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Abstract We analyse the structure of semiclassical and microlocal Wigner
measures for solutions to the linear Schrödinger equation on the disk, with
Dirichlet boundary conditions. Our approach links the propagation of singu-
larities beyond geometric optics with the completely integrable nature of the
billiard in the disk. We prove a “structure theorem”, expressing the restriction
of the Wigner measures on each invariant torus in terms of second-microlocal
measures. They are obtained by performing a finer localization in phase space
around each of these tori, at the limit of the uncertainty principle, and are shown
to propagate according to Heisenberg equations on the circle. Our construc-
tion yields as corollaries (a) that the disintegration of the Wigner measures is
absolutely continuous in the angular variable, which is an expression of the
dispersive properties of the equation; (b) an observability inequality, saying
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that the L2-norm of a solution on any open subset intersecting the boundary
(resp. the L2-norm of the Neumann trace on any nonempty open set of the
boundary) controls its full L2-norm (resp. H1-norm). These results show in
particular that the energy of solutions cannot concentrate on periodic trajecto-
ries of the billiard flow other than the boundary.

Mathematics Subject Classification 35Q41 · 93B07
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1 Introduction

1.1 Motivation

We consider the unit disk

D = {z = (x, y) ∈ R
2, |z|2 = x2 + y2 < 1} ⊂ R

2

and denote by � the euclidean Laplacian. We are interested in understanding
dynamical properties of the (time-dependent) linear Schrödinger equation

1

i

∂u

∂t
(z, t)=

(
−1

2
�+V (t, z)

)
u(z, t), t ∈ R, z=(x, y) ∈ D, (1.1)

u�t=0 = u0 ∈ L2(D) (1.2)

with Dirichlet boundary condition u�∂D = 0 (we shall write � = �D when
we want to stress that we are using the Laplacian on L2(D)with that boundary
condition; we shall also write� for the Laplacian on the wholeR

2 but this will
be specified in the text). We assume that V is a smooth real-valued potential,
say V ∈ C∞ (

R× D;R). We shall denote by UV (t) the (unitary) propagator
starting at time 0, such that u(·, t) = UV (t)u0 is the unique solution of (1.1)–
(1.2).

This equation is aimed at describing the evolution of a quantum particle
trapped in a disk-shaped cavity, u(·, t) being the wave-function at time t . The
total L2-mass of the solution is preserved: ‖u(·, t)‖L2(D) = ‖u0‖L2(D) for
all time t ∈ R. Thus, if the initial datum is normalized, ‖u0‖L2(D) = 1, the
quantity |u(z, t)|2dz is, for every fixed t , a probability density on D; given
� ⊂ D, the expression:

∫
�

|u(z, t)|2dz

is the probability of finding the particle in the set � at time t . Having∫ T
0

∫
�
|u(z, t)|2dxdt ≥ c0 > 0 for all solutions of (1.1) means that every

quantum particle spends a positive fraction of time of the interval (0, T ) in
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the set �. A major issue in mathematical quantum mechanics is to describe
the possible localization—or delocalization—properties of solutions to the
Schrödinger equation (1.1), by which we mean the description of the dis-
tribution of the probability densities |u(z, t)|2dz for all solutions u. A more
tractable problem consists in considering instead of single, fixed solutions,
sequences (un)n∈N of solutions to (1.1) and describe the asymptotic properties
of the associated probability densities |un(z, t)|2dz or |un(z, t)|2dzdt . This
point of view still allows to deduce properties of single solutions u and their
distributions |u(z, t)|2dz, as we shall see in the sequel.

It is always possible to extract a subsequence that converges weakly:

∫
D×R

φ(z, t)|un(z, t)|2dzdt −→
∫
D×R

φ(z, t)ν(dz, dt),

for every φ ∈ Cc(D× R),

where ν is a nonnegativeRadonmeasure onD×R that describes the asymptotic
mass distribution of the subsequence of solutions (un). One of the goals of
this paper is to understand how the fact that (un) solves (1.1) influences the
structure of the associated measures ν.

As an application, we aim at understanding the observability problem for
the Schrödinger equation: given an open set � ⊂ D and a time T > 0, does
there exist a constant C = C(�, T ) > 0 such that we have:

∫ T

0

∫
�

|u(z, t)|2dzdt ≥ C‖u0‖2L2(D)
, for all u0 ∈ L2(D)

and u associated solution of (1.1)–(1.2)? (1.3)

If such an estimate holds, then every quantum particle must leave a trace
on the set � during the time interval (0, T ); in other words: it is observable
from � × (0, T ). This question is linked to that of understanding the struc-
ture of the limiting measures ν. Indeed, estimate (1.3) is not satisfied if and
only if there exists a sequence of data (u0n) such that ‖u0n‖L2(D) = 1 and∫ T
0

∫
�
|un(z, t)|2dzdt → 0, where un is the solution of (1.1) issued from u0n .

