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Abstract

We consider the exact controllability problem on a compact manifold � for two
coupled wave equations, with a control function acting on one of them only. Action
on the second wave equation is obtained through a coupling term. First, when the
two waves propagate with the same speed, we introduce the time Tω→O→ω for
which all geodesics traveling in � go through the control region ω, then through
the coupling region O, and finally come back in ω. We prove that the system is
controllable if and only if both ω and O satisfy the Geometric Control Condition
and the control time is larger than Tω→O→ω. Second, we prove that the associated
HUM control operator is a pseudodifferential operator and we exhibit its principal
symbol. Finally, if the two waves propagate with different speeds, we give sharp
sufficient controllability conditions on the functional spaces, the geometry of the
sets ω and O, and the minimal time.
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1. Introduction and Main Result

1.1. Setting and Motivation

Let (�, g) be a C ∞ compact connected n-dimensional Riemannian manifold
without boundary. We denote by � the (negative) Laplace–Beltrami operator on �

for the metric g, and P = P(x, ∂t , ∂x ) = ∂2
t −� denotes the d’Alembert operator

(or wave operator) on the manifold R × �. We take two smooth functions bω and
b on �. We consider the controllability problem for the system of coupled wave
equations {

Pu1 + b(x) u2 = 0 in (0, T ) × �,

Pu2 = bω(x) f in (0, T ) × �.
(1.1)

Here, the state of the system is (u1, u2, ∂t u1, ∂t u2) and f is our control function,
with possible action on the set {bω �= 0}. Taking zero initial data, together with a
forcing term f ∈ L2((0, T )×�)), the associated solution of (1.1) lies for any time
in the space H2(�)× H1(�)× H1(�)× L2(�) as u2 ∈ L2(0, T ; H1(�)). Hence,
there is a gain of regularity for the uncontrolled variable u1 (see also [1,3,4]).

In this context, the following definition states the adapted control problems,
viz. exact controllability, null-controllability, and controllability from zero. Note
that because of the linearity and the time reversibility of the system we consider,
the three statements are in fact equivalent.

Definition 1.1. We say that System (1.1) is controllable in time T > 0 if one of the
following (equivalent) assertions is satisfied:

• (Exact controllability) For any initial data (u0
1, u0

2, u1
1, u1

2) ∈ H2(�)×H1(�)×
H1(�)× L2(�) and any target (ũ0

1, ũ0
2, ũ1

1, ũ1
2) ∈ H2(�)× H1(�)× H1(�)×

L2(�) there exists a control function f ∈ L2((0, T ) × �) such that the solu-
tion of (1.1) issued from (u1, u2, ∂t u1, ∂t u2)|t=0 = (u0

1, u0
2, u1

1, u1
2), satisfies

(u1, u2, ∂t u1, ∂t u2)|t=T = (ũ0
1, ũ0

2, ũ1
1, ũ1

2);• (Null-controllability) For any initial data (u0
1, u0

2, u1
1, u1

2) ∈ H2(�)× H1(�)×
H1(�)× L2(�), there exists a control function f ∈ L2((0, T )×�) such that
the solution of (1.1) associated to the initial data (u1, u2, ∂t u1, ∂t u2)|t=0 =
(u0

1, u0
2, u1

1, u1
2) satisfies (u1, u2, ∂t u1, ∂t u2)|t=T = (0, 0, 0, 0);

• (Controllability from zero) For any target (ũ0
1, ũ0

2, ũ1
1, ũ1

2) ∈ H2(�)× H1(�)×
H1(�)× L2(�), there exists a control function f ∈ L2((0, T )×�) such that
the solution of (1.1) starting from rest (u1, u2, ∂t u1, ∂t u2)|t=0 = (0, 0, 0, 0)
satisfies (u1, u2, ∂t u1, ∂t u2)|t=T = (ũ0

1, ũ0
2, ũ1

1, ũ1
2).
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For most results proved in this article, we shall assume that the function b is non-
negative on �, and denote by ω = {bω �= 0} the control set and by O = {b �= 0}
the coupling set (which is the indirect control set for the first equation in (1.1)).

A natural necessary and sufficient condition to obtain controllability for wave
equations is to assume that the control set satisfies the Geometric Control Condition
(GCC) defined in [8,38]. For ω ⊂ � and T > 0, we shall say that (ω, T ) satisfies
GCC if every geodesic traveling at speed one in � meets ω in a time t < T . We
say that ω satisfies GCC if there exists T > 0 such that (ω, T ) satisfies GCC. We
also set Tω = inf{T > 0, (ω, T ) satisfies GCC}.

Note that in the situation of System (1.1), a necessary condition is that both
sets ω and O satisfy GCC (otherwise one of the two equations is not controllable).
If ω does not satisfy GCC, even the second equation of (1.1) is not controllable
(see [8,9] for a single wave equation). If O does not satisfy GCC, the first equation
of (1.1) is not controllable for the same reason.

The controllability problem for systems like (1.1) has already been addressed
in [3,4,39]. In the first two articles, and in the context of symmetric systems, it is
proved that controllability holds in large time under optimal geometric conditions
on the sets ω and O (with a smallness assumption on some coupling coefficients).
However, the minimal time given in these articles depends upon all parameters of
the problem (that is b and bω). In the situation of System (1.1), it seems natural
that the control time should depend only on the geometry of the sets �,ω and O,
as it is the case for a single wave equation. In [39], the authors study System (1.1)
in the one dimensional torus. Following [15], they obtain a sharper estimate on the
control time than in [3,4] (in particular, it depends only on the geometry of �, ω
and O, and yet in general this estimate is not optimal. We can also quote the work
of [16, Chapter 7] where the authors study the simultaneous control (by a single
control function) of a system of uncoupled wave equations in one dimension.

We provide some motivations for considering control systems like (1.1).

Controllability of physical systems. Several physical systems can be described by
coupled partial differential equations: elasticity, thermoelasticity, elecromagnetism,
plate systems, etc.. The property of exact controllability for those types of systems
is not fully understood yet.

System (1.1) can be seen as a toy model for such systems. Its study is an attempt
to understand the phenomena governing the exact controllability process.

Controllability of parabolic systems. The controllability of parabolic systems
has been intensively studied in the last decade (see for instance the review arti-
cle [5]). One of the challenging questions in this area is to understand the optimal
geometric conditions on the control set ω and the coupling set O needed for null-
controllability. The first positive result concerns the case where ω∩O �= ∅ (see [5]
or [26]). As for the case ω ∩ O = ∅, little is known. The idea of [3,4] was to make
use of the transmutation method to reduce the parabolic problem to a system of
coupled wave equations. This allowed these authors to establish null-controllability
of symmetric systems under the only condition that both ω and O satisfy GCC. In
particular, this includes several situations where ω ∩ O = ∅ (see [3,4] and the fig-
ures therein). However, in such results, ω and O both need to satisfy GCC, whereas
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for parabolic systems we expect a null controllability result to hold without any
geometric assumptions on these two subsets. Concerning cascade heat equations,
the only result (to our knowledge) is proved in one space dimension with the same
strategy in [39]. The present work provides an extension of this result in general
n-dimensional compact manifolds under geometric conditions.

Insensitizing controls for the wave equation. The question of insensitizing control
for a wave equation, introduced by J.-L. Lions [32] and addressed in [15,46] is the
following. We consider the controlled wave equation⎧⎪⎨

⎪⎩
Pu = bω(x) f in (0, T ) × �,

u|t=0 = u0 + τ0z0 in �,

∂t u|t=0 = u1 + τ1z1 in �,

(1.2)

where the data (u0, u1) ∈ H1(�) × L2(�) are fixed, and τ0z0, τ1z1 represent
unknown noises, with

‖z0‖H1(�) = ‖z1‖L2(�) = 1, (1.3)

and τ0, τ1 ∈ R. A control function f ∈ L2((0, T ) × �) is said to insensitize the
cost functional

�(u) = 1

2

∫ T

0

∫
�

b(x)|u(t, x)|2 dx dt, (1.4)

if for any pair (z0, z1) satisfying (1.3), the corresponding solution of (1.2) satisfies

d

dτ0
�(u)

∣∣∣
τ0=τ1=0

= d

dτ1
�(u)

∣∣∣
τ0=τ1=0

= 0.

This basically means that for this particular control function f , the cost functional
(that is the local L2 norm of the solution on O) is insensitive to small variations of
the initial data. This problem can be recast as a constrained coupled control problem
of the form (1.1), to which our results will apply.

On simultaneous control. By introducing v1 = u1 + u2 and v2 = u2 − u1 in (1.1)
we obtain the following system{

Pv1 + b(x) (v1 + v2)/2 = bω(x) f in (0, T ) × �,

Pv2 − b(x) (v1 + v2)/2 = bω(x) f in (0, T ) × �.

The control problem considered here thus corresponds to a case of simultaneous
control as introduced by Lions [31]. Yet using this form by mixing the components
u1 and u2 the additional regularity of one of them, u1, becomes invisible. The form
(1.1) is thus more adapted for the analysis we carry out here.

The main purposes of this article are to prove controllability for System (1.1),
to find an explicit expression of the minimal control time in the simple situation
where � is a compact manifold without boundary, and to describe precisely the
microlocal properties of the optimal control operator that is yielding the control
function of minimal L2-norm.
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Fig. 1. A one-dimensional example with a particular geodesic associated with the minimal
control time Tω→O→ω = 2L − |ω| on � = R/LZ equipped with the flat metric

1.2. Main Results

Our main results are threefold. First, we give a necessary and sufficient condition
for the controllability of System (1.1). Second, we give a precise description of
the optimal control operator associated with System (1.1). Third, we give sharp
sufficient conditions for the controllability of similar systems when the two waves
propagate with different speeds.

1.2.1. Controllability of System (1.1) To state our first main result, we introduce
the adapted control time.

Definition 1.2. Given two sets ω and O both satisfying GCC, we set Tω→O→ω to
be the infimum of times T > 0 for which the following assertion is satisfied:

every geodesic traveling at speed one in � meets ω in a time t0 < T , meets
O in a time t1 ∈ (t0, T ) and meets ω again in a time t2 ∈ (t1, T ).

Note that in general Tω→O→ω �= TO→ω→O, and that we have the estimate

max(TO, Tω) � Tω→O→ω � 2Tω + TO.

Fig. 1 illustrates the value of the control time in a simple one-dimensional setting.
We can now state our main controllability result (in the sense of Definition 1.1).

Theorem 1.3. Suppose that b � 0 on �, and that both sets ω and O satisfy
GCC. Then, System (1.1) is controllable if T > Tω→O→ω and is not controllable
if T < Tω→O→ω.

In particular this result holds without any assumption on the smallness of the
coupling coefficient b as opposed to [3,4].

According to the Hilbert Uniqueness Method (HUM) of J.-L. Lions [31], which
we discuss in Section 5.1 for the system we consider, the controllability property
of Theorem 1.3 is equivalent to an observability inequality for the adjoint system.
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More precisely, System (1.1) is exactly controllable in time T if and only if the
inequality

E−1(v1(0)) + E0(v2(0)) � C
∫ T

0

∫
�

|bωv2|2 dx dt (1.5)

holds for every (v1, v2) ∈ C 0([0, T ]; H−1(�)× L2(�))∩ C 1([0, T ]; H−2(�)×
H−1(�)) solutions of{

Pv1 = 0 in (0, T ) × �,

Pv2 = −b(x) v1 in (0, T ) × �.
(1.6)

In the observability inequality (1.5), we use the notation

Ek(v) = ‖v‖2
Hk (�)

+ ‖∂tv‖2
Hk−1(�)

, k ∈ Z,

where the space Hs(�) is endowed with the norm

‖v‖Hs (�) = ‖(1 − �)
s
2 v‖L2(�), s ∈ R,

and the associated inner product.
The proof of the observability inequality (1.5) is based on a contradiction argu-

ment, inspired by that of [27]. Similarly, the key tools involved are microlocal defect
measures introduced by P. Gérard [21] and L. Tartar [43], and used to solve control
problems in [9,11,27].

1.2.2. Hilbert Uniqueness Method and Description of the Control An impor-
tant feature of the Hilbert Uniqueness Method, as presented by Lions [31], lays
in the following two facts: the control one obtains, fHU M , minimizes the cost
functional ‖ f ‖2

L2((0,T )×�)
among all f ∈ L2((0, T ) × �) realizing a control for

System (1.1) (see Section 5); it is the optimal L2-control. Moreover, it is itself
a solution of the adjoint system (for instance System (2.12) in our situation) for
appropriate initial data, say W 0.

The Gramian operator L associated with Systems (1.1)–(1.6) is given by∫ T

0

∫
�

|bωv2|2 dx dt = 〈LV, V 〉 ,

where v2 is the solution of (1.6) associated with the initial data (v1, v2, ∂tv1,

∂tv2)|t=0 = V . The duality bracket used above will be made precise in Section 5
(where Sobolev spaces will be shifted – see also Section 2.3). If the observability
inequality (1.5) is satisfied, then the HUM control operator is the inverse of the
mapping L. From the initial data V to be controlled, the HUM operator maps the
associated initial data W 0 for the adjoint system, giving rise to the control function
fHU M .

The second main goal of this article is to give an explicit representation of
the HUM operator following the ideas of [18]. We prove the following result (see
Theorem 5.5 and Corollary 5.6).
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1. The Gramian operator is a matrix of pseudodifferential operators of order zero.
The determinant of its principal symbol takes essentially the following form

∫ T

0

∫ T

0
(b2

ω ◦ ϕt1)(b
2
ω ◦ ϕt2)

(∫ t2

t1
b ◦ ϕσdσ

)2

dt1 dt2,

where ϕσ denotes the geodesic flow on S∗�.
2. This operator is elliptic if and only if T > Tω→O→ω. This property provides

a second proof of Theorem 1.3.
3. For T > Tω→O→ω, the HUM control operator is also a matrix of pseudodif-

ferential operators of order zero.

A precise statement needs the introduction of some notation and will be given in
Section 5.3. In particular, this result holds without any sign assumption on the
function b. As a consequence, this method also provides a necessary and sufficient
condition of (high-frequency) controllability for System 1.1 for any real-valued b,
stated in Corollary 5.8.

The proof of this result follows the program elaborated in [18], in the case of
the wave equation, and uses in an essential way the Egorov theorem. The informa-
tion carried by microlocal defect measures is not sufficient to prove such a strong
property of the HUM operator. Note that the third item above has several important
consequences, as described in [18].

1.2.3. The Case of Different Speeds It also appears natural to consider the
control problem for two coupled wave equations with different speeds. We thus set
P = ∂2

t − � and Pγ = ∂2
t − γ 2� for some γ > 0, γ �= 1.

Let s ∈ R. Assume that we have (u0
1, u1

1) ∈ Hs+2(�) × Hs+1(�), (u0
2, u1

2) ∈
Hs+1(�) × Hs(�) and F ∈ L1(0, T ; Hs(�)). Then, classically, there exists a
unique solution to {

Pu1 + b(x) u2 = 0 in R × �,

Pγ u2 = F in R × �,
(1.7)

with the initial conditions,

(u1, ∂t u1)|t=0 = (u0
1, u1

1), (u2, ∂t u2)|t=0 = (u0
2, u1

2),

satisfying

u1 ∈ C 0(R, Hs+2(�)) ∩ C 1(R, Hs+1(�)),

u2 ∈ C 0(R, Hs+1(�)) ∩ C 1(R, Hs(�)).

Our first result is a microlocal “hidden regularity” result: in fact, the first com-
ponent of the solution of (1.7) enjoys more smoothness than expected.

Theorem 1.4. Assume that

(u1, ∂t u1)|t=0 = (u0
1, u1

1) ∈ Hs+3(�) × Hs+2(�).
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Then, the first component of the solution (u1, u2) to System 1.7 satisfies the addi-

tional regularity u1 ∈
3⋂

k=0

C k(R; Hs+3−k(�)). Moreover, for all T > 0 there exists

a constant C > 0 such that

3∑
k=0

‖∂k
t u1‖L∞(0,T ;Hs+3−k (�)) + ‖u2‖L∞(0,T ;Hs+1(�)) + ‖∂t u2‖L∞(0,T ;Hs (�))

� C
(
‖u0

1‖Hs+3(�)+‖u1
1‖Hs+2(�)+‖u0

2‖Hs+1(�)+‖u1
2‖Hs (�)+‖F‖L1(0,T ;Hs (�))

)
.

(1.8)

The proof is given in Section 6.
We now consider the associated control problem:{

Pu1 + b(x) u2 = 0 in (0, T ) × �,

Pγ u2 = bω(x) f in (0, T ) × �.
(1.9)

As a consequence of Theorem 1.4, for f ∈ L2((0, T ) × �), starting from zero
initial data, we have

u1 ∈ C 0(R, H3(�)) ∩ C 1(R, H2(�)), u2 ∈ C 0(R, H1(�)) ∩ C 1(R, L2(�)),

leading to the following non controllability result.

Corollary 1.5. For any s < 2 any T > 0, and any open sets ω and O, if we
start from zero initial data and if f ∈ L2((0, T ) × �) we cannot reach any target
(u1(T ), u2(T ), ∂t u1(T ), ∂t u2(T )) = (ũ0

1, ũ0
2, ũ1

1, ũ1
2) if

(ũ0
1, ũ0

2, ũ1
1, ũ1

2) ∈
(

Hs+1(�) \ H3(�)
)

× H1(�) ×
(

Hs(�) \ H2(�)
)

× L2(�).

In light of what precedes we define the following property.

Definition 1.6. Let s � 2. We shall say that System (1.9) is controllable (from zero)
in the space Hs+1×Hs in time T > 0 if for any target (ũ0

1, ũ0
2, ũ1

1, ũ1
2) ∈ Hs+1(�)×

H1(�)× Hs(�)× L2(�), there exists a control function f ∈ L2((0, T )×�) such
that the solution of (1.9) starting from rest (u1, u2, ∂t u1, ∂t u2)|t=0 = (0, 0, 0, 0)
satisfies (u1, u2, ∂t u1, ∂t u2)|t=T = (ũ0

1, ũ0
2, ũ1

1, ũ1
2).

This notion is also equivalent to exact and null-controllability. Note that obviously,
if s′ > s � 2, controllability in Hs+1 × Hs implies controllability in Hs′+1 × Hs′

.

Definition 1.7. For a subset U ⊂ � satisfying GCC and γ > 0, we define TU (γ )

to be the infimum of times T such that every geodesic traveling at speed γ in �

meets U in a time t < T .

In particular, with the notation above, we have

γ TU (γ ) = TU (1) = TU , (1.10)

the usual GCC time of the subset U .
With these two definitions, we have the following result.
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Theorem 1.8. 1. Suppose that ω ∩ O does not satisfy GCC. Then for any s � 2
and any T > 0, System (1.9) is not controllable in Hs+1 × Hs in time T .

2. Suppose that ω ∩ O satisfies GCC. Then, System (1.9) is controllable in
H3 × H2 for T > max{Tω∩O, Tω(γ )} and is not controllable for T <

max{T
ω∩O, Tω(γ )}.

The proof is given in Section 6.

Remark 1.9. In fact, the following phenomena occur:

• In item 1, there exists an initial condition that generates a singularity for u1 that
propagates independently of the action of the control function.

• In item 2, in the case T < max{T
ω∩O(1), Tω(γ )} there exists an initial condition

that generates a singularity for u1 that does not meet the region ω ∩ O. The
proof of Theorem 1.8 shows that this is the only region where this singularity
can be affected by the control process.

Remark 1.10. Considering the case where ω ∩ O satisfies GCC of item 2, and the
bounds obtained for the control time, one may wonder what occurs if we let γ → 1.
We have, with (1.10),

max{Tω∩O, Tω(γ )} → max{Tω∩O, Tω} = Tω∩O,

max{T
ω∩O, Tω(γ )} → max{T

ω∩O, Tω} = T
ω∩O.

In the case γ = 1, controllability is not considered in the same spaces. In fact it is
natural to consider controllability in H2 × H1, that is for a target (ũ0

1, ũ0
2, ũ1

1, ũ1
2) ∈

H2(�)× H1(�)× H1(�)× L2(�) as explained in the beginning of Section 1.1.
Yet for system (1.1) one can restrict the control problem to smoother targets, that
is, (ũ0

1, ũ0
2, ũ1

1, ũ1
2) ∈ H3(�) × H1(�) × H2(�) × L2(�). The minimal control

time will then be less than the time Tω→O→ω of Definition 1.2.
We have Tω→O→ω � T

ω∩O � Tω∩O. Yet, in general Tω→O→ω < T
ω∩O, as

can be seen in the example of Fig. 2. We thus conclude that in the case where ω∩O
satisfies GCC, even if we have controllability in H3 × H2 for all values of γ > 0,
the infimum of all times for which controllability holds may not be continuous as
γ → 1.

This non continuity result illustrates well the fact that the underlying geomet-
rical dynamics changes radically as γ crosses 1. If γ �= 1 the bicharacteristics of
one wave operator, and hence the associated travelling singularities, never meet
those of the second wave operator (which moreover explains the microlocal gain
of regularity). However if γ = 1 the two systems of bicharacteristics coincide,
allowing for “communication” in the coupling region that can only contribute to
reducing the control time.

Remark 1.11. An extension of these results should be possible in the case of differ-
ent Riemannian metrics yielding (partially or totally) non-intersecting characteristic
sets of the two wave operators.

The previous results show that in the case where the two waves propagate
with different speeds much stronger geometrical conditions on both ω and O are
needed to achieve a positive controllability result if compared to the conditions of
Theorem 1.3 in the case of two equal speeds.



122 Belhassen Dehman, Jérôme Le Rousseau & Matthieu Léautaud

Fig. 2. A simple one-dimensional geometry for which Tω→O→ω < T
ω∩O in the case

where ω ∩ O satisfies GCC

1.3. Comments and Outline

1.3.1. Regarding the Time Tω→O→ω The time Tω→O→ω might be surprising at
first sight. It can be interpreted in the following way: to be able to detect the energy
of both components of System (1.6) from the observation on ω of the second one
only, the polarization of the state along each ray of geometric optics has to change its
direction between two passages in the control region ω. This change of polarization
arises only when this ray enters the coupling set O.

A description of the notion of polarization, as well as an insight on this geo-
metrical interpretation may be found in [13].

A comparable geometric condition already appears in the study of the decay
rates for the thermoelasticity system, see [29] and [13].

1.3.2. Comparing the Different Methods of Proofs of Theorem 1.3 In the case
of a scalar wave equation, there exist, to our knowledge, three different methods for
proving the (high-frequency) observability on a compact manifold, with optimal
conditions on the geometry and the control time. The first one, introduced by Rauch
and Taylor [38], and further developed by Bardos, Lebeau and Rauch [8], deals with
the propagation of wavefront sets and uses in a crucial way the Hörmander theorem
on propagation of singularities.

The second method, introduced by Lebeau [27], further used by Burq [9] as
well as Burq and Gérard [11], is based on microlocal defect measures and the
propagation of their support.

The last method relies on the use of the Egorov theorem (that is, the theory of
Fourier integral operators) and was recently proposed by Dehman and Lebeau [18].
Note on the one hand that the first two methods also apply (with considerable
additional difficulties) in the case of a manifold with boundary. On the other hand,
there is no analogue of the Egorov theorem in such a case, and the last method
fails to apply. However, in [18], the authors show that the FIO Egorov approach
provides additional insight on the control problem. In particular, they prove that the
HUM operator (the optimal control operator) is (essentially) a pseudodifferential
operator and they exhibit its principal symbol.

Here, we provide two different proofs of Theorem 1.3. The first one (using
microlocal defect measures) has the advantage of working with limited smoothness
(we basically only have to assume that bω ∈ C 0(�) and b ∈ W 1,∞(�)). Moreover,
this method could be extended to boundary value problems.
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The second proof, using the Egorov theorem, has the advantage of working as
well with coupling functions b changing signs. Moreover, this method not only pro-
vides the observability inequality, but also several additional items of information
on the microlocal nature of the HUM control operator.

