ΣT ) = Hk

comp((0, T )× Int(Σ)).
Similarly, we define for k ≤ s, the vector space

Hs,k
loc,Γ,ε(ΣT ) =

{
u ∈ D′((0, T )× Int(Σ)), ϕεu ∈ Hk

comp((0, T )× Int(Σ)),

BΓ
ε u ∈ Hs

comp((0, T )× Int(Σ))
}
,

endowed with the seminorm

‖u‖2
Hs,k

loc,Γ,ε(ΣT )
:= ‖ϕεu‖2H̄k([0,T ]×Σ) + ‖BΓ

ε u‖2H̄s([0,T ]×Σ).

We define as well the Fréchet space

Hs,k
loc,Γ(ΣT ) =

⋂
ε>0

Hs,k
loc,Γ,ε(ΣT )

=
{
f ∈ D′((0, T )× Int(Σ)), f ∈ Hk

loc((0, T )× Int(Σ)),

Bf ∈ Hs
comp((0, T )× Int(Σ)) for all B ∈ Ψ0

phg((0, T )× Int(Σ))

s.t. WF(B) ∩ Γ = ∅
}
,
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with topology given by the seminorms ‖ · ‖Hs,k
loc,Γ,ε(ΣT ). Functions/distributions in

the space Hs,k
loc,Γ(ΣT ) are locally Hk overall and microlocally Hs (s ≥ k) outside Γ.

Remark again that in case k = s, we simply haveHs,k
loc,Γ(ΣT ) = Hk

loc((0, T )×Int(Σ)).

Lemma 3.3. For s, k ∈ R, s ≥ k the sesquilinear map

C∞
c ((0, T )× Int(Σ))× C∞((0, T )× Int(Σ)) → C,

(f, u) �→
∫
(0,T )×Σ

f(t, x)u(t, x)dtdσ(x),

extends uniquely as a continuous sesquilinear map

H−s,−k
comp,Γ ×Hs,k

loc,Γ → C,

which we shall denote by 〈f, u〉H−s,−k
comp ×Hs,k

loc
. Moreover, for (f, u) ∈ H−s,−k

comp,Γ,ε ×
Hs,k

loc,Γ,ε, we have

|〈f, u〉H−s,−k
comp,Γ×Hs,k

loc,Γ
| ≤ ‖f‖H−s,−k

comp,Γ,ε(ΣT )‖u‖Hs,k
loc,Γ,ε(ΣT ).

Proof. Let (f, u) ∈ C∞
c ((0, T )× Int(Σ))× C∞((0, T )× Int(Σ)). Fix ε > 0 so that

ϕεf = f. We compute

|(f, u)L2((0,T )×Σ)| = |(f, ϕεu)L2((0,T )×Σ)|

≤
∣∣∣(f,BΓ

ε ϕεu
)
L2((0,T )×Σ)

∣∣∣+ ∣∣∣(f, (1−BΓ
ε )ϕεu

)
L2((0,T )×Σ)

∣∣∣
≤ ‖f‖H̄−s([0,T ]×Σ)‖BΓ

ε ϕεu‖H̄s([0,T ]×Σ)

+ ‖(1−BΓ
ε )f‖H̄−k([0,T ]×Σ)‖ϕεu‖H̄k([0,T ]×Σ)

≤ ‖f‖H−s,−k
comp,Γ,ε(ΣT )‖u‖Hs,k

loc,Γ,ε(ΣT ).

Then the density of C∞
c ((0, T )×Int(Σ)) in H−s,−k

comp,Γ(ΣT ) and of C∞((0, T )×Int(Σ))

in Hs,k
loc,Γ(ΣT ) prove the statement. �

Lemma 3.4. For all s, k ∈ R, k ≥ s, we have
(
Hs,k

comp,Γ(ΣT )
)′

= H−s,−k
loc,Γ (ΣT ), and

Hs,k
comp,Γ(ΣT ) = (H−s,−k

loc,Γ (ΣT ))
′.

Proof. Lemma 3.3 proves H−s,−k
loc,Γ (ΣT ) ⊂ (Hs,k

comp,Γ(ΣT ))
′. Suppose that μ ∈

(Hs,k
comp,Γ(ΣT ))

′. Then, since C∞
c ((0, T )× Int(Σ)) ⊂ Hs,k

comp,Γ(ΣT ), with continuous

embedding, μ ∈ D′((0, T )× Int(Σ)). Fix ε > 0. Then for χ ∈ C∞
c ((0, T )× Int(Σ)),

|〈ϕεμ, χ〉| = |〈μ, ϕεχ〉| ≤ Cε(‖ϕεχ‖H̄s([0,T ]×Σ) + ‖(1−BΓ
ε )ϕεχ‖H̄k([0,T ]×Σ)).

So, since k ≥ s, we obtain in particular

|〈ϕεμ, χ〉| ≤ Cε‖ϕεχ‖H̄k([0,T ]×Σ) ≤ Cε‖χ‖H̄k([0,T ]×Σ),

and hence ϕεμ ∈ H−k
comp((0, T )× Int Σ) with

‖ϕεμ‖H̄−k([0,T ]×Σ) ≤ Cε.(3.14)

Fix any ε ∈ S and χ ∈ C∞
c ((0, T )× Int(Σ)). Then there exists ε0 > 0 depending

only on ε such that for ε0 > ε′ ∈ S, BΓ
ε χ ∈ Hs,k

comp,Γ,ε′(ΣT ). Choose ε′ < ε0 small
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enough so that WF[(1−BΓ
ε′)B

Γ
ε ] = ∅. Then, we have

|〈BΓ
ε μ, χ〉| = |〈μ,BΓ

ε χ〉| ≤ Cε′(‖BΓ
ε χ‖H̄s([0,T ]×Σ) + ‖(1−BΓ

ε′)B
Γ
ε χ‖H̄k([0,T ]×Σ))

≤ Cε′(‖BΓ
ε χ‖H̄s([0,T ]×Σ) + ‖χ‖H̄−N ([0,T ]×Σ))

≤ Cε′‖χ‖H̄s([0,T ]×Σ).

Therefore, BΓ
ε μ ∈ H−s

comp((0, T )× Int(Σ)) with

‖BΓ
ε μ‖H̄−s([0,T ]×Σ) ≤ Cε′ .

This together with (3.14) proves that μ ∈ H−s,−k
loc,Γ (ΣT ) and hence the first statement

of the lemma.
The argument to show Hs,k

comp,Γ(ΣT ) = (H−s,−k
loc,Γ (ΣT ))

′ is similar except that the

starting point is that C∞((0, T )×Int(Σ)) ⊂ H−s,−k
loc,Γ (ΣT ) is continuously embedded,

which implies (H−s,−k
loc,Γ (ΣT ))

′ ⊂ E ′((0, T )× Int(Σ)). �

Remark 3.5 (Examples for hypersurface control). The main examples we have in

mind for the spaces Hs,k
comp,Γ and Hs,l

loc,Γ are when Γ is the glancing set GΣ
0 . In this

case, the cones Γε are given by GΣ
ε . See (2.9) for the definitions and Remark 2.3 for

a simple expression in the Euclidean case. This choice of spaces measures regularity
differently close to and away from glancing. For a concrete example, consider M
the closure of a bounded open set in Rn containing B(0, 2), and

Σ =
{
(0, x′) | |x′| < 1

}
= B(0, 1) ∩ {x1 = 0} ⊂ M.

In this case, the set Σε can be taken as

Σε =
{
(0, x′) | |x′| < 1− ε

}
.

The cutoff function ϕε is then defined by (3.12), and the cutoff operator BGΣ

ε defined

in (3.13) has principal symbol equal to one for |ξ′|2
τ2 ∈ [1−ε, 1+ε] and equal to zero

for |ξ′|2
τ2 /∈ [1− 2ε, 1 + 2ε].

3.3. Definition of solutions and well-posedness. Observe that GΣ and ĒΣ :=

GΣ∪EΣ satisfy (3.9) and for k ≥ s, we therefore have associated spacesHs,k
comp,GΣ(ΣT ),

Hs,k
comp,ĒΣ(ΣT ) with dual spaces H−s,−k

loc,GΣ (ΣT ), H
−s,−k
loc,ĒΣ (ΣT ).

With these definitions in hand, we can reformulate Proposition 3.1 as follows:
For any T > 0, the map

(3.15)
H1

0 (M)× L2(M)× L2(0, T ;L2(M)) → H
1, 12
loc,GΣ(ΣT )×H

0,− 1
2

loc,GΣ(ΣT )

(u0, u1, F ) �→ (u|Σ, ∂νu|Σ)

(where u solves (3.1)) is continuous.
We can now study the well-posedness for the control problem (1.6). We first

recall that, given f0, f1 ∈ C∞
c (R×Σ), f0δΣ and f1δ

′
Σ are usual distributions defined

by (1.5).

Lemma 3.6. Given T > 0, assume that the functions v ∈ C∞([0, T ] × M \ Σ) ∩
C1((0, T );L2(M)), u, F ∈ C∞([0, T ]×M), and f0, f1 ∈ C∞

c ((0, T )× Int(Σ)) solve

�v = f0δΣ + f1δ
′
Σ in D′((0, T )× Int(M)) and �u = F.
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Then, we have the identity[
(∂tv, u)L2(M) −(v, ∂tu)L2(M)

]T
0
+ (v, F )L2((0,T )×M)

=

∫
(0,T )×Σ

(
f0u|Σ − f1∂νu|Σ

)
dtdσ.

The duality property of Lemma 3.3, together with the formula of Lemma 3.6,

valid for smooth functions, and (3.15) suggest that taking f0 ∈ H
−1,− 1

2

comp,GΣ(ΣT ) and

f1 ∈ H
0, 12
comp,GΣ(ΣT ) could be an appropriate set of spaces for control functions, as

well as the following definition of transposition solutions for the control problem.

Definition 3.7. Given T > 0, (v0, v1) ∈ L2(M) × H−1(M), f0 ∈ H
−1,− 1

2

comp,GΣ(ΣT ),

f1 ∈ H
0, 12
comp,GΣ(ΣT ), we say that v is a solution of (1.6) if v ∈ L2((0, T );L2(M))

and for any F ∈ L2((0, T );L2(M)), we have∫ T

0

(v, F )L2(M)dt = 〈v1, u(0)〉H−1(M),H1(M) − (v0, ∂tu(0))L2(M)

+〈f0, u|Σ〉
H

−1,− 1
2

comp,GΣ (ΣT ),H
1, 1

2

loc,GΣ (ΣT )

−〈f1, ∂νu|Σ〉
H

0, 1
2

comp,GΣ (ΣT ),H
0,− 1

2
loc,GΣ (ΣT )

,

where u is the unique solution to

(3.16)

{
�u = F on (0, T )× Int(M),

(u, ∂tu)|t=T = (0, 0) in Int(M).

Note in particular that taking F ∈ C∞
c ((0, T ) × Int(M)) implies that such a

solution is a solution of the first equation of (1.6) in the sense of distributions.

Theorem 3.8. Let T > 0. For all (v0, v1) ∈ L2(M) × H−1(M) and for all f0 ∈
H

−1,− 1
2

comp,GΣ(ΣT ) and f1 ∈ H
0, 12
comp,GΣ(ΣT ), there exists a unique v ∈ L2((0, T );L2(M))

solution of (1.6) in the sense of Definition 3.7. The linear map

L2(M)×H−1(M)×H
−1,− 1

2

comp,GΣ(ΣT )×H
0, 12
comp,GΣ(ΣT ) → L2(0, T ;L2(M))

(v0, v1, f0, f1) �→ v

is continuous.

Remark 3.9. Note that, given two different times T < T ′, initial data (v0, v1), and
control functions f0, f1 compactly supported in (0, T ) ⊂ (0, T ′), the above definition
and theorem yield two different solutions: one defined on (0, T ) and one defined on
(0, T ′). However, one can observe that these two solutions coincide by extending all
test functions F ∈ L2((0, T );L2(M)) by zero on (T, T ′) to obtain test functions in
L2((0, T ′);L2(M)). With this in mind, Theorem 1.3 is a direct consequence (and a
simplified version) of Theorem 3.8.

Proof of Theorem 3.8. First, we define

�(F ) := 〈v1, u(0)〉H−1(M),H1(M) − (v0, ∂tu(0))L2(M)

+〈f0, u|Σ〉
H

−1,− 1
2

comp,GΣ (ΣT ),H
1, 1

2
loc,GΣ (ΣT )

− 〈f1, ∂νu|Σ〉
H

0, 1
2

comp,GΣ (ΣT ),H
0,− 1

2
loc,GΣ (ΣT )
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and prove that it is a continuous linear form on L2(0, T ;L2(M)), with appropriate
norm. We have

|�(F )| ≤ ‖v1‖H−1‖u(0)‖H1
0
+ ‖v0‖L2(M)‖∂tu(0)‖L2(M) +R

≤ ‖(v0, v1)‖L2×H−1‖F‖L2(0,T ;L2(M)) +R,

with

R =

∣∣∣∣∣〈f0, u|Σ〉H−1,− 1
2

comp,GΣ (ΣT ),H
1, 1

2
loc,GΣ (ΣT )

− 〈f1, ∂νu|Σ〉
H

0, 1
2

comp,GΣ (ΣT ),H
0,− 1

2
loc,GΣ (ΣT )

∣∣∣∣∣ .
From the definition of the spaces in Section 3.2, there exists ε > 0 such that

(f0, f1) ∈ H
−1,− 1

2

comp,GΣ,ε
(ΣT )×H

0, 12
comp,GΣ,ε

(ΣT ), and hence we obtain from Lemma 3.3

R ≤ ‖f0‖
H

−1,− 1
2

comp,GΣ,ε
(ΣT )

‖u|Σ‖
H

1, 1
2

loc,GΣ,ε
(ΣT )

+ ‖f1‖
H

0, 1
2

comp,GΣ,ε
(ΣT )

‖∂νu|Σ‖
H

0,− 1
2

loc,GΣ,ε
(ΣT )

.

Proposition 3.1 with A = 1 − BGΣ

ε (satisfying the appropriate conditions) then
yields

R ≤ Cε

(
‖f0‖

H
−1,− 1

2

comp,GΣ,ε
(ΣT )

+ ‖f1‖
H

0, 1
2

comp,GΣ,ε
(ΣT )

)
‖F‖L2(0,T ;L2(M)).

Coming back to �, we have obtained the existence of ε ∈ S, Cε > 0 such that

|�(F )| ≤ Cε

(
‖(v0, v1)‖L2×H−1

+‖(f0, f1)‖
H

−1,− 1
2

comp,GΣ,ε
(ΣT )×H

0, 1
2

comp,GΣ,ε
(ΣT )

)
‖F‖L2(0,T ;L2(M)).