After the extraction of a subsequence, this holds if and only if the associated
limit measure ν satisfies

∫ T

0

∫
D

ν(dz, dt) = T,

∫ T

0

∫
�

ν(dz, dt) = 0.

The question of observability from �× (0, T ) may hence be reformulated as:
can sequences of solution of (1.1) concentrate on sets which do not intersect
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�× (0, T )? From the point of view of applications, it is of primary interest to
understand which sets � do observe all quantum particles trapped in a disk.
Moreover, the observability of (1.1) is equivalent to the controllability of the
Schrödinger equation (see e.g. [39]), which means that it is possible to drive
any initial condition to any final condition at time T , with a control (a forcing
term in the right-hand side of (1.1)) located within �.

It is well-known that the space of position variables (z, t) does not suffice to
describe the propagation properties of solutions to Schrödinger equations (or
more generally wave equations) in the high frequency régime. One has to add
the associated dual variables, (ξ, H) ∈ R

2 × R (momentum and energy) and
lift the measure ν to the phase space, that is, the space of variables (z, t, ξ, H):
this gives rise to the so-called Wigner measures [60]. We shall hence inves-
tigate the regularity and localization properties in position and momentum
variables of the Wigner measures associated with sequences of normalized
solutions of (1.1). They describe how the solutions are distributed over phase
space. We shall develop both the microlocal and semiclassical points of view.
These are two slightly different, but closely related, approaches to the prob-
lem: the semiclassical approach is more suitable when our initial data possess
a well-defined oscillation rate, whereas the microlocal approach describes the
singularities of solutions, independently of the choice of a scale of oscillation,
at the price of giving slightly less precise results.

Our study fits in the régime of the “quantum-classical correspondence prin-
ciple”, which asserts that the high-frequency dynamics of the solutions to (1.1)
are described in terms of the corresponding classical dynamics; in our con-
text the underlying classical system is the billiard flow on D. A well-known
expression of the correspondence principle is that the Wigner measures are
invariant by this flow.

Of course, one may consider similar questions for any bounded domain
of R

d or any Riemannian manifold, and not only the disk D. As a matter
of fact, the answer to these questions depends strongly on the dynamics
of the billiard flow (resp. the geodesic flow on a Riemannian manifold),
and, to our knowledge, it is known only in few cases (see Sect. 1.6). For
instance, on negatively curved manifolds, the related celebrated Quantum
Unique Ergodicity conjecture remains to this day open. Two geometries for
which the observation problem is well-understood, and the Wigner measures
are rather well-described, are the torus T

d (see [6,12,16,32,33,35,46,47])
and the sphere S

d , or more generally, manifolds all of whose geodesics are
closed (see [4,34,44,45]), on which the classical dynamics is completely inte-
grable. We shall later on compare these two situations with our results on the
disk D. We refer to the article [5] for a survey of recent results concerning
Wigner measures associated to sequences of solutions to the time-dependent
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Schrödinger equation in various geometries and to the review article [38] on
the observability question.

1.2 Some consequences of our structure theorem

Our central results are Theorems 2.5 and 2.7 below, which provide a detailed
structure of the Wigner measures associated to sequences of solutions to
the Schrödinger equation, using notions of “second-microlocal calculus”. As
corollaries of these structure Theorems, we obtain:

• Corollary 1.1 (see also Theorem 2.10), which states a regularity property
of the measures ν reflecting the dispersive character of the Schrödinger
equation (1.1);

• Theorem 1.2 (resp. Theorem 1.3), which states the observability/
controllability of the equation from any nonempty open set touching
the boundary of the disk (resp. from any nonempty open set of the
boundary).

Let us first state these corollaries in order tomotivate themore technical results
of this paper.

Corollary 1.1 Let (u0n) be a sequence in L2(D), such that ‖u0n‖L2(D) = 1 for

all n. Consider the sequence of nonnegative Radon measures νn on D × R,
defined by

νn(dz, dt) = |UV (t)u0n(z)|2dzdt. (1.4)

Then, for any weak-∗ limit ν of the sequence (νn), there exists θ ∈ [0, 1] such
that for almost every t, there is an absolutely continuous probability measure
ν̃t on D such that

ν(dz, dt) = νt (dz)dt, with νt = θν̃t + (1− θ)(2π)−1δ∂D.

In particular, for almost every t, νt�D is absolutely continuous. Above,
(2π)−1δ∂D denotes the unique probability measure on R

2 that is concen-
trated on the boundary of the disk and is invariant by rotations around the
origin.

This result shows in particular that the weak-∗ accumulation points of the
densities (1.4) possess some regularity in the interior of the disk. We shall
see that one can always exhibit sequences of solutions that concentrate singu-
larly on the boundary, corresponding to θ = 0 in Corollary 1.1: the so-called
whispering-gallery modes, see Sect. 1.3 and Remark 2.12. Note also that θ
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does not depend on time (this is a consequence of Proposition 2.9); this sim-
ply means that the mass of the measure on the boundary and that in the interior
of the disk remain constant in time.