Finally, note that a proof based on wavefront sets might be possible with the
use of the polarization wavefront set of Dencker [17].

1.3.3. The Case of an Open Domain � ⊂ R
n Naturally, the same problem

can also be adressed on a bounded smooth open set � ⊂ R
n (or a manifold with

boundary), with (for instance) Dirichlet conditions on the boundary. The method
of proof using microlocal defect measures may also work in this setting. However,
one of its key points is a propagation result of the microlocal defect measures
(analogous of Lemma 3.3 of the present article) up to the boundary (see [9,11,27]
for scalar equations and [13] for systems). This technical point needs more care,
and is the goal of an ongoing work.

1.3.4. Approximate Controllability Here, we do not touch the subject of approx-
imate controllability. It is deeply related to the question of unique continuation for
systems. This topic is widely open and we believe that the tools developed in the
present article are not well suited for such a study.

1.3.5. Application to Parabolic Systems The “control transmutation method”
allows one to transfer controllability results for certain types of equations to other
types through appropriate transforms; we refer the reader to [33,35–37,40]. The
name “control transmutation” was coined in [33]. For systems it was used in [3,4]
and we can follow their approach here.

As a corollary of Theorem 1.3, we can obtain several null-controllability results
for cascade parabolic (or Schrödinger) systems (for all positive time independently
of the control time in the hyperbolic case), in cases where the control region ω and
the coupling region O do not intersect. However, in such results, ω and O have to
satisfy GCC, whereas for parabolic systems we expect a null-controllability result
to hold without any geometric assumption on these two subsets.

Note that the controllability results for hyperbolic systems in the recent work [2]
(obtained with different methods) yield similar results concerning parabolic systems
via the “control transmutation method”.

1.3.6. Application to Insensitizing Controls We first recall that the problem of
insensitizing controls is equivalent (see [15] or [46]) to the fact that the observability
inequality

E−1(v1(0)) � C
∫ T

0

∫
�

|bωv2|2 dx dt,
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holds for every (v1, v2) ∈ C 0([0, T ]; H−1(�)× L2(�))∩ C 1([0, T ]; H−2(�)×
H−1(�)) solutions of⎧⎪⎨

⎪⎩
Pv1 = 0 in (0, T ) × �,

Pv2 = b(x) v1 in (0, T ) × �,

(v2, ∂tv2)|t=T = (0, 0) in �.

Since Theorem 1.3 also holds for b � 0,O = {b < 0} (changing v1 in −v1), we
directly obtain the following result.

Corollary 1.12. Suppose that both ω and O satisfy GCC, and that T > Tω→O→ω.
Then for all (u0, u1) ∈ H1(�) × L2(�), there exists a control function f ∈
L2((0, T )×�) for System (1.2) that insensitizes the functional � defined in (1.4).

Since GCC is necessary for both setsω and O, the geometric conditions obtained
here are optimal. Note that the only known results to our knowledge are the one
dimensional case, see [15], and the case where O ∩ ω satisfies the multiplier con-
dition of Lions, see [46].

1.3.7. Outline The outline of this article is the following. In Section 2, we give
some notation, define the tools used in the main part of the article and recall some
basic well-posedness results.

In Section 3, we prove that the observability inequality holds if T > Tω→O→ω.
Conversely, we prove in Section 4 that the observability inequality does not hold
in the case T < Tω→O→ω.

In Section 5, we develop the Hilbert Uniqueness Method. We first prove the
equivalence between controllability and observability in Section 5.1 and we define
the HUM control operator in Section 5.2. Then, we give the explicit characterization
of the HUM operator in Section 5.3.

Finally, in Section 6, we provide proofs for the positive and negative results
concerning the case of coupled waves with different speeds.

2. Preliminary Remarks, Definitions and Notation

We define the manifold M = R×� and its restriction to (0, T ), MT = (0, T )×
� = {(t, x) ∈ M such that t ∈ (0, T )}. We also write T ∗MT as the restriction of the
cotangent bundle of M to (0, T ), that is T ∗MT = {(t, x, τ, η) ∈ T ∗M, t ∈ (0, T )}.
Setting |η|2x = gx (η, η) as the Riemannian norm in the cotangent space of � at x ,
we define

S∗M = {(t, x, τ, η) ∈ T ∗M, |τ |2 + |η|2x = 1},
the cosphere bundle of M , and similarly S∗MT its restriction to (0, T ). We denote
by π : S∗M → M the natural projection, which also maps S∗MT onto MT . We
shall also use the associated cosphere bundle in the spatial variables only,

S∗� = {(x, η) ∈ T ∗�, |η|2x = 1/2}.
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2.1. Symbols, Operators and Measures on the Cosphere Bundle

Here, we follow [10, Section 1.1] for the notation. We denote by Hk(X; C
j )

or Hk
loc(X; C

j ), with j = 1 or 2 and X = �, M, or MT , the usual Sobolev space
for functions valued in C

j , endowed with the natural inner product and norm. In
particular, the L2(X; C

j ) inner product is denoted by (·, ·)L2(X;C j ).
We define Sm

phg(T
∗MT ; C

j× j ), with j = 1 or 2 as the set of matrix valued poly-
homogeneous symbols of order m on MT with compact support in MT . We recall
that symbols in the class Sm

phg(T
∗
R

n; C
j× j ) behave well with respect to changes

of variables, up to symbols in Sm−1
phg (T ∗

R
n; C

j× j ) (see [23, Theorem 18.1.17 and
Lemma 18.1.18]).

For any m, the restriction to the sphere

Sm
phg(T

∗MT ; C
j× j ) → C ∞

c (S∗MT ; C
j× j ), a → a|S∗ MT , (2.1)

is surjective. This will allow us to identify a homogeneous symbol with a smooth
function on the sphere.

We denote by
m
phg(MT ; C

j× j ), with j = 1 or 2 the space of polyhomogeneous
pseudodifferential operators of order m on MT , with a compactly supported kernel
in MT × MT : one says that A ∈ 
m

phg(MT ; C) if

1. its kernel K (x, y) ∈ D ′(MT × MT ) is such that supp(K ) is compact in MT ;
2. K (x, y) is smooth away from the diagonal�MT = {(t, x; t, x); (t, x) ∈ MT };
3. for every coordinate patch MT,κ ⊂ MT with coordinates MT,κ � (t, x) �→

κ(t, x) ∈ M̃T,κ ⊂ R
n+1 and all φ0, φ1 ∈ C ∞

c (M̃T,κ ) the map

u �→ φ1

(
κ−1

)∗
Aκ∗(φ0u)

is in Op(Sm
phg(R

n+1 × R
n+1)).

For A ∈ 
m
phg(MT ; C

j× j ), we denote by σm(A) ∈ Sm
phg(T

∗MT ; C
j× j ) the

principal symbol of A (see [23, Chapter 18.1]). Note that the principal symbol is
uniquely defined in Sm

phg(T
∗MT ; C

j× j ) because of the polyhomogeneous structure
(see the remark following Definition 18.1.20 in [23]). The application σm enjoys
the following properties

• σm : 
m
phg(MT ; C

j× j ) → Sm
phg(T

∗MT ; C
j× j ) is surjective.

• For all A ∈ 
m
phg(MT ; C

j× j ), σm(A) = 0 if and only if A ∈ 
m−1
phg (MT ; C

j× j ).

• For all A ∈ 
m
phg(MT ; C

j× j ), σm(A∗) = tσm(A).

• For all A1 ∈ 

m1
phg(MT ; C

j× j ) and A2 ∈ 

m2
phg(MT ; C

j× j ), we have A1 A2 ∈



m1+m2
phg (MT ; C

j× j ) with

σm1+m2(A1 A2) = σm1(A1)σm2(A2).

• For all A1 ∈ 

m1
phg(MT ; C) and A2 ∈ 


m2
phg(MT ; C), we have [A1, A2] =

A1 A2 − A2 A1 ∈ 

m1+m2−1
phg (MT ; C) with

σm1+m2−1([A1, A2]) = 1

i
{σm1(A1), σm2(A2)}.



126 Belhassen Dehman, Jérôme Le Rousseau & Matthieu Léautaud

Here, {a1, a2} denotes the Poisson bracket, given in local charts by

{a1, a2} = ∂τa1∂t a2 − ∂t a1∂τa2 +
∑

l

(∂ξl a1∂xl a2 − ∂xl a1∂ξl a2).

• If A ∈ 
m
phg(MT ; C

j× j ), then A maps continuously Hk(MT ; C
j ) into

Hk−m(MT ; C
j ) (resp. Hk

loc(MT ; C
j ) into Hk−m

loc (MT ; C
j )). In particular, for

m < 0, A is compact on L2(MT ; C
j ).

Given an operator A ∈ 
m
phg(MT ; C), we define Char(A) = {ρ ∈

T ∗M, σm(A)(ρ) = 0}.
At places we shall need to consider pseudodifferential operators acting on � yet

depending upon the parameter t ∈ (0, T ) with some smoothness with respect to t .
Let k ∈ N∪{∞}, we say that At ∈ C k

(
(0, T ),Op(Sm

phg(R
n ×R

n))
)

if At = Op(at )

with at ∈ C k((0, T ), Sm
phg(R

n ×R
n)). Next we say that At ∈ C k((0, T ),
m

phg(�))

if

1. its kernel Kt (x, y) is in C k((0, T ),C ∞(� × � \ ��)) where �� =
{(x, x); x ∈ �};

2. for every coordinate patch�κ ⊂ �with coordinates�κ � x �→ κ(x) ∈ �̃κ ⊂
R

n and all φ0, φ1 ∈ C ∞
c (�̃κ) the map

u �→ φ1

(
κ−1

)∗
Atκ

∗(φ0u)

is in C k
(
(0, T ),Op(Sm

phg(R
n × R

n))
)

.

In particular we shall use the following form of the Egorov theorem.

Theorem 2.1. Let At ∈ C ∞(
(0, T ),
1

phg(�)
)

with real principal symbol a1,t and
P ∈ 
m

phg(�),m ∈ R. Define S(s′, s) as the solution operator for the Cauchy
problem

∂t u + i At u = 0, u|t=s = u0,

that is, u(s′) = S(s′, s)u0. Then there exists Qt ∈ C ∞(
(0, T ),
m

phg(�)
)

such that,
for all σ, N ∈ R, we have

S(t, 0)P S(0, t) − Qt ∈ C ∞ (
(0, T ),L(Hσ (�), Hσ+N (�))

)
,

and the principal symbol of Qt is given by qt ∈ C ∞((0, T ), Sm
phg(T

∗�)) with
qt = p ◦ χ0,t where ρ(s, t) = χs,t (ρ0) is given by the flow of the Hamiltonian
vector field associated with a1,t :

d

ds
ρ(s, t) = Ha1,t (ρ(s, t)), ρ(t, t) = ρ0.

The proof can be adapted from that given in for instance [45, Theorem 0.9.A]. The
notion of smoothing operators appearing in the statement of the above theorem is
made precise in following definition.
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Definition 2.2. (Smoothing operators) Let A : D ′(�) → D ′(�) be a linear oper-
ator and k > 0. We say that A is k-smoothing if A ∈ L(Hs(�); Hs+k(�)) for all
s ∈ R. We say that A is infinitely smoothing if A is k-smoothing for all k > 0.

Moreover, we say that A ∈ Rk(�) if A ∈ L(Hs(�); Hs+k(�)) for all s � 0.
We set R∞(�) = ⋂

k>0 Rk(�).

Note in particular that k-smoothing operators are in Rk(�). Moreover, for
k > 0, operators in 
−k

phg(�) are k-smoothing.
We recall that −� denotes the Laplace operator on �, and that we have

−� ∈ 
2
phg(�), with σ2(−�)(x, η) = |η|2x .

It will also be useful to define a function λ̃ ∈ C ∞(T ∗M) such that

λ̃(t, x, τ, η)=(|τ |2+|η|2x )
1
2 for (t, x, τ, η) ∈ T ∗M, with (|τ |2+|η|2x )

1
2 � 1

2

λ̃(t, x, τ, η) � C > 0 for (t, x, τ, η) ∈ T ∗M, with (|τ |2+|η|2x )
1
2 � 1

2 .

(2.2)

This gives χλ̃m ∈ Sm
phg(T

∗M; C) if m ∈ Z and χ ∈ C ∞
c (M).

Finally, we define M(S∗MT ; R) to be the set of real valued measures on
S∗MT ,M+(S∗MT ) the set of positive measures on S∗MT , and M+(S∗MT ; C

2×2)

the set of measures with values in non-negative hermitian 2 × 2 matrices. For
μ ∈ M(S∗MT ; R) (resp. μ ∈ M+(S∗MT ; C

2×2)) and a ∈ C 0
c (S

∗MT ; R) (resp.
a ∈ C 0

c (S
∗MT ; C

2×2)), we shall write

〈μ, a〉S∗ MT
=

∫
S∗ MT

a(ρ)μ(dρ),

(
resp. 〈μ, a〉S∗ MT

=
∫

S∗ MT

tr{a(ρ)μ(dρ)}
)
,

for the duality bracket. The same notation will also be used for a ∈ S0
phg(T

∗MT ; R)

(resp. a ∈ S0
phg(T

∗MT ; C
2×2)) according to the identification map (2.1).

Observe that the Laplace operator is not coercive since −�(1) = 0. This can
be cumbersome in places. As a remedy, we introduce more convenient spaces and a
scalar product. Let (e j ) j∈N be a Hilbert basis of eigenfunctions of −�, associated
to the eigenvalues (κ j ) j∈N. In particular, we have κ0 = 0 and e0 = 1/

√|�|.
Following the notation of [18], we set

L2+(�) :=
⎧⎨
⎩
∑
j�1

a j e j , (a j ) ∈ �2

⎫⎬
⎭

=
{

f ∈ L2(�),

∫
�

f (x) dx = 0

}
= �+L2(�),

with

�0 f =
(

1√|�|
∫
�

f (x) dx

)
e0 = ( f, e0)L2(�)e0, and �+ f = f − �0 f.

Note that we have

�0 ∈ 
−∞
phg (�),
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since �0 maps D ′(�) into C ∞(�), that is has a C ∞ kernel (this is true in fact in
a more general setting of functional calculus, see [44, Chapter 12]). Hence

�+ = Id −�0 ∈ 
0
phg(�), with σ0(�+) = 1.

We also define Hs+(�) = �+Hs(�) for s ∈ R, and in particular Hs+(�) =
Hs(�) ∩ L2+(�) if s � 0.

We shall often use the selfadjoint operator λ = √−�, classically defined by

λ f =
∑
j∈N

√
κ j ( f, e j )L2(�)e j , D(λ) = H1(�).

In particular, we haveλe0 = 0 andλ is an isomorphism from Hs+1+ (�) onto Hs+(�).
We shall denote by λ−1 ∈ L(Hs+(�); Hs+1+ (�)) its inverse. Moreover, according
to [41] (or [42, Theorem 11.2]), we have

λ ∈ 
1
phg(�), with σ1(λ)(x, η) = |η|x , (x, η) ∈ T ∗� \ 0.

We denote by (eitλ)t∈R the group on Hs(�)generated by iλ. Note that eitλ preserves
the spaces Hs+(�).

The decomposition (splitting) of the operator P into P = −L+L−, with

L+ = 1

i
∂t − λ and L− = 1

i
∂t + λ,

will also be useful in the following. Even though L± is not a pseudodifferential
operator on M1, we shall write

�+ = σ1(L+) = τ − |η|x , �− = σ1(L−) = τ + |η|x , (2.3)

and refer to these functions as “the principal symbol of L+ and L−”.

2.2. Some Geometric Facts

In local coordinates, we write gi j for the metric g on the tangent bundle T�.

For v ∈ T ∗� we set |v|x = (gx (v, v))
1
2 , that is, |v|x = (∑

i j (gx )i jviv j
) 1

2 in local
coordinates.

As a metric on the cotangent bundle T ∗�, g is given by gi j in local coordinates,
with (gi j ) = (gi j )

−1. Note that we keep the letter g for this metric by abuse of nota-

tion. For η ∈ T ∗
x � we have |η|x = (

gx (η, η)
) 1

2 , that is, |η|x = (∑
i j (gx )

i jηiη j
) 1

2

in local coordinates.
For all v ∈ Tx�, we can define v∗ ∈ T ∗

x � uniquely by gx (v,w) = 〈v∗, w〉
for any w ∈ Tx�, which reads in local coordinates v∗

i = ∑
j (gx )i jv j . Note that

|v|x = |v∗|x .

1 Observe that �+ and �− do not satisfy the proper estimate in the cone |τ | � C |η|x .
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2.2.1. Geodesics We start by defining geodesics on � associated with the metric
g. With k(x, η) = 1

2 |η|2x , (x, η) ∈ T ∗� \ 0, we have the (maximal) integral curves
s �→ ζs(x, η) ∈ T ∗� \ 0:

d

ds
ζs(x, η) = Hk (ζs(x, η)) , ζ0(x, η) = (x, η) ∈ T ∗� \ 0, (2.4)

with the Hamilton vector field Hk given by Hk = (∇ηk,−∇x k) in local coordinates.
In particular, if ζs(x, η) = (x(s), η(s)), we have d

ds xi (s) = ∑
j (gx(s))

i jη j (s), that

is η(s) = ( d
ds x(s)

)∗. Note also that the value of k is preserved along this integral
curve as

d

ds
k ◦ ζs |s=s0 = Hk(k)(ζs0) = {k, k}(ζs0) = 0.

Let S� = {(x, v) ∈ T�, |v|x = 1}. For (x, v) ∈ S�, we consider the curve
(x(s), v(s)) given by

(x(s), v(s)∗) = ζs(x, v
∗).

Note that we have d
ds x(s) = v(s). In particular, d

ds x(0) = v and moreover

|v(s)|2x(s) = |v(s)∗|2x(s) = 2k(x(s), v(s)∗) = 2k(x, v∗) = |v|2x = 1.

We call the curve s �→ x(s) on � the geodesic originating from (x, v) ∈ S� at
time s = 0. We have (x(t), dx

dt (t)) ∈ S�: the traveling speed of the geodesic is
unitary.

2.2.2. Bicharacteristics of the d’Alembert Operator The principal symbol of
the operator P(x, ∂t , ∂x ) is given by

σ2(P)(t, x, τ, η) = p(x, τ, η) = −τ 2 + |η|2x ,
for (t, x, τ, η) ∈ R × � × R × T ∗

x � ⊂ T ∗M. (2.5)

We denote by Hp the associated Hamiltonian vector field. In local coordinates, we
have

p = −|τ |2 +
∑
i, j

gi jηiη j and Hp = (∇τ,η p,−∇t,x p).

Note that for a ∈ Sm
phg(T

∗M; C), we have Hpa = {p, a}. We shall make use of the
Hamiltonian flow map φs , that is the (maximal) solutions of

d

ds
φs(ρ) = Hp (φs(ρ)) , φ0(ρ) = ρ = (t0, x0, τ0, ξ0) ∈ T ∗M \ 0. (2.6)

Let � be an integral curve of (2.6). First notice that p is constant along � since
Hp p = 0. In particular, the flow φs preserves Char(P). Moreover, as g is inde-
pendent of time t , we have ∂t p = 0. Writing φs(ρ) = (t (s), x(s), τ (s), η(s)), this
implies that τ is constant along �. As dt/ds = −2τ0 we have t (s) = −2τ0s + t0.
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Setting ϕs(x0, η0) = (
x(s), η(s)

)
we see that it is corresponds to the flow

associated with the Hamiltonian |η|2x . Consequently, by Lemma B.1 we have
ϕs(x0, η0) = ξ2s(x0, η0). We thus obtain

φs(ρ) = (−2τ0s + t0, τ0, ζ2s(x0, η0)). (2.7)

Let λ �= 0 and Mλ be the map such that Mλ(x, η) = (x, λη), that is a multiplication
by λ in the fiber. As k is homogeneous of degree 2 we have Mλ ◦ ζλs = ζs ◦ Mλ by
Lemma B.2 for λ > 0. If τ0 �= 0 with t = −2τ0s + t0, then, using Lemma B.3 as
well, we find that

φs(ρ) = (t, τ0, ζ t0−t
τ0

(x0, η0))

= (t, τ0, M|τ0| ◦ ζ(t0−t) sgn(τ0)(x0, η0/|τ0|))
= (t, τ0, M−τ0 ◦ ζt−t0(x0,−η0/τ0)). (2.8)

As is done classically, we call bicharacteristics the integral curves for which
p = 0. Then |η|2x = |τ |2 is also constant along bicharacteristics. Observe then
that (2.6) defines a flow on the manifold

Char(P) ∩ S∗M = {(t, x, τ, ξ), |τ |2 = 1/2 and |η|2x = 1/2}.

Let (t (s), x(s), τ, η(s)) be a bicharacteristic curve of p with (t (0), x(0), τ, η(0)) =
(t0, x0, τ0, η0) and |τ0| = 1√

2
.

As we take τ0 �= 0 here and dt
ds = −2τ0 �= 0, we can use the variable t to

parametrize the bicharacteristics. Setting y(t) = x(s) and ξ(t) = −η(s)/τ0, with
(2.8) we see that (y(t), ξ(t)) = ζt−t0(x0,−η0/τ0). As |η0/τ0|x0 = 1, we see that
t �→ y(t) is the geodesic curve issued from (x0, v0) at time t0, where v∗

0 = − 1
τ0
η0.

Consequently, the projection of the bicharacteristic curves solution to (2.6), with
p = 0, onto �, yields geodesics on �.

Conversely, if t �→ y(t) is a geodesic issued from (x0, v0) at time t0, it is the
projection of such a bicharacteristic curve going through (t0, x0, τ0,−τ0v

∗
0) with

τ0 = ± 1√
2

.

Now, we can rewrite the geometric condition given in Definition 1.2 in terms
of bicharacteristics of the operator P .

Definition 2.3. The time Tω→O→ω is the infimum of times T > 0 for which the
following assertion is satisfied:

for any ρ∗ = (t∗, x∗, τ∗, η∗) ∈ Char(P)∩ S∗MT , there exists s0, s1, s2 ∈ R

with 0 < t (s0) < t (s1) < t (s2) < T, such that we have

π(φs0(ρ∗)) ∈ (0, T ) × ω, π(φs1(ρ∗)) ∈ (0, T ) × O, and

π(φs2(ρ∗)) ∈ (0, T ) × ω.
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2.2.3. Bicharacteristics of the Half-Wave Operators The set Char(P) ∩ S∗M
has two connected components,

Char(P) ∩ S∗M = (
Char(L+) ∩ S∗M

) ∪ (
Char(L−) ∩ S∗M

)
= {τ = 1/

√
2 and |η|x = 1/

√
2} ∪ {τ = −1/

√
2 and |η|x = 1/

√
2}.

We now denote by φ±
s the bicharacteristic flow associated with �± defined in (2.3),

that is, the maximal solutions of

d

ds
φ±

s (ρ) = H�±
(
φ±

s (ρ)
)
, φ±

0 (ρ) = ρ ∈ T ∗M \ 0, with ρ ∈ Char(�±).

As we have ∂t�± = 0 and ∂τ �± = 1, the flow φ±
s can be written under the form

φ±
s (t, τ, x, η) = (t + s, τ, ϕ±

s (x, η)),

where ϕ±
s is the flow associated to the Hamiltonian ∓h(x, η) with h(x, η) = |η|x ,

that is,

d

ds
ϕ±

s (x, η) = H∓h
(
ϕ±

s (x, η)
)
, ϕ±

0 (x, η) = (x, η) ∈ T ∗� \ 0. (2.9)

Note that ϕ±
s is the Hamiltonian flow associated with the operator ∓λ. In particular,

by Lemma B.1 we have

ϕ−−s(x, η) = ϕ+
s (x, η). (2.10)

From Lemma B.1 (with F(α) = ∓√
2α) we also deduce that

ϕ±
s (x, η) = ζ∓s/|η|x (x, η), (x, η) ∈ T ∗� \ 0. (2.11)

We also have the following property.