Hence, � is a continuous linear form on L2(0, T ;L2(M)). There is thus a unique v ∈
L2(0, T ;L2(M)) such that �(F )=

∫ T

0
(v(t), F (t))L2(M)dt for all F ∈L2(0, T ;L2(M)),

which is precisely the definition of a solution of (1.6) in Definition 3.7. This solution

moreover satisfies, for (f0, f1) ∈ H
−1,− 1

2

comp,GΣ,ε
(ΣT )×H

0, 12
comp,GΣ,ε

(ΣT ), the estimate

‖v‖L2(0,T ;L2(M)) ≤ ‖(v0, v1)‖L2×H−1 + Cε‖(f0, f1)‖
H

−1,− 1
2

comp,GΣ,ε
(ΣT )×H

0, 1
2

comp,GΣ,ε
(ΣT )

,

which is the continuity statement. This concludes the proof of the theorem. �

4. Observability and controllability for the wave equation

The aim of this section is to study the observability of (3.1) from Σ. Recall that
Σδ is defined in (3.10). In particular, we prove:

Theorem 4.1 (Observability). Let χ ∈ C∞(R) have χ ≡ 1 on (−∞,−1] and
suppχ ⊂ (−∞,− 1

2 ]. Under Assumption GC-(0,T), there exists δ0 > 0, so that the

following holds. For all δ ∈ (0, δ0), N > 0, and Aδ ∈ Ψ0
phg((0, T ) × Int(Σ)) with

principal symbol χ
( r0(x

′,ξ′)−τ2

δτ2

)
ϕδ, where ϕδ ∈ C∞

c ((0, T )× Int(Σ)) with ϕδ ≡ 1 on
[δ, T − δ]× Σδ, there exists cN > 0 so that for any solution u to (3.1), we have

(4.1)

cN‖(u0, u1)‖2H1×L2 ≤ ‖ϕδ∂νu|Σ0
‖2H̄−N (R×Σ) + ‖ϕδu|Σ0

‖2H̄−N (R×Σ)

+ ‖Aδ(∂νu|Σ0
)‖2L2(R×Σ) + ‖Aδ(u|Σ0

)‖2H̄1(R×Σ)

+ ‖F‖L2((0,T )×M).
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Let us briefly explain why the observability inequality of Theorem 4.1 implies
Theorem 1.9.

Proof of Theorem 1.9. We apply Theorem 4.1 to the function u(t, x) = eitλv(x)
with v ∈ H1

0 (M) ∩H2(M). First observe that Aδ is bounded on L2 and hence

‖Aδ∂νu|Σ‖L2(R×Σ) ≤ C‖∂νu|Σ‖L2([0,T ]×Σ) ≤ C‖∂νv|Σ‖L2(Σ).

Observe also that there exists δ0 > 0 so that ϕδ0Dt is elliptic on WF(Aδ) and
therefore

‖Aδu|Σ‖H̄1(R×Σ) ≤ C(‖ϕδ0Dtu‖L2(R×Σ) + ‖u|Σ‖L2([0,T ]×Σ) ≤ C〈λ〉‖v‖L2(Σ)).

Note also that
�u = eitλ(−Δg − λ2)v,

and hence the right hand side of (4.1) is bounded by

C
(
‖∂νv|Σ‖L2 + 〈λ〉‖v|Σ‖L2 + ‖(−Δg − λ2)v‖L2((0,T )×M)

)
.

Finally, noticing that
(u|t=0, ∂tu|t=0) = (v, iλv)

gives
〈λ〉‖v‖L2(M) ≤ ‖(u|t=0, ∂tu|t=0)‖H1

0 (M)×L2(M),

finishing the proof of Theorem 1.9. �
4.1. The geometric assumption T GCC. To prove Theorem 4.1 we start with
a dynamical lemma where we show that the a priori weaker Assumption GC-(0,T )
implies the following stronger assumption.

Assumption GC-(ε,T ). For all p ∈ Z, we have⋃
s∈R

{ϕ(s, p)} ∩ Tε ∩ T ∗
(ε,T−ε)×Σε

(R×M) �= ∅.

Recall that Z is as in (2.4).

Lemma 4.2. Suppose that Assumption GC-(0,T) holds. Then there exists ε > 0
so that Assumption GC-(ε,T) holds.

Proof. We define Z±
1 := Z ∩ {τ = ±1, t = 0}. We shall show that Assumption

GC-(0,T ) implies the existence of ε > 0 such that

(4.2)
⋃
s∈R

{ϕ(s, p)} ∩ Tε ∩ T ∗
(ε,T−ε)×Σε

(R×M) �= ∅ for all p ∈ Z±
1 .

We first show that (4.2) implies the lemma. With the identification bṪ ∗(R×M) �
T ∗R×bT ∗M , consider p = (t0, τ, q) ∈ (T ∗R×bT ∗M)∩Z. Let Mλ be multiplication
in the fiber by λ > 0. Then,

p′ = ϕ(t0 sgn τ,M|τ |−1(t0, τ, q)) ∈ Z+
1 ∪ Z−

1 .

According to the homogeneity of ϕ (see (2.8)), and the flow property (2.7), we have

⋃
s∈R

{M|τ |−1ϕ(s, p)} =
⋃
s∈R

{ϕ(s|τ |,M|τ |−1p)} =
⋃
s∈R

{ϕ(s|τ |, ϕ(t0 sgn τ,M|τ |−1p))}
(4.3)

=
⋃
s∈R

{ϕ(s, p′)}.
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But, by (4.2), since p′ ∈ Z+
1 ∪ Z−

1 , we have⋃
s∈R

{ϕ(s, p′)} ∩ Tε ∩ T ∗
(ε,T−ε)×Σε

(R×M) �= ∅,

and hence homogeneity of ϕ, Tε, and T ∗
(ε,T−ε)×Σε

(R×M) together with (4.3) com-

pletes the proof of the lemma from (4.2).
We now prove (4.2), writing explicitly the argument for Z−

1 . The case of Z+
1

is handled similarly. Notice first that since ϕ is the generalized bicharacteristic
flow for 1

2 (−τ2 + |ξ|2g), we have for p ∈ Z−
1 , t(ϕ(s, p)) = s. This together with

Assumption GC-(0,T ) implies that for each p ∈ Z−
1 , we have⋃

s∈(0,T )

{ϕ(s, p)} ∩ T0 �= ∅.

Therefore, for each p ∈ Z−
1 , there exists εp > 0 and sp ∈ (εp, T − εp) such that

ϕ(sp, p) ∈ Tεp ∩ T ∗
(εp,T−εp)×Σεp

(R×M).

Let β be a defining function for Σ0 near ϕ(sp, p), and consider g(s, q) = β ◦ π0 ◦
ϕ(s, q) for (s, q) in a neighborhood Np of (sp, p), where π0 : T ∗(R × Int(M)) →
R × Int(M) is the canonical projection. By [MS78, Theorem 3.34], the Melrose-
Sjöstrand generalized bicharacteristic flow ϕ is continuous, and so g is continuous
on Np.

Moreover, since Σ is an interior hypersurface, there exists δp so that

g(·, q) : (sp − δp, sp + δp) → j(T ∗(R× Int(M)) ∩ Char(�)) ⊂ Z

is C1 for q in a neighborhood of p since ϕ coincides with the usual bicharacteristic
flow of � near ϕ(sp, p).

Notice that ϕ(sp, p) ∈ Tεp implies that

∂sg(sp, p) = 〈dβ(π0 ◦ ϕ(sp, p))dπ0(ϕ(sp, p)), Hσ(�)(ϕ(sp, p))〉 �= 0

according to Remark 2.2. Hence by the implicit function theorem [Kum80], the
equation g(s, q) = 0 defines a continuous function s = s(q) near q = p. In particular,
set

δ0 = min
(sp
2
,
T − sp

2

)
.

Then there are a neighborhood, Up of p, and a continuous function, s : Up → R

with s(p) = sp, such that ϕs(q)(q) ∈ Tεp/2 ∩ T ∗
(εp/2,T−εp/2)×Σεp/2

(R × M) and

|s(q)− sp| < δ0 for all q ∈ Up.
Since

Z−
1 = j(Char(�) ∩ {τ = −1, t = 0})

is compact, we may extract from the cover Z−
1 ⊂

⋃
p∈Z−

1
Up a finite cover {Upi

}ni=1.

Then taking ε = min1≤i≤n εpi
/2, we have that for all p ∈ Z−

1 ,⋃
s∈(0,T )

{ϕ(s, p)} ∩ Tε ∩ T ∗
(ε,T−ε)×Σε

(R×M) �= ∅.

In particular, (4.2) holds, which concludes the proof of the lemma. �
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4.2. Observability at high frequency. The aim of this section is to prove the
following proposition, which is a high-frequency version of Theorem 4.1. The
estimates in these results differ in two respects: here in equation (4.4) there is
‖(u0, u1)‖2L2×H−1 in the right hand side, so that this estimate does not care about

low frequencies. The treatment of low frequencies in Theorem 4.1 (see Section 4.3
below) requires the addition of observation terms in an arbitrary weak norm
‖ϕδ∂νu|Σ0

‖2
H̄−N (R×Σ)

+ ‖ϕδu|Σ0
‖2
H̄−N (R×Σ)

, which is not needed here.

Proposition 4.3. Let χ∈C∞(R) have χ ≡ 1 on (−∞,−1] and suppχ⊂ (−∞,− 1
2 ].

Under Assumption GC-(0, T), there exists δ0 > 0, so that the following holds. For

all δ ∈ (0, δ0) and Aδ∈Ψ0
phg((0, T )×Int(Σ)) with principal symbol χ

( r0(x
′,ξ′)−τ2

δτ2

)
ϕδ,

where ϕδ ∈ C∞
c ((0, T )× Int(Σ)) with ϕδ ≡ 1 on [δ, T − δ] × Σδ, there exists c > 0

so that for any solution u to (3.1), we have

c‖(u0, u1)‖2H1×L2 ≤‖Aδ(u|Σ0
)‖2H̄1(R×Σ) + ‖Aδ(∂νu|Σ0

)‖2L2(R×Σ)(4.4)

+‖F‖2L2((0,T )×M) + ‖(u0, u1)‖2L2×H−1 .

We begin with two preliminary lemmas. We again work in Fermi normal co-
ordinates near Σ. A more general version of the following lemma is given in
[Hör85, Lemma 23.2.8], but we decided to include a short proof in this particu-
lar context for the sake of readability.

Lemma 4.4. Denote � = −D2
t + D2

x1
+ r(x,Dx′) + c(x)Dx1

, where r is de-

fined in Section 2.1. For any 0 < ν < 1, there exist ε > 0 and Λ±, Λ̃± ∈
C∞((−ε, ε); Ψ1

phg(R× R
n−1)) with

σ(Λ±) = σ(Λ̃±) =
√
τ2 − r(x, ξ′) on {τ2 − r(x, ξ′) ≥ ντ2}

such that for all b ∈ C∞
c

(
(−ε, ε);S0

phg(T
∗(R× Rn−1))

)
with supp b ⊂ {τ2 − r(x, ξ′)

≥ ντ2},
Op(b)� = Op(b)

[
(Dx1

− Λ−)(Dx1
+ Λ+) +R

]
,

Op(b)� = Op(b)
[
(Dx1

+ Λ̃+)(Dx1
− Λ̃−) + R̃

]
,

where R, R̃ ∈ C∞((−ε, ε); Ψ−∞
phg (R× Rn−1)).

Proof. Throughout this proof, we will write Sk
tan for

C∞(
(−ε, ε);Sk

phg(T
∗(R× R

n−1))
)

and Ψk
tan for the corresponding quantization C∞((−ε, ε); Ψk

phg(R×Rn−1)). For an
operator A ∈ Ψ∞

tan, we will write

WF(A) =
⋃
x1

WF(Ax1
),

where Ay1
is the pseudodifferential operator acting on Rn−1 at x1 = y1.

Given 0 < ν < 1, we let χ̌(t, x, τ, ξ′) ∈ S0
tan with

χ̌ ≡ 1 on {τ2 − r(x, ξ′) ≥ ντ2/3}, supp χ̌ ⊂ {τ2 − r(x, ξ′) ≥ ντ2/4}.
Then, for (t, x, τ, ξ′) ∈ supp χ̌, we have the following factorization:

σ(�) = −τ2 + ξ21 + r(x, ξ′) =
[
ξ1 +

√
τ2 − r(x, ξ′)

][
ξ1 −

√
τ2 − r(x, ξ′)

]
.

We thus let λ0(t, x, τ, ξ
′) =

√
τ2 − r(x, ξ′) and Λ0 = Op(χ̌λ0).
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Now, write Dx1
= Dx1

− Λ0 + Λ0 so that

� = (Dx1
− Λ0)Dx1

+ Λ0Dx1
−D2

t + r(x,Dx′) + (Dx1
− Λ0)c(x) + [c(x), Dx1

]

+ Λ0c(x)

= (Dx1
− Λ0)(Dx1

+ Λ0 + c(x)) + Λ2
0 + [Λ0 + c(x), Dx1

]−D2
t + r(x,Dx′)

+ Λ0c(x)

= (Dx1
− Λ0)Q0 + R̃0,

where

Q0 = Dx1
+ Λ0 + c(x) ∈ Ψ0

tanDx1
+Ψ1

tan,

R̃0 = Λ2
0 + [Λ0 + c(x), Dx1

]−D2
t + r(x,Dx′) + Λ0c(x) ∈ Ψ2

tan.

First, we remark that σ(Q0) = ξ1+ χ̌λ0. Second, noting that σ(R̃0) is independent
of ξ1, we take ξ1 = λ0 on χ̌ ≡ 1 in

σ(�) = ξ21 − τ2 + r(x, ξ′) = (ξ1 − λ0χ̌)σ(Q0) + σ(R̃0)

to obtain σ(R̃0) = 0 on that set. This yields R̃0 = R0 + E0 with R0 ∈ Ψ1
tan

and E0 ∈ Ψ2
tan with WF(E0) ∩ {τ2 − r(x, ξ′) ≥ ντ2} = ∅. Indeed for χ1 ∈ S0

tan

with suppχ1 ⊂ {χ̌ ≡ 1} and χ1 ≡ 1 in a neighborhood of {τ2 − r(x, ξ′) ≥ ντ2},
σ(Op(χ1)R̃0) = 0. Thus,

R̃0 = E0 +R0, E0 = Op(χ1)R̃ ∈ Ψ1
tan, R0 = Op(1− χ1)R̃.