In Theorem 2.10 below, we present a stronger version of Corollary 1.1
describing (in phase space) the regularity of microlocal lifts of such limit
measures ν. This precise description (as well as all results of this paper) relies
on the complete integrability of the billiard flow on the disk. Its statement
needs the introduction of action angle coordinates and associated invariant
tori, and is postponed to Sect. 2.7.

The second class of results mentioned above is related to unique
continuation-type properties of the Schrödinger equation (1.1). We consider
the following condition on an open set� ⊂ D, a time T > 0 and a potential V :

(
u0 ∈ L2(D), UV (t)u0�(0,T )×� = 0

) 
⇒ u0 = 0. (UCPV,�,T )

As a consequence of Theorem 2.7, we shall also prove the following quanti-
tative version of (UCPV,�,T ).

Theorem 1.2 Let � ⊂ D be an open set such that � ∩ ∂D 
= ∅ and T > 0.
Assume one of the following statements holds:

• the potential V ∈ C∞([0, T ] × D;R), the time T , and the open set �

satisfy (UCPV,�,T ),
• the potential V ∈ C∞(D;R) does not depend on t.

Then there exists C = C(V, �, T ) > 0 such that:

∥∥u0∥∥2L2(D)
≤ C
∫ T

0

∥∥UV (t)u0
∥∥2
L2(�)

dt, (1.5)

for every initial datum u0 ∈ L2 (D).

Roughly speaking, this means that any set � touching ∂D observes all
quantum particles trapped in the disk. As we shall see, these are the only sets
satisfying this property (see Sect. 1.3 and Remark 2.12).

We are also interested in the boundary analogue of (UCPV,�,T ) for a given
potential V , a time T > 0 and an open set 
 ⊂ ∂D:

(
u0 ∈ H1

0 (D), ∂n(UV (t)u0)�(0,T )×
 = 0
) 
⇒ u0 = 0, (UCPV,
,T )

where ∂n = ∂
∂n denotes the exterior normal derivative to ∂D. As a conse-

quence of Theorem 2.7, we shall also prove the following quantitative version
of (UCPV,
,T ).

Theorem 1.3 Let 
 be any nonempty subset of ∂D and T > 0. Suppose one
of the following holds:
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• the potential V ∈ C∞([0, T ] × D;R), the time T and the set 
 satisfy
(UCPV,
,T ),

• V ∈ C∞(D;R) does not depend on t.

Then there exists C = C(V, 
, T ) > 0 such that:

∥∥u0∥∥2H1(D)
≤ C
∫ T

0

∥∥∂n(UV (t)u0)
∥∥2
L2(
)

dt, (1.6)

for every initial datum u0 ∈ H1
0 (D).

Note that the unique continuation properties (UCPV,�,T ) and (UCPV,
,T )
are known to hold, for instance, when V is analytic in (t, z), as a consequence
of the Holmgren uniqueness theorem as stated by Hörmander in [28, Theo-
rem 5.3.1]. The regularity of V for (UCPV,�,T ) and (UCPV,
,T ) to hold can
actually be lowered to V bounded and depending analytically on the variable
t , according to the Tataru–Robbiano–Zuily–Hörmander Theorem [31,55,59]
as stated by Hörmander (see [31] Theorem 5.1 together with the Remark
p. 205).

The three above results express a delocalization property of the energy of
solutions to (1.1). The observation of the L2-norm restricted to any open set
of the disk touching the boundary is sufficient to recover linearly the norm of
the data. In particular, the L2-mass of solutions cannot concentrate on peri-
odic trajectories of the billiard (except those contained in the boundary). The
observability inequalities (1.5) and (1.6) are especially relevant in control the-
ory [11,39,41]: in turn, they imply a controllability result from the set � or

.

As a consequence of the observability inequality 1.5, we have the following
result (where we use the notation of Corollary 1.1).

Corollary 1.4 For every open set � ⊂ D touching the boundary, for every
T > 0, there exists a constant C(T, �) > 0 such that for any initial data (u0n)
and any weak-∗ limit ν of the sequence (νn) as in Corollary 1.1, we have

∫ T

0
νt (�)dt ≥ 1

C(T, �)
.

Again, this translates the fact that any solution has to leave positive mass
on any set � touching the boundary ∂D during the time interval (0, T ).

1.3 Stationary solutions to (1.1): eigenfunctions on the disk

If the potential V (t, z) does not depend on the time variable t , we have as
particular solutions of the Schrödinger equation the “stationary solutions”,
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those with initial data given by eigenfunctions of the elliptic operator−�D +
2V (z).