Proposition 2.4. Let ρ0 = (t0, τ0, x0, η0) ∈ Char(P) ∩ S∗M, with sgn(τ0) = ±,
that is, ρ0 ∈ Char(�±). Then, for t = t0 − 2τ0s we have

φs(ρ0) = φ±
t−t0(ρ0) = (t, τ0, ϕ

±
t−t0(x0, η0)).

Proof. By (2.11), we have

φ±
t−t0(ρ0) = φ±

−2τ0s(ρ0) = (t0 − 2τ0s, τ0, ϕ
±
−2τ0s(x0, η0))

= (t0 − 2τ0s, τ0, ζ±2τ0/|η|x s(x0, η0)).

As |η|x = ±τ0 here, by (2.7), the result follows. ��
With the flows ϕ±

s , we now define the adapted minimal time for waves with
positive/negative frequencies, T ±

ω→O→ω
, and we provide a characterization of the

minimal control time Tω→O→ω.

Definition 2.5. The time T ±
ω→O→ω

is the infimum of times T > 0 for which the
following assertion is satisfied:
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for any (x, η) ∈ S∗�, there exists 0 < t0 < t1 < t2 < T such that we have
bω ◦ π̃ ◦ϕ±

t0 (x, η) �= 0, b◦ π̃ ◦ϕ±
t1 (x, η) > 0, bω ◦ π̃ ◦ϕ±

t2 (x, η) �= 0,

where π̃ : S∗� → � is the natural projection.

Proposition 2.6. We have T +
ω→O→ω

= T −
ω→O→ω

= Tω→O→ω.

Proof. Let T > T +
ω→O→ω

and let (x, η) ∈ T ∗� \ 0. We set (x1, η1) = ϕ−
T (x, η).

Then there exists 0 < t0 < t1 < t2 < T such that

bω ◦ π̃ ◦ ϕ+
t0 (x1, η1) �= 0, b ◦ π̃ ◦ ϕ+

t1 (x1, η1) > 0, bω ◦ π̃ ◦ ϕ+
t2 (x1, η1) �= 0.

By (2.10) we have ϕ−
T −t (x, η) = ϕ−−t ◦ ϕ−

T (x, η) = ϕ+
t (x1, η1), which yields

bω ◦ π̃ ◦ ϕ−
T −t0

(x, η) �= 0, b ◦ π̃ ◦ ϕ−
T −t1

(x, η) > 0, bω ◦ π̃ ◦ ϕ−
T −t2

(x, η) �= 0,

with 0 < T − t2 < T − t1 < T − t0 < T . Hence T > T +
ω→O→ω

implies
T � T −

ω→O→ω
, which gives T −

ω→O→ω
� T +

ω→O→ω
. The opposite inequality is

proven similarly. We obtain T −
ω→O→ω

= T +
ω→O→ω

.
Also, with the same argument, using Proposition 2.4 we obtain T −

ω→O→ω
=

T +
ω→O→ω

= Tω→O→ω. ��
The previous proposition is important in what follows. In fact we shall base part

of our analysis on the flows ϕ±
s . With Definition 2.5 and Proposition 2.6 we thus

have a precise characterization of the geometrical control condition of Definition 1.2
in this context.

In what follows, for concision, we shall omit the projection π̃ when composing
functions on � with the flows ϕ±, that is, we shall write b ◦ ϕ±

t1 (x, η) in place of
b ◦ π̃ ◦ ϕ±

t1 (x, η).

2.3. Reformulation of the System in Symmetric Spaces

As one can see, work in asymmetric spaces can be awkward. We thus set

w1 = (1 − �)− 1
2 v1, w2 = v2. Having (v1, v2) as the solution to (1.6) is then

equivalent to having (w1, w2) as the solution of{
Pw1 = 0 in (0, T ) × �,

Pw2 = −b(x) (1 − �)
1
2 w1 in (0, T ) × �,

(2.12)

as P and (1 −�)− 1
2 commute. Hence, System (1.1) is exactly controllable in time

T if and only if the inequality

E0(w1(0)) + E0(w2(0)) � C
∫ T

0

∫
�

|bωw2|2 dx dt (2.13)
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is satisfied for all (w1, w2) ∈ C 0([0, T ]; L2(�; C
2)) ∩ C 1([0, T ]; H−1(�; C

2))

solutions of System (2.12). Note that the observability inequality (2.13) corresponds
also to the exact controllability of the following system{

Pz1 + (1 − �)
1
2 b(x) z2 = 0 in (0, T ) × �,

Pz2 = bω(x) f in (0, T ) × �,
(2.14)

with initial and final data in H1(�; C
2) × L2(�; C

2) (see Section 5.1 for details).
Connexion with System (1.1) is obtained by setting z1 = (1−�)

1
2 u1 and z2 = u2.

To prove the well-posedness of System (2.12), we introduce the space

H = L2(�; C
2) × H−1(�; C

2),

endowed with the natural inner product.

Proposition 2.7. For any (w0
1, w

0
2, w

1
1, w

1
2) ∈ H and any T > 0, System (2.12)

with

(w1, w2, ∂tw1, ∂tw2)|t=0 = (w0
1, w

0
2, w

1
1, w

1
2),

has a unique solution (w1, w2) ∈ C 0(−T, T ; L2(�; C
2)) ∩ C 1(−T, T ; H−1

(�; C
2)), depending continuously on (w0

1, w
0
2, w

1
1, w

1
2), that is

sup
t∈(−T,T )

{E0(w1(t)) + E0(w2(t))} � C(T )
(
‖w0

1‖2
L2(�)

+ ‖w1
1‖2

H−1(�)

+‖w0
2‖2

L2(�)
+ ‖w1

2‖2
H−1(�)

)
.

(2.15)

System (2.12) can be written as the first-order system

∂tW + A W = 0, (2.16)

where W = t (w1, w2, ∂tw1, ∂tw2) and the operator A is given by

A =

⎛
⎜⎜⎝

0 0 − Id 0
0 0 0 − Id
−� 0 0 0

b(1 − �)
1
2 −� 0 0

⎞
⎟⎟⎠ , D(A ) = H1(�; C

2) × L2(�; C
2).

(2.17)

The Lumer–Phillips Theorem [34] can be applied to (2.16) for positive and negative
times t since the operators λ0 Id ±A are maximal monotone for λ0 sufficiently
large (due to the cascade structure of the system). Hence −A generates a strongly
continuous group that we shall denote by (e−tA )t∈R.

In places, we shall also write System (2.12) in the form

PW = 0, W = (w1, w2)
T ,

with

P =
(

P 0
B P

)
∈ 
2

phg(M; C
2×2), and B = b(x)(1 − �)

1
2 .

According to [41] or [42, Theorem 11.2], we have B ∈ 
1
phg(�; C), with principal

symbol σ1(B)(x, η) = b|η|x .
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3. Observability for T > Tω→O→ω

In this section, we prove the following theorem.

Proposition 3.1. Suppose that T > Tω→O→ω. Then, the observability inequal-
ity (2.13) holds for any C 0(0, T ; L2(�; C

2))∩C 1(0, T ; H−1(�; C
2))-solution of

(2.12).

The positive controllability result of Theorem 1.3 is then a direct consequence of
Theorem 3.1.

To prove Proposition 3.1, we follow the compactness–uniqueness method of [8,
9,38], which consists of two steps. First we prove the observability inequality (2.13)
in a weaker form, with additional compact terms on the right hand-side. This allows
one to handle high frequencies. Second, we use a uniqueness argument to handle
low frequencies and conclude the proof of the observability inequality (2.13).

3.1. A Relaxed Observability Inequality

We shall prove the following result.

Proposition 3.2. Suppose that T > Tω→O→ω. Then, the observability inequality

E0(w1(0)) + E0(w2(0))

� C

(∫ T

0

∫
�

|bωw2|2 dx dt + E−1(w1(0)) + E−1(w2(0))

)
(3.1)

holds for any C 0(0, T ; L2(�; C
2)) ∩ C 1(0, T ; H−1(�; C

2))-solution of (2.12).

Proof. We proceed by contradiction and suppose that the observability inequal-
ity (3.1) is not satisfied. Thus, there exists a sequence (wk

1, w
k
2)k∈N of C 0(0, T ; L2

(�)) ∩ C 1(0, T ; H−1(�))-solutions of{
Pwk

1 = 0 in (0, T ) × �,

Pwk
2 + Bwk

1 = 0 in (0, T ) × �,
(3.2)

such that

E0(w
k
1(0)) + E0(w

k
2(0)) = 1, (3.3)∫ T

0

∫
�

|bωwk
2|2 dx dt → 0, k → ∞, (3.4)

E−1(w
k
1(0)) + E−1(w

k
2(0)) → 0, k → ∞. (3.5)

According to (3.3) and the continuity of the solution with respect to the initial data,
the sequence (wk

1, w
k
2) is bounded in L2(MT ; C

2). According to (3.5), we have
(wk

1(0), w
k
2(0), ∂tw

k
1(0), ∂tw

k
2(0)) ⇀ (0, 0, 0, 0) in L2(�; C

2) × H−1(�; C
2).

The continuity of the solution with respect to the initial data yields

(wk
1, w

k
2) ⇀ (0, 0) in L2(MT ; C

2).
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As a consequence of [21, Theorem 1], there exists a subsequence of (W k)k∈N =
(wk

1, w
k
2)k∈N (still denoted (W k)k∈N = (wk

1, w
k
2)k∈N in what follows) and a

microlocal defect measure

μ =
(
μ1 μ12
μ12 μ2

)
∈ M+(S∗MT ; C

2×2),

(according to [21,43], see also [10, Proposition 5], this measure is intrinsically
defined on S∗MT ) such that for any A ∈ 
0

phg(MT ; C
2×2) (recall that symbols are

compactly supported in time t here, see Section 2.1),

lim
k→∞(AW k, W k)L2(MT ;C2) =

∫
S∗ MT

tr{σ0(A)(ρ)μ(dρ)}. (3.6)

Testing the measure μ on different operators A, the limit equation (3.6) can be
equivalently written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
lim

k→∞(Awk
1, w

k
1)L2(MT ;C) = 〈μ1, σ0(A)〉S∗ MT

,

lim
k→∞(Awk

2, w
k
2)L2(MT ;C) = 〈μ2, σ0(A)〉S∗ MT

,

lim
k→∞(Awk

1, w
k
2)L2(MT ;C) = 〈μ12, σ0(A)〉S∗ MT

,

(3.7)

for any A ∈ 
0
phg(MT ; C).

The following lemma gives the properties of the three measures μ1, μ2 and
μ12, and is a key point in the proof of Proposition 3.2.

Lemma 3.3. (Properties of the measure μ)

1. Suppose that the sequence (W k)k∈N satisfies (3.2) and (3.5). Then, we have
μ1, μ2 ∈ M+(S∗MT ), supp(μ1) ⊂ Char(P), supp(μ2) ⊂ Char(P). More-
over, supp(μ12) ⊂ supp(μ1) ∩ supp(μ2) ⊂ Char(P). Finally, these three
measures satisfy the equations⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈
μ1, Hpa

〉
S∗ MT

= 0,〈
μ2, Hpa

〉
S∗ MT

= −〈Im(μ12), 2b|η|x a〉S∗ MT
,〈

Im(μ12), Hpa
〉
S∗ MT

= −〈μ1, b|η|x a〉S∗ MT
,〈

Re(μ12), Hpa
〉
S∗ MT

= 0,

(3.8)

for any a ∈ S−1
phg(T

∗MT ; C).

2. Moreover if the sequence (W k)k∈N satisfies (3.4), then we also have supp(μ2)∩
π−1((0, T ) × ω) = ∅ and supp(μ12) ∩ π−1((0, T ) × ω) = ∅.

The proof of this lemma is given in Appendix B.2.
We shall prove below that the first and the last equations in (3.8) yield a “free”

propagation result for the measures μ1 and Re(μ12). In particular, since μ12 = 0
on π−1((0, T ) × ω), and T > Tω→O→ω � Tω, this will give Re(μ12) = 0.

The most important equation in (3.8) is the third one that is to be viewed as a
transport equation for the measure Im(μ12).
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Fig. 3. Geometrical situation in the case T > Tω→O→ω

We already know that the supports of the three measures are subsets of
Char(P)∩ S∗MT . Let us pick ρ∗ = (t∗, x∗, τ∗, η∗) ∈ Char(P)∩ S∗MT . According
to Definition 2.3, there exist 0 < t0 < t1 < t2 < T such that

φt0−t∗(ρ∗) ∈ π−1((0, T ) × ω), φt1−t∗(ρ∗) ∈ π−1((0, T ) × O),

φt2−t∗(ρ∗) ∈ π−1((0, T ) × ω).

We take three open subsets θ0, θ1, θ2 ⊂ S∗MT , satisfying

ρ j = φt j −t∗(ρ∗) ∈ θ j for j = 0, 1, 2,
π(θ0) ⊂ (0, T ) × ω, π(θ1) ⊂ (0, T ) × O, π(θ2) ⊂ (0, T ) × ω.

(3.9)

This geometrical situation is illustrated in Fig. 3.
We now choose a function e ∈ C ∞

c (S∗MT ) such that

supp(e) ⊂ φt1−t0(θ0) ∩ θ1 ∩ φt1−t2(θ2), e � 0, and e(ρ1) = 1. (3.10)

Note that the set φt1−t0(θ0) ∩ θ1 ∩ φt1−t2(θ2) is open since φt : S∗MT → S∗MT is
bicontinuous and is nonempty since it contains ρ1, according to (3.9).

Now, we apply the third identity of (3.8) to a = e◦φs ∈ C ∞
c (S∗MT ) (which can

be extended as a symbol, namely λ̃−1a(t, x, τ/λ̃, η/λ̃) ∈ S−1
phg(T

∗MT ; R), where

λ̃ is defined in (2.2)) for s ∈ (t1 − t2, t1 − t0), as a consequence of (3.9)–(3.10).
From the third equation in (3.8) we obtain

−〈μ1, b|η|x e ◦ φs〉S∗ MT
= 〈

Im(μ12), Hp(e ◦ φs)
〉
S∗ MT

=
〈
Im(μ12),

d

ds
e ◦ φs

〉
S∗ MT

= d

ds
〈Im(μ12), e ◦ φs〉S∗ MT

.
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Integrating this equation on the interval (t1 − t2, t1 − t0) gives

−
∫ t1−t0

t1−t2
〈μ1, b|η|x e ◦ φs〉S∗ MT

ds = 〈
Im(μ12), e ◦ φt1−t0

〉
S∗ MT

− 〈
Im(μ12), e ◦ φt1−t2

〉
S∗ MT

. (3.11)

Moreover, from (3.10), we have supp(e ◦ φt1−t2) ⊂ θ2 and supp(e ◦ φt1−t0) ⊂ θ0.
Since π(θ0), π(θ2) ⊂ (0, T ) × ω and π(supp(μ12)) ∩ (0, T ) × ω = ∅ from
Lemma 3.3, the right hand-side of (3.11) vanishes, and we obtain∫ t1−t0

t1−t2
〈μ1, b|η|x e ◦ φs〉S∗ MT

ds = 0.

In this expression, the measure μ1 and the functions |η|x , b and e ◦ φs are non-
negative on the interval (t1−t2, t1−t0). We thus obtain, for any s ∈ (t1−t2, t1−t0),

〈μ1, b|η|x e ◦ φs〉S∗ MT
= 0,

and in particular for s = 0 ∈ (t1 − t2, t1 − t0) we find

〈μ1, b|η|x e〉S∗ MT
= 0.

We have b
(
π(ρ1)

)
> 0 since π(ρ1) ∈ (0, T ) × O, and e(ρ1) = 1. Hence we have

that

μ1 vanishes in a neighborhood of ρ1. (3.12)

We can now prove that μ1 is identically zero on this bicharacteristic. This is a direct
consequence of the first equation of (3.8): applied to a ◦ φs in place of a as long as
supp(a ◦ φs) ⊂ S∗MT , it yields

0 = 〈
μ1, Hpa ◦ φs

〉
S∗ MT

=
〈
μ1,

d

ds
a ◦ φs

〉
S∗ MT

= d

ds
〈μ1, a ◦ φs〉S∗ MT

.

This directly gives

〈μ1, a ◦ φs〉S∗ MT
= 〈μ1, a〉S∗ MT

, for all a ∈ S−1
phg(T

∗MT ; C),

for all s ∈ R such that supp(a ◦ φs) ⊂ S∗MT . (3.13)

From the argument above, there exists a ∈ S−1
phg(T

∗MT ; C) with a small support in
a neighborhood of ρ1 and a(ρ1) = 1, such that 〈μ1, a〉S∗ MT

= 0. Taking s = t1 − t∗
in (3.13) then yields 〈

μ1, a ◦ φt1−t∗
〉
S∗ MT

,

with a ◦ φt1−t∗(ρ∗) = 1. This implies that μ1 vanishes in a neighborhood of ρ∗.
Here ρ∗ was chosen arbitrarily in S∗MT . We thus have μ1 = 0 on S∗MT .

The third equation of (3.8) then becomes
〈
Im(μ12), Hpa

〉
S∗ MT

= 0 for all

a ∈ S−1
phg(T

∗MT ; C). The same analysis directly yields the propagation of the

measure Im(μ12). This, together with supp(Im(μ12)) ∩ π−1((0, T ) × ω) = ∅
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gives Im(μ12) = 0 on S∗MT , as T > Tω→O→ω � Tω. Similarly, we obtain
Re(μ12) = 0 on S∗MT with the last equation of (3.8). Finally, the second equation
of (3.8) now reads

〈
μ2, Hpa

〉
S∗ MT

= 0 for all a ∈ S−1
phg(T

∗MT ; C). This implies

μ2 = 0 on S∗MT as we already know that supp(μ2)∩ π−1((0, T )×ω) = ∅ from
Lemma 3.3.

Since μ = 0, we have

(wk
1, w

k
2) → (0, 0) strongly in L2

loc(MT ; C
2). (3.14)

Let us take χ ∈ C ∞
c (0, T ; C), multiply the second equation in (3.2) by χ(1 −

�)−1wk
2 and integrate on (0, T ) × �. After an integration by parts in time, this

gives∫ T

0

∫
�

χ |(1 − �)−
1
2 ∂tw

k
2|2 dx dt +

∫ T

0

∫
�

∂tχ∂tw
k
2(1 − �)−1wk

2 dx dt

+
∫ T

0

∫
�

χ�wk
2(1 − �)−1wk

2 dx dt =
∫ T

0

∫
�

χBwk
1(1 − �)−1wk

2 dx dt.

In this expression, we have∫ T

0

∫
�

∂tχ∂tw
k
2(1 − �)−1wk

2 → 0 since ∂tχ∂t (1 − �)−1 ∈ 
−1
phg(MT ; C),

∫ T

0

∫
�

χBwk
1(1 − �)−1wk

2 → 0 since χ(1 − �)−1 B ∈ 
−1
phg(MT ; C),

and ∫ T

0

∫
�

χ�wk
2(1 − �)−1wk

2 → 〈μ2, χ〉S∗ MT
= 0.

As a consequence, we obtain, for all χ ∈ C ∞
c (0, T ; C),∫ T

0

∫
�

χ |(1 − �)−
1
2 ∂tw

k
2|2 → 0.

This, together with (3.14), yields, for all 0 < ε1 < ε2 < T ,∫ ε2

ε1

E0(w
k
2(t)) dt → 0.

The same method with the first equation of (3.2) also gives
∫ ε2
ε1

E0(w
k
1(t)) dt → 0.

Hence, E0(w
k
2(t)) + E0(w

k
1(t)) → 0 for almost every t ∈ (ε1, ε2). Picking such a

time, say t3, the (backward) well-posedness result of Proposition 2.7 for the Cauchy
problem (3.2) with data given at t3 gives

E0(w
k
1(0)) + E0(w

k
2(0)) � C

(
E0(w

k
1(t3)) + E0(w

k
2(t3))

)
.

This yields E0(w
k
1(0)) + E0(w

k
2(0)) → 0, gives a contradiction with (3.3), and

concludes the proof of the proposition. ��
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3.2. End of the Proof of Proposition 3.1

With the relaxed observability inequality of Proposition 3.2, we are now able
to handle the low-frequencies and conclude the proof Theorem 3.1. The main point
here is a unique continuation result for solutions of the elliptic problem associated
with System (2.12). The idea of reducing the observability for the low frequencies
to an elliptic unique continuation result and associated technology are due to [8].
Here we follow the expository lectures [12].

We first define for any T > 0 the set of invisible solutions (see [8]) from
(0, T ) × ω:

N (T )={W = (w0
1, w

0
2, w

1
1, w

1
2)∈H such that the associated solution of (2.12)

satisfies w2(t, x) = 0 for all (t, x) ∈ (0, T ) × ω}.
We have the following key lemma, which is proved at the end of this section.

Lemma 3.4. For T > Tω→O→ω, we have N (T ) = {0}.
As for the proof of the relaxed observability inequality of Proposition 3.2 we

proceed by contradiction. We suppose that the result of Theorem 3.1 is false. Thus,
there exists a sequence (wk

1, w
k
2)k∈N of C 0(0, T ; L2(�)) ∩ C 1(0, T ; H−1(�))-

solutions of (2.12) such that

E0(w
k
1(0)) + E0(w

k
2(0)) = 1, (3.15)∫ T

0

∫
�

|bωwk
2|2 dx dt → 0. (3.16)

Equation (3.15) and Proposition 2.7 imply that the sequence (wk
1, w

k
2)k∈N is

bounded in L2(MT ; C
2). Hence, there exists a subsequence (also denoted

(wk
1, w

k
2)k∈N in what follows) weakly converging in L2(MT ; C

2), towards
(w1, w2) ∈ L2(MT ; C

2). From (3.16), this limit satisfies, for all t ∈ (0, T ), w2|ω =
0, and is moreover a solution of (2.12). Hence, we have (w1(0), w2(0), ∂tw1(0),
∂tw2(0)) ∈ N (T ). According to Lemma 3.4, this yields (w1, w2) = (0, 0). Also,
the imbedding H ↪→ H−1(�)2 × H−2(�)2 is compact. This yields

E−1(w
k
1(0)) + E−1(w

k
2(0)) → E−1(w1(0)) + E−1(w2(0)).

The relaxed observability inequality (3.1) hence yields

1 � C (E−1(w1(0)) + E−1(w2(0))) ,

which contradicts the fact that (w1, w2) = (0, 0), and concludes the proof of the
Proposition 3.1. ��

It only remains to prove Lemma 3.4.

Proof of Lemma 3.4. First, Proposition 2.7 implies that N (T ) is a closed subspace
of H . Second, applying the relaxed observability inequality (3.1) to an element of
N (T ) gives

‖W ‖2
H = E0(w1(0)) + E0(w2(0)) � C (E−1(w1(0)) + E−1(w2(0))) .