This implies the first factorization formula with R ∈ Ψ1
tan. We now proceed with

an induction to improve this remainder term.
Suppose we have for some j ≥ 0,

(4.5) � = (Dx1
− Λ−,j)(Dx1

+ Λ+,j) +Rj + Ej

with Λ±,j ∈ Ψ1
tan, with principal symbol λ0χ̌, Rj ∈ Ψ1−j

tan , and Ej ∈ Ψ2
tan with

WF(Ej) ∩ {τ2 − r(x, ξ′) ≥ ντ2} = ∅. Now, we want to adjust Λ±,j to improve the

error Rj . Let λj+1 ∈ S−j
tan have

σ(Rj) + λj+1σ(Λ+,j + Λ−,j) = 0 in a neighborhood of χ̌ ≡ 1.(4.6)

This is possible since σ(Λ±,j) = χ̌λ0 is elliptic on a neighborhood of χ̌ ≡ 1.
Now, observe that

Op(λj+1)(Dx1
+ Λ+,j) +Rj

= Op(λj+1)(Λ−,j + Λ+,j) +Rj +Op(λj+1)(Dx1
− Λ−,j)

= Op(λj+1)(Λ−,j + Λ+,j) +Rj + (Dx1
− Λ−,j)Op(λj+1)

+ [Op(λj+1), Dx1
− Λ−,j ]

= Rj+1,1 + Ej+1,1 + (Dx1
− Λ−,j)Op(λj+1),
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where, according to (4.6), we have Rj+1,1 ∈ Ψ−j
tan and Ej+1,1 ∈ Ψ1−j

tan with
WF(Ej+1,1) ∩ {χ̌ = 1} = ∅. So, coming back to (4.5), we now obtain

� = (Dx1
− Λ−,j)(Dx1

+ Λ+,j) +Rj + Ej

= (Dx1
− Λ−,j)(Dx1

+ Λ+,j)−Op(λj+1)(Dx1
+ Λ+,j) + Ej+1,1 +Rj+1,1

+ (Dx1
− Λ−,j)Op(λj+1)

= (Dx1
− Λ−,j −Op(λj+1))(Dx1

+ Λ+,j) + Ej+1,1 +Rj+1,1

+ (Dx1
− Λ−,j −Op(λj+1))Op(λj+1) + Op(λj+1)

2

= (Dx1
− Λ−,j −Op(λj+1))(Dx1

+ Λ+,j +Op(λj+1)) + Ej+1 +Rj+1,

where Rj+1 ∈ Ψ−j
tan and Ej+1 ∈ Ψ1−j

tan with WF(Ej+1) ∩ {χ̌ = 1} = ∅. Putting
Λ−,j+1 = Λ−,j + Op(λj+1) and Λ+,j+1 = Λ+,j + Op(λj+1), we have (4.5) with j
replaced by j + 1. Since we modified Λ−,j and Λ+,j by terms in Ψ−j , summing
asymptotically and composing on the left with Op(b) gives the desired result. Re-
peating the argument but starting with Dx1

+Λ0 on the left, we obtain the second
factorization. �

Lemma 4.5. Let q0 ∈ T0∩T ∗((0, T )×Rn). Suppose b0 ∈ S0
phg

(
T ∗((0, T )×Rn−1)

)
with supp b0 ⊂ T Σ

0 and b0(π(q0)) = 1 (with π as in (2.10)). Then there exists a conic
neighborhood U of q0 so that for all χ̌ ∈ S0

phg

(
T ∗((0, T ) × Rn)

)
with supp χ̌ ⊂ U

there exists ϕ̃ ∈ C∞
c ((0, T )×Rn) and C > 0 such that for all u ∈ C∞

c ((0, T )×Rn),

‖Op(χ̌)u‖H1 ≤C(‖Op(b0)Dx1
u|x1=0‖L2+‖Op(b0)u|x1=0‖H1+‖ϕ̃�u‖L2+‖ϕ̃u‖L2).

Proof. Write q0 = (t0, 0, x
′
0, τ0, (ξ0)1, ξ

′
0). We consider the case (ξ0)1 > 0 (the case

(ξ0)1 < 0 is treated similarly) and denote by λ ∈ C∞((−ε, ε);S0
phg(T

∗(R×R
n−1)))

a smooth symbol such that λ(t, x, τ, ξ′) =
√
τ2 − r(x, ξ′) on a neighborhood of

(−ε, ε)× supp(b0). Let b ∈ C∞((−ε, ε);S0
phg(T

∗(R× Rn−1))) solve

(4.7) ∂x1
b−Hλb = 0, b|x1=0 = b0.

Here, Hλ denotes the (x1-dependent) Hamiltonian vector fields associated to λ,
given in local charts by Hλ = ∂τλ∂t + ∂ξ′λ · ∂x′ − ∂tλ∂τ − ∂x′λ · ∂ξ′ . Denote by Λ±
the two operators given by Lemma 4.4 associated to λ, so that

Op(b)(Dx1
− Λ−)(Dx1

+ Λ+) = Op(b)
(
�+R

)
,

with R ∈ C∞((−ε, ε)x1
; Ψ−∞

phg (R × Rn−1)). Letting Ωε = {x1 ∈ (−ε/2, ε/2)}, by
Lemma A.1, we have

‖Op(b)(Dx1
+ Λ+)u‖L2(Ωε)

(4.8)

≤ C(‖Op(b0)[(Dx1
+ Λ+)u]|x1=0‖L2 + ‖(Dx1

− Λ−)Op(b)(Dx1
+ Λ+)u‖L2(Ωε))

≤ C(‖Op(b0)[(Dx1
+ Λ+)u]|x1=0‖L2 + ‖Op(b)(Dx1

− Λ−)(Dx1
+ Λ+)u‖L2(Ωε)

+ C‖[(Dx1
− Λ−),Op(b)](Dx1

+ Λ+)u‖L2(Ωε)).

Let us now estimate each term in the right hand side. First, taking ϕ̌ such that
ϕ̌ = 1 in a neighborhood of the support of the kernel of Op(b) intersected with Ωε,
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and ϕ̃ ∈ C∞
c ((0, T )× Rn) with ϕ̃ = 1 in a neighborhood of supp ϕ̌, we have

‖Op(b)(Dx1
− Λ−)(Dx1

+ Λ+)u‖L2(Ωε) = ‖Op(b)
(
�+R

)
u‖L2(Ωε)

≤ C‖ϕ̌
(
�+R

)
u‖L2(Ωε)(4.9)

≤ C(‖ϕ̃�u‖L2 + ‖ϕ̃u‖L2),

where we used the L2 boundedness of R and Op(b) together with the fact that
the quantization Op gives operators whose kernels are compactly supported in
((0, T )×Rn)2. Second, with b̃0 ∈ S0

phg

(
T ∗((0, T )×Rn−1)

)
with supp b̃0 ⊂ T Σ

0 and

b̃0 = 1 in a neighborhood of supp(b0), we obtain

‖Op(b0)[(Dx1
+ Λ+)u]|x1=0‖L2

≤ ‖Op(b0)Dx1
u|x1=0‖L2 + ‖Op(b0)Λ+u|x1=0‖L2

≤ ‖Op(b0)Dx1
u|x1=0‖L2 + ‖Λ+ Op(b0)u|x1=0‖L2 + ‖Op(b̃0)u|x1=0‖L2

≤ ‖Op(b0)Dx1
u|x1=0‖L2 + ‖Op(b̃0)u|x1=0‖H1 .(4.10)

Third, according to (4.7), the tangential operator

[(Dx1
− Λ+),Op(b)] ∈ C∞((−ε, ε)x1

; Ψ0
phg((0, T )× R

n−1))

has principal symbol 1
i {ξ1 − λ, b} = 1

i (∂x1
b − Hλb) = 0 and is hence in

C∞((−ε, ε)x1
; Ψ−1

phg((0, T )× Rn−1)). This yields

‖[(Dx1
− Λ−),Op(b)](Dx1

+ Λ+)u‖L2(Ωε)(4.11)

≤ ‖[(Dx1
− Λ−),Op(b)]Dx1

u‖L2(Ωε) + C‖ϕ̃u‖L2 .

To eliminate the first term in the right hand side, we let ϕ ∈ S0
phg(R × R

n) with

ϕ = 0 in a conic neighborhood of |(τ, ξ′)| ≤ ε|ξ1| and ϕ = 1 in a conic neighborhood
of |(τ, ξ′)| ≥ 2ε|ξ1|, with ε > 0 small enough so that ϕ = 1 on Char(�). We write

[(Dx1
−Λ−),Op(b)]Dx1

u

= [(Dx1
− Λ−),Op(b)]Dx1

Op(ϕ)u+ [(Dx1
− Λ−),Op(b)]Dx1

(1−Op(ϕ))u

and remark first that [(Dx1
− Λ−),Op(b)]Dx1

Op(ϕ) ∈ Ψ0
phg(R× R

n) due to pseu-

dodifferential calculus (see [Hör85, Theorem 18.1.35]), and hence

‖[(Dx1
− Λ−),Op(b)]Dx1

Op(ϕ)u‖L2(Ωε) ≤ C‖ϕ̃u‖L2 .(4.12)

Now, 1 − ϕ vanishes in a conic neighborhood of |(τ, ξ′)| ≥ 2ε|ξ1|, and hence we
have [(Dx1

− Λ+),Op(b)]Dx1
(1 − Op(ϕ)) ∈ Ψ1

phg(R × Rn) with principal symbol

vanishing in a neighborhood of Char(�). The ellipticity of � there yields

Dx1
(1−Op(ϕ)) = E�+R1,

with E ∈ Ψ−1
phg(R× R

n) and R1 ∈ Ψ−∞
phg (R× R

n).

In particular,

‖[(Dx1
− Λ−),Op(b)]Dx1

(1−Op(ϕ))u‖L2(Ωε) ≤ C(‖ϕ̃�u‖L2 + ‖ϕ̃u‖L2),

which, combined with (4.9)-(4.12) in (4.8) implies that

‖Op(b)(Dx1
+ Λ+)u‖L2(Ωε) ≤ C

(
‖Op(b0)Dx1

u|x1=0‖L2+‖Op(b̃0)u|x1=0‖H1

+ ‖ϕ̃�u‖L2 + ‖ϕ̃u‖L2

)
.
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For ψ ∈ S0
phg(R × Rn) vanishing near |(τ, ξ′)| ≤ ε|ξ1| and such that ψ = 1 at

q0, Op(ψ)Op(b)(Dx1
+ Λ+) ∈ Ψ1

phg(R × R
n). Moreover, since (ξ0)1 > 0 and

b(t0, 0, x
′
0, τ0, ξ

′
0) = 1, the operator Op(ψ)Op(b)(Dx1

+Λ+) is elliptic at q0. There-
fore, for χ̌ supported near enough to q0, adjusting ϕ̃ if necessary, we finally obtain

‖Op(χ̌)u‖H1 ≤ C
(
‖Op(ψ)Op(b)(Dx1

+ Λ+)u‖H1 + ‖ϕ̃u‖L2

)
≤ C

(
‖Op(b̃0)Dx1

u|x1=0‖L2 + ‖Op(b̃0)u|x1=0‖H1 + ‖ϕ̃�u‖L2

+ ‖ϕ̃u‖L2

)
,

which concludes the proof of the lemma (up to changing b0 into b̃0 in the statement).
�

Remark 4.6. One can replace the remainder ‖ϕ̃u‖L2 in Lemma 4.5 by ‖ϕ̃u‖H−N

for any N > 0 as follows. Define b as above and let b̌0 := b. Then, define bj ∈
C∞((−ε, ε);S0

phg(T
∗(R×Rn−1))), b̌i ∈ C∞((−ε, ε);S−j

phg(T
∗(R×Rn−1))), j ≥ 1 by

bj :=

j∑
k=0

b̌k, ej= σ([Dx1
− Λ−,Op(bj−1)]) ∈ C∞((−ε, ε);S−j

phg(T
∗(R× R

n−1))),

(∂x1
−Hλ)b̌j = −iej , b̌j |x1=0 = 0.

Suppose that i ≥ 1 and [Dx1
−Λ−,Op(bj−1)] ∈ C∞((−ε, ε); Ψ−j

phg(T
∗(R×Rn−1))).

Then ej ∈ C∞((−ε, ε);S−j
phg(T

∗(R× Rn−1))), and hence also

b̌j ∈ C∞((−ε, ε);S−j
phg(T

∗(R× R
n−1)))

as claimed. Therefore,

[Dx1
− Λ−,Op(bj)] = [Dx1

− Λ−,Op(bj−1)] + [Dx1
− Λ−,Op(b̌j)]

∈ C∞((−ε, ε); Ψ−j
phg(T

∗(R× R
n−1))).

Then,

σ([Dx1
− Λ−,Op(bj−1)] + [Dx1

− Λ−,Op(b̌j)]) = ej − i(∂x1
−Hλ)b̌j = 0,

and in particular [Dx1
− Λ−,Op(bj)] ∈ C∞((−ε, ε); Ψ−j−1

phg (T ∗(R × R
n−1))). We

then replace b from above by

b ∼
∑
k

b̌j .

In order to finish the proof we observe that the treatment of (4.11) shows that
for R ∈ C∞((−ε, ε); Ψ−∞

phg (T
∗(R× Rn−1))),

(4.13) ‖Ru‖L2(Ωε) + ‖RDx1
u‖L2(Ωε) ≤ CN (‖ϕ̃�u‖L2 + ‖ϕ̃u‖H−N ).

Observe that [Dx1
− Λ−,Op(b)] ∈ C∞((−ε, ε); Ψ−∞

phg (T
∗(R × Rn−1))). Therefore,

using (4.13) in (4.9) and (4.11) yields

‖Op(χ̌)u‖H1

≤ CN (‖Op(b̃0)Dx1
u|x1=0‖L2 + ‖Op(b̃0)u|x1=0‖L2 + ‖ϕ̃�u‖L2 + ‖ϕ̃u‖H−N ).

We now turn to the proof of Proposition 4.3. We follow the general structure
of proof introduced by Lebeau in [Leb96], using the microlocal defect measures of
Gérard [Gér91] and Tartar [Tar90]. Note that from the quantitative estimate of
Lemma 4.5, and in case ∂M = ∅, “constructive proofs” (i.e., using no contradiction
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argument and hence no defect measures) of Proposition 4.3 are possible; see [LL17]
or [LL16].

Proof of Proposition 4.3. We prove estimate (4.4) by contradiction. Assuming that
estimate (4.4) is false, there exists a sequence of data Fk ∈ L2((0, T ) × M) and
(u0,k, u1,k) ∈ H1

0 (M)× L2(M) with

‖(u0,k, u1,k)‖H1×L2 = 1(4.14)

such that the associated solution (uk) to (3.1) satisfies

‖Aδ(uk|Σ0
)‖2H̄1(R×Σ) + ‖Aδ(∂νuk|Σ0

)‖2L2(R×Σ) + ‖Fk‖2L2((0,T )×M)(4.15)

+ ‖(u0,k, u1,k)‖2L2×H−1 → 0.

Classical energy estimates then yield ‖uk‖H1([0,T ]×M) ≤ C together with

‖uk‖L2([0,T ]×M) → 0. Hence uk ⇀ 0 in H1 (weak convergence in H1), and, possibly
after taking a subsequence, we may assume (see [Gér91,Tar90] in the case without
boundary and [Leb96] or [BL01] in the general case) that there exists a nonnegative

measure μ on SẐ (see (2.5) for a definition) so that

(Auk, uk)H1(R×M) →
∫
(j−1)∗σ(A)dμ(4.16)

for all A ∈ Ψ0
phg((0, T ) × Int(M)). Moreover, letting (x1, x

′) be Fermi normal

coordinates near ∂M , the convergence (4.16) also holds for

A ∈ C∞([0, ε); Ψ2(R× ∂Mx′))

for ε > 0. Note that in both cases (j−1)∗σ(A) lies in C0(SẐ) since σ(A) is inde-
pendent of ξ1 for x1 small enough.

Let us first show that μ≡0. Notice that Lemma 4.2 implies that there exists ε>0
so that Assumption GC-(ε,T) holds. We first prove that μ = 0 on a neighborhood
of Tε ∩ T ∗

(ε,T−ε)×Σε
(R×M).

Suppose q0 ∈ Tε∩T ∗
[ε,T−ε]×Σε

(R×M). Then for δ < ε, we have σ(Aδ)(π(q0)) = 1.

Therefore, Lemma 4.5 applies with Op(b0) = Aδ, and hence for χ̌ supported close
enough to q0,

‖Op(χ̌)uk‖H1

≤ C(‖AδDx1
uk|x1=0‖L2 + ‖Aδuk|x1=0‖H1 + ‖ϕ̃�uk‖L2(Ωε) + ‖ϕ̃uk‖L2(Ωε)).