In the absence of a potential, i.e. if V = 0, these solutions are well
understood: the eigenfunctions of −�D on D are the functions whose (non-
normalized) expression in polar coordinates (x = −r sin u, y = r cos u) is

ψ±
n,k(re

iu) = Jn(αn,kr)e
±inu, (1.7)

where n, k are non-negative integers, Jn is the n-thBessel function, and theαn,k
are its positive zeros indexed increasingly by the integer k. The corresponding
eigenvalue is α2

n,k . Putting then u0 = ψ±
n,k gives a time-periodic solution

u(·, t) = eit
α2n,k
2 ψ±

n,k to (1.1)–(1.2). Moreover, the eigenvalues of −�D have
multiplicity two. This is a consequence of a celebrated result by Siegel [57],
showing that Jn, Jm have no common zeroes for n 
= m. In particular, the limit
measures associated to sequences of eigenfunctions are explicitly computable
in terms of the limits of the stationary distributions:

|ψ±
n,k(z)|2

‖ψ±
n,k‖2L2(D)

dz = |Jn(αn,kr)|2
‖ψ±

n,k‖2L2(D)

rdrdu,

as the frequency αn,k tends to infinity (this expression has to be slightly mod-
ified when considering linear combinations of the two eigenfunctions ψ+

n,k

and ψ−
n,k , corresponding to the same eigenvalue, with n fixed and k tending to

infinity). Let us recall some particular cases of this construction. For fixed k
and for n →∞, it is classical [36, Lemma 3.1] that

|ψ±
n,k(z)|2

‖ψ±
n,k‖2L2(D)

dz ⇀ (2π)−1δ∂D,

which corresponds to the so-called whispering gallery modes. On the other
hand, letting k, n → ∞ with n/k being constant, one may obtain for any
γ ∈ [0, 1) depending on the ratio n/k [51, Section 4.1]

|ψ±
n,k(z)|2

‖ψ±
n,k‖2L2(D)

dz ⇀
1

2π(1− γ 2)1/2

1

(|z|2 − γ 2)1/2
1(γ,1)(|z|)dz.

Except the Diracmeasure on the boundary, thesemeasures all belong to L p(D)

for any p < 2 (hence satisfyingCorollary 1.1) and are invariant by rotation and
positive on the boundary (hence satisfying Corollary 1.4). These measures in
fact enjoymore regularity and symmetry than those asserted by Corollaries 1.1
and 1.4.
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The observability question for eigenfunctions can also be simply handled in
account of the bounded multiplicity of the spectrum. For any non-empty open
set �I1,I2 = {reiu, r ∈ I1, u ∈ I2} ⊂ D (where I1 is an open subset of [0, 1],
I2 an open interval of S

1), for any eigenfunction ψ of −�D , one has:

‖ψ‖L2(�I1,S1 )
≤ C(|I2|)‖ψ‖L2(�I1,I2 )

where C(|I2|) is a positive constant depending only on the size of I2. On the
other hand, if �I1,I2 touches the boundary (1 ∈ I1) it automatically satisfies
the geometric control condition as defined in [11,39]. The results in those
references imply that:

‖ψ‖L2(D) ≤ C ′(I1)‖ψ‖L2(�I1,S1 )
.

Therefore, for such �I1,I2 , we have

‖ψ‖L2(D) ≤ C(|I2|)C ′(I1)‖ψ‖L2(�I1,I2 ).

It is not known to the authors whether or not any of the results of the present
article could be deduced directly from the result for eigenfunctions, even when
the potential vanishes identically. This does not seem to appear in the literature.
On flat tori, proving observability or regularity of Wigner measures associated
to the Schrödinger equation from the explicit expression of the solutions in
terms of Fourier series requires a careful analysis of the distribution of lattice
points onparaboloids [7,12,33] or sophisticated arguments on lacunaryFourier
series [32,35]. On the disk, and in absence of a potential, to find a proof similar
to that of [12,33] one would need to expand the kernel of e−i t�D/2 in terms
of Bessel functions:

e−i t�D/2 =
∑
n,k,±

eitα
2
n,k/2|ψ±

n,k〉〈ψ±
n,k |

and to work with this explicit expression. Such an approach would anyway
require some very technical work on the spacings between the αn,k .

Here, instead, we establish directly the links between the completely inte-
grable nature of the dynamics of the billiard flow and the delocalization and
dispersion properties of the solutions to the Schrödinger equation. Note that all
results of this paper also hold for eigenfunctions of the operator−�D+2V (z)
(as stationary solutions to (1.1)). As a matter of fact, our approach is more gen-
eral for it applies as well to quasimodes and clusters of eigenfunctions of the
operator−�D+2V (z). The reader is referred to [3] and Remark 2.6 for more
details on this matter.
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1.4 The semiclassical viewpoint

In spite of the fact that our statements and proofs are formulated exclusively
in terms of the non-semiclassical Schrödinger equation (1.1), our results do
have an interpretation in the light of the semiclassical limit for the Schrödinger
equation. Suppose that vh solves the semiclassical Schrödinger equation:

h

i

∂vh

∂t
(z, t) =

(
−h2

2
�+ h2V (ht, z)

)
vh(z, t), vh�t=0 = u0. (1.8)