(3.17)
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Using the compact imbedding H ↪→ H−1(�)2×H−2(�)2, this implies that N (T )

has a finite dimension, and is thus complete for any norm. Moreover, setting δ =
1
2 (T −Tω→O→ω) > 0, we remark that (3.17) is also satisfied by all W ∈ N (T −δ).
Taking W ∈ N (T ) implies that, for all ε ∈ (0, δ), we have e−εA W ∈ N (T − δ).
We also have, for λ0 sufficiently large, according to Section 2.3,

(λ0 + A )−1 1

ε
(Id −e−εA )W = 1

ε
(Id −e−εA )(λ0 + A )−1W

→
ε→0+ A (λ0 + A )−1W in H ,

as (λ0 +A )−1W ∈ D(A ). As a consequence, the sequence
( 1
ε
(Id −e−εA )W

)
ε>0

is a Cauchy sequence in N (T − δ), endowed with the norm ‖(λ0 +A )−1 · ‖H . As
all norms are equivalent, the sequence

( 1
ε
(Id −e−εA )W

)
ε>0 is thus also a Cauchy

sequence in N (T − δ), endowed with the norm ‖ · ‖H , which yields A W ∈ H .
Hence, we have N (T ) ⊂ D(A ). Denoting by W̃ (t) the solution of

∂tW̃ + A W̃ = 0, W̃ |t=0 = W ,

with W̃ ∈ C 1([0, T ];H ) ∩ C 0([0, T ]; D(A )),

from semigroup theory, we remark that we have

−A W = ∂tW̃ |t=0 ∈ N (T ) if W ∈ N (T ).

In fact, as w2(t, x) = 0 for all (t, x) ∈ (0, T ) × ω, the same holds for ∂tw2.
Consequently A N (T ) ⊂ N (T ).

Since N (T ) is a finite dimensional subspace of D(A ), stable by the action
of the operator A , it contains an eigenfunction of A . There exist μ ∈ C and
Wμ ∈ N (T ) such that A Wμ = μWμ. Writing Wμ = t (w0

1, w
0
2, w

1
1, w

1
2), this is

equivalent to having⎧⎪⎪⎨
⎪⎪⎩

−w1
1 = μw0

1,−w1
2 = μw0

2,−�w0
1 = μw1

1,

−�w0
2 + b(x)(1 − �)

1
2 w0

1 = μw1
2.

This system implies{
−�w0

1 = −μ2w0
1,

−�w0
2 + b(x)(1 − �)

1
2 w0

1 = −μ2w0
2 .

(3.18)

We first prove that w0
1 = 0 on �. If not, the first equation gives μ = i

√
κ with

κ ∈ Sp(−�) ⊂ R+ and w0
1 is an eigenfunction of −� associated to κ . Hence,

taking the L2(�)-inner product of the first line of (3.18) with (1 − �)
1
2 w0

2, and

that of the second line of (3.18) with (1 − �)
1
2 w0

1, we obtain∫
�

b(x)|(1 − �)
1
2 w0

1|2 dx = 0.
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Since b � 0 and b does not vanish identically, this proves that (1 − �)
1
2 w0

1 = 0

on O. As (1 − �)
1
2 w0

1 is an eigenfunction of the Laplace operator vanishing on
O, a unique continuation result (see for instance the classical reference [6,7], the

book [47] or the exposition article [25]) yields (1 − �)
1
2 w0

1 = 0 on �. Hence
w0

1 = 0 on �.
Moreover, W ∈ N (T ) yields w0

2 = 0 on ω. This proves that w0
2 = 0 on �,

as w0
2 is an eigenfunction of the Laplace operator as a consequence of (3.18). This

concludes the proof of the Lemma 3.4. ��
Remark 3.5. Note that elliptic unique continuation properties such as those used
here are not known in general for 2 × 2 elliptic systems. For these types of general
systems, such a result holds if ω ∩ O �= ∅ [26, Proposition 5.1]. However the case
ω ∩ O = ∅ remains open in general.

Here, the cascade structure of System (2.12) allows us to bypass a more involved
unique continuation theorem. We use that the eigenvalues and eigenfunctions of
the operator

( −� 0

b(1 − �)
1
2 −�

)
,

are (κ j ,
t (0, ϕ j )) j∈N, where (κ j , ϕ j ) j∈N are the eigenvalues and eigenfunctions of

−�. This is a very particular feature of cascade systems with twice the same elliptic
operator on the diagonal.

4. Lack of Observability for T < Tω→O→ω

In this section, we prove the following theorem.

Theorem 4.1. Suppose that T < Tω→O→ω. Then, there exists a bounded sequence
(wk

1, w
k
2)k∈N of C 0(0, T ; L2(�)2) ∩ C 1(0, T ; H−1(�)2)-solutions of (2.12) sat-

isfying {
lim infk→∞

(
E0(w

k
1(0)) + E0(w

k
2(0))

)
� 1,

(wk
1, w

k
2) ⇀ 0 in L2(MT ; C

2),
(4.1)

such that the sequence (wk
2)k∈N is pure and its microlocal defect measure μ2 sat-

isfies 〈
μ2, χ

2|bω|2
〉

S∗ MT
= 0, (4.2)

for any χ ∈ C ∞
c (0, T ).

We refer to [21, Definition 1.3] for the definition of a pure sequence. As a direct
consequence of this theorem, we have the following non-observability result.
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Corollary 4.2. If T < Tω→O→ω, the observability inequality (2.13) does not hold.

The negative controllability result of Theorem 1.3 is then a direct consequence of
Corollary 4.2 and HUM.

Proof of Corollary 4.2. Suppose that the observability inequality (2.13) holds
for some constant C > 0, for all solutions of (2.12). Then, for the sequence
(wk

1, w
k
2)k∈N given by Theorem 4.1, we have, for k sufficiently large,

1

2
� E0(w

k
1(0)) + E0(w

k
2(0)) � K

∫ T

0

∫
�

|bωwk
2|2 dx dt, K > 0. (4.3)

With the sequence (wk
1, w

k
2)k∈N being bounded in the energy space, we have, in

particular∫
�

|bωwk
2(t, x)|2 dx � C0, for some C0 > 0, and all k ∈ N, t ∈ [0, T ].

This yields, for any ε ∈ (0, T
2 ),∫ T

0

∫
�

|bωwk
2|2 dx dt =

∫ ε

0

∫
�

|bωwk
2|2 dx dt +

∫ T −ε

ε

∫
�

|bωwk
2|2 dx dt

+
∫ T

T −ε

∫
�

|bωwk
2|2 dx dt

� 2εC0 +
∫ T −ε

ε

∫
�

|bωwk
2|2 dx dt

� 2εC0 +
∫ T

0

∫
�

|χbωw
k
2|2 dx dt,

with χ ∈ C ∞
c (0, T ) such that χ = 1 on (ε, T − ε). We fix ε such that 2εC0 = 1

8K
and obtain ∫ T

0

∫
�

|bωwk
2|2 dx dt � 1

8K
+

∫ T

0

∫
�

|χbωw
k
2|2 dx dt.

According to (4.2), this gives∫ T

0

∫
�

|bωwk
2|2 dx dt � 1

4K
,

for k sufficiently large. This yields a contradiction with (4.3), and concludes the
proof of the corollary. ��

We shall use the following lemma in the proof of Theorem 4.1. A proof is given
in Appendix B.3.

Lemma 4.3. For any bicharacteristic curve � of the d’Alembert operator P, there
exists a pure sequence (wk)k∈N of C 0(0, T ; L2(�))∩C 1(0, T ; H−1(�))-solutions
of Pwk = 0 such that {

lim infk→∞ E0(w
k(0)) � 1,

wk ⇀ 0 in L2(MT ; C),
(4.4)

and the microlocal defect measure of (wk)k∈N is supported in �.
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Fig. 4. Geometrical situation in the case T < Tω→O→ω with π(�) ∩ (
(0, T ) × ω

) �= ∅

We now prove Theorem 4.1.

Proof of Theorem 4.1. Since T < Tω→O→ω, Definition 2.3 gives the existence
of ρ∗ = (0, x∗, τ∗, η∗) ∈ Char(P)∩ S∗M such that the following condition holds:

For any 0 < t0 < t1 < t2 < T, we have π(φt0(ρ∗)) /∈ (0, T ) × ω,

or π(φt1(ρ∗)) /∈ (0, T ) × O, or π(φt2(ρ∗)) /∈ (0, T ) × ω.
(4.5)

We set

� = {φs(ρ∗), s ∈ [0, T ]}.
We now construct the sequence (wk

1, w
k
2)k∈N.

First, ifπ(�)∩(
(0, T )×ω

) = ∅ (which only occurs if T < Tω), we takewk
1 = 0

for all k ∈ N and (wk
2)k∈N as given by Lemma 4.3. In this case, (4.2) is clear as

supp(μ2) ⊂ � and π(�) ∩ (
(0, T ) × ω

) = ∅ (this is a classical non-observability
result for a single wave equation [8,9,11]).

Second, ifπ(�)∩(
(0, T )×ω

) �= ∅, we choose (wk
1)k∈N as given by Lemma 4.3.

In particular, according to Lemma 4.3, this gives lim infk→∞
(
E0(w

k
1(0)) +

E0(w
k
2(0))

)
� 1 for all C 0(0, T ; L2(�))∩C 1(0, T ; H−1(�))-sequence (wk

2)k∈N.
We also pick some t0 ∈ (0, T ) such that π(φt0(ρ∗)) ∈ (0, T )×ω. The geometrical
situation is sketched out in Fig. 4.

We choose wk
2 to be the unique (forward and backward) solution of{

Pwk
2 = −Bwk

1 in (0, T ) × �,

(wk
2, ∂tw

k
2)|t=t0 = (0, 0) on �.

(4.6)

In particular, the well-posedness of the wave equation yields wk
2 ∈ C 0(0, T ;

L2(�)) ∩ C 1(0, T ; H−1(�)) and

‖wk
2‖L2(MT )

� C‖Bwk
1‖L2(0,T ;H−1(�)) � C‖wk

1‖L2(MT )
,
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as B = b(1 −�)
1
2 . Since (wk

1)k∈N is bounded in L2(MT ; C) from Lemma 4.3, the
sequence (wk

1, w
k
2)k∈N is bounded in L2(MT ; C

2). Moreover, the well-posedness
of the wave equation in C 0(0, T ; H−1(�)) ∩ C 1(0, T ; H−2(�)) also gives

‖wk
2‖H−1(MT )

� C‖Bwk
1‖L2(0,T ;H−2(�)) � C‖wk

1‖H−1(MT )
→ 0,

since wk
1 ⇀ 0 in L2(MT ; C). Finally, the sequence (wk

1, w
k
2)k∈N satisfies all the

conditions (4.1).
Since (wk

1, w
k
2) ⇀ 0 in L2(MT ; C

2), and because of [21, Theorem 1], there
exists a subsequence (still denoted (W k)k∈N = (wk

1, w
k
2)k∈N) and a microlocal

defect measure

μ =
(
μ1 μ12
μ12 μ2

)
∈ M+(S∗MT ; C

2×2),

such that for any A ∈ 
0
phg(MT ; C

2×2),

lim
k→∞(AW k, W k)L2(MT ;C2) = 〈μ, σ0(A)〉S∗ MT

.

Moreover, μ1 is the microlocal defect measure associated with the sequence
(wk

1)k∈N. As this sequence is (a subsequence of a sequence) chosen by means
of Lemma 4.3, we have supp(μ1) ⊂ �. Observe now that the sequence (W k)k∈N

satisfies all the assumptions of the first part of Lemma 3.3, which gives μ2 ∈
M+(S∗MT ), supp(μ2) ⊂ Char(P), and supp(μ12) ⊂ supp(μ1) ⊂ �. Finally
these three measures satisfy the equations⎧⎪⎨

⎪⎩
〈
μ1, Hpa

〉
S∗ MT

= 0,〈
μ2, Hpa

〉
S∗ MT

= −〈Im(μ12), 2b|η|x a〉S∗ MT
,〈

Im(μ12), Hpa
〉
S∗ MT

= −〈μ1, b|η|x a〉S∗ MT
,

(4.7)

for any a ∈ S−1
phg(T

∗MT ; C).

We denote by C the connected component of � \π−1((0, T )×O) that contains
� ∩ π−1((0, T )×ω) (indicated by a thick line in Fig. 4). We have φt0(ρ∗) ∈ C. In
the present case, Condition (4.5) gives

π(�) ∩ ((0, T ) × ω) ∩ ((0, T ) × O) = ∅. (4.8)

Moreover, condition (4.5) yields the existence and uniqueness of such a connected
component.

The end of the proof consists in showing that supp(μ2) ⊂ � and that C ∩
supp(μ2) = ∅. For this, we first prove that μ2 vanishes identically on π−1

(
(t0 −

2ε, t0 + 2ε) × �)
)

for ε > 0 sufficiently small. Then, a propagation argument
with (4.7) gives supp(μ2) ⊂ � and that μ2 vanishes on C.

Let us take ε > 0 with 2ε < min(t0, T − t0), to be chosen below. The well-
posedness for the wave equation (4.6) gives

‖wk
2‖L2((t0−ε,t0+ε)×�) � C‖Bwk

1‖L2(t0−ε,t0+ε;H−1(�))

� C‖(1 − �)−
1
2 b(1 − �)

1
2 wk

1‖L2((t0−ε,t0+ε)×�)

� C‖χ(1 − �)−
1
2 b(1−�)

1
2 wk

1‖L2((t0−2ε,t0+2ε)×�) (4.9)
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for some χ ∈ C ∞
c (t0 − 2ε, t0 + 2ε) satisfying 0 � χ � 1 and χ = 1 on (t0 −

ε, t0 + ε). In this last expression, we have χ(1 −�)− 1
2 b(1 −�)

1
2 ∈ 
0

phg(MT ; C),

with principal symbol σ0
(
χ(1 − �)− 1

2 b(1 − �)
1
2
) = χb. As a consequence, we

have

‖χ(1 − �)−
1
2 b(1 − �)

1
2 wk

1‖2
L2((t0−2ε,t0+2ε)×�)

→
〈
μ1, χ

2b2
〉

S∗ MT
. (4.10)

Since π−1((0, T )×ω) is an open set in S∗MT , containing φt0(ρ∗), there exists
ε > 0 such that

φs(ρ∗) ∈ π−1((0, T ) × ω), for all s ∈ (t0 − 2ε, t0 + 2ε). (4.11)

For this choice of ε, we have

supp(μ1) ∩ π−1 ((t0 − 2ε, t0 + 2ε) × �) ⊂ � ∩ π−1 ((t0 − 2ε, t0 + 2ε) × �)

= {φs(ρ∗), s ∈ (t0 − 2ε, t0 + 2ε)}.
According to (4.11), this last set is contained in � ∩ π−1

(
(0, T ) × ω

)
, i.e:

supp(μ1) ∩ π−1 ((t0 − 2ε, t0 + 2ε) × �) ⊂ � ∩ π−1 ((0, T ) × ω) .

From (4.8), we then obtain supp(μ1)∩π−1
(
(t0 −2ε, t0 +2ε)×�

)∩π−1
(
(0, T )×

O
) = ∅, which gives

supp(μ1) ∩ π−1 (supp(χ)) ∩ π−1 (supp(b)) = ∅.
This, together with (4.10), gives

‖χ(1 − �)−
1
2 b(1 − �)

1
2 wk

1‖L2((t0−2ε,t0+2ε)×�) → 0.

Using (4.9), we now obtain ‖wk
2‖L2((t0−ε,t0+ε)×�) → 0, and thus

supp(μ2) ∩ π−1 ((t0 − ε, t0 + ε) × �)) = ∅. (4.12)

As supp(μ12) ⊂ �, the second equation of (4.7) yields〈
μ2, Hpa

〉
S∗ MT

= 0 (4.13)

for any a ∈ S−1
phg(T

∗MT ; C) such that a = 0 in a neighborhood of �. As in the
proof of Proposition 3.2, this gives the invariance of the measure μ2 along the flow
φs away from �. Together with (4.12), this also yields

supp(μ2) ⊂ �. (4.14)

The second equation of (4.7) also gives (4.13) for any a ∈ S−1
phg(T

∗MT ; C)

such that a = 0 in a neighborhood of π−1
(
(0, T ) × O

)
, as b is supported in

O. Once again, this gives the invariance of the measure μ2 along the flow φs
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on S∗MT \ π−1
(
(0, T ) × O

)
. Together with Equation (4.12), this gives, with a

propagation argument,

supp(μ2) ∩ C = ∅. (4.15)

Finally, Equations (4.14) and (4.15) together with the definition of C give

supp(μ2) ∩ π−1 ((0, T ) × ω) = ∅.
This implies (4.2) as bω is supported in ω, and concludes the proof of Theorem 4.1.

��

5. The Hilbert Uniqueness Method and the HUM Operator

5.1. Controllability and Observability for Cascade Systems

In this section, we prove the equivalence between controllability and observ-
ability for the systems under view. This result is classical for waves [19] and was
further developed by Lions [31], who coined the name HUM. For completeness,
we provide the details of this result in the case of our cascade wave system. To also
fit the setting of Section 6 below, where waves with different speeds are studied,
we give this equivalence for the following control system with γ > 0 and σ � 0
(see also Section 1.2.3):{

Pu1 + (1 − �)
σ
2 b(x) u2 = 0 in (0, T ) × �,

Pγ u2 = bω(x) f in (0, T ) × �.
(5.1)

Proposition 5.1. Let s ∈ R. Assume that System (5.1) is well-posed in the space
Hs−σ+1(�) × H1(�) × Hs−σ (�) × L2(�), that is

(u1, u2, ∂t u1, ∂t u2) ∈ C 0([0, T ]; Hs−σ+1(�) × H1(�) × Hs−σ (�) × L2(�)).

Then, it is controllable in time T > 0 in this space if and only if the observability
inequality

Eσ−s(v1(0)) + E0(v2(0)) � C
∫ T

0
‖bωv2‖2

L2(�)
dt (5.2)

holds for all solutions (v1, v2) to{
Pv1 = 0 in (0, T ) × �,

Pγ v2 + b(x) (1 − �)
σ
2 v1 = 0 in (0, T ) × �,

(5.3)

assumed to be well-posed in Hσ−s(�)× L2(�)× Hσ−s−1(�)× H−1(�), that is

(v1, v2, ∂tv1, ∂tv2) ∈ C 0([0, T ]; Hσ−s(�) × L2(�) × Hσ−s−1(�) × H−1(�)).

Remark 5.2. Note that we have s = 1 and σ = 0 in the duality between Systems
(1.1) and (1.6). We have s = 1 and σ = 1 in the duality between (2.14) and (2.12).
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As a preliminary of the proof we first present some duality framework. Accord-
ing to Definition 1.1, we shall only consider zero initial data: (u1(0), u2(0), ∂t u1(0),
∂t u2(0)) = (0, 0, 0, 0). Firstly, we suppose that the data (v1(0), v2(0), ∂tv1(0),
∂tv2(0)) for System (5.3) and the control function f in (5.1) are smooth. Taking
the inner product of the first line of (5.1) with v1, we obtain

−((1 − �)
σ
2 bu2, v1)L2(MT )

= (Pu1, v1)L2(MT )

= (u1, Pv1)L2(MT )
+ (∂t u1(T ), v1(T ))L2(�)

−(u1(T ), ∂tv1(T ))L2(�),

after an integration by parts. Similarly, taking the inner product of the second line
of (1.9) with v2, we find

(bω f, v2)L2(MT )
= (Pγ u2, v2)L2(MT )

= (u2, Pγ v2)L2(MT )
+ (∂t u2(T ), v2(T ))L2(�)

−(u2(T ), ∂tv2(T ))L2(�).

Summing the last two identities and recalling that (v1, v2) satisfies (5.3), we obtain
the duality identity

( f, bωv2)L2(MT )
= (∂t u1(T ), v1(T ))L2(�) − (u1(T ), ∂tv1(T ))L2(�)

+(∂t u2(T ), v2(T ))L2(�) − (u2(T ), ∂tv2(T ))L2(�).

Secondly, using a density argument, together with the well-posedness assumptions,
we see that we have

( f, bωv2)L2(MT )
= 〈∂t u1(T ), v1(T )〉Hs−σ (�),Hσ−s (�)

−〈u1(T ), ∂tv1(T )〉Hs−σ+1(�),Hσ−s−1(�)

+(∂t u2(T ), v2(T ))L2(�) − 〈u2(T ), ∂tv2(T )〉H1(�),H−1(�).

(5.4)

For the proof below we also introduce the following continuous map

S : L2(MT ) → Hs−σ+1(�) × H1(�) × Hs−σ (�) × L2(�), (5.5)

f �→ (u1, u2, ∂t u1, ∂t u2)|t=T , (5.6)

where u = (u1, u2) is the solution to (5.1) with zero initial conditions.

Proof of Proposition 5.1. Controllability ⇒ observability.
We start by assuming controllability, that is that S is surjective. The open map-

ping theorem then yields that S(BL2(MT )
(0, 1)) is a neighborhood of (0, 0, 0, 0).

Then, for some η > 0 we have

BHs−σ+1×H1×Hs−σ×L2(0, η) ⊂ S(BL2(MT )
(0, 1)),

where BH (0, r) denotes the open ball of radius r centered at 0 in the space H . By
linearity, this yields

BHs−σ+1×H1×Hs−σ×L2(0, 2) ⊂ S(BL2(MT )
(0, 2η−1)).



148 Belhassen Dehman, Jérôme Le Rousseau & Matthieu Léautaud

Now, take V = (v0
1, v

0
2, v

1
1, v

1
2) ∈ Hσ−s(�)×H1(�)×Hσ−s−1(�)×L2(�). With

the Riesz representation theorem, we choose U = (u0
1, u0

2, u1
1, u1

2) ∈ Hs−σ+1(�)×
H1(�) × Hs−σ (�) × L2(�), such that ‖U‖Hs−σ+1(�)×H1(�)×Hs−σ (�)×L2(�) = 1
and

〈u1
1, v

0
1〉Hs−σ (�),Hσ−s (�) − 〈u0

1, v
1
1〉Hs−σ+1(�),Hσ−s−1(�)

+(u1
2, v

0
2)L2(�) − 〈u0

2, v
1
2〉H1(�),H−1(�)

= ‖V ‖Hσ−s (�)×H1(�)×Hσ−s−1(�)×L2(�).

Then, take f such that S( f ) = U and ‖ f ‖L2(MT )
� 2η−1. By (5.4), have

(Eσ−s(v1(T )) + E0(v2(T )))
1
2 = ‖V ‖Hσ−s (�)×H1(�)×Hσ−s−1(�)×L2(�)

= ( f, bωv2)L2(MT )

� ‖ f ‖L2(MT )
‖bωv2‖L2(MT )

� 2η−1‖bωv2‖L2(MT )
,

where (v1, v2) is the backward solution of System (5.3), associated with the final
data (v1, v2, ∂tv1, ∂tv2)|t=T = V . This yields the observability inequality

Eσ−s(v1(T )) + E0(v2(T )) � C‖bωv2‖2
L2(MT )

,

for all backward solutions of (5.3). Changing t in T − t in System (5.3) yields
Inequality (5.2).

Observability ⇒ controllability.
Given U = (u0

1, u0
2, u1

1, u1
2) ∈ Hs−σ+1(�) × H1(�) × Hs−σ (�) × L2(�),

we define the following functional

J (V ) = 1

2
‖bωv2‖2

L2(MT )
−

(
〈u1

1, v
0
1〉Hs−σ (�),Hσ−s (�)−〈u0

1, v
1
1〉Hs−σ+1(�),Hσ−s−1(�)

+(u1
2, v

0
2)L2(�) − 〈u0

2, v
1
2〉H1(�),H−1(�)

)
,

where (v1, v2)(t, x) is the backward solution of (5.3) with the data V =
(v0

1, v
0
2, v

1
1, v

1
2) at time t = T . This quadratic functional is continuous, strictly

convex and the observability inequality (5.2) (after having changed t in T − t
in System (5.3)) implies that it is coercive. Hence, J admits a unique minimizer
V = (v0

1, v
0
2, v

1
1, v

1
2), satisfying the Euler equation

0 = (bωv2, bωv2)L2(MT )
−

(
〈u1

1, v
0
1〉Hs−σ (�),Hσ−s (�)−〈u0

1, v
1
1〉Hs−σ+1(�),Hσ−s−1(�)

+(u1
2, v

0
2)L2(�) − 〈u0

2, v
1
2〉H1(�),H−1(�)

)
,

where (v1, v2)(t, x) is the backward solution of (5.3) with the data V at time
t = T . In view of (5.4), this means exactly that f (t) := bωv2(t) realizes a control
for System (5.1). ��
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5.2. The HUM Operator

Here we use some of the notation and results of the proof of Proposition 5.1
where a control is defined. It is in fact of minimal L2 norm. We shall associate an
operator to this control.