Now, the right hand side tends to 0 by assumption. Thus, pseudodifferential cal-
culus together with (4.16) implies the existence of a conic neighborhood U of q0 so
that μ(U/R∗

+) = 0. Since this is true for any q0 ∈ Tε ∩ T ∗
[ε,T−ε]×Σε

(R ×M), there

is a conic neighborhood U1 of Tε ∩ T ∗
(ε,T−ε)×Σε

(R×M) so that μ(U1/R
∗
+) = 0.

Then, since μ is invariant under the generalized bicharacteristic flow ϕ(s, ·)
defined in (2.6) (which passes to the quotient space SẐ according to homogene-
ity (2.8); see [Leb96,BL01]), Assumption GC-(ε,T) implies that μ ≡ 0 (note that
it is sufficient that supp(μ) is invariant). This means that

uk → 0 in H1((0, T )×M).(4.17)

Now, we denote

Ek(t) := ‖∇uk(t, ·)‖2L2(M) + ‖∂tuk(t, ·)‖2L2(M)
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and observe from (4.14)-(4.15) that Ek(0) → 1. Moreover, for all s1, s2 ∈ [0, T ], we
have

|Ek(s2)− Ek(s1)| ≤
∣∣∣∣12

∫ s2

s1

∂tEk(t)dt

∣∣∣∣ ≤ ‖Fk‖L2‖uk‖H1 → 0.

In particular, since this convergence is uniform in s1, s2,∫ T

0

Ek(t)dt =

∫ T

0

Ek(t)− Ek(0)dt+ TEk(0) → T.

Together with (4.17), this yields

0 < T ←
∣∣∣∣∣
∫ T

0

Ek(t)dt

∣∣∣∣∣ ≤ ‖uk‖2H1 → 0,

and hence the sought contradiction. �

4.3. Observability: The low frequencies. From Proposition 4.3 to The-
orem 4.1. There are different ways of writing the compactness-uniqueness ar-
gument of [BLR92] (reducing the problem to a unique continuation property for
Laplace eigenfunctions). The first one is the precise argument of [BLR92]: it uses
again the geometric condition together with the propagation of wavefront sets (see
also [LRLTT17]). A second form seems to be due to [BG02]: it is a bit longer but
uses only that the observation region is time invariant. We write this version of the
proof in the present context.

We first need a weak unique continuation property from a hypersurface. This is
a weak version of Theorem 1.7, but we chose to give a proof since it is much less
involved. Note that no compactness is assumed and no boundary conditions are
prescribed here.

Lemma 4.7 (Unique continuation). Let Σ be a nonempty interior hypersurface of
a connected manifold M and assume that

(−Δg − λ2)u = 0 in M, u|Σ = ∂νu|Σ = 0.

Then u vanishes identically.

Proof. Let Ω be a nonempty connected open set of M such that Ω ∩ Σ �= ∅ and
Ω = Ω+ ∪ (Ω ∩ Σ) ∪ Ω− where the union is disjoint. Then, setting

v(x) = u(x) for x ∈ Ω+, v(x) = 0 for x ∈ Ω−,

we have v ∈ L2(Ω), with moreover (∂ν pointing towards Ω+)

(−Δg−λ2)v = 0−[v]Σδ
′
Σ+(c(x)[v]Σ−[∂νv]Σ)δΣ = −u|Σδ′Σ+(c(x)u|Σ−∂νu|Σ)δΣ = 0.

This follows from the jump formula written in Fermi coordinate charts (x1, x
′) with

Ω+ = {x1 > 0} ∩ Ω and −Δ = −∂2
x1

+ R(x1, x
′, D′) + c(x)Dx1

with R tangential
(see Section 2.1).

A classical unique continuation result for elliptic operators (see e.g. [LRL12,
Theorem 4.2]) then implies that v = 0 in all Ω. From the definition of v, this
yields u|Ω+ = 0 and, using again the elliptic unique continuation result and the
connectedness of M , implies that u vanishes identically in M . �
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We next define for any T > 0 and ε > 0 the set of invisible solutions from
[ε, T − ε]× Σε where Σε is as in (3.10):

N (ε, T ) =
{
(u0, u1) ∈ H1

0 (M)×L2(M) such that the associated solution of (3.1)

with F = 0 satisfies ∂νu|Σ = u|Σ = 0 in D′((ε, T − ε)× Σε

)}
.

We have the following lemma, which is a consequence of Proposition 4.3.

Lemma 4.8. Suppose GC-(0,T) holds. Then there exists ε0 > 0 such that for all
0 < ε < ε0, we have N (ε, T ) = {0}.

We denote by A the generator of the wave group, namely,

(4.18) A =

(
0 − Id

−Δg 0

)
, D(A) = (H2 ∩H1

0 (M))×H1
0 (M),

so that the wave equation (3.1) with F = 0 may be rewritten as

(4.19) ∂tU +AU = 0, U |t=0 = U0 = (u0, u1).

Proof.

Step 1 (N (ε, T ) is finite dimensional). First, Proposition 3.1 implies that N (ε, T )
is a closed linear subspace of H1

0 (M)×L2(M) for all ε > 0. Since Assumption GC-
(0,T) holds, we may apply Proposition 4.3. The kernel of the operator Aδ in (4.4)
is compactly supported in (0, T )× Int(Σ) and hence in (ε0, T − ε0)×Σε0 for some
ε0 > 0. Thus, for all 0 < ε < ε0, the relaxed observability inequality (4.4) applied
to elements of N (ε, T ) gives

(4.20) c‖(u0, u1)‖2H1
0×L2 ≤ ‖(u0, u1)‖2L2×H−1 , for all (u0, u1) ∈ N (ε, T ),

since the kernel of the operator Aδ is compactly supported in (ε0, T − ε0) × Σε0 ,
and u|Σ, ∂νu|Σ vanish on this set.

Using the compact imbedding H1
0×L2 ⊂ L2×H−1, this implies that the unit ball

of N (ε, T ) for the H1
0 ×L2-norm is compact; that is, N (ε, T ) has finite dimension.

Note also that it is thus complete for any norm.

Step 2 (N (ε, T ) ⊂ C∞(M) and AN (ε, T ) ⊂ N (ε, T )). Taking η > 0 sufficiently
small (namely, η < ε0 − ε), we remark that (4.20) is also satisfied by all U0 =
(u0, u1) ∈ N (ε+ η, T ). Taking U0 ∈ N (ε, T ) implies that, for all ε ∈ (0, η), we have
e−εAU0 ∈ N (ε+ η, T ). We also have, for λ0 sufficiently large,

(λ0 +A)−1 1

ε
(Id−e−εA)U0 =

1

ε
(Id−e−εA)(λ0 +A)−1U0 −−−−→

ε→0+
A(λ0 +A)−1U0

in H1
0 × L2, as (λ0 + A)−1U0 ∈ D(A). As a consequence, the sequence(

1
ε (Id−e−εA)U0

)
ε>0

is a Cauchy sequence in N (T ′ − η), endowed with the norm

‖(λ0 + A)−1 · ‖H1
0×L2 . As all norms are equivalent in N (ε + η, T ), the sequence(

1
ε (Id−e−εA)U0

)
ε>0

is thus also a Cauchy sequence in this space, endowed with the

norm ‖ · ‖H1
0×L2 , which yields AU0 ∈ H1

0 × L2. Hence, we have N (ε, T ) ⊂ D(A).

This argument may be inductively repeated to prove that N (ε, T ) ⊂ D(Ak) for all
k ∈ N and yields, in particular, that functions in N (ε, T ) are C∞(M).

Now take U0 ∈ N (ε, T ), and denote by U(t) the associated solution of (3.1) or
equivalently (4.19). Then, u ∈ C∞(R×M), and using the fact that ∂t is tangential
to the manifold R × Σ (thus commuting with ∂ν), we obtain that ∂tu|Σ(t, x) = 0
and ∂ν(∂tu)|Σ(t, x) = 0 for all (t, x) ∈ [ε, T − ε] × Σε (since this U0 ∈ N (ε, T )
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implies that this is satisfied by u). This is ∂tU |t=0 ∈ N (ε, T ). Remarking then that
we have AU0 = −∂tU |t=0 ∈ N (ε, T ), this implies that AN (ε, T ) ⊂ N (ε, T ).

Step 3 (Reduction to unique continuation for Laplace eigenfunctions: End of the
proof). Since N (ε, T ) is a finite dimensional subspace of D(A), stable by the ac-
tion of the operator A, it contains an eigenfunction of A. There exist μ ∈ C and
U = (u0, u1) ∈ N (ε, T ) such that AU = μU ; that is, given the definition of A
in (4.18), −ΔDu0 = −μ2u0 and u1 = −μu0. Hence u0 is an eigenfunction of the
Laplace-Dirichlet operator on M , associated to −μ2 ∈ R+; i.e., μ = iλ, λ ∈ R.
The associated solution to (3.1) is u(t, x) = eiλtu0, and U0 ∈ N (ε, T ) implies
that ∂νu0|Σ = u0|Σ = 0. This, together with the fact that u0 is a Laplace eigen-
function and Lemma 4.7, proves that u0 = 0 and then U = 0. This proves that
N (ε, T ) = {0}. �

From Lemma 4.8, we can now conclude the proof of Theorem 4.1.

Proof of Theorem 4.1. We proceed by contradiction and suppose that the observ-
ability inequality (4.1) does not hold for any δ > 0. Thus, for any δ > 0, there
exists a sequence (uk

0 , u
k
1 , F

k)k∈N of H1
0 (M)× L2(M)× L2((0, T )×M) such that,

with uk the associated solution to (3.1), we have

‖(uk
0 , u

k
1)‖H1

0×L2 = 1,(4.21)

‖ϕδ∂νu
k|Σ‖2H̄−N (R×Σ) + ‖ϕδu

k|Σ‖2H̄−N (R×Σ) + ‖F k‖L2((0,T )×M) → 0,(4.22)

‖Aδ(∂νu
k|Σ)‖L2(R×Σ) + ‖Aδ(u

k|Σ)‖2H̄1(R×Σ) → 0.(4.23)

From (4.21), we may extract a subsequence of (uk
0 , u

k
1) converging weakly in H1

0×L2

to some (u0, u1). Denote by u the associated solution to (3.1), with F = 0. Since
F k → 0 in L2 we may further extract from uk a subsequence converging to u weakly
in H1((0, T ) × M). According to Proposition 3.1, we have ∂νu

k|Σ ⇀ ∂νu|Σ and
uk|Σ ⇀ u|Σ weakly in H−1((0, T ′)× Σ). But according to (4.22), this yields

ϕδ∂νu|Σ = ϕδu|Σ = 0,

and in particular, taking δ < ε,

∂νu|Σ = u|Σ = 0, on [ε, T − ε]× Σε.

Thus,
(u0, u1) = (u(0), ∂tu(0)) ∈ N (ε, T ).

So, from Lemma 4.8, we obtain (u0, u1) = 0. The imbedding H1
0 ×L2 ↪→ L2×H−1

being compact, this implies that

(4.24) ‖(uk
0 , u

k
1)‖L2×H−1 → ‖(u0, u1)‖L2×H−1 = 0.

Finally, Proposition 4.3 implies that (4.4) holds for any δ < δ0. Therefore, taking
δ < min(ε, δ0) and using (4.21), (4.22), (4.23), (4.24) in the relaxed observability
inequality (4.4), we obtain at the limit 0 < c ≤ 0, which is a contradiction. �
4.4. Controllability of the wave equation. Theorem 1.5 is a straightforward
corollary of the following theorem. Recall that ĒΣ = EΣ ∪ GΣ.

Theorem 4.9. Assume that (Σ, T ) satisfies Assumption GC-(0,T). Then, for all
N > 0, there exists a linear map

L2(M)×H−1(M) � (v0, v1) �→ (f0, f1) ∈
⋂
N∈N

H−1,N

comp,ĒΣ(ΣT )×H0,N

comp,ĒΣ(ΣT )
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which is continuous as an operator L2(M) × H−1(M) → H−1,N

comp,ĒΣ(ΣT )×
H0,N

comp,ĒΣ(ΣT ) for all N > 0 and so that the associated solution to (1.6) has v ≡ 0

for t ≥ T .

Proof. Fix 0 < T < T1. Then define

L2([T, T1]×M) = {F ∈ L2([0, T1]×M), suppF ⊂ [T, T1]}
and for N ≥ 1

2 the map

K : L2([T, T1]×M) → H1,−N
loc,ĒΣ(ΣT )×H0,−N

loc,ĒΣ(ΣT )

given by

F �→ (u|(0,T )×Σ,−∂νu|(0,T )×Σ),

where u solves ⎧⎪⎨
⎪⎩
�u = F on (0, T1)× Int(M),

u = 0 on (0, T1)× ∂M,

(u|t=T1
, ∂tu|t=T1

) = (0, 0) in Int(M).

This map is well defined by (3.15). Define also the operator S : L2([T, T1]×M) →
H1

0 (M)× L2(M) by

(4.25) S(F ) := (u|t=0, ∂tu|t=0).

Now, suppose that Assumption GC-(0,T ) holds and let Aδ be as in Theorem 4.1.

For ε > 0 small, BĒΣ

ε is elliptic on WF(Aδ), and hence using the elliptic parametrix
construction we write

Aδ = GBĒΣ

ε +R

with R ∈ Ψ−∞
phg ((0, T ) × Int(Σ)) and G ∈ Ψ0

phg((0, T ) × Int(Σ)). Therefore Theo-

rem 4.1 implies that there exists ε > 0 small enough depending only on (Σ, T ) and,
for all N ∈ N, there exists CN > 0 so that

(4.26) ‖S(F )‖H1
0(M)×L2(M) ≤ CN‖K(F )‖H1,−N

loc,ĒΣ,ε
(ΣT )×H0,−N

loc,ĒΣ,ε
(ΣT ).

Let (v0, v1) ∈ H−1(M)×L2(M) and define the linear functional �N : ran(K) → C

by

�N (K(F )) = 〈S(F ), (−v1, v0)〉H1
0 (M)×L2(M),H−1(M)×L2(M),

where S is defined in (4.25). Then, �N is well defined and continuous by (4.26). In
particular,

|�N (K(F ))| ≤ CN‖(v0, v1)‖H−1(M)×L2(M)‖K(F )‖H1,−N

loc,ĒΣ,ε
(ΣT )×H0,−N

loc,ĒΣ,ε
(ΣT ).

Since �N is a continuous linear functional defined on a subspace of H1,−N

loc,ĒΣ(ΣT ) ×
H0,−N

loc,ĒΣ(ΣT ) by the Hahn-Banach theorem �N extends to a continuous linear func-

tional on the whole space (still denoted �N ) with

|�N (w1, w2)| ≤ CN‖(v0, v1)‖H−1(M)×L2(M)‖(w1, w2)‖H1,−N

loc,ĒΣ,ε
(ΣT )×H0,−N

loc,ĒΣ,ε
(ΣT ).