Then u(·, t) := vh(·, t/h) is in fact the solution to the (non-semiclassical)
Schrödinger equation (1.1) with initial datum u0. As a consequence, describ-
ing properties of solutions to (1.1) on time intervals of size of order 1 amounts
to describing properties of solutions to the semiclassical Schrödinger equa-
tion (1.8) up to times of order 1/h. Our results show that the semiclassical
approximation breaks down in time 1/h. For instance, if we take as initial
datum in (1.8) a coherent state localized at (z0, ξ0) ∈ D× R

2,

u0n=
1

hα
n
ρ

(
z − z0
hα
n

)
e

i
hn

z·ξ0, ρ∈C∞
c (D), ρ(0)=1, α∈(0, 1), hn→0,

our results imply that the associated solution of (1.8) on the time interval
(0, 1/hn) is no longer concentrated on the billiard trajectory issued from
(z0, ξ0). Instead, we show that it spreads on the diskD (the associated measure
is absolutely continuous) and it leaves a positive mass on any set touching the
boundary (even if the trajectory of the billiard issued from (z0, ξ0) avoids this
set).

Thus, our analysis goes far beyond the well-understood semiclassical limit
for times of order 1, or even of order log(1/h) (known as the Ehrenfest time,
see [13]). Such a long time analysis is possible thanks to the complete integra-
bility of the system. In fact, in the paper [1], which deals with the Schrödinger
equation (and more general completely integrable systems) on the flat torus, it
is shown that the time scale 1/h is exactly the one at which the delocalization
of solutions takes place; for chaotic systems on the contrary, the semiclassical
approximation is expected to break down at the Ehrenfest time [5,8,9].

1.5 The structure theorem

We would like to stress the fact that all these results are obtained as conse-
quences of our main theorem (not yet stated), Theorem 2.5 (or its variant
Theorem 2.7) that gives a precise description of the structure of Wigner
measures arising from solutions to (1.1). This theorem provides a unified
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framework fromwhich to derive simultaneously the absolute continuity of pro-
jections of semiclassical measures (a fact that is related to dispersive effects)
on the one hand, and, on the other hand, the observability estimates (1.5) and
(1.6), which are quantitative unique continuation properties. Since a precise
statement requires the introduction of many other objects, we postpone it to
Sects. 2.4 and 2.5 (semiclassical and microlocal formulations respectively),
and only give a rough idea of the method for the moment.

The standard construction of the Wigner measures, outlined in Sect. 2.5,
allows to lift a measure ν to a measure μ∞ on phase space (or μsc in the
semiclassical setting): these are the associatedmicrolocal defectmeasures [23].
The lawof propagation of singularities forEq. (1.1) implies thatμ∞ is invariant
by the billiard flow in the disk, andwewant to exploit the complete integrability
of this flow.

For this, we use action-angle coordinates to integrate the dynamics of the
billiard flow and describe associated invariant tori (Sect. 3.1). The angular
momentum J of a point (z, ξ) in phase space is preserved by the flow, and
so is the Hamiltonian E = |ξ |. The actions J and E are in involution and
independent, except at the points of ∂D with tangent momentum. The angle
α that a trajectory makes when bouncing on the boundary is a also preserved
quantity (in fact a function of J/E). The key point of our proof is to analyze
in detail the possible concentration of sequences of solutions to (1.1) on the
sets Iα0 = {α = α0} of all points of phase space sharing a common inci-
dence/reflection angle α0. To this aim, we perform a second microlocalization
on this set, in the spirit of [1,6,46]. We decompose a Wigner measure as a
sum of measures supported on these invariant sets. The case α0 /∈ πQ cor-
responds to trajectories hitting the boundary in a dense set, and is trivial for
us since it supports only one invariant measure. We focus on those Iα0 for
which α0 ∈ πQ. Any trajectory of the billiard having this angle is periodic.
We wish to “zoom” on this torus to describe the concentration of the asso-
ciated measure. Assuming that the initial sequence has a typical oscillation
scale of order 1/h, we perform a second microlocalization at scale 1, which is
the limit of the Heisenberg uncertainty principle. Roughly speaking, the idea
is to relocalize in the action variable J at scale 1 (i.e. h times 1/h), so that
the Heisenberg uncertainty principle implies delocalization in the conjugated
angle variable. We obtain two limit objects, interpreted as second-microlocal
measures. The first one captures the part of our sequence of solutions whose
derivatives in directions “transverse to the flow” remain bounded; the second
one captures the part of the solution rapidly oscillating in these directions.
Understanding the notion of transversality adapted to this problem is achieved
by constructing a flow that interpolates between the billiard flow (generated
by the Hamiltonian E) and the rotation flow (generated by the Hamiltonian
J ). The second measure is a usual microlocal/semiclassical measure whereas
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the first one is a less usual operator-valued measure taking into account non-
oscillatory phenomena.We prove that both second-microlocal measures enjoy
additional invariance properties: the first one is invariant by the rotation flow,
whereas the second one propagates through a Heisenberg equation on the cir-
cle. This translates, respectively, into Theorem 2.5 (ii) and (iii).