We set the map

Q : Hσ−s(�) × L2(�) × Hσ−s−1(�) × H−1(�) → L2(MT ),

(v1(T ), v2(T ), ∂tv1(T ), ∂tv2(T )) �→ bωv2,

where v = (v1, v2) is the solution to system (5.3) with final condition
(v1(T ), v2(T ), ∂tv1(T ), ∂tv2(T )) ∈ Hσ−s(�)× L2(�)× Hσ−s−1(�)× H−1(�).
We define the natural duality bracket〈

(u0
1, u0

2, u1
1, u1

2), (v
0
1, v

0
2, v

1
1, v

1
2)
〉
∗ =

〈
u1

1, v
0
1

〉
Hs−σ (�),Hσ−s (�)

−
〈
u0

1, v
1
1

〉
Hs−σ+1(�),Hσ−s−1(�)

+(u1
2, v

0
2)L2(�) −

〈
u0

2, v
1
2

〉
H1(�),H−1(�)

,

between the spaces Hs−σ+1(�) × H1(�) × Hs−σ (�) × L2(�) and Hσ−s(�) ×
L2(�) × Hσ−s−1(�) × H−1(�).

From (5.4) we have

‖Q(V )‖2
L2(MT )

= 〈S ◦ Q(V ), V 〉∗ , V = (v1(T ), v2(T ), ∂tv1(T ), ∂tv2(T )) .

We set LT = S ◦ Q (the Gramian operator). If the observability inequality holds,
it reads (change t in T − t)

‖Q(V )‖L2(MT )
� C‖V ‖Hσ−s (�)×H1(�)×Hσ−s−1(�)×L2(�).

Then this yields the invertibility of LT by the Lax-Milgram theorem, which allows
one to define the HUM operator:

HT = L−1
T , (HUM)

that maps continuously Hs−σ+1(�)×H1(�)×Hs−σ (�)×L2(�)onto Hσ−s(�)×
L2(�) × Hσ−s−1(�) × H−1(�).

For a final data U = (u0
1, u0

2, u1
1, u1

2) ∈ Hs−σ+1(�) × H1(�) × Hs−σ (�) ×
L2(�) we can define fHU M = Q ◦ HT (U ) which is a control reaching the target
U at final time T for system (5.1):

S fHU M = S ◦ Q ◦ HT (U ) = S ◦ Q ◦ (S ◦ Q)−1(U ) = U.

The identity (5.4) yields that fHU M is precisely the control built in the second part of
the proof of Proposition 5.1. The Fenchel-Rockafellar convex-optimization theory
[20] implies that, actually, fHU M is the unique minimizer of the cost functional
‖ f ‖2

L2(MT )
among all controls f ∈ L2(MT ) for System (5.1).
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5.3. Microlocal Characterization of the HUM Operator

In this section, we develop a precise analysis of the Gramian operator associated
with the observation system (2.12). More precisely, we prove that this operator is
a matrix of pseudodifferential operators of order zero. We also analyze its elliptic-
ity properties, providing a second proof of Theorem 1.3, together with additional
microlocal properties.

Here we actually follow the program developed by Dehman-Lebeau [18], of
which the reader can find very nice illustrations in [28].

We shall make an intensive use of the Egorov theorem as given in Theorem 2.1.
We shall also use smoothing properties of some very particular Fourier integral
operators; these results are collected in Appendix A.

5.3.1. A Simplified Model: A System of Coupled Half-Wave Equations In this
section, we consider the control problem for two coupled half-wave equations{

(∂t − iλ)u1 − 1
2i bu2 = 0 in (0, T ) × �,

(∂t − iλ)u2 = bω f in (0, T ) × �.
(5.7)

This system is much simpler than System (1.1). This section will, however, help
the reader to understand the key aspects of the microlocal characterization of the
HUM operator without the additional technical difficulties that one faces when
addressing the full wave system (1.1). That analysis is postponed until the next
section. Note that the coefficient −1

2i is chosen here to fit the setting of System (1.1)
(see Section 5.3.2 below) and has no importance here.

The first-order system (5.7) is well-posed for initial data (u1(0), u2(0)) ∈
Hs(�; C

2) and a right hand-side f ∈ L1(R; Hs(�)), giving rise to a unique solu-
tion (u1, u2) ∈ C 0(R; Hs(�; C

2)) ∩ C 1(R; Hs−1(�; C
2)) (see for instance [23,

Chapter 23.1]). Note that there is here no gain of regularity in the state space (as
opposed to the full wave-system (1.1)). The associated observation problem is the
following ⎧⎪⎨

⎪⎩
(∂t − iλ)v1 = 0 in (0, T ) × �,

(∂t − iλ)v2 + 1
2i bv1 = 0 in (0, T ) × �,

(v1(0), v2(0)) = (g, h) ∈ L2(�; C
2),

(5.8)

together with the observability inequality

‖g‖2
L2(�)

+ ‖h‖2
L2(�)

� C
∫ T

0
‖bωv2‖2

L2(�)
dt. (5.9)

In this setting, similar to what is done in Section 5.1, the controllability of Sys-
tem (5.7) is equivalent to estimate (5.9) for all (g, h) ∈ L2(�; C

2) and (v1, v2)

associated solutions of (5.8).
We recall that the flow (ϕ+

t )t∈R, used in the statement of Theorem 5.3, is defined
by (2.9).
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Theorem 5.3. We have∫ T

0
‖bωv2‖2

L2(�)
dt = (

G+
T (g, h), (g, h)

)
L2(�;C2)

,

where G+
T ∈ L(L2(�; C

2)) is the Gramian operator of (5.7).
Moreover, there exists G+

T ∈ 
0
phg(�; C

2×2), and RT an infinitely smoothing
operator on � such that

G+
T = G+

T + RT ,

where the principal symbol of G+
T is

σ0(G
+
T ) =(

1
4

∫ T
0 b2

ω ◦ ϕ+
t

(∫ t
0 b ◦ ϕ+

σ dσ
)2

dt 1
2i

∫ T
0 b2

ω ◦ ϕ+
t

(∫ t
0 b ◦ ϕ+

σ dσ
)

dt

− 1
2i

∫ T
0 b2

ω ◦ ϕ+
t

(∫ t
0 b ◦ ϕ+

σ dσ
)

dt
∫ T

0 b2
ω ◦ ϕ+

t dt

)
∈ S0

phg(T
∗�,C

2×2).

In particular, we have

det(σ0(G
+
T )) =

1

8

∫ T

0

∫ T

0
(b2

ω ◦ ϕ+
t1 )(b

2
ω ◦ ϕ+

t2 )

(∫ t2

t1
b ◦ ϕ+

σ dσ

)2

dt1 dt2 ∈ S0
phg(T

∗�).

The next corollary both proves the observability of (5.8) and characterizes
the HUM operator. The connection between the HUM operator

(
G+

T

)−1 and the
construction of the control of minimal L2-norm for the present simplified half-
wave model can be done as in Sections 5.1–5.2. This is left to the reader. Recall
that the time T +

ω→O→ω
is defined in Definition 2.5.

Corollary 5.4. Assume that both ω and O satisfy GCC and that T > T +
ω→O→ω

.
Then, we have the following properties:

1. The operator G+
T ∈ 
0

phg(�,C
2×2) is elliptic.

2. The operator G+
T is coercive on L2(�; C

2):∫ T

0
‖bωv2‖2

L2(�)
dt = (

G+
T (g, h), (g, h)

)
L2(�;C2)

� C‖(g, h)‖2
L2(�;C2)

,

(5.10)

for all (g, h) ∈ L2(�; C
2) and (v1, v2) associated solutions of (5.8).

3. The operator G+
T is invertible in L(L2(�)). Its inverse (G+

T )−1, the HUM
operator, can be decomposed as (G+

T )−1 = �+
T + RT where RT ∈ R∞(�)

and �+
T ∈ S0

phg(T
∗�,C

2×2), with principal symbol

σ0(�
+
T ) = det(σ0(G

+
T ))

−1⎛
⎝

∫ T
0 b2

ω ◦ ϕ+
t dt 1

2i

∫ T
0 b2

ω ◦ ϕ+
t

(∫ t
0 b ◦ ϕ+

σ dσ
)

dt

− 1
2i

∫ T
0 b2

ω ◦ ϕ+
t

(∫ t
0 b ◦ ϕ+

σ dσ
)

dt 1
4

∫ T
0 b2

ω ◦ ϕ+
t

(∫ t
0 b ◦ ϕ+

σ dσ
)2

dt

⎞
⎠ .
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4. In particular, the HUM operator (G+
T )−1 is an isomorphism of Hs(�; C

2) for
all s � 0 and we have

WFs((G+
T )−1( f, g)) = WFs( f, g).

Recall that the notation R∞ was introduced in Definition 2.2. The definition of
WFs(u), for u ∈ D ′(�), is for instance given in [30, Definition 1.2.21]. The wave-
front set of a couple, or, more generally a k-tuple ( f1, f2, . . . , fk) ∈ D ′(�; C

k), is
defined by (see for instance [17])

WFs( f1, f2, . . . , fk) =
k⋃

j=1

WFs( f j ). (5.11)

Corollary 5.4 is proved at the end of this section.

Proof of Theorem 5.3. Let us recall that the group eitλ is defined at the end of
Section 2.1. The Duhamel formula in (5.8) gives the explicit representations

v1(t) = eitλ�+g + �0g,

v2(t) = eitλ�+h + �0h − 1

2i

∫ t

0

(
ei(t−σ)λ�+bv1(σ ) + �0bv1(σ )

)
dσ.

Developing this last expression, we have in particular,

v2(t) = eitλ�+h − 1

2i

∫ t

0
ei(t−σ)λ�+beiσλ�+gdσ + Rt (g, h),

where

Rt (g, h) =
�0h − 1

2i
t�0b�0g + 1

2
λ−1(eitλ − 1)�+b�0g + 1

2
�0bλ−1(eitλ − 1)�+g.

Recall that λ−1 ∈ L(Hs+(�); Hs+1+ (�)) is defined at the end of Section 2.1.
Hence, Rt is a continuous family of infinitely smoothing operators, since �0 ∈

L(Hs(�); C) for all s ∈ R and b and eitλ preserve the regularity.
Now, let us compute the observation∫ T

0
‖bωv2‖2

L2(�)
dt =

∫ T

0

∥∥∥bωeitλ�+h

− 1

2i
bωeitλ�+

∫ t

0
e−iσλbeiσλdσ �+g + Rt (g, h)

∥∥∥2

L2(�)
dt. (5.12)

According to the Egorov theorem (see Theorem 2.1), for any N ∈ N, we have
e−iσλbeiσλ − RN

t ∈ C 0
(
R, 
0

phg(�)
)
, with principal symbol b ◦ ϕ+

σ (x, η), where

RN
t is a continuous family of N -smoothing operators. Hence, the operator

B+
t :=

∫ t

0
e−iσλbeiσλdσ (5.13)
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is in C 0
(
R, 
0

phg(�)
)

up to a continuous family of N -smoothing operators, and we
have

σ0(B+
t )(x, η) =

∫ t

0
b ◦ ϕ+

σ (x, η)dσ, (x, η) ∈ T ∗�.

Coming back to (5.12) and developing the inner product, we obtain

∫ T

0
‖bωv2‖2

L2(�)
dt =

∫ T

0

(
�+e−i tλb2

ωeitλ�+h, h
)

L2(�)
dt

− 1

2i

∫ T

0

(
�+e−i tλb2

ωeitλ�+ B+
t �+g, h

)
L2(�)

dt

+ 1

2i

∫ T

0

(
�+(B+

t )∗�+e−i tλb2
ωeitλ�+h, g

)
L2(�)

dt

+1

4

∫ T

0

(
�+(B+

t )∗�+e−i tλb2
ωeitλ�+B+

t �+g, g
)

L2(�)
dt

+
∫ T

0

(
R̃t (g, h), (g, h)

)
L2(�)

dt,

where R̃t is a continuous family of N -smoothing operators.
Setting

G+
T =(

1
4

∫ T
0 �+(B+

t )∗�+e−i tλb2
ωeitλ�+ B+

t �+dt 1
2i

∫ T
0 �+(B+

t )∗�+e−i tλb2
ωeitλ�+dt

− 1
2i

∫ T
0 �+e−i tλb2

ωeitλ�+ B+
t �+dt

∫ T
0 �+e−i tλb2

ωeitλ�+dt

)
,

we find G+
T ∈ 
0

phg(�,C
2×2), since, according to the Egorov theorem,

e−i tλb2
ωeitλ ∈ 
0

phg(�) with principal symbol b2
ω ◦ ϕ+

t (x, η). The pseudodifferen-
tial calculus directly yields the principal symbol

σ0(G
+
T ) =(

1
4
∫ T

0 b2
ω ◦ ϕ+

t

(∫ t
0 b ◦ ϕ+

σ dσ
)2

dt 1
2i

∫ T
0 b2

ω ◦ ϕ+
t

(∫ t
0 b ◦ ϕ+

σ dσ
)

dt

− 1
2i

∫ T
0 b2

ω ◦ ϕ+
t

(∫ t
0 b ◦ ϕ+

σ dσ
)

dt
∫ T

0 b2
ω ◦ ϕ+

t dt

)
∈ S0

phg(T
∗�,C

2×2).

We have thus obtained

∫ T

0
‖bωv2‖2

L2(�)
dt = (

(G+
T + RT )(g, h), (g, h)

)
L2(�;C2)

,

where RT is an infinitely smoothing operator.
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Computing det(σ0(G
+
T )), we find

det
(
σ0(G

+
T )

) = 1

4

(∫ T

0
b2
ω ◦ ϕ+

t dt

)(∫ T

0
b2
ω ◦ ϕ+

t

(∫ t

0
b ◦ ϕ+

σ dσ

)2

dt

)

−1

4

(∫ T

0
b2
ω ◦ ϕ+

t

(∫ t

0
b ◦ ϕ+

σ dσ

)
dt

)2

= 1

4

∫ T

0

∫ T

0
(b2

ω ◦ ϕ+
t1 )(b

2
ω ◦ ϕ+

t2 )

(∫ t2

0
b ◦ ϕ+

σ dσ

)2

dt1 dt2

−1

4

∫ T

0

∫ T

0
(b2

ω ◦ ϕ+
t1 )(b

2
ω ◦ ϕ+

t2 )

(∫ t1

0
b ◦ ϕ+

σ dσ

)

×
(∫ t2

0
b ◦ ϕ+

σ dσ

)
dt1 dt2.

Given a function f (t1, t2) defined on the square [0, T ]2, we notice that its mean
value is equal to that of its symmetric part with respect to the diagonal:∫ T

0

∫ T

0
f (t1, t2) dt1 dt2 =

∫ T

0

∫ T

0

1

2
( f (t1, t2) + f (t2, t1)) dt1 dt2.

Applying this remark to the function (t1, t2) �→ (b2
ω◦ϕ+

t1 )(b
2
ω◦ϕ+

t2 )
( ∫ t2

0 b◦ϕ+
σ dσ

)2
,

we obtain

4 det(σ0(G
+
T )) =

∫ T

0

∫ T

0
(b2

ω ◦ ϕ+
t1 )(b

2
ω ◦ ϕ+

t2 )
1

2

[(∫ t1

0
b ◦ ϕ+

σ dσ

)2

+
(∫ t2

0
b ◦ ϕ+

σ dσ

)2
]

dt1 dt2

−
∫ T

0

∫ T

0
(b2

ω ◦ ϕ+
t1 )(b

2
ω ◦ ϕ+

t2 )

(∫ t1

0
b ◦ ϕ+

σ dσ

)

×
(∫ t2

0
b ◦ ϕ+

σ dσ

)
dt1 dt2

= 1

2

∫ T

0

∫ T

0
(b2

ω ◦ ϕ+
t1 )(b

2
ω ◦ ϕ+

t2 )

(∫ t2

t1
b ◦ ϕ+

σ dσ

)2

dt1 dt2.

This concludes the proof of Theorem 5.3. ��
Proof of Corollary 5.4. Let us first prove Item 1 Take ρ = (x, η) ∈ S∗�. Since
T > T +

ω→O→ω
, there exists 0 < t1(ρ) < t1,2(ρ) < t2(ρ) < T such that

π(ϕ+
t1(ρ)

(ρ)) ∈ ω, π(ϕ+
t1,2(ρ)

(ρ)) ∈ O, π(ϕ+
t2(ρ)

(ρ)) ∈ ω.

Since the functions b and bω are continuous this yields

det(σ0(G
+
T ))(ρ) =

1

8

∫ T

0

∫ T

0
(b2

ω ◦ ϕ+
t1 (ρ))(b

2
ω ◦ ϕ+

t2 (ρ))

(∫ t2

t1
b ◦ ϕ+

σ (ρ)dσ

)2

dt1 dt2 > 0.
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With the manifold S∗� being compact, we have det(σ0(G
+
T )) � C > 0 on S∗�.

The matrix σ0(G
+
T ) has a non-negative trace and positive determinant, and is hence

positive definite. Hence, G+
T is elliptic.

The proof of Item 2 consists in two steps (using a compactness–uniqueness
argument as in Section 3 for the proof of Theorem 1.3). The first one is the following
high-frequency observability estimate:∫ T

0
‖bωv2‖2

L2(�)
dt = (

G+
T (g, h), (g, h)

)
L2(�;C2)

� C‖(g, h)‖2
L2(�;C2)

− C ′‖(g, h)‖2

H− 1
2 (�;C2)

, (5.14)

for all (g, h) ∈ L2(�; C
2) and (v1, v2) associated solutions of (5.8).

Using the Gårding inequality for the operator G+
T ∈ 
0

phg(�) (see for
instance [44, Chapter 2] or [14, Chapter 4]), this gives the existence of C,C ′ > 0
such that, for all (g, h) ∈ L2(�; C

2),

(G+
T (g, h), (g, h))L2(�;C2) � C‖(g, h)‖2

L2(�;C2)
− C ′‖(g, h)‖2

H− 1
2 (�;C2)

.

Recalling that RT is 1-smoothing, that is in particular RT ∈ L(H−1(�; C
2);

L2(�; C
2)), we have for all ε > 0,

∣∣(RT (g, h), (g, h))L2(�;C2)

∣∣ � C ′′

ε
‖(g, h)‖2

H−1(�;C2)
+ ε‖(g, h)‖2

L2(�;C2)
,

and hence

(G+
T (g, h), (g, h))L2(�;C2) = (G+

T (g, h), (g, h))L2(�;C2)

+ (RT (g, h), (g, h))L2(�;C2)

�
(
C − ε

)‖(g, h)‖2
L2(�;C2)

−
(

C ′ + C ′′′

ε

)
‖(g, h)‖2

H− 1
2 (�;C2)

.

Taking ε sufficiently small concludes the proof of (5.14).
The second step of the proof of Item 2 follows Section 3.2. We consider

N (T ) = {(g, h) ∈ L2(�; C
2) such that the associated solution of (5.8)

satisfies v2(t, x) = 0 for all (t, x) ∈ (0, T ) × ω},
and prove that N (T ) = {0} for T > T +

ω→O→ω
. Indeed, a proof similar to that

of Lemma 3.4 yields that N (T ) is a finite dimensional subspace of H1(�; C
2)

using (5.14), stable by the action of the operator(−iλ 0
1
2i b −iλ

)
.

Hence, it contains an eigenfunction of this operator, (ϕ1, ϕ2):{−iλϕ1 = μϕ1,
b
2i ϕ1 − iλϕ2 = μϕ2.

(5.15)
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In particular, μ is then an eigenvalue of the skew-adjoint operator −iλ and thus
μ ∈ iR. Taking the L2(�)-inner product of the first line of (5.15) with ϕ2, and that
of the second line of (5.15) with ϕ1, we obtain

{
i(λϕ2, ϕ1)L2(�) = −μ(ϕ2, ϕ1)L2(�),
b
2i (ϕ1, ϕ1)L2(�) − i(λϕ2, ϕ1)L2(�) = μ(ϕ2, ϕ1)L2(�).

Adding these two lines yields

(bϕ1, ϕ1)L2(�) = 0.

Since b � 0 and b does not vanish identically, this proves that ϕ1 = 0 on O. As
the first equation of (5.15) gives that −�ϕ1 = μ2ϕ1, ϕ1 is an eigenfunction of the
Laplace operator vanishing on O, a unique continuation result (see for instance the
classical reference [6,7], the book [47] or the exposition article [25]) yields ϕ1 = 0
on �.

Moreover, (g, h) ∈ N (T ) yields ϕ2 = 0 on ω. This proves that ϕ2 = 0 on
�, as ϕ2 is then also an eigenfunction of the Laplace operator. This is similar to
Remark 3.5. We then obtain N (T ) = {0}.

Inequality (5.14) is the analogue to the weak observability inequality of Propo-
sition (3.2). Using the same contradiction argument as in Section 3.2 concludes the
proof of the observability inequality (5.10).

The proof of Item 3 is inspired by [18, Theorem 4.1]. First, G+
T is a bounded

selfadjoint and coercive operator and is hence invertible according to the Riesz
Theorem. Second, since G+

T ∈ 
0
phg(�,C

2×2) is elliptic, there exists (see for

instance [23, Theorem 18.1.24]) a parametrix �+
T ∈ 
0

phg(�,C
2×2) such that

�+
T G+

T = Id +R, with R ∈ 
−∞
phg (�,C

2×2) and σ0(�
+
T ) = σ0(G

+
T )

−1.

(5.16)

Hence, using the decomposition G+
T = G+

T + RT , with RT infinitely smoothing,
we have

�+
T G+

T = �+
T (G

+
T + RT ) = Id +R + �+

T RT ,

where �+
T RT is infinitely smoothing. Applying the operator (G+

T )−1 ∈ L(L2(�))

to this identity, we obtain

(G+
T )−1 = �+

T − (R + �+
T RT )(G+

T )−1.

Observing that the operator (R+�+
T RT )(G+

T )−1 is in R∞ concludes with (5.16) the
proof of Item 3 (recall that the precise definition of R∞ is given in Definition 2.2).

Finally, Item 4 is a direct consequence of Item 3. ��
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5.3.2. Characterization of the HUM Operator for Coupled Wave Equations
The method used in this section follows that of Section 5.3.1. Yet the proof is more
involved. In fact, here, there is a possible interaction between waves with positive
and negative frequencies. For the same reason, some of the remainders that we shall
obtain along the proof will only be 1-smoothing in this case, whereas we obtained
infinitely smoothing remainder terms in Section 5.3.1. Note that for a scalar wave
equation, such remainder terms are also 1-smoothing only. This can be improved
by taking a time dependent control function bω(t, x) vanishing at all orders at times
0 and T (see [18, Theorem 4.1]). Due to the coupling of two waves in System (1.1)
we shall see that the remainder terms that we shall obtain cannot be better than
1-smoothing, even if bω is chosen time dependent.

Recall that proving the observability inequality (1.5) for the adjoint system (1.6)
is equivalent to proving the L2 − L2 observability inequality (2.13) for solutions
of System (2.12):{

Pw1 = 0 in (0, T ) × �,

Pw2 = −b(x) (1 − �)
1
2 w1 in (0, T ) × �.

(5.17)

The symmetric setting of this system is, once again, simpler to handle, and we shall
therefore work with L2 − L2 data. In the framework of Section 5.1 this corresponds
to the case s = 1 and σ = 1 and the associated control system is (2.14).