Thus, by Lemma 3.4, there exists (f0,N , f1,N ) ∈ H−1,N
comp,ĒΣ(ΣT )×H0,N

comp,ĒΣ(ΣT ) so

that for all (w1, w2) ∈ H1,−N
loc,ĒΣ(ΣT )×H0,−N

loc,ĒΣ(ΣT ), we have

�N (w1, w2) = 〈(w1, w2), (f0,N , f1,N )〉H1,−N

loc,ĒΣ×H0,−N

loc,ĒΣ ,H−1,N

comp,ĒΣ×H0,N

comp,ĒΣ
,
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and hence for some ε′ > 0,

‖(f0,N , f1,N )‖H1,N

loc,ĒΣ,ε′
(ΣT )×H0,N

loc,ĒΣ,ε′
(ΣT ) ≤ CN,ε,ε′‖(v0, v1)‖H−1(M)×L2(M).

Let v be the unique solution to⎧⎪⎨
⎪⎩
�v = f0,NδΣ + f1,Nδ′Σ on (0, T1)× Int(M),

v = 0 on (0, T1)× ∂M,

(v, ∂tv)|t=0 = (v0, v1) in Int(M),

given by Definition 3.7 and Theorem 3.8. Then for any F ∈ L2([T, T1] × M) we
have

〈v, F 〉L2((0,T1)×M) = 〈v1, u(0)〉H−1(M),H1(M) − (v0, ∂tu(0))L2(M)

+ 〈f0,N , u|Σ〉H−1,N

comp,ĒΣ (ΣT ),H1,−N

loc,ĒΣ (ΣT )

− 〈f1,N , ∂νu|Σ〉H0,N

comp,ĒΣ (ΣT ),H0,−N

loc,ĒΣ (ΣT )

= 〈(v1,−v0), S(F )〉H−1(M)×L2(M),H1
0 (M)×L2(M)

+ 〈(f0,N , f1,N ),K(F )〉H−1,N

comp,ĒΣ×H0,N

comp,ĒΣ ,H1,−N

loc,ĒΣ×H0,−N

loc,ĒΣ

= 〈(v1,−v0), S(F )〉H−1(M)×L2(M),H1
0 (M)×L2(M) + �N (K(F ))

= 〈(v1,−v0), S(F )〉H−1(M)×L2(M),H1
0 (M)×L2(M)

+ 〈(−v1, v0), S(F )〉H−1(M)×L2(M),H1
0 (M)×L2(M) = 0.

Since this is true for all F ∈ L2([T, T1]×M), we obtain v ≡ 0 on [T, T1]×M .

Now, for k > N , the inclusion H−1,k

comp,ĒΣ(ΣT )×H0,k

comp,ĒΣ(ΣT ) ⊂ H−1,N

comp,ĒΣ(ΣT )×
H0,N

comp,ĒΣ(ΣT ) is dense, andH1,−N
loc,ĒΣ(ΣT )×H0,−N

loc,ĒΣ(ΣT ) ⊂ H1,−k
loc,ĒΣ(ΣT )×H0,−k

loc,ĒΣ(ΣT )

is dense. So, in particular, �N extends to a linear functional on H1,−k
loc,ĒΣ(ΣT ) ×

H0,−k
loc,ĒΣ(ΣT ) by density. This yields

〈(w1, w2), (f0,k, f0,k)〉H1,−N

loc,ĒΣ×H0,−N

loc,ĒΣ ,H−1,N

comp,ĒΣ×H0,N

comp,ĒΣ

= 〈(w1, w2), (f0,N , f1,N )〉H1,−N

loc,ĒΣ×H0,−N

loc,ĒΣ ,H−1,N

comp,ĒΣ×H0,N

comp,ĒΣ

for all (w1, w2) ∈ H1,−N

loc,ĒΣ(ΣT ) × H0,−N

loc,ĒΣ(ΣT ). This implies that f0,k = f0,N and

f1,k = f1,N and hence that

f0,N ≡ f0 ∈
⋂
N

H−1,N
comp,ĒΣ(ΣT ), f1,N ≡ f1 ∈

⋂
N

H0,N
comp,ĒΣ(ΣT ),

which concludes the proof of the theorem. �

5. Controllability of the heat equation

5.1. Well-posedness for the heat equation controlled from a hypersurface.
The well-posedness theory is easier than that of the wave equation since the regu-
larity theory for the heat equation directly implies that the traces of the solution
on Σ are “admissible” observations, in the usual sense; see [Cor07, Chapter 2.3]
and [TW09, Chapter 4.3].
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Lemma 5.1. Given T > 0, assume that the functions v ∈ C∞([0, T ] × M \ Σ) ∩
C0((0, T );L2(M)) u, F ∈ C∞([0, T ]×M) and f0, f1 ∈ C∞

c ((0, T )× Int(Σ)) solve

(∂t −Δ)v = f0δΣ + f1δ
′
Σ in D′((0, T )× Int(M)) and (−∂t −Δ)u = F.

Then, we have the identity[
(v, u)L2(M)

]T
0
+ (v, F )L2((0,T )×M) =

∫
(0,T )×Σ

(
f0u|Σ − f1∂νu|Σ

)
dσdt.

Also, we have the following “admissibility result” (regularity of traces).

Lemma 5.2. Given T > 0, there is C > 0 such that for all F ∈ L2((0, T ) ×M),
ũ ∈ H1

0 (M), and u associated solution of

(5.1)

⎧⎪⎨
⎪⎩
(−∂t −Δ)u = F on (0, T )× Int(M),

u = 0 on (0, T )× ∂M,

u|t=T = ũ in Int(M),

we have

‖∂νu|Σ‖2
L2(0,T ;H

1
2 (Σ))

+ ‖u|Σ‖2
L2(0,T ;H

3
2 (Σ))

≤ C‖F‖2L2((0,T )×M) + C‖ũ‖2H1(M).

Proof. This is a direct consequence of the regularity theory for the heat equa-
tion (5.1); namely, u ∈ C0([0, T ];H1

0 (M)) ∩ L2(0, T ;H2(M)) ∩ H1(0, T ;H1
0 (M)),

with

‖u‖2L∞(0,T ;H1(M)) + ‖u‖2L2(0,T ;H2(M)) + ‖u‖2H1(0,T ;H1(M))

≤ C‖F‖2L2((0,T )×M) + C‖ũ‖2H1(M);

see e.g. [Eva98, Chapter 7.1.3, Theorem 5]. The standard trace estimates then yield

‖∂νu|Σ‖2
L2(0,T ;H

1
2 (Σ))

+ ‖u|Σ‖2
L2(0,T ;H

3
2 (Σ))

≤ C‖u‖2L2(0,T ;H2(M)),

which concludes the proof of the lemma. �

This suggests the following definition (see [Cor07, Chapter 2.3]) of solutions of
the controlled heat equation (1.10).

Definition 5.3. Given T > 0, v0 ∈ H−1(M), f0 ∈ L2(0, T ;H
− 3

2
comp(Int(Σ))), f1 ∈

L2(0, T ;H
− 1

2
comp(Int(Σ))), we say that v is a solution of (1.6) if v∈C0([0, T ];H−1(M))

and for any t ∈ [0, T ], for any ũ ∈ H1
0 (M), we have

〈v(t), ũ〉H−1,H1
0
= 〈v0, u(0)〉H−1,H1

0

+

∫ t

0

〈f0(s), u|Σ(s)〉
H

− 3
2

comp(Σ),H
3
2
loc(Σ)

− 〈f1(s), ∂νu|Σ(s)〉
H

− 1
2

comp(Σ),H
1
2
loc(Σ)

ds,

where u is the unique solution to

(5.2)

⎧⎪⎨
⎪⎩
(−∂s −Δ)u = 0 on (0, t)× Int(M),

u = 0 on (0, t)× ∂M,

u|s=t = ũ in Int(M),

i.e., u(s) = e(t−s)Δũ.
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The following result is a direct consequence of (a slight variation on) [Cor07,
Theorem 2.37] and the admissibility estimate of Lemma 5.2.

Theorem 5.4 (Well-posedness of the controlled heat equation). Let T > 0. There

exists C > 0 such that for all v0 ∈ H−1(M), f0 ∈ L2(0, T ;H
− 3

2
comp(Int(Σ))), and

f1 ∈ L2(0, T ;H
− 1

2
comp(Int(Σ))), there is a unique solution v of (1.10) in the sense of

Definition 5.3 and we have

‖v‖L∞(0,T ;H−1(M)) ≤ C
(
‖v0‖H−1(M) + ‖f0‖

L2(0,T ;H
− 3

2 (Σ))
+ ‖f1‖

L2(0,T ;H
− 1

2 (Σ))

)
.

5.2. Global interpolation inequality and universal lower bound for traces
of eigenfunctions. We follow the general Lebeau-Robbiano method [LR95] and
use moreover a Carleman estimate of [LR97]. We refer to [LRL12] for an exposition
of these works.

The global strategy [LR95] is the following:

(1) Local Carleman estimates
(2) =⇒ local interpolation estimates
(3) =⇒ a global interpolation estimate
(4) =⇒ finite dimensional observability/controllability for an elliptic evolution

equation
(5) =⇒ finite dimensional observability/controllability for the heat equation
(6) =⇒ observability/controllability for the heat equation.

Also, the unique continuation estimate for eigenfunctions of Theorem 1.7 can be
deduced from the global interpolation estimate. The present section proves steps
(1), (2), (3). The next section is devoted to the proof of steps (4), (5), (6).

In the following, for α > 0, we set Yα = (−α, α) × M , Σα = (−α, α) × Σ, and
denote Q = −∂2

s −Δg.

Theorem 5.5 (Global interpolation). Let S > β > 0. For all ψ ∈ C∞
c (Σβ) not

identically vanishing, there exist C, δ > 0 such that
(5.3)

‖v‖H1(Yβ) ≤ C
(
‖Qv‖L2(YS) + ‖ψv|Σβ

‖L2(Σβ) + ‖ψ∂νv|Σβ
‖L2(Σβ)

)δ ‖v‖1−δ
H1(YS)

for all v ∈ H2(YS) such that v|(−S,S)×∂M = 0.

If we were considering a second-order elliptic operator Q on a manifold YS with
smooth boundary and with Dirichlet condition on the whole ∂YS , this estimate
would simply read

‖v‖H1(YS) ≤ C
(
‖Qv‖L2(YS) + ‖ψv|Σ0

‖L2(Σ0) + ‖ψ∂νv|Σ0
‖L2(Σ0)

)
.

However, here YS = (−S, S) × M is not smooth, and it is crucial for the next
arguments that no boundary condition is prescribed at the boundary ({−S} ∪
{S})×M .

The proof of Theorem 5.5 follows from arguments of Lebeau and Robbiano [LR95,
LR97]. The idea is that such interpolation inequalities follow locally from Carleman
estimates and then propagate well. Hence, our task is only to

(i) deduce from a local Carleman estimate near Σβ that the traces at the
boundary “control” a small nonempty open set near Σβ (i.e., that (5.3)
holds with, in the l.h.s., the local H1 norm in this set),
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(ii) use a global interpolation inequality implying that such a small set “con-
trols” the H1(Yβ) norm and then put the two inequalities together.

For the second point (ii), we can start from the following result of [LR95, Sec-
tion 3, estimate (1)].

Theorem 5.6. Let U ⊂ YS be any nonempty open set. Then there is C > 0 and
δ0 ∈ (0, 1) such that we have

(5.4) ‖v‖H1(Yβ) ≤ C
(
‖Qv‖L2(YS) + ‖v‖H1(U)

)δ0 ‖v‖1−δ0
H1(YS)

for all v ∈ H2(YS) such that v|(−S,S)×∂M = 0.

As a consequence, it suffices to prove the first point (i), namely, that there exists
such a U such that, for some C, δ1 > 0, we have

(5.5) ‖v‖H1(U)≤C
(
‖Qv‖L2(YS)+‖ψv|Σβ

‖L2(Σβ)+‖ψ∂νv|Σβ
‖L2(Σβ)

)δ1 ‖v‖1−δ1
H1(YS),

which is now a local estimate. Indeed, (5.4) together with (5.5) directly yields (5.3)
for δ = δ0δ1 (see e.g. [LR95, Lemme 4]).

To prove (5.5), we shall take m ∈ Σ a point for which ψ(m) �= 0 and assume that
the set U is a small neighborhood of m intersected with a single side of Σ. Also, we
shall say that ∂ν is pointing towards U . We now work in the local Fermi normal
coordinates near m ∈ Σ, described in Section 2.1. The operator Q = −∂2

s −Δg, still
denoted by Q in these coordinates, is given, modulo conjugation by an exponential
factor of the form eψ with ψ ∈ C∞(Rn;R), by

Q = −∂2
x1

−∂2
s + r(x1, x

′,
∂x′

i
), with principal symbol q = ξ21 + ξ2s + r(x1, x

′, ξ′),

where

• (s, x′) are the variables in (−S, S) × Σ, ξs ∈ R is the cotangent variable
associated to s;

• the variables are in a neighborhood of zero in the half space R
n+1
+ = Rs ×

R+,x1
× R

n−1
x′ (we only estimate things on {x1 > 0}, where U is);

• ∂ν is given by ∂x1
in these coordinates.

Now, the proof of (5.5) relies on the following proposition [LR97, Proposition 1].
Here, the variable s does not play a particular role. Hence, in what follows, we
only write (with a slight abuse of notation) x ∈ Rn+1 for the overall variable, and
accordingly q = q(x, ξ) = q(s, x1, x

′, ξs, ξ1, ξ
′). We also use the notation

qϕ(x, ξ) = q(x, ξ + idϕ(x)).

Proposition 5.7. Let R > 0 and let ϕ ∈ C∞ in a neighborhood of K := R
n+1
+ ∩

B(0, R) and such that

• ∂x1
ϕ �= 0 on K,

• (Hörmander subellipticity condition) ∀(x, ξ) ∈ K×R
n+1, qϕ(x, ξ) = 0 =⇒

{Re(qϕ), Im(qϕ)}(x, ξ) > 0.

Then, we have

(5.6) h‖eϕ/hu‖2
L2(Rn+1

+ )
+ h3‖eϕ/h∇u‖2

L2(Rn+1
+ )

� h4‖eϕ/hQu‖2
L2(Rn+1

+ )
+ h‖eϕ/hu|x1=0‖2L2(Rn) + h3‖eϕ/h∂x1

u|x1=0‖2L2(Rn)

for all u ∈ C∞(Rn+1
+ ) such that supp(u) ⊂ B(0, R) and h ∈ (0, h0).
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Let us remark that such Lebeau-Robbiano type boundary Carleman estimates
have found many subsequent applications. We quote e.g. [Van09, Theorem 1.2] for
lower bounds of boundary traces of semiclassical quasimodes or [Bur02, Section 3]
for applications to semiclassical scattering resonances.

The end of the proof of Theorem 5.6 is then similar to [LR95] or [LZ98, Appen-
dix].

End of the proof of Theorem 5.6. We first fixR > 0 small enough such thatB(0, R)

is contained in the coordinate chart and such that the set B(0, R) ∩ {x1 = 0}
(where the observation shall take place) is contained in the set {ψ > 0} (where ψ
is the cutoff function appearing in (5.3)). Second, we define the weight function
ϕ(x) = e−μ|x−xa| − e−μ|xa|, where μ > 0 (large, to be chosen), and, for a ∈ (0, R),

we have xa = (0, . . . , 0,−a) /∈ R
n+1
+ . Hence, ϕ is smooth and satisfies ∂x1

ϕ �= 0 on

K = R
n+1
+ ∩B(0, R).