This program was already completed in [1,6,46] for the Schrödinger equa-
tion on flat tori, but carrying it out in the disk induces considerable additional
difficulties. Our phase space does not directly come equipped with its action-
angle coordinates, so that we need first to change variables. This requires in
particular to build a Fourier Integral Operator to switch from (z, ξ)-variables
to action-angle coordinates. These coordinates are very nice to understand the
dynamics and are necessary to perform the second microlocalization, but they
are extremely nasty to treat the boundary condition, for which the use of polar
coordinates is more suitable. It seems that we cannot avoid having to go back
and forth between the two sets of coordinates. Our approach to that particular
technical aspect is inspired by [25]; however, the second-microlocal nature of
the problem requires to perform the asymptotic expansions of [25] one step
further.

1.6 Relations to other works

1.6.1 Regularity of semiclassical measures

This work pertains to the longstanding study of the so-called “quantum-
classical correspondence”, which aims at understanding the links between
high frequency solutions of the Schrödinger equation and the dynamics of the
underlying billiard flow (see for instance the survey article [5]).

More precisely, it is concerned with a case of completely integrable billiard
flow. This particular dynamical situation has already been addressed in [46]
and [6] in the case of flat tori, and in [1] for more general integrable systems
(without boundary). These three papers use in a central way a “secondmicrolo-
calization” to understand the concentration of measures on invariant tori. The
main tools are second-microlocal semiclassical measures, introduced in the
local Euclidean setting in [19–21,48–50], and defined in [1,6,46] as global
objects.

On the sphere S
d , or more generally, on a manifold with periodic geo-

desic flow, the situation is radically different. The geodesic flow for this
type of geometries is still completely integrable, but it is known [4,34,44,45]
that every invariant measure is a Wigner measure; those are not necessarily
absolutely continuous when projected in the position space. The difference
with the previous situation is that the underlying dynamical system, though
completely integrable, is degenerate. What was evidenced in [1] is that a suffi-
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cient and necessary condition for the absolute continuity of Wigner measures,
is that the hamiltonian be a strictly convex/concave function of the action vari-
ables – a condition that is even stronger than non-degeneracy. In the case of
the disk, the complete integrability of the billiard flow on D degenerates on
the boundary. There, both actions coincide, which allows for the concentration
of solutions on the invariant torus at the boundary (as was the case with the
aforementioned whispering gallery modes).

Note that on the torus and on the disk, it remains an open question to fully
characterize the set of Wigner measures associated to sequences of solutions
to the time-dependent Schrödinger equation. In the case of flat tori, the papers
[7,33] provide additional information about the regularity of these measures.

1.6.2 Observability of the Schrödinger equation

Since the pioneering work of Lebeau [39], it is known that observability
inequalities like (1.5)–(1.6) always hold if all trajectories of the billiard enter
the observation region � or 
 in finite time (at a “non-diffractive point” in
the boundary observation case). However, since [27,32], we know that this
strong geometric control condition is not necessary: (1.5) holds on the two-
torus as soon as � 
= ∅; for different proofs and extensions of this result see
[6,10,15,16,35,47]. These properties seem to deeply depend on the global
dynamics of the billiard flow.

On manifolds with periodic geodesic flow, it is necessary that � meets all
geodesics for an observation inequality as (1.5) to hold [47]. This is due to the
strong stability properties of the geodesic flow.

To our knowledge, apart from the case of flat tori, few results are known
concerning the observability of the Schrödinger equation in situations where
the geometric control condition fails. The paper [1] extends [6] to general com-
pletely integrable systems under a convexity assumption for the hamiltonian.
Note also that the boundary observability (1.6) holds in the square if (and only
if) the observation region
 contains both a horizontal and a vertical nonempty
segments [54]. Finally, for chaotic systems, the observability inequality (1.5)
is also valid on manifolds with negative curvature if the set of uncontrolled
trajectories is sufficiently small [8,9].

Our Theorems 1.2 and 1.3 provide a (necessary and) sufficient condition
for the observability of the Schrödinger group on the disk. The necessity of
the condition is clear in the case of boundary observability, and in the case
of internal observability, if � ⊂ D is such that � ∩ ∂D = ∅, the observ-
ability inequality (1.5) fails. When V = 0 this comes from the existence of
whispering-gallery modes, see Sect. 1.3, and this remains true for any V , as
proved in Remark 2.12.

Let us conclude this introduction with a few more remarks.
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Remark 1.5 In this article, we only treat the case of Dirichlet boundary con-
ditions. The extension of our method to the Neumann or mixed boundary
condition deserves further investigation.

Remark 1.6 Let us comment on the regularity required on the potential V .
Arguments developed in [6] show that all the results of this paper could actu-
ally be weakened to V ∈ C0

(
R× D;R) or even to the case where V is

continuous outside a set of zero measure. Corollary 1.1 in fact also holds
for any V ∈ L2

loc(R;L(L2(D))), and in particular for any bounded complex
valued potentials. See also Remark 2.6 below.