Given the following initial data

(w1(0), w2(0), ∂tw1(0), ∂tw2(0)) = (w0
1, w

0
2, w

1
1, w

1
2) ∈ L2(�; C

2)

×H−1(�; C
2)

for System (5.17), we shall split them into their positive and negative parts follow-
ing [18]. Concerning the state w1, we set

g± = 1

2

(
�+w0

1 ∓ iλ−1�+w1
1

)
∈ L2+(�), g0 = �0w

0
1 ∈ C,

g1 = �0w
1
1 ∈ C, (5.18)

so that

w1(0) = w0
1 = g+ + g− + g0, ∂tw1(0) = w1

1 = iλ(g+ − g−) + g1.

In this splitting, the expression of the solution of System (5.17) is particularly
simple:

w1(t) = eitλg+ + e−i tλg− + tg1 + g0. (5.19)

We proceed to the same decomposition for w2 and set

h± = 1

2

(
�+w0

2 ∓ iλ−1�+w1
2

)
∈ L2+(�), h0 = �0w

0
2 ∈ C,

h1 = �0w
1
2 ∈ C, (5.20)
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so that

w2(0) = w0
2 = h+ + h− + h0, ∂tw2(0) = w1

2 = iλ(h+ − h−) + h1.

In this splitting, the expression of the solution of System (5.17) through the Duhamel
formula is

w2(t) = eitλh+ + e−i tλh− + th1 + h0

−λ−1
∫ t

0
sin((t − σ)λ)�+b(1 − �)

1
2 w1(σ )dσ

−
∫ t

0
(t − σ)�0b(1 − �)

1
2 w1(σ )dσ. (5.21)

We denote by �+ the linear mapping

�+ : Hs(�; C
2) × Hs−1(�; C

2) → Hs+(�; C
4)

(w0
1, w

0
2, w

1
1, w

1
2) �→ (g+, h+, g−, h−),

corresponding to the splitting (5.18)–(5.20). Note that this mapping is onto but not
injective since constants are lost. Note also that the order in (g+, h+, g−, h−) is
important since we collect together data corresponding to the same wave frequen-
cies. We also denote by �0 the linear mapping associated with constant functions

�0 : Hs(�; C
2) × Hs−1(�; C

2) → C
4

(w0
1, w

0
2, w

1
1, w

1
2) �→ (g0, h0, g1, h1),

corresponding to the splitting (5.18)–(5.20). Finally, we denote by � the isomor-
phism corresponding to the splitting (5.18)–(5.20):

� : Hs(�; C
2) × Hs−1(�; C

2) → Hs+(�; C
4) × C

4

W0 =(w0
1, w

0
2, w

1
1, w

1
2) �→ (�+W0, �0W0)=(g+, h+, g−, h−, g0, h0, g1, h1).

We recall the natural duality bracket〈
(u0

1, u0
2, u1

1, u1
2), (w

0
1, w

0
2, w

1
1, w

1
2)
〉
∗ = (u1

1, w
0
1)L2(�) −

〈
u0

1, w
1
1

〉
H1(�),H−1(�)

+(u1
2, w

0
2)L2(�) −

〈
u0

2, w
1
2

〉
H1(�),H−1(�)

,

as used in Section 5.1 describing the Hilbert Uniqueness Method. In the case s = 0,
the transpose operator of � with respect to this duality bracket

�∗ : L2+(�; C
4) × C

4 → H1(�; C
2) × L2(�; C

2),

is given by〈
�∗H,W0

〉
∗ = (H, �W0)L2+(�;C4)×C4 ,

for all H ∈ L2+(�; C
4) × C

4,W0 ∈ L2(�; C
2) × H−1(�; C

2).

We can now state the analogue of Theorem 5.3 for full wave systems, providing
a characterization of the Gramian operator (in the wave splitting (5.18)–(5.20)).
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Theorem 5.5. Denoting by W0 = (w0
1, w

0
2, w

1
1, w

1
2) the initial data for Sys-

tem (5.17), we have∫ T

0
‖bωw2‖2

L2(�)
dt =

(
GT �W0, �W0

)
L2+(�;C4)×C4)

, (5.22)

where LT = �∗GT� ∈ L
(
L2(�; C

2)×H−1(�; C
2); H1(�; C

2)×L2(�; C
2)
)

is
the Gramian operator of (5.17), and GT ∈ L(L2+(�; C

4)×C
4) is its representation

in the splitting (5.18)–(5.20).
Moreover, there exist GT ∈ 
0

phg(�; C
4×4) ∩

⋂
s∈R

L(Hs+(�; C
4)), RT ∈

⋂
s∈R

L(Hs+(�; C
4)) a 1-smoothing operator, R0

T ∈ L(C4), and R̃T ∈
⋂
s∈R

L(C4;

Hs+(�; C
4)) such that GT on L2+(�; C

4)×C
4 is given by (a 8×8 operator matrix)

GT =
(

GT + RT R̃T

R̃∗
T R0

T

)
. (5.23)

The principal symbol of GT is (a 4 × 4 symbol matrix)

σ0(GT ) =
(
σ0(G

+
T ) 0

0 σ0(G
−
T )

)
, (5.24)

with σ0(G
±
T ) ∈ S0

phg(T
∗�,C

2×2),

σ0(G
±
T ) =⎛

⎝ 1
4

∫ T
0 b2

ω ◦ ϕ±
t

(∫ t
0 b ◦ ϕ±

σ dσ
)2

dt ± 1
2i

∫ T
0 b2

ω ◦ ϕ±
t

(∫ t
0 b ◦ ϕ±

σ dσ
)

dt

∓ 1
2i

∫ T
0 b2

ω ◦ ϕ±
t

(∫ t
0 b ◦ ϕ±

σ dσ
)

dt
∫ T

0 b2
ω ◦ ϕ±

t dt

⎞
⎠ .

(5.25)

In particular, we have

det(σ0(GT )) = det(σ0(G
+
T )) det(σ0(G

−
T )),

with

det(σ0(G
±
T )) = 1

8

∫ T

0

∫ T

0
(b2

ω ◦ ϕ±
t1 )(b

2
ω ◦ ϕ±

t2 )

×
(∫ t2

t1
b ◦ ϕ±

σ dσ

)2

dt1 dt2 ∈ S0
phg(T

∗�).

From (5.22), if the operator LT = �∗GT � is invertible then the HUM operator
HT is precisely its inverse (see Section 5.2). The following corollary provides
the microlocal structure of HT within the splitting framework. In particular, this
provides a second proof of the observability of System (5.17) under the appropriate
geometric conditions.
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Corollary 5.6. Assume that ω and O satisfy GCC and that T > Tω→O→ω. Then,
we have the following properties:

1. The operator GT ∈ 
0
phg(�,C

4×4) is elliptic.

2. The operator GT is coercive on L2+(�; C
4) × C

4:∫ T

0
‖bωw2‖2

L2(�)
dt =

(
GT �W0, �W0

)
L2+(�;C4)×C4

� C‖�W0‖2
L2+(�;C4)×C4

� C ′‖W0‖2
L2(�;C2)×H−1(�;C2)

, (5.26)

for all W0 ∈ L2(�; C
2) × H−1(�; C

2) and (w1, w2) associated solutions of
System (5.17).

3. The operator GT is invertible on L(L2+(�; C
4) × C

4). The HUM operator
(in the splitting (5.18)–(5.20)) is its inverse G−1

T and can be decomposed on
L2+(�; C

4) × C
4 as (the 8 × 8 operator matrix)

G−1
T =

(
�T + ST S̃T

S̃∗
T S0

T

)
,

where ST ∈ R1, S0
T ∈ L(C4), S̃T ∈

⋂
s∈R

L(C4; Hs+(�; C
4)) and �T ∈

S0
phg(T

∗�,C
4×4) ∩

⋂
s∈R

L(Hs+(�; C
4)), with principal symbol

σ0(�T ) = σ0(GT )
−1 =

(
σ0(G

+
T )

−1 0
0 σ0(G

−
T )

−1

)
.

4. In particular, the HUM operator G−1
T is an isomorphism of Hs+(�; C

4) × C
4

for all s � 0 and we have

WFs((GT )
−1�W0) = WFs(�W0).

Recall that the definition of the Hs-wavefront set of a k-tuple is given in (5.11).
Note that in Theorem 5.5, we do not use any sign assumption on the coupling

term b, but only that b is real valued. As a consequence, we can state in this more
general case a criterion for the high-frequency controllability of System (1.1).
Compare with Theorem 1.3.

Definition 5.7. We say that (ω, b, T ) satisfies the Polarization Control Condition
(PCC) if, for any ρ ∈ S∗�, there exist 0 < t±1 < t±2 < T such that

ϕ±
t±1
(ρ) ∈ ω, ϕ±

t±2
(ρ) ∈ ω, and

∫ t2

t1
b ◦ ϕ±

σ (ρ) dσ �= 0.

In particular, this requires that both ω and the set {b �= 0} satisfy GCC. Note that
if b � 0, we have that (ω, b, T ) satisfies PCC if and only if ω and O := {b > 0}
both satisfy GCC and T > Tω→O→ω. With this definition, we have the following
result.
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Corollary 5.8. 1. The weak observability inequality∫ T

0
‖bωw2‖2

L2(�)
dt � C‖W0‖2

L2(�;C2)×H−1(�;C2)

−‖W0‖2
H−1(�;C2)×H−2(�;C2)

,

holds for all W0 ∈ L2(�; C
2) × H−1(�; C

2) and (w1, w2) associated solu-
tions of System (5.17), if and only if (ω, b, T ) satisfies PCC.

2. Suppose that (ω, b, T ) satisfies PCC and that no eigenfunction (ϕ1, ϕ2) of the
operator (−� 0

b(1 − �)
1
2 −�

)
,

satisfy ϕ2|ω = 0. Then, we have the observability inequality∫ T

0
‖bωw2‖2

L2(�)
dt � C‖W0‖2

L2(�;C2)×H−1(�;C2)
,

for all W0 ∈ L2(�; C
2) × H−1(�; C

2) and (w1, w2) associated solutions of
System (5.17) (that is System (1.1) is controllable).

Note that the additional unique continuation assumption is valid in the following
two particular cases

• b � 0 on � and {b > 0} �= ∅ (see Section 3.2 and Remark 3.5);
• ω ∩ {b �= 0} �= ∅ (see [26, Proposition 5.1]).

The question seems to be open in the general case.

Proof of Theorem 5.5. Here, we mostly follow the proof of Theorem 5.3. In fact,
several additional terms appear in the calculations that we have to deal with.

In the matrix GT , given in (5.23), each one of the four blocks is a 4 × 4 matrix
of operators (or simply scalars numbers). In a first step, we check that all blocks
have the announced form, excluding the first block. In a second step, we shall focus
on this first block that contains all the high-frequency of GT . We wish to compute∫ T

0 ‖bωw2‖2
L2(�)

dt and to cast it in the form of the right hand-side of (5.22), that

is
(
GT H, H

)
L2+(�;C4)×C4)

, with H = �W0.

Focusing on (5.19)–(5.21), we first remark that (�0w2(t), e0)L2(�)∈C ∞(R; C).
Hence, for all t ∈ R, the map

H = �W0 �→ (�0w2(t), e0)L2(�)

is an infinitely smoothing operator. As a consequence, it suffices to carry out our
computation with w2 replaced by

�+w2(t) = eitλh+ + e−i tλh− − λ−1
∫ t

0
sin((t − σ)λ)�+b(1 − �)

1
2

×
(

eiσλg+ + e−iσλg− + σg1 + g0

)
dσ,
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that is, ignoring the components along e0, which contribute to the smoothing oper-
ators in the expression of GT in (5.23). In the previous expression, the term

λ−1
∫ t

0
sin((t − σ)λ)�+b(1 − �)

1
2 (σg1 + g0) dσ,

is in C ∞(R × �) since the functions g1 = g1e0 and g0 = g0e0 are smooth. As a
consequence, we have

∫ T

0
‖bωw2‖2

L2(�)
dt

=
∫ T

0
(Rt H, H)L2(�) dt +

∫ T

0

∥∥∥bωeitλh+ + bωe−i tλh−bωλ
−1

×
∫ t

0
sin((t − σ)λ)�+b(1 − �)

1
2

(
eiσλg+ + e−iσλg−

)
dσ

∥∥∥2

L2(�)
dt. (5.27)

Now, we focus on the first block of the operator matrix in (5.23), that is a 4×4 matrix
of operators on �, that yields the bilinear form applied to (g+, h+, g−, h−) =
�+(w0

1, w
0
2, w

1
1, w

1
2). It is associated with the last term in the expression (5.27),

given by

∫ T

0

∥∥∥bω

(
eitλh+ + e−i tλh−

λ−1

2i

∫ t

0

(
ei(t−σ)λ − e−i(t−σ)λ

)
�+b(1 − �)

1
2

×
(

eiσλg+ + e−iσλg−
)

dσ

)∥∥∥2

L2(�)
dt.

We only compute the first two lines of this matrix (as operating on (g+, h+, g−, h−))
and denote by GT (·, ·) the associated term in this matrix. The computation of the
last two lines is similar and is left to the reader.

Let us start with the (simpler) second line. We have

GT (h+, h+) =
∫ T

0

(
bωeitλh+, bωeitλh+

)
L2(�)

dt

=
(∫ T

0
e−i tλb2

ωeitλ dt h+, h+
)

L2(�)

. (5.28)

Next, we compute

GT (h+, h−) =
∫ T

0

(
bωeitλh+, bωe−i tλh−

)
L2(�)

dt

=
(∫ T

0
eitλb2

ωeitλ dt h+, h−
)

L2(�)

= (RT h+, h−)L2(�), (5.29)
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for some 1-smoothing2 operator RT , according to Lemma A.1 (see Appendix A).
Similarly, we compute

−GT (h+, g+) =
∫ T

0

(
bωeitλh+, bω

λ−1

2i

∫ t

0

(
ei(t−σ)λ

−e−i(t−σ)λ
)
�+b(1 − �)

1
2 eiσλdσ g+

)
L2(�)

dt

=
∫ T

0

(
bωeitλh+, bω

1

2i

∫ t

0

(
ei(t−σ)λ

−e−i(t−σ)λ
)
�+beiσλdσ g+ + Rt g+

)
L2(�)

dt,

for some continuous family of 1-smoothing operators Rt , since (1 − �)
1
2 − λ ∈


0
phg(�) and [b, λ] ∈ 
0

phg(�). We obtain

GT (h+, g+)

=
∫ T

0

(
1

2i
�+

(∫ t

0
e−iσλbeiσλdσ

)
�+e−i tλb2

ωeitλh+, g+
)

L2(�)

dt

−
∫ T

0

(
1

2i
�+

(∫ t

0
e−iσλbe−iσλdσ

)
�+eitλb2

ωeitλh+, g+
)

L2(�)

dt

+ (RT h+, g+)L2(�),

where RT is again a continuous family of 1-smoothing operators. In the central term
of the right-hand side, we notice that

∫ t
0 e−iσλbe−iσλdσ is a continuous family

of 1-smoothing operators3 according to Lemma A.1. With the Egorov Theorem
(Theorem 2.1), we define as in (5.13) the pseudodifferential operators

B±
t :=

∫ t

0
e∓iσλbe±iσλdσ ∈ 
0

phg(�), (5.30)

with principal symbol

σ0(B±
t )(x, η) =

∫ t

0
b ◦ ϕ±

σ (x, η)dσ, (x, η) ∈ T ∗�.

We now have

GT (h+, g+) =
(

1

2i

∫ T

0
�+ B+

t �+e−i tλb2
ωeitλ dt h+, g+

)
L2(�)

+ (RT h+, g+)L2(�), (5.31)

2 This smoothing term can be made infinitely smoothing if bω is chosen vanishing at
infinite order at t = 0 and t = T (see [18]).

3 It seems to us that no particular choice of b (except b = 0) can improve this smoothing
property.
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where RT is a continuous family of 1-smoothing operators. Similarly, we compute

GT (h+, g−)

= −
∫ T

0

(
bωeitλh+, bω

1

2i

∫ t

0

(
ei(t−σ)λ − e−i(t−σ)λ

)
�+be−iσλg− + Rt g−

)
L2(�)

dt

=
(

1

2i

∫ T

0
�+

(∫ t

0
eiσλbeiσλdσ

)
�+e−i tλb2

ωeitλ dt h+, g−
)

L2(�)

−
(

1

2i

∫ T

0
�+

(∫ t

0
e+iσλbe−iσλdσ

)
�+eitλb2

ωeitλ dt h+, g−
)

L2(�)

+ (RT h+, g−)L2(�).

According to Lemma A.1, the operator
∫ t

0 eiσλbeiσλdσ is a continuous family
of 1-smoothing operators, and so is the first term in the right-hand side of this
expression. The second term is also a continuous family of 1-smoothing operators,
using Lemma A.2. We thus obtain

GT (h+, g−) = (RT h+, g−)L2(�), (5.32)

where RT is 1-smoothing.
We have already computed the second line of the first block of the matrix GT .

Let us now compute the first line. First, we have

GT (g+, g+)=
∫ T

0

∥∥∥∥bω
1

2i

∫ t

0

(
ei(t−σ)λ−e−i(t−σ)λ

)
�+beiσλg++Rt g+

∥∥∥∥
2

L2(�)

dt,

and we notice that, according to Lemma A.1, bω
1
2i

∫ t
0 e−i(t−σ)λ�+beiσλ dσ is a

continuous family of 1-smoothing operators. Hence, we have (with a continuous
family of 1-smoothing operators R̃t )

GT (g+, g+) =
∫ T

0

∥∥∥∥bω
1

2i

∫ t

0
ei(t−σ)λ�+beiσλg+ + R̃t g+

∥∥∥∥
2

L2(�)

dt,

= 1

4

(
�+

∫ T

0
(B+

t )∗�+e−i tλb2
ωeitλ�+ B+

t dt�+g+, g+
)

L2(�)

+ (RT g+, g+)L2(�) , (5.33)

as in the proof of Theorem 5.3.
Then, the operator arising in the term GT (g+, h+) is the adjoint of that of

GT (h+, g+), given by (5.31).
Next

GT (g+, h−) =
∫ T

0

(
eitλb2

ω

λ−1

2i

∫ t

0

(
ei(t−σ)λ − e−i(t−σ)λ

)

×�+b(1 − �)
1
2 eiσλdσ g+, h−

)
L2(�)

dt

= 1

2i

∫ T

0

(
eitλb2

ωeitλ
∫ t

0
e−iσλ�+beiσλdσ g++Rt g+, h−

)
L2(�)

dt
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since
∫ t

0 e−i(t−σ)λ�+beiσλ dσ is a continuous family of 1-smoothing operators
according to Lemma A.1. Lemma A.2 then yields

GT (g+, h−) = (RT g+, h−)L2(�) (5.34)

for RT some 1-smoothing operator.
It only remains to compute

GT (g+, g−)

= −
∫ T

0

(
bω

λ−1

2i

∫ t

0

(
ei(t−σ)λ − e−i(t−σ)λ

)
�+b(1 − �)

1
2 eiσλdσ g+,

bω
λ−1

2i

∫ t

0

(
ei(t−σ)λ − e−i(t−σ)λ

)
�+b(1 − �)

1
2 e−iσλdσ g−

)
L2(�)

dt

=
∫ T

0

(
bω

1

2i

∫ t

0
ei(t−σ)λ�+beiσλdσ g+, bω

1

2i

∫ t

0
e−i(t−σ)λ�+be−iσλdσ g−

)
L2(�)

dt

+ (RT g+, g−)L2(�),

after having used twice Lemma A.1. This can be rewritten as

GT (g+, g−) =
∫ T

0

(
bω

1

2i
eitλB+

t g+, bω
1

2i
e−i tλB−

t g−
)

L2(�)

dt

= 1

4

(∫ T

0
(B−

t )∗eitλb2
ω

1

2i
eitλB+

t dt g+, g−
)

L2(�)

.

Using Lemma A.2, we finally obtain

GT (g+, g−) = (RT g+, g−)L2(�), (5.35)

for RT some 1-smoothing operator.
Finally, combining (5.28), (5.29), (5.31), (5.32), (5.33), (5.34) and (5.35), we

obtain the first two lines of the first block in (5.23) (that is the term GT + RT ), with
symbols according to (5.24)–(5.25). The last two lines can be computed similarly.
The determinant of σ0(GT ) is then given by Theorem 5.3. This concludes the proof
of Theorem 5.5. ��
Proof of Corollary 5.6. The proof of Corollary 5.6 is very similar to that of Corol-
lary 5.4, although more technical. The proof of Item 1 is the same as that of Item 1
in Corollary 5.4.

Then, the observability inequality of Item 2 is again proved in two steps. The
ellipticity of GT together with the Gårding inequality first yield the weak observ-
ability estimate∫ T

0
‖bωw2‖2

L2(�)
dt =

(
GT �W0, �W0

)
L2+(�;C4)×C4

� C‖�W0‖2
L2+(�;C4)×C4 − C ′‖�W0‖2

H
− 1

2+ (�;C4)×C4
,

(5.36)



166 Belhassen Dehman, Jérôme Le Rousseau & Matthieu Léautaud

for all W0 ∈ L2(�; C
2) × H−1(�; C

2) and (w1, w2) associated solutions of
System (5.17). Then, the proof of the observability inequality (5.26) assuming the
weak observability inequality (5.36) is already done in Section 3.2.

Next, to prove Items 3 and 4, we first remark that GT is invertible on
L(L2+(�; C

4) × C
4), as for the proof of Item 3 in Corollary 5.4. This yields in

particular that the operator LT := GT + RT ∈ L(Hs+(�; C
4)) (for any s ∈ R)

is invertible in L(L2+(�; C
4)). Let us show (by induction) that its inverse L−1

T in
L(L2+(�; C

4) is in L(Hs+(�; C
4)) for any s � 0. This is true for s = 0. Now,

suppose L−1
T ∈ L(Hs−1+ (�; C

4)) and take f ∈ Hs+(�; C
4). Hence the equation

LT u = f has a solution u ∈ Hs−1+ (�; C
4), satisfying

GT u = f − RT u ∈ Hs+(�; C
4),

since RT is a 1-smoothing operator preserving any Hs+. Using the ellipticity of the
operator GT ∈ 
0

phg(�,C
4×4), proved in Item 1, this yields u ∈ Hs(�; C

4), and

hence L−1
T ∈ L(Hs+(�; C

4)). By induction, we have

L−1
T ∈ L(Hs+(�; C

4)), for all s � 0. (5.37)

Now, we come back to the description of the inverse operator G−1
T of GT in

L(L2+(�; C
4) × C

4), which takes the form

G−1
T =

(
�̃T S̃T

S̃∗
T S0

T

)
,

for some �̃T ∈ L(L2+(�; C
4)), S0

T ∈ L(C4), and S̃T ∈ L(C4; L2+(�; C
4)). Now,

writing GT G−1
T = Id yields, in particular

LT �̃T + R̃T S̃∗
T = IdL(L2+(�;C4)) and LT S̃T + R̃T S0

T = 0L(C4;L2+(�;C4)).

The first of these two identities together with (5.37) yields

�̃T = L−1
T − L−1

T R̃T S̃∗
T ∈ L(Hs+(�; C

4)), for all s � 0. (5.38)

Similarly, the second expression together with (5.37) gives

S̃T = −L−1
T R̃T S0

T ∈
⋂
s∈R

L(C4; Hs+(�; C
4)).

We finally prove that �̃T takes the form claimed in the statement of the corol-
lary. Since GT ∈ 
0

phg(�,C
4×4) is elliptic, there exists (see for instance [23,

Theorem 18.1.24]) a parametrix �T ∈ 
0
phg(�,C

2×2) such that

�T GT = Id +R, with R ∈ 
−∞
phg (�,C

4×4) and σ0(�T ) = σ0(GT )
−1.

Applying this parametrix to the equation (GT + RT )�̃T + R̃T S̃∗
T = Id yields

�̃T = �T − �T RT �̃T − �T R̃T S̃∗
T − R�̃T .
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Then, the operator −�T R̃T S̃∗
T − R�̃T ∈ R∞ and �T RT �̃T ∈ R1 according

to (5.38) and as RT is 1-smoothing. This concludes the proof of Item 3 and the first
part of Item 4.