According to classical computations (see e.g. [LRL12, Lemma A.1]), ϕ satisfies
the Hörmander subellipticity condition on K for μ large enough (depending on R
and a and fixed from now on).

Note that levelsets of ϕ are spheres. Moreover, we have ϕ(0) = 0 and ϕ(x) < 0
if |x− xa| > |xa|, and in particular on {x1 > 0}.

For ε > 0 sufficiently small (depending on R, a, and μ), the set {ϕ ≥ −4ε}∩Rn+1
+

is contained in B(0, R) ∩ R
n+1
+ , where (5.6) holds. Also, the set {ϕ ≥ −4ε} ∩

{x1 = 0} ⊂ B(0, R) ∩ {x1 = 0} is contained in the set {ψ > 0}.
Finally, setting

U := {ϕ > −ε

2
} ∩ {x1 > 0},

we have U �= ∅ since ϕ(0) = 0 and ϕ < 0 on {x1 > 0}.
We let χ ∈ C∞(Rn+1) such that χ = 1 on {ϕ ≥ −2ε} and χ = 0 on {ϕ ≤ −3ε},

and apply (5.6) to u = χv. We have ϕ ≤ 0 on the support of u so that

‖eϕ/hu|x1=0‖2L2(Rn) ≤ ‖χ|x1=0v|x1=0‖2L2(Rn) ≤ C‖ψv|x1=0‖2L2(Rn),

‖eϕ/h∂x1
u|x1=0‖2L2(Rn) ≤ ‖∂x1

χ|x1=0v|x1=0‖2L2(Rn) + ‖χ|x1=0∂x1
v|x1=0‖2L2(Rn)

≤ C‖ψv|x1=0‖2L2(Rn) + C‖ψ∂x1
v|x1=0‖2L2(Rn).

Using that χ = 1 on {ϕ ≥ − ε
2} ⊂ {ϕ ≥ −ε} and U = {ϕ ≥ − ε

2} ∩ R
n+1
+ , we have

that

h‖eϕ/hu‖2
L2(Rn+1

+ )
+ h3‖eϕ/h∇u‖2

L2(Rn+1
+ )

≥h‖eϕ/hu‖2L2(U) + h3‖eϕ/h∇u‖2L2(U)

≥h3e−ε/h‖v‖2H1(U) ≥ e−
3
2 ε/h‖v‖2H1(U).

Finally, we have Qχv = χQv + [Q,χ]v, where [Q,χ] is a first-order differential
operator with coefficients supported in {−ε ≥ ϕ ≥ −2ε} ∩ R

n+1
+ . Thus, we have

h4‖eϕ/hQu‖2
L2(Rn+1

+ )
� ‖eϕ/hχQv‖2

L2(Rn+1
+ )

+ ‖eϕ/h[Q,χ]v‖2
L2(Rn+1

+ )

� ‖Qv‖2L2(K) + e−2ε/h‖v‖2H1(K).
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Combining the last three estimates with (5.6), we find that there is C, h0 > 0 such
that for any v ∈ C∞(Rn+1), for all h ∈ (0, h0), we have

e−
3
2 ε/h‖v‖2H1(U) ≤ C‖ψv|x1=0‖2L2(Rn) + C‖ψ∂x1

v|x1=0‖2L2(Rn) + C‖Qv‖2L2(K)

+ Ce−2ε/h‖v‖2H1(K),

and hence, for all h ∈ (0, h0),

‖v‖2H1(U) ≤ Ce
3
2 ε/h

(
‖ψv|x1=0‖2L2(Rn) + ‖ψ∂x1

v|x1=0‖2L2(Rn) + ‖Qv‖2L2(K)

)
+ Ce−

1
2 ε/h‖v‖2H1(K).

After an optimization in the parameter h (see [Rob95] or [LRL12, Lemma 5.2]),
this yields the existence of C > 0 and δ1 ∈ (0, 1) such that

‖v‖2H1(U) ≤ C
(
‖ψv|x1=0‖2L2(Rn) + ‖ψ∂x1

v|x1=0‖2L2(Rn) + ‖Qv‖2L2(K)

)δ1
‖v‖2(1−δ1)

H1(K) ,

which, coming back to the original variables, implies (5.5) and then, according to
Theorem 5.6 and [LR95, Lemma 4]), concludes the proof of Theorem 5.5 (see the
above discussion). �

From Theorem 5.5, we deduce a proof of Theorem 1.7.

Proof of Theorem 1.7. For a nonidentically vanishing function ψ such that supp(ψ)
⊂ Σβ, we apply Theorem 5.5 to v(s, x) = eλsu(x) ∈ C∞((−S, S);H2(M)∩H1

0 (M)),
which satisfies

Qv = eλs(−Δg − λ2)u in Int(YS),

as well as v|(−S,S)×∂M = 0. Hence, equation (5.3) gives

(5.7) ‖v‖2L2(Yβ)
≤ C

(
e2Sλ‖(−Δg − λ2)u‖2L2(M) + ‖ψv|Σβ

‖2L2(Σβ)

+‖ψ∂νv|Σβ
‖2L2(Σβ)

)δ

‖v‖2(1−δ)
H1(YS),

and we estimate each remaining term. First, we have

‖v‖2L2(Yβ)
≥ C

e2βλ

λ
‖u‖2L2(M).

Second, we write

‖v‖2H1(YS) = ‖∂sv‖2L2(YS)
+ ‖∇gv‖2L2(YS)

+ ‖v‖2L2(YS)

= ‖u‖2L2(M)

∫ S

−S

2λ2e2λs + e2λsds+ ((−Δg − λ2)u, u)L2(M)

∫ S

−S

e2λsds

≤ Cecλ(‖u‖2L2(M) + ‖(−Δg − λ2)u‖L2(M)‖u‖L2(M)).

We may assume that ‖(−Δg −λ2)u‖L2(M) ≤ ‖u‖L2(M) since otherwise the inequal-
ity (1.11) holds trivially, and therefore we obtain

‖v‖2H1(YS) ≤ Cecλ‖u‖2L2(M).

Third, we have

‖ψv|Σβ
‖2L2(Σβ)

+ ‖ψ∂νv|Σβ
‖2L2(Σβ)

≤
∫ S

−S

e2λs
(
‖u|Σ‖2L2(Σ) + ‖∂νu|Σ‖2L2(Σ)

)
ds

≤ 2Se2λS
(
‖u|Σ‖2L2(Σ) + ‖∂νu|Σ‖2L2(Σ)

)
.
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Plugging the above three inequalities into (5.7) and dividing by ‖u‖2(1−δ)
L2(M) (if nonzero)

yield the sought result. �
5.3. From interpolation inequality to observability in an abstract set-
ting: The original Lebeau-Robbiano method revisited. In this section, we
explain how to deduce the observability estimate for the heat equation from the
interpolation inequality of Theorem 5.5. This follows the Lebeau-Robbiano method
introduced in [LR95] in its original form (used also in [Léa10]), as opposed to the
simplified version (see e.g. [LZ98,LRL12]), which uses the stronger spectral inequal-
ity [JL99,LZ98] (which we do not prove in the present context). We explain how
this method can be simplified using [Mil10,EZ11b,EZ11a].

We consider an abstract setting containing the above particular situation of the
heat equation. Most results presented here still hold in the much more general
abstract setting of [Mil10]. In Section 5.4 below, we explain how the problem of
the heat equation controlled by a hypersurface is put in this general framework.

We denote by H (with norm ‖ · ‖) and K (with norm ‖ · ‖K) two Hilbert spaces,
namely, the state space and the observation space. We denote by A : D(A) ⊂ H →
H a nonpositive selfadjoint operator on H, with compact resolvent. We denote by
(φj) an orthonormal basis of eigenfunctions associated to the eigenvalues λ2

j ≥ 0 of
−A (we keep the notation used for the Laplace operator) and set

Eλ := span{φj , λj ≤ λ}, λ > 0.(5.8)

The operatorA generates a contraction semigroup (etA) onH. We denote by B ∈
L(D(A);K) the observation operator. We say that B is an admissible observation
for (etA) if there is T > 0 and Cadm,T > 0 such that

‖BetAy‖L2((0,T ),K) ≤ Cadm,T ‖y‖ for all y ∈ D(A).(5.9)

Because of the semigroup property, (5.9) holds for all T > 0 if it holds for some
T (see [Cor07, Section 2.3]). Hence, under the above admissibility assumption, for
any T > 0, the map u0 �→ (t �→ BetAu0) extends uniquely as a continuous linear
map H → L2(0, T ;K), which we shall still denote BetA.

In our next lemma, we use the notation, for s ∈ N and τ > 0,

Hs
τ =

s⋂
n=0

Hs−n
(
−τ, τ ;D((−A)n/2)

)
,

normed by

‖v‖Hs
τ
=

( ∑
n+m≤s

‖∂m
t (I −A)n/2v‖2L2(−τ,τ ;H)

)1/2

.

Lemma 5.8. Let S > β > 0 and ϕ ∈ C∞
c (−S, S). Assume there is C > 0 and

δ ∈ (0, 1) such that for all v ∈ H2
S , we have

(5.10) ‖v‖H1
β
≤ C

(
‖(−∂2

s −A)v‖H0
S
+ ‖ϕ(s)Bv‖L2(−S,S;K)

)δ

‖v‖1−δ
H1

S
.

Then, there exist S,C, c > 0 such that

‖v0‖2 + ‖v1‖2 ≤ Cecλ ‖ϕ(s)Bv(s)‖2L2(−S,S;K) , for all λ > 0, (v0, v1) ∈ Eλ × Eλ,

with

v(s) = cosh(s
√
−A)v0 +

sinh(s
√
−A)√

−A
v1.(5.11)
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Note that in the formula (5.11), we extend cosh(s
√
−A) (resp., sinh(s

√
−A)√

−A
) by

continuity by Id (resp., by s Id) on ker(A). Thus, denoting by Π0 the orthogonal
projector on ker(A) and Π+ = Id−Π0, (5.11) can be rewritten more explicitly by

v(s) = cosh(s
√
−A)Π+v0 +Π0v0 +

sinh(s
√
−A)√

−A
Π+v1 + sΠ0v1.

Hence v(s) in (5.11) is the unique solution to

(−∂2
s −A)v = 0, (v, ∂sv)|s=0 = (v0, v1).

Proof of Lemma 5.8. Note first that with v in (5.11), we have (−∂2
s − A)v(s) =

0 so that, in (5.10), it suffices to estimate ‖v‖H1
S

from above and ‖v‖H1
β

from

below. For (v0, v1) ∈ Eλ × Eλ, we denote by wk = Π0vk, k = 0, 1, and w± =
1
2 (Π+v0 ± (−A)−1/2Π+v1). This is

Π+v0 = w+ + w−, Π+v1 =
√
−Aw+ −

√
−Aw−,

and the parallelogram law yields

‖(−A)
k
2 Π+v0‖2 + ‖(−A)

k−1
2 Π+v1‖2 = 2(‖(−A)

k
2 w+‖2 + ‖(−A)

k
2 w−‖2).

We also have, with w± =
∑

0<λj≤λ w
±
j φj ,

v(s) = cosh(s
√
−A)v0 +

sinh(s
√
−A)√

−A
v1 = es

√
−Aw+ + e−s

√
−Aw− + w0 + sw1

=
∑

0<λj≤λ

(esλjw+
j + e−sλjw−

j )φj + w0 + sw1.

Now, we estimate ‖v‖H1
S
and ‖v‖H1

β
in terms of λ. Firstly, we have

‖v‖2H1
β
≥ ‖v‖2H0

β
=

∑
0<λj≤λ

∫ β

−β

∣∣esλjw+
j + e−sλjw−

j

∣∣2 ds+ ∫ β

−β

‖w0 + sw1‖2 ds

=
∑

0<λj≤λ

e2βλj − e−2βλj

2λj

(
|w+

j |2 + |w−
j |2

)
+ 4β Re(w+

j w
−
j )

+ 2β‖w0‖2 +
2

3
β3‖w1‖2

= 2β
∑

0<λj≤λ

Qj

(
(w+

j , w
−
j ), (w

+
j , w

−
j )
)
+ 2β‖w0‖2 +

2

3
β3‖w1‖2,

where Qj is the matrix

Qj =

(
sinh(Xj)

Xj
1

1
sinh(Xj)

Xj

)
, Xj = 2βλj .

The eigenvalues of Qj are
sinh(Xj)

Xj
± 1 ≥ εeXj/2 on the set [2βλ̃0,+∞[, where λ̃0 is

the first nonzero eigenvalue of −A, and ε only depends on 2βλ̃0. As a consequence,
we obtain

‖v‖2H1
β
≥ C

(
‖v0‖2 + ‖v1‖2

)
.
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Secondly, we also have

‖v‖2H1
S

=

∫ S

−S

‖∂sv‖2 + ‖(I −A)
1
2 v‖2 + ‖v‖2ds

≤
∑

0<λj≤λ

(|w+
j |2 + |w−

j |2)
∫ S

−S

(2λ2
j + 4)e2sλjds

+2

∫ S

−S

‖w0 + sw1‖2 ds+
∫ S

−S

‖w1‖2 ds

≤ Ce3Sλ
(
‖v0‖2 + ‖v1‖2

)
.

Combining the last two estimates together with (5.10) yields

‖v0‖2 + ‖v1‖2 ≤ C‖ϕ(s)Bv‖2δL2(−S,S;K)

(
Ce3Sλ

(
‖v0‖2 + ‖v1‖2

))1−δ
,

and hence the sought result when dividing by
(
‖v0‖2 + ‖v1‖2

)1−δ
. �

The next step of the Lebeau-Robbiano method relies on a so-called “trans-
mutation argument” to deduce from the observability of the elliptic system on
Eλ the observability of the heat equation on Eλ, with a precise estimate on the
cost in terms of λ and T (observation time). Here, we use an idea of Ervedoza
and Zuazua [EZ11b,EZ11a] to simplify the original argument of Lebeau and Rob-
biano [LR95] (who used the moment method of Russell to pass from the elliptic
system to the parabolic system. This was quite technically involved; see [Léa10] for
a review of the method).

Lemma 5.9. Assume that there exist S,C, c > 0 such that

‖v0‖ ≤ Cecλ
∥∥∥∥B sinh(s

√
−A)√

−A
v0

∥∥∥∥
L2(−S,S;K)

for all λ > 0, v0 ∈ Eλ.

Then, there exist C, c > 0 such that

‖eTAu0‖ ≤ Cecλ+
c
T ‖BetAu0‖L2(0,T ;K) for all T > 0, λ > 0, u0 ∈ Eλ.

Note that in the assumption of Lemma 5.9, sinh(s
√
−A)√

−A
can equivalently be re-

placed by cosh(s
√
−A).

We need the following lemma, which is a slight variant on [EZ11b,EZ11a].

Lemma 5.10. Given S, T > 0, δ ∈ (0, 1), and α > S2
(
1 + 1

δ

)
, there exists a

function kT ∈ C∞([0, T ]× [−S, S]) satisfying

(∂t − ∂2
s )kT = 0 for (t, s) ∈ (0, T )× (−S, S),(5.12) {

kT |t=0 = 0, kT |t=T = 0 for s ∈ (−S, S),

kT |s=0 = 0, ∂skT |s=0 = e−α( 1
t +

1
T−t ) for t ∈ (0, T ),

(5.13)

(5.14) |kT (t, s)| ≤ |s|e
1
τ

(
s2

δ − α
1+δ

)
, τ = min(t, T−t) for (t, s) ∈ (0, T )×(−S, S).