Remark 1.7 Our results directly yield a polynomial decay rate for the energy of
the damped wave equation (∂2t −�+ b(z)∂t )u = 0 with Dirichlet Boundary
conditions on the disk. More precisely, [2, Theorem 2.3] and Theorem 1.2
imply that if b ≥ 0 is positive on an open set � such that � ∩ ∂D 
= ∅, then
the H1

0 × L2 norm of solutions decays at rate 1/
√
t for data in (H2 ∩ H1

0 )×
H1
0 . This rate is better than the a priori logarithmic decay rate given by the

Lebeau theorem [40]. The latter is however optimal if supp(b) ∩ ∂D = ∅ as a
consequence of the whispering gallery phenomenon (see e.g. [43]).

2 The structure theorem

In this section, we give the main definitions used in the article and state our
structure theorems. We first define microlocal and semiclassical Wigner mea-
sures (which are the central objects discussed in the paper) in Sect. 2.1. We
then briefly describe the billiard flow and introduce adapted action-angle coor-
dinates in Sect. 2.2. This allows us to formulate our main results (Sects. 2.4
and 2.5), both in the semiclassical (Theorem 2.5) and in the microlocal (The-
orem 2.7) framework. Next, in Sect. 2.7, we define various measures at the
boundary of the disk, that will be useful in the proofs, and explain their links
with the Wigner measures in the interior.

2.1 Wigner measures: microlocal versus semiclassical points of view

Let T ∗R2 = R
2 × R

2 be the cotangent bundle over R
2, and T ∗R = R × R

be the cotangent bundle over R. We shall denote by z ∈ R
2 (resp. t ∈ R) the

space (resp. time) variable and ξ ∈ R
2 (resp. H ∈ R) the associated frequency.

Our main results can be formulated in two different and complementary set-
tings. We first introduce the symbol class needed to formulate their microlocal
version, allowing to define microlocal Wigner distributions. We then define
semiclassicalWigner distributions and briefly compare these two objects.
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Definition 2.1 Let us call S0 the space of functions a = a(z, ξ, t, H) ∈
C∞(T ∗R2 × T ∗R) such that

(a) a is compactly supported in the variables z, t .
(b) a is homogeneous at infinity in (ξ, H) in the following sense: there exists

R0 > 0 such that

a(z, ξ, t, H) = a(z, λξ, t, λ2H), for |ξ |2 + |H | > R0 and λ ≥ 1.
(2.1)

Equivalently, there is ahom ∈ C∞(T ∗R2× T ∗R\{(ξ, H) = (0, 0)}) satis-
fying (2.1) for all λ > 0, such that

a(z, ξ, t, H) = ahom (z, ξ, t, H) , for |ξ |2 + |H | > R0.

Such a homogeneous function ahom is entirely determined by its restriction
to the set {|ξ |2 + 2|H | = 2} ⊂ R

2 × R, which is homeomorphic to a 2-
dimensional sphere S

2. Thus we may (and will, when convenient) identify
ahom with a function in the space C∞(R2

z × Rt × S
2
ξ,H ).

Note that the different homogeneities with respect to the H and ξ variables
is adapted to the scaling of the Schrödinger operator.

Let (u0n) be a sequence in L
2(D), such that ‖u0n‖L2(D) = 1 for all n. For z ∈ D

and t ∈ R we denote un(z, t) = UV (t)u0n(z). In what follows (e.g. in formula
(2.3) below), we shall systematically extend the functions un , a priori defined
on D, by the value 0 outside D as done in [25], where semiclassical Wigner
measures for boundary value problems were first considered. The extended
sequence (still denoted un) now satisfies the equation

(
−1

2
�+ V − 1

i

∂

∂t

)
un = 1

2

∂un
∂n

⊗ δ∂D, (z, t) ∈ R
2 × R, (2.2)

where � denotes the Laplacian on R
2. Remark that the term ∂un

∂n �∂D has no
straightforward meaning at this level of regularity. We shall see below how to
give a signification to this equation, both in the semiclassical (see Remark 2.4)
and in the microlocal (see Sect. 2.8.3) settings.

The microlocal Wigner distributions associated to (un) act on symbols a ∈
S0 by

Wun (a) := 〈un,Op1(a)un〉L2(R2
z×Rt )

, (2.3)

where Op1(a) = a(z, Dz, t, Dt ) (with the standard notation D = −i∂) is a
pseudodifferential operator obtained by the standard quantization procedure:
in what follows, Opε(a) = a(z, εDz, t, εDt )will stand for the operator acting
on L2(R2 × R) by:
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(
Opε(a)u

)
(z, t) = 1

(2πε)3

∫
R2×R

∫
R2×R

e
iξ ·(z−z′)+i H(t−t ′)

ε a (z, ξ, t, H)

u(z′, t ′) dz′dt ′ dξdH. (2.4)

In particular if a depends only on (z, t), we have

Wun (a) =
∫
D

a(z, t)|un(z, t)|2dzdt.