Finally, the second part of Item 4 (the wavefront set identity) is a consequence
of the pseudodifferential nature of the principal part of the operator G−1

T . ��
Proof of Corollary 5.8. The key point here is that Condition PCC is equivalent to
the fact that ρ �→ det(σ0(GT ))(ρ) does not vanish for ρ ∈ S∗�. If PCC is satisfied,
then the operator GT is elliptic and we can follow the proof of Corollary 5.4.
Similarly Item 2 only concerns the low-frequency problem and its proof follows
Section 3.2.

Conversely, if PCC is not satisfied, there exists ν0 ∈ S∗� such that
det(σ0(GT )(ν0)) = 0. Hence, there exists a vector v ∈ C

4 \ {0} such that

σ0(GT )(ν0)v = 0. (5.39)

After a linear change of coordinates in C
4, we may assume that v = (1, 0, 0, 0).

Consider now a sequence (wk
0)k∈N of scalar functions on � such that

lim
k→∞ ‖wk

0‖L2(�) = 1, wk
0 ⇀ 0 in L2(�; C),

and (wk
0)k∈N is pure and admits the microlocal defect measure δ(x,η)=ν0 (such

a sequence is constructed in Appendix B.3, see Equation (B.5)). The vectorial
sequence (uk)k∈N given by uk := �+wk

0v = (�+wk
0, 0, 0, 0) satisfies (since

�0w
k
0 → 0 because of the weak convergence)

lim
k→∞ ‖uk‖L2(�;C4) = 1, uk ⇀ 0 in L2(�; C

4), (5.40)

is also pure, and admits the microlocal defect measure

μ =

⎛
⎜⎜⎝

δν0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

We compute

lim
k→∞

(
GT

(
uk

0C4

)
,

(
uk

0C4

))
L2+(�;C4)×C4

= lim
k→∞

(
(GT + RT )u

k, uk)
L2+(�;C4)

= lim
k→∞(GT uk, uk)L2(�;C4),

since RT is 1-smoothing. Moreover, we have

(GT uk, uk)L2(�;C4) →
∫

S∗�
tr{σ0(GT )(ρ)μ(dρ)}.

Writing σ0(GT )(ρ) = σi j (ρ), for i, j ∈ {1, 2, 3, 4}, this yields

(GT uk, uk)L2(�;C4) → 〈
δν0 , σ11

〉
S∗� = σ11(ν0).
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Also, condition (5.39) then gives σ1 j (ν0) = 0 for j ∈ {1, 2, 3, 4}, so that

(
GT

(
uk

0C4

)
,

(
uk

0C4

))
L2+(�;C4)×C4

→ 0, as k → ∞.

In view of (5.40), this disproves the observability inequality

(GT H, H)L2+(�;C4)×C4 � C‖H‖2
L2+(�;C4)×C4 − C ′‖H‖2

H−1+ (�;C4)×C4 ,

for all H ∈ L2+(�; C
4) × C

4.

Recalling Theorem 5.5, this concludes the proof of Corollary 5.8. ��

6. Coupled Waves with Different Speeds

Here we consider a constant coefficient γ > 0, γ �= 1 and the following system{
Pu1 + b(x) u2 = 0 in (0, T ) × �,

Pγ u2 = bω(x) f in (0, T ) × �,
(6.1)

with P = ∂2
t − � as in the previous sections and Pγ = ∂2

t − γ 2�.
We start with the proof of Theorem 1.4 and we then provide a proof for Theo-

rem 1.8.

Proof of Theorem 1.4. First, we split the second equation in System (1.7) into{
Pγ�+u2 = �+F in R × �,

(�+u2, ∂t�+u2)|t=0 = (�+u0
2,�+u1

2) ∈ Hs+1+ (�) × Hs+(�),

and the null-frequency part{
Pγ�0u2 = �0 F in R × �,

(�0u2, ∂t�0u2)|t=0 = (�0u0
2,�0u1

2) ∈ C
2.

Since Pγ�0u2 = ∂2
t �0u2, we have explicitly

�0u2(t) = �0u0
2 + t�0u1

2 +
∫ t

0
(t − s)�0 F(s) ds, (6.2)

and hence �0u2 ∈ C 1(R; C). Similarly, we decompose u1 as u1 = �0u1 +�+u1.
We have {

P�0u1 = −�0bu2 in R × �,

(�0u1, ∂t�0u1)|t=0 = (�0u0
1,�0u1

1) ∈ C
2.
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As u2 ∈ C 1(R; Hs(�)), we obtain ∂2
t �0u1 = −�0bu2 ∈ C 1(R; C), and hence

�0u1 ∈ C 3(R; C). We again split �+u1 into �+u1 = v1 + w1, with{
Pv1 = −�+b�0u2 in R × �,

(v1, ∂tv1)|t=0 = (�+u0
1,�+u1

1) ∈ Hs+3+ (�) × Hs+2+ (�),

and {
Pw1 = −�+b�+u2 in R × �,

(w1, ∂tw1)|t=0 = (0, 0).
(6.3)

We have, directly, v1 ∈ C 0(R; Hs+3+ (�)) ∩ C 1(R; Hs+2+ (�)), since �+b�0u2 ∈
C 0(R; Hk+(�)) for all k ∈ N.

We now focus on w1 = �+w1. We use the splitting introduced in Section 5.3.2

h+ = 1

2
(�+u0

2 − iλ−1�+u1
2) ∈ Hs+1+ (�),

h− = 1

2
(�+u0

2 + iλ−1�+u1
2) ∈ Hs+1+ (�),

so that we have the explicit Duhamel formula for �+u2

�+u2(s) = eisγ λh+ + e−isγ λh−

+ 1

2i
(γ λ)−1

∫ s

0

(
ei(s−σ)γ λ − e−i(s−σ)γ λ

)
�+F(σ )dσ

= eisγ λ(h+ + F+(s)) + e−isγ λ(h− + F−(s)),

where

F+(s) = 1

2i
(γ λ)−1

∫ s

0
e−iσγ λ�+F(σ )dσ ∈ C 0(R; Hs+1+ (�)),

F−(s) = − 1

2i
(γ λ)−1

∫ s

0
eiσγ λ�+F(σ )dσ ∈ C 0(R; Hs+1+ (�)).

The Duhamel formula for (6.3) gives

2iλw1(t) = −
∫ t

0

(
ei(t−s)λ − e−i(t−s)λ

)
�+b�+u2(s) ds

= −eitλ
∫ t

0
e−isλ�+b

(
eisγ λ(h+ + F+(s)) + e−isγ λ(h− + F−(s))

)
ds

+e−i tλ
∫ t

0
eisλ�+b

(
eisγ λ(h+ + F+(s)) + e−isγ λ(h− + F−(s))

)
ds

= −eitλ
∫ t

0
e−isλ�+beisγ λ ds h+ − eitλ

∫ t

0
e−isλ�+beisγ λF+(s) ds

−eitλ
∫ t

0
e−isλ�+be−isγ λ ds h− − eitλ

∫ t

0
e−isλ�+be−isγ λF−(s) ds

+e−i tλ
∫ t

0
eisλ�+beisγ λ ds h+ + e−i tλ

∫ t

0
eisλ�+beisγ λF+(s) ds
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+e−i tλ
∫ t

0
eisλ�+be−isγ λ ds h−+e−i tλ

∫ t

0
eisλ�+be−isγ λF−(s) ds.

(6.4)

The data h± are in Hs+1+ (�), therefore, using Lemma A.1 (with �+b ∈ 
0
phg(�)),

all the corresponding terms above belong to C 0(R; Hs+2+ (�)). Similarly, using
Lemma A.3, all terms including F± above also belong to C 0(R; Hs+2+ (�)). As
a consequence, we have w1 ∈ C 0(R; Hs+3+ (�)). Differentiating with respect to
time expression (6.4) and using again lemmata A.1 and A.3, we obtain ∂tw1 ∈
C 0(R; Hs+2+ (�)).

Recalling that u1 = �0u1 + v1 + w1 and using the regularity properties of
each of these three terms, we obtain u1 ∈ C 0(R; Hs+3(�)) ∩ C 1(R; Hs+2(�)).
Coming back to the equation

∂2
t u1 = �u1 − b u2 ∈ C 0(R; Hs+1(�)) ∩ C 1(R; Hs(�)),

we finally obtain u1 ∈
3⋂

k=0

C k(R; Hs+3−k(�)).

Estimate (1.8) comes from the estimates of lemmata A.1 and A.3 applied to all
terms in (6.4). ��

The next result shows that the situation becomes worse if ω∩O does not satisfy
GCC. In this case one cannot hope to obtain control in any Sobolev space.

Proposition 6.1. Assume that ω ∩ O does not satisfy GCC. Then, for all s � 0,
there exists (u0

1, u1
1) ∈ Hs+1(�)× Hs(�), such that the solution to System (6.1) for

all T > 0 and all f ∈ L2((0, T )×�), along with the following initial conditions,

(u1, ∂t u1)|t=0 = (u0
1, u1

1), (u2, ∂t u2)|t=0 = (0, 0)

satisfies

(u1(T ), ∂t u1(T ), u2(T ), ∂t u2(T )) �= (0, 0, 0, 0).

Remark 6.2. 1. This result proves the first item of Theorem 1.8 using the invari-
ance of (6.1) by t �→ T − t .

2. The result stated above can be improved in many ways. The case of two different
metrics, g1 and g2, can also be addressed with the ideas of the proof, assuming
only that η �→ (g1 − g2)x (η, η) is a nondegenerate quadratic form everywhere
on �. Here we restrict ourselves to the simple situation g2 = γ 2g1, γ �= 1 for
the sake of exposition.

Proof of Proposition 6.1. We recall that the operators L+, L− are defined in Sec-
tion 2.1.

As ω ∩ O does not satisfy GCC there exists a bicharacterisitic that never
meets π−1(ω ∩ O) in T ∗M . Without any loss of generality let us assume that
� ⊂ Char L+.
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We have

Pγ u2 = bω(x) f, (u2, ∂t u2)|t=0 = (0, 0).

Extending f by zero outside [0, T ] we have supp(u2) ⊂ {t � 0}. For u0
1 and u1

1 to
be defined below we introduce w and v in the following way:

Pv = −b(x) u2, (v, ∂tv)|t=0 = (0, 0),

Pw = 0, (w, ∂tw)|t=0 = (u0
1, u1

1).

The linearity of the equations yields u1 = v + w.

Study of w. Since P is elliptic at (t, x, 1, 0) we have

(t, x, 1, 0) /∈ WF(w) ∀ t, x . (6.5)

Let ρ0 = (0, x0, τ0, η0) ∈ � ∩ {t = 0}. We choose4 u0
1 ∈ Hs+1(�) such that

{(x0,R
∗+η0)} = WF(u0

1). We then set u1
1 = iλu0

1 ∈ Hs(�).
We set z = L+w and because of the precise choice we made for (u0

1, u1
1) we

observe that z|t=0 = 0. It follows that

L−z = −Pw = 0, z|t=0 = 0,

which gives z = 0 (see for example Theorem 23.1.2 in [23]) and therefore

L+w = 0, w|t=0 = u0
1.

In a local chart we consider χ(τ, η) a symbol of order 0 with support in V and
equal to one in V ′, for V ′ � V neighborhoods of {η = 0}. Then (1 − op(χ))L+ is
a pseudo-differential operator of order one in all variables [23, Theorem 18.1.35].

We have (1 − op(χ))L+w = 0 which, by (6.5) and choosing V sufficiently
small, implies

WF(w) ⊂ Char(L+).

Since (x0, η0) ∈ WF(w|t=0), by Theorem 8.2.4 in [22] we have that (0, x0, τ, η0) ∈
WF(w) for some τ ∈ R and necessarily τ = τ0, that is, ρ0 ∈ WF(w). Since
Pw = 0, the singularity propagation theorem of Hörmander [24, Theorem 26.1.1]
implies that

� ⊂ WF(w). (6.6)

4 To choose u0
1 we can invoke the constructive approach of Theorem 8.1.4 in [24] that

yields at first a distribution with {(x0,R
∗+η0)} as its wavefront set. Since � is compact, this

distribution has finite order and belongs to Hσ (�) for some σ ∈ R, by the Paley-Wiener
theorem. Finally, we can apply an appropriate power of the Laplace operator, an elliptic
pseudo-differential operator on � (according to [41] or [42, Theorem 11.2]) that preserves
the wavefront set, to yield the proper function in the Sobolev space Hs+1(�).
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Study of v. As supp(bu2) ⊂ {t � 0} we have

v = 0 in {t � 0}. (6.7)

From Pγ u2 = bω(x) f , we have WF(u2) ⊂ Char(Pγ ) ∪ WF(bω(x) f ) by Theo-
rem 18.1.28 in [23]. As � does not meet π−1(ω ∩ O) and � ∩ Char(Pγ ) = ∅ we
find

� ∩ WF(bu2) ⊂ � ∩ π−1(O) ∩ π−1(ω) = ∅. (6.8)

The singularity propagation theorem of Hörmander [24, Theorem 26.1.1] implies
that WF(v) \ WF(bu2) is invariant by the hamiltonian vector field Hp. Since � is
invariant by Hp and with (6.8) and (6.7) we obtain that

� ∩ WF(v) = ∅. (6.9)

Conclusion. From (6.6) and (6.9) we find that � ⊂ WF(u1). It follows that
(u1, ∂t u1, u2, ∂t u2) cannot vanish at the final control time T . In fact it would first
imply u2 = 0 in {t � T } where it satisfies Pγ u2 = 0. Second, we would have
Pu1 = 0 in {t � T } implying u1 = 0 in {t � T }, which obviously does not hold.

��
To conclude the study of System (6.1), we prove an “almost converse” of The-

orem 1.4 and Proposition 6.1. We prove the controllability of System (6.1) in the
space (H3(�) × H2(�)) × (H1(�) × L2(�)), if ω ∩ O satisfies GCC.

Proposition 6.3. Assume that ω ∩ O satisfies GCC and that T > max{Tω∩O(1),
Tω(γ )}. Then, System (6.1) is controllable in the space H3(�)× H2(�) in time T
in the sense given in Section 1.2.3.

Remark that Tω(γ ) is the time needed to control the second component of
System (6.1), which is directly controlled, whereas Tω∩O(1) is the time needed to
control the first component of System (6.1).

Note also that for T < Tω(γ ), the second equation is not controllable. Similarly,
if T < T

ω∩O(1) the first equation is not controllable: one can find a bicharacteristic
curve � that does not meet π−1(ω ∩ O) in the time interval [0, T ] and the same
construction as in the proof of Proposition 6.1 applies. We thus obtain the second
item of Theorem 1.8.

Proof. According to Proposition 5.1 (case s = 2, σ = 0) and Theorem 1.4, the
result is equivalent to proving the observability inequality

E−2(v1(0)) + E0(v2(0)) � C
∫ T

0
‖bωv2‖2

L2(�)
dt, (6.10)

for all (v1, v2) ∈ (
C 0(R; H−2(�)) ∩ C 1(R; H−3(�))

) × (
C 0(R; L2(�)) ∩

C 1(R; H−1(�))
)

solutions of (5.3). Setting w1 = (1 − �)−1v1, w2 = v2, this
observability inequality is equivalent to proving

E0(w1(0)) + E0(w2(0)) � C
∫ T

0
‖bωw2‖2

L2(�)
dt, (6.11)
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for all (w1, w2) ∈ C 0(R; L2(�; C
2)) ∩ C 1(R; H−1(�; C

2)) solutions to{
Pw1 = 0 in (0, T ) × �,

Pγ w2 = −b(x)(1 − �)w1 in (0, T ) × �.
(6.12)

Recall that System (6.12) is well-posed in this space, according to Theorem 1.4.
As in Section 3, we prove (6.11) in two steps with a compactness–uniqueness

strategy. The first step is to prove the relaxed observability inequality

E0(w1(0)) + E0(w2(0))

� C

(∫ T

0

∫
�

|bωw2|2 dx dt + E−1(w1(0)) + E−1(w2(0))

)
, (6.13)

for all (w1, w2) ∈ C 0(R; L2(�; C
2)) ∩ C 1(R; H−1(�; C

2)) solutions to (6.12).
We proceed by contradiction and suppose that the observability inequality (6.13)

is not satisfied. Thus, there exists a sequence (wk
1, w

k
2)k∈N of C 0(0, T ; L2(�)) ∩

C 1(0, T ; H−1(�))-solutions of (6.12) such that

E0(w
k
1(0)) + E0(w

k
2(0)) = 1, (6.14)∫ T

0

∫
�

|bωwk
2|2 dx dt → 0, k → ∞, (6.15)

E−1(w
k
1(0)) + E−1(w

k
2(0)) → 0, k → ∞. (6.16)

According to (6.14) and to (6.16), together with the continuity of the solution with
respect to the initial data given by Theorem 1.4, the sequence (wk

1, w
k
2) is bounded

in L2(MT ; C
2), and converges to zero in H−1(MT ; C

2). It follows that

(wk
1, w

k
2) ⇀ (0, 0) in L2(MT ; C

2).

As a consequence of [21, Theorem 1], there exists a subsequence of (wk
1, w

k
2)k∈N

(still denoted (wk
1, w

k
2)k∈N in what follows) and two associated microlocal defect

measures

μ1 ∈ M+(S∗MT ), μ2 ∈ M+(S∗MT ),

such that for any A ∈ 
0
phg(MT ),

lim
k→∞(Awk

1, w
k
1)L2(MT ;C) = 〈μ1, σ0(A)〉S∗ MT

,

lim
k→∞(Awk

2, w
k
2)L2(MT ;C) = 〈μ2, σ0(A)〉S∗ MT

.

Note that in this case (as opposed to the case γ = 1 treated in Section 3) we
shall not use the coupling of the two waves and the associated measure μ12.

The first equation of (6.12) yields, as in Lemma 3.3 that

supp(μ1) ⊂ Char(P), and
〈
μ1, Hpa

〉
S∗ MT

= 0, (6.17)



174 Belhassen Dehman, Jérôme Le Rousseau & Matthieu Léautaud

for any a ∈ S−1
phg(T

∗MT ; C). Moreover, (6.15) gives

supp(μ2) ∩ π−1((0, T ) × ω) = ∅.

This gives, for any χ ∈ C ∞
c

(
(0, T ) × (O ∩ ω)

)
,

((1 − �)−2χ Pγ w
k
2, χ Pγ w

k
2)L2(MT ;C) →

〈
μ2, p2

γ |η|−4
x χ2

〉
S∗ MT

= 0.

Using the second equation of (6.12), we now have

0 = lim
k→+∞((1 − �)−2χb(1 − �)wk

1, χb(1 − �)wk
1)L2(MT ;C)

=
〈
μ1, χ

2b2
〉

S∗ MT
.

As a consequence, we have

supp(μ1) ∩ π−1((0, T ) × O ∩ ω) = ∅.

This, together with the free propagation of μ1 given in (6.17), and the assumption
that O ∩ ω satisfies GCC, implies that μ1 vanishes identically on (0, T ) × �, as
soon as T > Tω∩O(1). Hence, we have wk

1 → 0 in L2
loc(MT ).

It remains to study wk
2. We have Pγ w

k
2 = −b(x)(1 −�)wk

1 → 0 in H−2
loc (MT )

since wk
1 → 0 in L2

loc(MT ). This yields supp(μ2) ⊂ Char(Pγ ).
Let ε > 0 and choose χ1 ∈ S0

phg(MT ), 0 � χ1, such that

• χ1 = 1 in a neighborhood of Char(Pγ ) ∩ (ε, T − ε),
• χ1 = 0 in a neighborhood of Char(P),

and let !1 ∈ 
0
phg(MT ) an operator such that σ0(!1) = χ1. There exists a para-

metrix Q ∈ 
−2
phg(MT ) such that (see for instance [23, Theorem 18.1.24]),

Q P = !1 + R, R ∈ 
−∞
phg (MT ). (6.18)

Applying this parametrix to the first equation of (6.12) gives

!1w
k
1 + Rwk

1 = 0.

In particular, we have !1w
k
1 → 0 in Hs

loc(MT ) for all s ∈ R.
Consider nowχ2 satisfying the same properties asχ1 with, moreover,χ1 = 1 on

a neighborhood of supp(χ2). Let !2 ∈ 
0
phg(MT ) an operator such that σ0(!2) =

χ2.
Writing wk

2 = (1 − !2)w
k
2 + !2w

k
2, we directly have (1 − !2)w

k
2 → 0

in L2
loc((ε, T − ε) × M) as supp(μ2) ⊂ Char(Pγ ). Below, we shall prove the

following convergence.
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Lemma 6.4. Pγ !2w
k
2 → 0 in H−1

loc (MT ).

This implies that
〈
μ2, Hpγ (χa)

〉
S∗ MT

= 〈
μ2, |χ2|2 Hpγ (χa)

〉
S∗ MT

= 0 for χ(t) ∈
C ∞

c (ε, T −ε) and for any a ∈ S−1
phg(T

∗MT ). Hence, the measure μ2 satisfies a free
propagation relation along the bicharacteristic flow of Pγ for t ∈ (ε, T − ε). Since
ε > 0 is arbitrary and since supp(μ2) ∩ π−1((0, T ) × ω) = ∅, the measure μ2
vanishes identically on S∗MT as soon as T > Tω(γ ). This proves that (wk

1, w
k
2) →

(0, 0) in L2
loc(MT ; C

2), and, following the end of the proof of Proposition 3.2,
that E0(w

k
1(0)) + E0(w

k
2(0)) → 0. This yields a contradiction with (6.14), and

concludes the proof of the relaxed observability inequality (6.13).
We conclude the proof of (6.11) as in Section 3.2. We define the set of invisible

solutions

N (T ) = {W =(w0
1, w

0
2, w

1
1, w

1
2) ∈ H such that the associated solution of (6.12)

satisfies w2(t, x) = 0 for all (t, x) ∈ (0, T ) × ω}.
As in Section 3.2, proving that N (T ) = {0} implies that (6.11) is true. Again,
proving that N (T ) = {0} is equivalent to proving that there is no eigenfunction
(ϕ1, ϕ2) of the operator (−� 0

b(x)(1 − �) −γ 2�

)

such that ϕ2|ω = 0. Indeed, letting μ be the associated eigenvalue, we have

− γ 2�ϕ2 + b(x)(1 − �)ϕ1 = μϕ2, and ϕ2|O∩ω = 0. (6.19)

This yields in particular (1 − �)ϕ1|O∩ω = 0. As −�ϕ1 = μϕ1, the function
(1 −�)ϕ1 is an eigenfunction of −�, vanishing on the nonempty open set O ∩ω,
and thus vanishes identically (see for instance [6,7,25]). Hence, we have ϕ1 = 0.
Coming back to (6.19), and using the same argument, we obtain ϕ2 = 0. Finally,
this proves that N (T ) = {0}.

Note that a quantitative version of this unique continuation result is proved
in [26, Proposition 5.1]. This concludes the proof of the observability inequal-
ity (6.11), and hence that of Theorem 6.3. ��
Proof of Lemma 6.4. We have

Pγ !2w
k
2 = !2 Pγ w

k
2 + [Pγ ,!2]wk

2 = −!2b(x)(1 − �)wk
1 + [Pγ ,!2]wk

2 .

(6.20)

We write

!2b(x)(1 − �)wk
1 = !2b(x)(1 − �)!1w

k
1 + !2b(x)(1 − �)(1 − !1)w

k
1 .