For the proof of Lemma 5.10, we follow [EZ11b, Section 3.1], where the authors
go from the wave equation to the heat equation. Here, we use the method to go
from an elliptic equation to a heat equation. The only difference is that we take

g2k+1 = g
(k)
1 , where Ervedoza and Zuazua [EZ11b,EZ11a] take g2k+1 = (−1)kg

(k)
1

in the proof below.
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Sketch of proof of Lemma 5.10. The starting point is that, if it converges, then the
function

kT (t, s) =
∑
n∈N

sn

n!
gn(t), g2k = g

(k)
0 , g2k+1 = g

(k)
1 , k ∈ N,(5.15)

solves (5.12). Choose g0 = 0 and, for α > 0, choose g1 to be the Gevrey function

g1(t) =

{
e−α( 1

t+
1

T−t) if t ∈ (0, T ),

0 otherwise.

Then, [EZ11a, Lemma 3.1] yields for all δ ∈ (0, 1), |g2k+1(t)| = |g(k)1 (t)|
≤ k!

(δτ)k
e−

α
(1+δ)τ with τ = min(t, T − t). This implies (see [EZ11b, equation (3.8)])

that for all δ ∈ (0, 1), S > 0, and α > S2
(
1 + 1

δ

)
, the series (5.15) converges

towards kT ∈ C∞([0, T ]× [−S, S]) with (5.14)-(5.13). �

With this lemma, the proof of Lemma 5.9 follows [EZ11b, Section 3.1].

Proof of Lemma 5.9. We first pick δ ∈ (0, 1) and α > S2
(
1 + 1

δ

)
and denote by kT

the kernel then furnished by Lemma 5.10. Given u0 ∈ Eλ, we define

v(s) :=

∫ T

0

kT (t, s)e
tAu0dt.

From the above properties of kT , the function v(s) satisfies

(v, ∂sv)|s=0 =

(
0,

∫ T

0

g1(t)e
tAu0dt

)
∈ Eλ × Eλ,

where g1(t) = e−α( 1
t+

1
T−t), together with

∂2
sv(s) =

∫ T

0

∂2
skT (t, s)u(t)dt =

∫ T

0

∂tkT (t, s)e
tAu0dt = −

∫ T

0

kT (t, s)∂te
tAu0dt

= −
∫ T

0

kT (t, s)AetAu0dt = −A

(∫ T

0

kT (t, s)e
tAu0dt

)
= −Av(s).

Hence, v(s) = sinh(s
√
−A)√

−A

(∫ T

0
g1(t)e

tAu0dt
)
, so that Lemma 5.9 yields the estimate∥∥∥∥∥

∫ T

0

g1(t)u(t)dt

∥∥∥∥∥ ≤ Cecλ‖Bv(s)‖L2(−S,S;K).

Now, writing u0 =
∑

j αjφj , we have∥∥∥∥∥
∫ T

0

g1(t)e
tAu0dt

∥∥∥∥∥
2

=
∑
j

∣∣∣∣∣
∫ T

0

g1(t)e
−tλ2

jαjdt

∣∣∣∣∣
2

≥
∑
j

(∫ T

0

g1(t)dt

)2

e−2Tλ2
j |αj |2=

(∫ T

0

g1(t)dt

)2 ∥∥eTAu0

∥∥2

≥ T 2

9
e−

9α
T

∥∥eTAu0

∥∥2 .
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Also, we have from (5.14) the estimate

‖Bv(s)‖2L2(−S,S;K) =

∫ S

−S

∥∥∥∥∥
∫ T

0

kT (t, s)BetAu0dt

∥∥∥∥∥
2

K

ds

≤
(∫ S

−S

∫ T

0

kT (t, s)
2dtds

)∫ T

0

‖BetAu0dt‖2Kdt

≤ CST

∫ T

0

‖BetAu0dt‖2Kdt.

Combining the last three estimates concludes the proof of Lemma 5.9. �

From the low-frequency observability estimate with precise cost, we may now de-
duce the full observability estimate. The original Lebeau-Robbiano strategy [LR95]
does not provide an optimal dependence on the blow-up of the constant as T → 0+.
The modified and simplified argument of [Mil10] does so, and we follow it here.

Lemma 5.11. Assume B : D(A) ⊂ H → K is an admissible observation for (etA).
Assume for some a0, a, b > 0 we have

(5.16) ‖eTAy‖ ≤ a0e
aλ+ b

T ‖BetAy‖L2(0,T ;K) for all y ∈ Eλ, λ > 0, T > 0.

Then there is C, c > 0 such that we have

‖eTAy‖ ≤ Ce
c
T ‖BetAy‖L2(0,T ;K) for all y ∈ H,T > 0.

A proof of this lemma (in much more generality) is included in the proof of [Mil10,
Theorem 2.1], but we give it for the sake of readability. The key feature of the
semigroup (etA) we shall use is that

‖etAy‖H ≤ e−λ2t‖y‖H for all y ∈ E⊥
λ , λ > 0, t > 0.(5.17)

We also make use of the following particular case of [Mil10, Lemma 2.1].

Lemma 5.12. Let T∗ > 0, q ∈ (0, 1), and f : (0, T∗] → R∗
+ increasing such that

limt→0+ f(t) = 0. Assume that B is an admissible observation for (etA) and that

f(T )‖eTAy‖2 − f(qT )‖y‖2 ≤ ‖BetAy‖2L2(0,T ;K) for all T ∈ (0, T∗) and y ∈ H.

Then we have

f((1− q)T )‖eTAy‖2 ≤ ‖BetAy‖2L2(0,T ;K) for all T ∈ (0, T∗) and y ∈ H.

Proof of Lemma 5.11. For y ∈ H, we decompose y = yλ + rλ with yλ ∈ Eλ and
rλ ∈ E⊥

λ . Then, we estimate

‖eTAy‖ ≤ ‖eTAyλ‖+ ‖eTArλ‖.(5.18)

Concerning the second term in (5.18), we only use (5.17) to write

‖eTArλ‖ ≤ e−λ2T ‖rλ‖ ≤ e−λ2T ‖y‖.
Concerning the first term in (5.18), we write eTA = eεTAe(1−ε)TA and apply (5.16)
to e(1−ε)TAyλ ∈ Eλ to obtain

‖eTAyλ‖ ≤ a0e
aλ+ b

εT ‖BetAe(1−ε)TAyλ‖L2(0,εT ;K)

≤ a0e
aλ+ b

εT

(
‖BetAe(1−ε)TAy‖L2(0,εT ;K) + ‖BetAe(1−ε)TArλ‖L2(0,εT ;K)

)
.
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We remark that

‖BetAe(1−ε)TAy‖L2(0,εT ;K) = ‖BetAy‖L2((1−ε)T,T ;K) ≤ ‖BetAy‖L2(0,T ;K)

and estimate the last term using (5.9) and then (5.17) as

‖BetAe(1−ε)TArλ‖L2(0,εT ;K) ≤ Cadm,εT ‖e(1−ε)TArλ‖ ≤ Cadm,εT e
−λ2(1−ε)T ‖rλ‖

≤ Cadm,εT e
−λ2(1−ε)T ‖y‖.

Combining the above three estimates in (5.18) implies that for all y ∈ H, T > 0,
and λ > 0,

‖eTAy‖≤a0e
aλ+ b

εT ‖BetAy‖L2(0,T ;K)+e−λ2(1−ε)T
(
a0e

aλ+ b
εT Cadm,εT+e−ελ2T

)
‖y‖.

We notice that Cadm,εT ≤ Cadm,T∗ for T ≤ T∗ and ε ∈ (0, 1), and denote m1 :=
Cadm,T∗ + 1

a0
. We then rewrite this estimate for λ = 1

rT , with r > 0 to be chosen,
as

1

a0
e−

1
T (

a
r +

b
ε )‖eTAy‖ ≤ ‖BetAy‖L2(0,T ;K) +m1e

− 1−ε

r2
1
T ‖y‖, T ≤ T∗.

Writing f(T ) = 1
2a2

0
e−

2
T (

a
r +

b
ε ) and assuming the parameters ε ∈ (0, 1), r > 0, q ∈

(0, 1) are such that

1

q

(
a

r
+

b

ε

)
≤ 1− ε

r2

(which we may, taking e.g. ε = q = 1/2 and r sufficiently small) we have(
m1e

− 1−ε

r2
1
T

)2

≤ f(qT ) for T ∈ (0, T ′] for some T ′ ∈ (0, T∗], and we obtain

f(T )‖eTAy‖2 ≤ ‖BetAy‖2L2(0,T ;K) + f(qT )‖y‖2.

Lemma 5.12 implies that

f((1− q)T )‖eTAy‖2 ≤ ‖BetAy‖2L2(0,T ;K), T ∈ (0, T ′], y ∈ H,

which is the sought for result for t ∈ (0, T ′]. The case T > T ′ follows from the
boundedness of the semigroup and the case T < T ′. �

5.4. From interpolation inequality to the observability estimate for the
heat equation. Let us now put the heat equation in our present abstract frame-
work and state the consequences. We have H = H1

0 (M), A = ΔD (the Dirichlet
Laplacian) with D(A) = {u ∈ H3(M), u|∂M = 0,Δgu|∂M = 0}. We also have
K = L2(Σ)× L2(Σ) as well as

B : D(A) ⊂ H3(M) → L2(Σ)× L2(Σ)
u �→ (u|Σ, ∂νu|Σ).

Lemma 5.2 implies that B is an admissible observation for (etA) in the sense of (5.9).
The first lemma is a consequence of the interpolation inequality of Theorem 5.5

and Lemma 5.8. Here, Eλ is defined by (5.8), where φj , λj are an orthonormal basis
of solutions to

(−Δg − λ2
j)φj = 0.
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Lemma 5.13 (Observability of finite dimensional elliptic equation). Assume M is
connected and Σ is nonempty. Then, for all S > 0, there exist C, c > 0 such that
for all λ > 0, all (v0, v1) ∈ Eλ × Eλ, and associated solution v of

(5.19)

⎧⎪⎨
⎪⎩
(−∂2

s −Δ)v = 0 on (−S, S)× Int(M),

v = 0 on (−S, S)× ∂M,

(v, ∂sv)|s=0 = (v0, v1) in Int(M),

we have

‖(v0, v1)‖H2×H1 ≤ Cecλ
(
‖v|Σ‖L2((−S,S)×Σ) + ‖∂νv|Σ‖L2((−S,S)×Σ)

)
.

This together with Lemma 5.9 implies the following result.

Lemma 5.14 (Observability of finite dimensional heat equation with precise cost).
Assume M is connected and Σ is nonempty. Then, there exist C, c > 0 such that
for all λ, T > 0, all u0 ∈ Eλ, and associated solution u of

(5.20)

⎧⎪⎨
⎪⎩
(∂t −Δ)u = 0 on (0, T )× Int(M),

u = 0 on (0, T )× ∂M,

u|t=0 = u0 in Int(M),

we have

‖u(T )‖H1 ≤ Cecλ+
c
T

(
‖u|Σ‖L2((0,T )×Σ) + ‖∂νu|Σ‖L2((0,T )×Σ)

)
.

Lemma 5.11 finally yields the following observability result.

Theorem 5.15 (Observability for heat equation). Assume M is connected and Σ
is nonempty. Then, there exist C, c > 0 such that for all T > 0, all u0 ∈ H1(M)
and associated solution u of (5.20), we have

‖u(T )‖H1 ≤ Ce
c
T

(
‖u|Σ‖L2((0,T )×Σ) + ‖∂νu|Σ‖L2((0,T )×Σ)

)
.

From this observability estimate and the duality with the control problem (1.10),
given by Definition 5.3, we deduce the null-controllability of the heat equation,
Theorem 1.6. The proof is classical and we omit it (see e.g. [Cor07, Chapter 2.3]).

Appendix A. Facts and notation of pseudodifferential calculus

Here, we follow [Bur97, Section 1.1] or [DLRL14, Section 2.1] for the notation.
We denote by X an open set of a d-dimensional manifold, which, in the main part
of the article, is, with d = n− 1, n, n+ 1, one of the following:

X = R
d, X = Int(M), X = (0, T )× Int(M), X = Int(Σ),(A.1)

X = (0, T )× Int(Σ), X = Int(Σ).

We also denote by x the variable in X (whereas, in case X = (0, T ) × Int(M),
the variable in denoted (t, x) in the main part of the article). We denote by π0 :
T ∗X → X the canonical projection.

We write Sm
hom(T

∗X) for the set of positively homogeneous degree m functions
on T ∗X with compact support in X. That is, a ∈ Sm

hom(T
∗X) if and only if a ∈

C∞(T ∗X), π0(supp(a)) is a compact subset of X, and there is R > 0 (depending on
a) such that for (x, ξ) ∈ T ∗X, with |ξ| ≥ R, λ ≥ 1, we have a(x, λξ) = λma(x, ξ).
For any m, the restriction to the sphere S∗X = T ∗M/R+

∗ ,

(A.2) Sm
hom(T

∗X) → C∞
c (S∗X), a(x, ξ) → lim

λ→∞
λ−ma(x, λξ),
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is onto, which identifies, for m fixed, smooth functions on the sphere with homoge-
neous symbols of degree m.

We also write Sm
phg(T

∗X) for the set of polyhomogeneous symbols of order m on

X with compact support in X. That is, a ∈ Sm
phg(T

∗X) if and only if a ∈ C∞(T ∗X),

π0(supp(a)) is a compact of X, and there exist aj ∈ Sm−j
hom (T ∗X) such that for

all N ∈ N, a −
∑N

j=0 aj ∈ Sm−N−1(T ∗X). We recall that symbols in the class

Sm
phg(T

∗Rd) behave well with respect to changes of variables, up to symbols in

Sm−1
phg (T ∗Rd) (see [Hör85, Theorem 18.1.17 and Lemma 18.1.18]).

We denote by Ψm
phg(X) the space of polyhomogeneous pseudodifferential opera-

tors of order m on X, with a compactly supported kernel in X ×X: one says that
A ∈ Ψm

phg(X) if

(1) its kernel K(x, y) ∈ D′(X ×X) is such that supp(K) is compact in X ×X;
(2) K(x, y) is smooth away from the diagonal ΔX = {(x, x); x ∈ X};
(3) for every coordinate patch Xκ ⊂ X with coordinates Xκ � x �→ κ(x) ∈

X̃κ ⊂ R
d and all φ0, φ1 ∈ C∞

c (Xκ) the map

u �→ φ1

(
κ−1

)∗
Aκ∗(φ0u)

is in Op(Sm
phg(R

d × Rd)). Note that for a ∈ Sm
phg(R

d × Rd) we write Op(a)
for the standard quantization of a.