Since the supports of χ2 and 1−χ1 are disjoint the operator!2b(x)(1−�)(1−!1)

is regularizing and since !1w
k
1 → 0 in Hs

loc(MT ) for all s ∈ R then the same holds
for !2b(x)(1 − �)wk

1. For the second term in (6.20) we write

[Pγ ,!2]wk
2 = [Pγ ,!2]!3w

k
2 + [Pγ ,!2](1 − !3)w

k
2,
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where !3 ∈ 
0
phg(MT ) is an operator such that σ0(!3) = χ3 with χ3 satisfying the

same properties as χ2 with, moreover, χ2 = 1 on a neighborhood of supp(χ3). We
then have [Pγ ,!2]!3 regularizing. Since (1−!3)w

k
2 → 0 in L2

loc((ε, T −ε)× M)

as supp(μ2) ⊂ Char(Pγ ) and [Pγ ,!2] is of order one, we find that [Pγ ,!2]wk
2 →

0 in H−1
loc ((ε, T − ε) × M). This concludes the proof. ��
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Appendix A. 1-Smoothing Properties

In this section, we state and prove three lemmata concerning the 1-smoothing
properties of some families of operators. These properties are used in a crucial way
in the proofs of Theorems 5.3, 5.5 and 1.4.
The proofs given in this section are elementary and are inspired by [18]. These prop-
erties, however, deeply rely on the Fourier integral operator property of propagators
of type eitλ.

Lemma A.1. Let s ∈ R, γ, δ ∈ R such that γ �= δ, and b ∈ 
0
phg(�). Then, the

operator defined by

A(t) =
∫ t

0
e−i zγ λbeizδλ dz,

satisfies A ∈ C 0(R;L(Hs(�), Hs+1(�))). In particular, for all t ∈ R, A(t) is
1-smoothing.

Lemma A.1 can be seen as a corollary of Lemma A.2, and hence we omit its
proof. We chose to state Lemma A.1 separately since in the main part of the article,
regularizing properties are most often used under this simpler form.

Lemma A.2. Let s ∈ R, γ, δ ∈ R such that γ �= δ. Let also b ∈ 
0
phg(�), and

consider m, m̃ ∈ C 0
(
R, 
0

phg(�)
)

two continuous families of operators. Then, the
operator defined by

A(t) =
∫ t

0

(∫ z

0
m(σ )dσ

)
e−i zγ λbeizδλ

(∫ z

0
m̃(σ )dσ

)
dz,

satisfies A ∈ C 0(R;L(Hs(�), Hs+1(�))). In particular, for all t ∈ R, A(t) is
1-smoothing.
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The next lemma is only used in the proof of Theorem 1.4 and is proved at the end
of this section.

Lemma A.3. Let s ∈ R, T > 0, γ, δ ∈ R such that γ �= δ. Let also b ∈ 
0
phg(�),

and suppose that F ∈ L1(0, T ; Hs(�)). Then, the function defined by

F (t) =
∫ t

0
e−i zγ λbeizδλ

(∫ z

0
F(σ )dσ

)
dz,

satisfies F ∈ C 0(0, T ; Hs+1(�)), and

‖F‖L∞(0,T ;Hs+1) � C‖F‖L1(0,T ;Hs ), (A.1)

for some C = C(s, T, γ, δ, b) > 0.

Proof of Lemma A.2. We first notice that A(t) ∈ C 0(R;L(Hs(�))) since all
operators in A(t) preserve the regularity. It suffices to prove that λA(t) ∈
C 0(R;L(Hs(�))). For this, we compute

−iγ λA(t) = −iγ λ
∫ t

0

(∫ z

0
m(σ )dσ

)
e−i zγ λbeizδλ

(∫ z

0
m̃(σ )dσ

)
dz

=
∫ t

0

(∫ z

0
m(σ )dσ

)
(−iγ λ)e−i zγ λbeizδλ

(∫ z

0
m̃(σ )dσ

)
dz

+
∫ t

0

[
(−iγ λ),

(∫ z

0
m(σ )dσ

)]
e−i zγ λbeizδλ

(∫ z

0
m̃(σ )dσ

)
dz,

and we notice that the last term∫ t

0

[
(−iγ λ),

(∫ z

0
m(σ )dσ

)]
e−i zγ λbeizδλ

(∫ z

0
m̃(σ )

dσ) dz ∈ C 0(R;L(Hs(�), Hs(�))),

since
[
(−iγ λ),

( ∫ z
0 m(σ )dσ

)]
= −iγ

∫ z
0

[
λ,m(σ )

]
dσ ∈ C 0

(
R, 
0

phg(�)
)
. As

a consequence, we can write, for some Rt ∈ C 0(R;L(Hs(�))),

−iγ λA(t) =
∫ t

0

(∫ z

0
m(σ )dσ

)
∂z(e

−i zγ λ)beizδλ
(∫ z

0
m̃(σ )dσ

)
dz + Rt .

After an integration by parts, this gives

−iγ λA(t) = −
∫ t

0

(∫ z

0
m(σ )dσ

)
e−i zγ λb ∂z(e

izδλ)

(∫ z

0
m̃(σ )dσ

)
dz

−
∫ t

0
m(z)e−i zγ λbeizδλ

(∫ z

0
m̃(σ )dσ

)
dz

−
∫ t

0

(∫ z

0
m(σ )dσ

)
e−i zγ λbeizδλm̃(z) dz

+
[(∫ z

0
m(σ )dσ

)
e−i zγ λbeizδλ

(∫ z

0
m̃(σ )dσ

)]t

0
+ Rt .
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Except for the first term in the right hand-side of this expression, all terms are clearly
in C 0(R;L(Hs(�))), so that we can write, for some R̃t ∈ C 0(R;L(Hs(�))),

−iγ λA(t)

= −
∫ t

0

(∫ z

0
m(σ )dσ

)
e−i zγ λb ∂z(e

izδλ)

(∫ z

0
m̃(σ )dσ

)
dz + R̃t

= −
∫ t

0

(∫ z

0
m(σ )dσ

)
e−i zγ λb(iδλ)eizδλ

(∫ z

0
m̃(σ )dσ

)
dz + R̃t

= −
∫ t

0

(∫ z

0
m(σ )dσ

)
(iδλ)e−i zγ λbeizδλ

(∫ z

0
m̃(σ )dσ

)
dz

−
∫ t

0

(∫ z

0
m(σ )dσ

)
e−i zγ λ[b, (iδλ)]eizδλ

(∫ z

0
m̃(σ )dσ

)
dz + R̃t .

Again, we notice that the central term in the right hand-side of this expression is in
C 0(R;L(Hs(�))), since [b, (iδλ)] ∈ 
0

phg(�). As a consequence, we can write,

for some ˜̃Rt ∈ C 0(R;L(Hs(�))),

−iγ λA(t)

=−
∫ t

0

(∫ z

0
m(σ )dσ

)
(iδλ)e−i zγ λbeizδλ

(∫ z

0
m̃(σ )dσ

)
dz + ˜̃Rt

=−iδλA(t)−
∫ t

0

[(∫ z

0
m(σ )dσ

)
, (iδλ)

]
e−i zγ λbeizδλ

(∫ z

0
m̃(σ )dσ

)
dz+ ˜̃Rt .

This gives

i(δ − γ )λA(t)

= −
∫ t

0

[(∫ z

0
m(σ )dσ

)
, (iδλ)

]
e−i zγ λbeizδλ

(∫ z

0
m̃(σ )dσ

)
dz + ˜̃Rt ,

and in particular (δ − γ )λA(t) ∈ C 0(R;L(Hs(�))). This concludes the proof of
Lemma A.2. ��

Proof of Lemma A.3. The definition of F directly gives F ∈ C 0(0, T ; Hs(�))

(with the associated estimate). We hence only have to check that λF ∈
C 0(0, T ; Hs(�)). For this, we compute

− iγ λF (t) =
∫ t

0
(−iγ λ)e−i zγ λbeizδλ

(∫ z

0
F(σ )dσ

)
dz

=
[

e−i zγ λbeizδλ
(∫ z

0
F(σ )dσ

)]t

0

−
∫ t

0
e−i zγ λb∂z

[
eizδλ

(∫ z

0
F(σ )dσ

)]
dz (A.2)
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after an integration by parts. Furthermore,

−
∫ t

0
e−i zγ λb∂z

[
eizδλ

(∫ z

0
F(σ )dσ

)]
dz

= −iδ
∫ t

0
e−i zγ λbλeizδλ

(∫ z

0
F(σ )dσ

)
dz

−
∫ t

0
e−i zγ λbeizδλF(z) dz

= −iδλF (t)

−iδ
∫ t

0
e−i zγ λ[b, λ]eizδλ

(∫ z

0
F(σ )dσ

)
dz

−
∫ t

0
e−i zγ λbeizδλF(z) dz. (A.3)

Putting (A.2) in (A.3), we obtain

−i(γ − δ)λF (t) = e−i tγ λbeitδλ
(∫ t

0
F(σ )dσ

)

−iδ
∫ t

0
e−i zγ λ[b, λ]eizδλ

(∫ z

0
F(σ )dσ

)
dz −

∫ t

0
e−i zγ λbeizδλF(z) dz. (A.4)

The first and the last terms in (A.4) are in ∈ C 0(0, T ; Hs(�)) as z → eizδλ ∈
C 0(R;L(Hs(�))). Finally the second term in (A.4) is also in C 0(0, T ; Hs(�))

since [b, λ] ∈ 
0
phg(�). Estimate (A.1) comes from the L∞(0, T ; Hs(�)) estimate

of (A.4). ��

Appendix B. Proofs of Some Technical Results

B.1. Some Facts on Hamilton Flows

For a function q(x, ξ) defined on T ∗ X , with X a smooth manifold, the Hamilton
vector field associated with q is given by, in local coordinates, Hq = (∇x q,−∇ξq).
The Hamiltonian flow χs is then given by

d

ds
χs(x, ξ) = Hq (χs(x, ξ)) , χ0(x, ξ) = (x, ξ),

for (x, ξ) ∈ T ∗ X \ 0. We have the following lemmata.

Lemma B.1. Let F : R → R be a smooth monotonous function. For (x, ξ) ∈ T ∗ X
the map s �→ χF ′(q(x,ξ))s(x, ξ) is the flow associated with the Hamiltonian F(q).
In particular, for μ �= 0, the map s �→ χμs is the flow associated with the Hamil-
tonian μq.



180 Belhassen Dehman, Jérôme Le Rousseau & Matthieu Léautaud

Proof. We have HF(q) = F ′(q)Hq . Let (x, ξ) ∈ T ∗ X . As q is constant along the
flow s �→ χs we have also q(χs(x, ξ)) = q(x, ξ), s ∈ R. We set μ = F ′(q(x, ξ)).
Hence,

d

ds
χμs(x, ξ) = μ

d

dt
χt (x, ξ)|t=μs = μHq

(
χμs(x, ξ)

) = HF(q)
(
χμs(x, ξ)

)
,

which yields the result. ��
Lemma B.2. Let λ �= 0 and Mλ be the map such that Mλ(x, ξ) = (x, λξ), that is
a multiplication by λ in the fiber. Assume that q(x, ξ) is homogeneous of degree k,
that is, q ◦ Mλ = λkq for λ > 0. Then

Mλ ◦ χλk−1s = χs ◦ Mλ.

In particular, if k = 1, the operators Mλ and χs commute.

Proof. Let (x0, ξ0) ∈ T ∗ X \ 0. We set (x(s), ξ(s)) = χs(x0, ξ0) and

γ (s) = Mλ ◦ χλk−1s(x0, ξ0) = (x, λξ)(λk−1s).

We have, in local coordinates,

d

ds
γ (s) =

(
λk−1 d

ds
x, λk d

ds
ξ

)
(λk−1s)

=
(
λk−1∇ξq(x, ξ),−λk∇x q(x, ξ)

)
(λk−1s)

= Hq(x, λξ)(λ
k−1s)

= Hq(γ (s)),

by homogeneity. As γ (0) = Mλ(x0, ξ0) we obtain γ (s) = χs ◦ Mλ(x0, ξ0). ��
Lemma B.3. Let σ be the map such that σ(x, ξ) = (x,−ξ). Assume that q is such
that q ◦ σ = q, then

σ ◦ χs = χ−s ◦ σ.

Proof. Observe first that ∇x q ◦ σ = ∇x q and ∇ξq ◦ σ = −∇ξq. Let (x0, ξ0) ∈
T ∗ X \ 0. We set

γ (s) = σ (χ−s(x0, ξ0)) .

We have, in local coordinates,

d

ds
γ (s) = −σ

d

dt
χt (x0, ξ0)|t=−s = −σ

(
(∇ξq,−∇x q)(χ−s(x0, ξ0))

)
= (−∇ξq,−∇x q)(χ−s(x0, ξ0)) = (∇ξq,−∇x q)(γ (s)) = Hq(γ (s)).

As γ (0) = (x0,−ξ0) we obtain γ (s) = χs ◦ σ(x0, ξ0). ��
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B.2. Proof of Lemma 3.3

The fact that the measures μ1 and μ2 are real and non-negative is a direct con-
sequence of the first two equations of (3.7), tested on selfadjoint non-negative
operators. Note also that the measures μ1 and μ2 are microlocal defect measures
associated with the scalar sequences (wk

1)k∈N and (wk
2)k∈N respectively.

Let us prove that supp(μ2) ⊂ Char(P). Proving that supp(μ1) ⊂ Char(P) fol-
lows the same steps. Recalling that the symbol λ̃ ∈ S1

phg(T
∗M; C) is defined

in (2.2), there exists �̃−2 ∈ 
−2
phg(M; C) that satisfies σ−2(�̃−2) = λ̃−2. Take

a ∈ S0
phg(T

∗MT ; C) and A ∈ 
0
phg(MT ; C) as an associated operator. The second

equation of (3.2) gives

(A�̃−2 Pwk
2, w

k
2)L2(MT ;C) = −(A�̃−2 Bwk

1, w
k
2)L2(MT ;C).

Since A�̃−2 B ∈ 
−1
phg(MT ; C), we have A�̃−2 Bwk

1 → 0 in L2(MT ; C) so that
we obtain

(A�̃−2 Pwk
2, w

k
2)L2(MT ;C) → 0.

The second equation of (3.7) then gives

0 =
〈
μ2, aλ̃−2 p

〉
S∗ MT

= 〈μ2, ap〉S∗ MT
,

which is satisfied for all a ∈ S0
phg(T

∗MT ; C) if and only if supp(μ2) ⊂ Char(P).

Now, let a ∈ S0
phg(T

∗MT ; C) and take A ∈ 
0
phg(MT ; C) such that σ0(A) = a.

Then, we have

(Awk
1, Awk

2)L2(MT ;C) = (A∗ Awk
1, w

k
2)L2(MT ;C) →

〈
μ12, |a|2

〉
S∗ MT

.

Similarly, the Cauchy–Schwarz inequality gives

|(Awk
1, Awk

2)L2(MT ;C)| � ‖Awk
1‖L2(MT ;C)‖Awk

2‖L2(MT ;C)

→
(〈

μ1, |a|2
〉

S∗ MT

) 1
2
(〈

μ2, |a|2
〉

S∗ MT

) 1
2

.

This finally yields for all a ∈ S0
phg(T

∗MT ; C),

∣∣∣∣〈μ12, |a|2
〉

S∗ MT

∣∣∣∣
2

�
〈
μ1, |a|2

〉
S∗ MT

〈
μ1, |a|2

〉
S∗ MT

,

and hence supp(μ12) ⊂ supp(μ1) ∩ supp(μ2).
Next, we define the operator

Q =
(

P B∗
0 P

)
∈ 
2

phg(M,C
2×2),
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where B∗ denotes the adjoint of the operator B. Remark that, for all

A =
(

A11 A12
A21 A22

)
∈ 
−1

phg(MT ,C
2×2),

we have

(AP − QA) =
( [A11, P] + A12 B − B∗ A21 [A12, P] − B∗ A22

[A21, P] + A22 B [A22, P]
)

∈ 
0
phg(MT ,C

2×2). (B.1)

Hence, we have

(AP − QA)W k ∈ L2(MT ; C
2),

together with

APW k = 0.

In particular, these last two identities yield

QAW k ∈ L2(MT ; C
2). (B.2)

For smooth data W k |t=0, we can integrate by parts and have(
QAW k, W k

)
L2(MT ;C2)

=
(
AW k,PW k

)
L2(MT ;C2)

= 0,

since the operator A has a kernel with compact support (and hence the boundary
terms at times 0 and T vanish). A density argument together with (B.2) then gives(
QAW k, W k

)
L2(MT ;C2)

= 0 for all W k ∈ L2(MT ; C
2). Hence, we have

0 =
(
(AP − QA)W k, W k

)
L2(MT ;C2)

. (B.3)

As a consequence of (3.6), (B.3) and (B.1), we obtain

0 =
∫

S∗ MT

tr

{(
1
i {a11, p} + b|η|x (a12 − a21)

1
i {a12, p} − b|η|x a22

1
i {a21, p} + b|η|x a22

1
i {a22, p}

)(
μ1 μ12

μ12 μ2

)
(dρ)

}
,

with a jl = σ−1(A jl), j, l = 1, 2. Since the application A → σ−1(A) is from

−1

phg(MT ) onto S−1
phg(T

∗MT ; C), this is equivalent to⎧⎪⎪⎨
⎪⎪⎩
〈
μ1,

1
i {a11, p}〉S∗ MT

= 0,〈
μ2,

1
i {a22, p}〉S∗ MT

+ 〈2i Im(μ12), b|η|x a22〉S∗ MT
= 0,

〈μ1, b|η|x (a12 − a21)〉S∗ MT
+ 〈

μ12,
1
i {a21, p}〉S∗ MT

+ 〈
μ12,

1
i {a12, p}〉S∗ MT

= 0,

(B.4)

for any a11, a22, a12, a21 ∈ S−1
phg(T

∗MT ; C). Taking successively a21 = a12 and
a21 = −a12 in the last identity of (B.4) yields〈

Re(μ12),
1

i
{a12, p}

〉
S∗ MT

= 0 and

〈μ1, b|η|x a12〉S∗ MT
− 〈Im(μ12), {a12, p}〉S∗ MT

= 0.
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These equations together with the first two identities of (B.4) give (3.8), which
concludes the proof of the first part of the lemma.
Moreover, (3.4) yields

0 = lim
k→∞(|bω|2wk

2, w
k
2)L2(MT ;C) =

〈
μ2, |bω|2

〉
S∗ MT

,

which directly givesπ(supp(μ2))∩
(
(0, T )×ω

) = ∅ asμ2 � 0 and {bω > 0} = ω.
This concludes the proof of the second part of the lemma as supp(μ12) ⊂ supp(μ2).

B.3. Proof of Lemma 4.3

A proof of this lemma can be found in the semiclassical setting in [9, Section 4.2]
(see also [11]). We can parametrize the bicharacteristic � as

� ∩ π−1(MT ) = {φs(ρ0), s ∈ (0, T )},
with

ρ0 = (0, x0, τ0, η0) ∈ � ∩ {t = 0}.
We have τ 2

0 = |η0|2x . Let us assume that τ0 > 0. The case τ0 < 0 can be treated
similarly. We set

ν0 =
(

x0,
η0

|η0|x
)

∈ S∗�.

There exists a local chart (Uκ , κ) of � such that x0 ∈ Uκ . We denote by (y0, ξ0)

the coordinates of ν0 in this chart.
We choose ψ ∈ C ∞

c (Rn) such that supp(ψ) ⊂ κ(Uκ), and ψ = 1 in a neighbor-
hood of y0. Next we define

vk(y) = C0k
n
4 eikϕ(y)ψ(y), with ϕ(y) = y · ξ0 + i(y − y0)

2 and C0 > 0.

Now, we set

wk
0 = κ∗vk ∈ C ∞

c (�). (B.5)

We have wk
0 ⇀ 0 in L2(�), limk→∞ ‖wk

0‖L2(�) = 1 for an appropriate choice of
C0. Moreover, a classical computation on (vk)k∈N shows that (wk

0)k∈N is pure and
admits the microlocal defect measure m = δ(x,η)=ν0 .
We set wk

1 = iλwk
0 ∈ and let wk be the solution of{

Pwk = 0 in (0, T ) × �,

(wk, ∂tw
k)|t=0 = (wk

0, w
k
1) on �.

(B.6)

For the sequence (wk)k∈N, (4.4) is satisfied. We recall that L+, L−, λ... are defined
in Section 2.1. Setting zk = L+wk , we have L−zk = 0 and

zk |t=0 =
(

1

i
∂tw

k − λwk
)

|t=0 = 1

i
wk

1 − λwk
0 = 0.
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Therefore, zk = 0 in R
+ × �, that is wk solves the first-order equation{

L+wk = 0 in (0, T ) × �,

wk |t=0 = wk
0 on �.

(B.7)

System (B.7) is well-posed, and the sequence (wk)k∈N is bounded in L2(MT )

(see [23, Section 23.1]), weakly converging to zero and hence admits a microlocal
defect measure μ (up to a subsequence).
Now, we prove that supp(μ) ⊂ �. Sincewk solves (B.6), the measureμ is preserved
along � which is also a bicharacteristic curve of �+ = τ −|η|x . Hence, it suffices to
prove that any point (0, x1, τ1, η1) ∈ Char(P)∩ S∗M different from (0, x0, τ0, η0)

is not in supp(μ).
Let a ∈ S0

phg(T
∗�; C) be a zero-order homogeneous symbol, with compact support

near x1, such that a = 1 in a conic neighborhood of (x1, η1) and a = 0 in a conic
neighborhood of (x0, η0). Taking A ∈ 
0

phg(�; C) such that σ0(A) = a, we have

Awk
0 → 0 in L2(�),

since m = δ(x,η)=ν0 . We shall now use the flows φ+
s and ϕ+

s , defined in Section 2.2.
We define the tangential polyhomogeneous symbol5

q(t, x, η) = a(ϕ+−t (x, η)) ∈ S0
T ((−T, T ) × T ∗�; C),

which satisfies {
H�+q = 0,
q(0, x, η) = a(x, η).

We denote by 
m
T ((−T, T )×�; C) the set of tangential operators of order m. We

take Q ∈ 
0
T ((−T, T ) × �; C) such a tangential operator satisfying σ0(Q) = q.

The commutator [L+, Q] satisfies [L+, Q] ∈ 
0
T ((−T, T )×�; C) with principal

symbol 1
i {�+, q} = 1

i H�+q = 0. Hence, we have [L+, Q] ∈ 
−1
T ((−T, T ) ×

�; C). Now, we compute{
L+Qwk = [L+, Q]wk → 0 in L2(MT ),

Qwk |t=0 = Awk
0 → 0 in L2(�).

Then, applying the hyperbolic energy inequality to this first-order system, we obtain

‖Qwk‖L∞(0,T ;L2(�)) � C
(
‖Awk

0‖L2(�) + ‖[L+, Q]wk‖L1(0,T ;L2(MT ))

)
→ 0.

Finally, let r ∈ S0
phg(T

∗M; C) be such that r = 1 in a neighborhood of

(0, x1, τ1, η1), r = 0 for |η|x <
|τ |
2 , and r has a compact support in the time

variable t , included in (− T
2 ,

T
2 ). Taking R ∈ 
0

phg(M; C) such that σ0(R) = r

5 For tangential symbols Sm
T ((−T, T )×T ∗�; C) and associated operators
m

T ((−T, T )×
�; C), we refer to [23, page 94 (bottom)]. Here, t stands for the parameter upon which the
symbols depend.
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the operator RQ is in the class 
0
phg(M; C), according to [23, Theorem 18.1.35].

Moreover, RQ is elliptic at (0, x1, τ1, η1) since r(0, x1, τ1, η1)q(0, x1, η1) = 1
and we have

‖RQwk‖L2(MT )
� C‖Qwk‖L2(MT )

→ 0.

As a consequence, (0, x1, τ1, η1) /∈ supp(μ). The invariance of μ along the bichar-
acteristic flow finally gives supp(μ) ⊂ �, which concludes the proof of Lemma 4.3.

��
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