In case X is not compact (which happens in most examples of (A.1)), we also
define a noncanonical quantization procedure Op : Sm

phg(T
∗X) → Ψm

phg(X). For

this, let Kn ⊂ X compact with Kn ↑ X and fix χn ∈ C∞
c (X; [0, 1]) with χn ≡ 1

on Kn. Then fix (Xi, κi) a coordinate atlas for X. Let ψi ∈ C∞
c (X) be a partition

of unity subordinate to Xi and ψ̃i ∈ C∞
c (Xi) with suppψi ⊂ {ψ̃i ≡ 1}. For

a ∈ Sm
phg(X), notice that ai(x, ξ) := ψi(κ

−1
i (x))a(κi(x), ([∂κ

−1
i (x)]−1)tξ) has ai ∈

Sm
phg(R

d × Rd). We then define

Op(a) =
∑
i

χNκ∗
i

[(
(κ−1

i )∗ψ̃i

)
Opi(ai)(κ

−1
i )∗(ψ̃iχNu)

]
,

N := inf{n | supp a ∩ supp(1− χn) = ∅}.
Note that for all A ∈ Ψm

phg(X), there exists a ∈ Sm
phg(T

∗X) so that

Op(a)−A = R ∈ Ψ−∞
phg (X)

(see e.g. [DZ, Appendix E]).
For A ∈ Ψm

phg(X), we denote by σm(A) ∈ Sm
hom(T

∗X) the principal symbol of

A (see [Hör85, Chapter 18.1]). Note that the principal symbol is uniquely defined
in Sm

hom(T
∗X) because of the polyhomogeneous structure (see the remark following

Definition 18.1.20 in [Hör85]). When it will not lead to confusion, we abuse notation
slightly and write σ(A) for the principal symbol of a pseudodifferential operator
without reference to the order. The applications σm and Op enjoy the following
properties:

• The sequence

0 → Ψm−1
phg (T ∗X) → Ψm

phg(X)
σm−→ Sm

hom(T
∗X) → 0

is exact.
• σm ◦Op : Sm

phg(T
∗X) → Sm

hom(T
∗X) is the natural projection map.

• For all A ∈ Ψm
phg(X), σm(A∗) = σm(A).
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• For all A1 ∈ Ψm1

phg(X) and A2 ∈ Ψm2

phg(X), we have A1A2 ∈ Ψm1+m2

phg (X)
with

σm1+m2
(A1A2) = σm1

(A1)σm2
(A2).

• For all A1 ∈ Ψm1

phg(X) and A2 ∈ Ψm2

phg(X), we have [A1, A2] = A1A2 −
A2A1 ∈ Ψm1+m2−1

phg (X) with

σm1+m2−1([A1, A2]) =
1

i
{σm1

(A1), σm2
(A2)}.

Here, {a1, a2} denotes the Poisson bracket, given in local charts by

{a1, a2} =
∑
l

(∂ξla1∂xl
a2 − ∂xl

a1∂ξla2).

• If A ∈ Ψm
phg(X), then A maps continuously Hk

loc(X) into Hk−m
comp(X). In

particular, for m < 0, A is compact on Hk(X).

Given an operatorA ∈ Ψm
phg(X), we define Char(A) = {ρ ∈ T ∗X\0, σm(A)(ρ) = 0},

its characteristic set, and

Ell(A) = (T ∗X \ 0) \ Char(A),

its elliptic set.
We define the wavefront set of an operator A ∈ Ψm

phg(X), denoted by WF(A),

as follows (see [Hör85, Proposition 18.1.26, p. 88]). We say (x0, ξ0) ∈ T ∗X is not
in WF(A) if there exists B ∈ Ψ0

phg(X) with σ0(B)(x0, ξ0) = 1 and

BA : D′(X) → C∞
c (X).

Note that in local coordinates, the wavefront set is given by the support of the full
symbol of A (seen as a subset of S∗

R
d).

Also, in the main part of the article, we use so-called “tangential” symbols,
pseudodifferential operators, and pseudodifferential calculus. We write a ∈
C∞((−ε, ε);Sm

phg(T
∗Rd)) if a = a(x1, x

′, ξ′) is a smooth x1-dependent family of

symbols in the (x′, ξ′) variables. We write A ∈ C∞((−ε, ε); Ψm
phg(R

d)) for the asso-
ciated operators. The rules of pseudodifferential calculus are then as above.

Finally, in the main part of the article, we used estimates for the hyperbolic
Cauchy problem. We state the following lemma from Hörmander [Hör85, Lemma
23.1.1].

Lemma A.1. Let ε > 0, suppose that λ = λ(x1, x
′, ξ′) ∈ C∞((−ε, ε);S1

phg(T
∗Rd))

is real valued and write Λ = Op(λ). Then for all s ∈ R, there exists C > 0 so that
for x1, y1 ∈ (−ε, ε) and all u, f solutions of

(Dx1
− Λ)u = f,

we have

‖u(x1, ·)‖Hs(Rd) ≤ C(‖u(y1, ·)‖Hs(Rd) + ‖f‖L2((−ε,ε);Hs(Rd)))

and moreover

‖u(x1, ·)‖Hs(Rd) ≤ C(‖u‖L2((−ε,ε);Hs(Rd)) + ‖f‖L2((−ε,ε);Hs(Rd))).

Note that the second estimate is obtained from the first one by integrating in y1.
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Appendix B. Sharpness of Theorem 1.7: Proof of Proposition 1.8

We start with an abstract simple lemma linking the symmetries of the manifold
with that of solutions to related elliptic problems.

Lemma B.1. Let (M, g) be a compact Riemannian manifold possibly with boundary
and suppose that there are an isometric involution j : M → M (i.e., a diffeomor-
phism such that j∗g = g and j2 = Id) and a compact hypersurface Σ ⊂ M such
that

M = M+ �M− � Σ, Fix(j) =: Σ,

where

Fix(j) := {x ∈ M | j(x) = x}
and j(M+) = M−. Let V ∈ C∞(M) such that V ◦ j = V . Suppose that u, v solve

(−Δg + V )u = 0 in IntM+, u|Σ = 0, u|∂M = 0,

(−Δg + V )v = 0 in IntM+, ∂νv|Σ = 0, v|∂M = 0.

Then,

uo :=

{
u(x) x ∈ M+ ∪ Σ,

−u(j(x)) x ∈ M−,
ue :=

{
v(x) x ∈ M+ ∪ Σ,

v(j(x)) x ∈ M−

satisfy uo, ue ∈ C∞(M) and solve

(−Δg + V )uo = 0 in IntM, uo|∂M = 0, uo|Σ = 0,

(−Δg + V )ue = 0 in IntM, ue|∂M = 0, ∂νue|Σ = 0.

Proof. Notice first that ∂M+ = Σ� (∂M ∩M+) and by elliptic regularity, we have
u, v ∈ C∞(M+). Moreover, if w± ∈ C2(M±), then, in the distribution sense (with
∂ν pointing towards M+),

(−Δg + V )w(x) = 1M+
(−Δg + V )w+ + 1M−(−Δg + V )w− − (w+|Σ − w−|Σ)δ′Σ

− (∂νw+|Σ − ∂νw−|Σ)δΣ.

Hence,

(−Δg + V )ue = (−Δg + V )uo = 0

as distributions, and by elliptic regularity, ue, uo ∈ C∞ and hence have the desired
properties. �

We may now proceed to the proof of Proposition 1.8.

Proof of Proposition 1.8. The Riemannian volume element is R(z)dzdθ, and the
Laplace Beltrami operator is given by

Δg =
1

R(z)
∂zR(z)∂z +

1

R(z)2
∂2
θ = ∂2

z +
R′

R
∂z +

1

R2
∂2
θ .

The map

T : L2(M,R(z)dzdθ) → L2(M,dzdθ)

u �→ Tu, (Tu)(z, θ) = R(z)
1
2 u(z, θ)
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is an isometry, and the conjugated operator of Δg is

Δ̃ = TΔgT
−1 = R1/2ΔgR

−1/2 = ∂2
z +

1

4

(
R′

R

)2

− 1

2

R′′

R
+

1

R2
∂2
θ

= ∂2
z +

1

R(z)2
∂2
θ − V1(z),

where

V1(z) = −1

4

R′(z)2

R(z)2
+

1

2

R′′(z)

R(z)2

is a smooth θ-independent potential on M . Note that both R(z) and V1(z) are even
with respect to z �→ −z.

We now construct eigenfunctions of Δ̃ of the form φ̃k(z, θ) = eikθψk(z). Setting
h = k−1, this amounts to finding eigenfunctions of the operator

Ph := −h2∂2
z +

1

R(z)2
+ h2V1(z)

with Dirichlet boundary conditions on ±π. We shall rather consider this operator
on (0, π) and then complete the construction by symmetry with Lemma B.1. Recall
that the potential V (z) = 1

R(z)2 satisfies

0 < V (z), Vm := min
z

V (z) < V (0).

Define

Ē :=
Vm + V (0)

2
so that Vm < Ē < V (0).

We first show that there are eigenvalues, Eo
h and Ee

h, respectively, for Ph with
Dirichlet condition at π and Dirichlet condition at 0 and for Ph with Dirichlet

conditions at π and Neumann conditions at 0 such that E
e/o
h = Ē +O(h2/3). To do

this, we construct a rather poor quasimode for Ph. In particular, let z̄ ∈ (0, π) such
that V (z̄) = Ē. Set uh = h−1/3χ(h−2/3(z − z̄)), where χ ∈ C∞

c (R) with χ(0) = 1
and

∫
|χ(z)|2dz = 1, and let χ̃ ∈ C∞

c (R) with χ̃ ≡ 1 on suppχ. Then, for h small
enough suppuh ⊂ (0, π) and

(Ph−Ē)uh

= h−1/3[−h2/3χ′′(h−2/3(z − z̄)) + (V (z) + h2V1(z)− V (z̄))χ(h−2/3(z − z̄))]

= h−1/3[−h2/3χ′′(h−2/3(z − z̄)) +O(|z − z̄|+ h2)χ(h−2/3(z − z̄))]

= h−1/3χ̃(h−2/3(z − z̄))O(h2/3)L∞ = O(h2/3)L2 .

Denote by E
e/o
h eigenvalues of Ph on (0, π) associated to Dirichlet on π and

Neumann on 0 for Ee
h, respectively Dirichlet on 0 for Eo

h, such E
e/o
h = Ē +O(h2/3)

and denote by ψ
e/o
h an associated eigenfunction, i.e., which satisfies

(Ph − E
e/o
h )ψ

e/o
h = 0, ‖ψ

e/o
h ‖L2(0,π) �= 0, ψ

e/o
h (π) = 0, ∂zψ

e
h(0) = 0, ψo

h(0) = 0.

Apply now Lemma B.1 on M = [−π, π] with j(z) = −z so that Fix(j) = {z = 0}
allows us to extend ψ

e/o
h by parity/imparity as solutions of

(Ph − E
e/o
h )ψ

e/o
h = 0 on (−π, π), ‖ψ

e/o
h ‖L2(−π,π) �= 0, ψ

e/o
h (±π) = 0,

∂zψ
e
h(0) = 0, ψo

h(0) = 0.
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Now, since E
e/o
h = Ē+O(h2/3) and V (0) > Ē, 0 is in the classically forbidden region,

so that classical Agmon estimates (see e.g. [DS99, Chapter 6] or [Zwo12, Chapter
6]) yield for ε, h0 > 0 small enough, for any N > 0, the existence of C, c > 0 such
that for all h ∈ (0, h0),

‖ψ
e/o
h ‖HN (−ε,ε) ≤ Ce−c/h‖ψ

e/o
h ‖L2(−π,π).

Coming back to the variables (z, θ), setting (λ
e/o
k )2 = k2E

e/o
k−1 = k2(Ē + O(k−2/3))

and φ̃
e/o
k (z, θ) = eikθψ

e/o
k−1(z), we have obtained for k ≥ k0 solutions to(

− Δ̃− (λ
e/o
k )2

)
φ̃

e/o
k = 0, φ̃

e/o
k (±π) = 0, ‖φ̃

e/o
k ‖L2 �= 0,

together with

φ̃o
k|Σ = 0, ‖∂ν φ̃o

k|Σ‖L2(Σ) ≤ Ce−ck‖φ̃o
k‖L2(M) ≤ Ce−c′λo

k‖φ̃o
k‖L2(M),

∂ν φ̃
e
k|Σ = 0, ‖φ̃e

k|Σ‖L2(Σ) ≤ Ce−ck‖φ̃e
k‖L2(M) ≤ Ce−c′λe

k‖φ̃e
k‖L2(M).

Setting φ
e/o
k (z, θ) = R(z)−1/2φ̃

e/o
k (z, θ)‖φ̃

e/o
k ‖−1

L2 concludes the proof of the lemma. �

Appendix C. About T GCC: Proof of Proposition 1.10

Proof of Proposition 1.10. Here, M = S2 and Σ is an equator. We take the follow-
ing coordinates on S2:

[0, 2π)× [0, π] � (θ, φ) �→ (cos θ sinφ, sin θ sinφ, cosφ) ∈ S2

and let Σ := {φ = π
2 }.

Then an orthonormal basis of Laplace eigenfunctions is given by

Y m
l (θ, φ) =

(
(l −m)!(2l + 1)

4π(l +m)!

)1/2

eimθPm
l (cosφ), −l ≤ m ≤ l,

where Pm
l is an associated Legendre function (see for example [OLBC10, Section

14.30]). For the definition of Pm
l see [OLBC10, Section 14.2]. Note that

(−ΔS2 − λ2
l )Y

m
l = 0, λl :=

√
l(l + 1) ∼l→∞ l.

We take φl = Y l−1
l and recall that Σ = {φ = π

2 }. By [OLBC10, Section 14.30(ii)
and Section 14.5(i)], we have

φl|Σ = Y l−1
l

(
θ,

π

2

)
= 0,

since P l−1
l (0) = 0. Moreover, using [OLBC10, equation (14.5.2)] together with the

definition of Y l−1
l , we have

(C.1) |∂νφl|Σ| =
∣∣∣∂φY l−1

l

(
θ,

π

2

)∣∣∣ =
∣∣∣∣∣
(

(2l + 1)

4π(2l − 1)!

)1/2
2lπ1/2

Γ(−l + 1
2 )

∣∣∣∣∣ ∼ cl3/4.

Indeed, note that for l ≥ 1,

Γ(
1

2
− l) =

(−1)lπ

Γ(l + 1
2 )

=
(−1)l

√
π22ll!

(2l)!
=

2l(−1)l
√
π∏l

j=1(2j − 1)

and ∏l
j=1(2j − 1)2

(2l − 1)!
=

l∏
j=2

2j − 1

2j − 2
= e

∑l
j=2 log(1+ 1

2j−2 ).
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Then, note that
l∑

j=2

log
(
1 +

1

2j − 2

)
=

1

2
log l +O(1)

and, in particular, ∏l
j=1(2j − 1)√
(2l − 1)!

∼ cl
1
4 .

The above four lines finally prove (C.1). Therefore, for l large enough, we obtain

λ
−1/4
l ∼ l−1/4 = l−1/4‖Y l−1

l ‖L2(S2) ≥ c‖l−1∂φY
l−1
l ‖L2(Σ),

which concludes the proof of the lemma. �
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tielles, Cours de l’Ecole Polytechnique, 2002.
[BGT07] N. Burq, P. Gérard, and N. Tzvetkov, Restrictions of the Laplace-Beltrami eigenfunc-

tions to submanifolds (English, with English and French summaries), Duke Math. J.
138 (2007), no. 3, 445–486, DOI 10.1215/S0012-7094-07-13834-1. MR2322684

[BL01] Nicolas Burq and Gilles Lebeau, Mesures de défaut de compacité, application au
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Verlag, Basel, 2010. MR2599384
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