Remark 2.2 It is not clear at first sight that expressions like (2.3) are well-
defined since un = UV (t)u0n ∈ L∞(Rt ; L2(R2

z )) is not square-integrable
in the variable t . However, the symbol a here is compactly supported with
respect to t . A classical decomposition of Op1(a) with respect to the time
variable (as an operator with compactly supported Schwartz kernel plus an
operator with smooth Schwartz kernel having fast decay away from the diag-
onal) proves that this operator actually maps continuously L∞(Rt ; L2(R2

z ))

to L2
comp(Rt ; L2(R2

z )), which clarifies the meaning of (2.3). See e.g. [30, Sec-
tion 18.1]. Also, we shall see that if u0n ⇀ 0, then the limit object of (2.3) as
n →+∞ only depends on the principal symbol of the operator Op1(a) (i.e. on
ahom): hence, according to pseudodifferential calculus, we shall equivalently
study instead 〈χT un,Op1(a)χT un〉L2(R2

z×Rt )
for some χT ∈ C∞

c (R) equal to
one in the neighborhood of the time support of a.

Usual estimates on pseudodifferential operators now imply that Wun forms
a bounded sequence in S ′0. The main goal of this article is to understand
properties of weak limits of (Wun ) that are valid for any sequence of initial
conditions (u0n).

The problem also has a semiclassical variant. In this version, one consid-
ers a ∈ C∞

c (T ∗R2 × T ∗R), a real parameter h > 0, and one defines the
semiclassical Wigner distributions at scale h by

Wh
un (a) := 〈un,Op1(a(z, hξ, t, h2H))un〉L2(R2

z×Rt )
, (2.5)

where Op1(a(z, hξ, t, h2H)) = a(z, hDz, t, h2Dt ) = Oph(a(z, ξ, t, hH)),
see (2.4). Note that this scaling relation is the natural one for solutions of
(1.1), and its interest will be made clear below. Again Wh

un is well defined,
and forms a bounded sequence in D′(T ∗R2 × T ∗R) if h stays bounded. This
formulation is most meaningful if the parameter h = hn is chosen in relation
with the typical scale of oscillation of our sequence of initial conditions (u0n).

Definition 2.3 Given a bounded sequence (wn) in L2(D), we shall say that it is
(hn)-oscillating from above (resp. (hn)-oscillating from below) if the sequence
(wn) extended by zero outside of D satisfies:
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lim
R→∞ lim sup

n→∞

∫
|ξ |≥R/hn

|ŵn (ξ)|2 dξ = 0,

(
resp. lim

ε→0
lim sup
n→∞

∫
|ξ |≤ε/hn

|ŵn (ξ)|2 dξ = 0

)
,

where ŵn is the Fourier transform of wn on R
2.

The property of being (hn)-oscillating from above is only relevant if hn →
0; if u0n is (hn)-oscillating for (hn) bounded away from 0, the (extended)
sequence (u0n) is compact in L2 and the accumulation points of (Whn

un ) are just
the Wigner measures Wh

u , where h > 0 is an accumulation point of hn and u
is an accumulation point of un in L2. Therefore, we shall always assume that
hn → 0. Note that one can always find (hn) tending to zero such that (u0n) is
hn-oscillating from above (to see that, note that for fixed n one may choose hn
such that

∫
|ξ |≥1/hn |û0n(ξ)|2dξ ≤ n−1). However, the choice of the sequence

hn is by no means unique (hn-oscillating sequences are also h′n-oscillating as
soon as h′n ≤ hn), although in many cases there is a natural scale hn given by
the problem under consideration.

One can find (h′n) such that (u0n) is h′n-oscillating from below if and only if
the functions (u0n) (extended by the value 0 outside D) converge to 0 weakly in
L2(R2). It is not always possible to find a common (hn) such that (u0n) is hn-
oscillating both from above and below (see [24] for an example of a sequence
with this behavior). However, when it is the case, the semiclassical Wigner
distributions contain more information that the microlocal ones (see Sect. 2.6).
On the other hand, if no hn exists such that (u0n) is hn-oscillating from above
and below, the accumulation points ofWhn

un may fail to capture completely the
asymptotic phase-space distribution of the sequence (un), either because some
masswill escape to |ξ | = ∞or because the fractionof themass going to infinity
at a rate slower that h−1

n will give a contribution concentrated on ξ = 0. In
those cases, the microlocal formulation is still able to describe the asymptotic
distribution of the sequence on the reduced phase-space R

2
z × Rt × S

2
ξ,H .

This is one of the motivations that has led us to study both points of view,
semiclassical and microlocal.

2.2 The billiard flow

Microlocal and semiclassical analysis provide a connection between the
Schrödinger equation and the billiard on the underlying phase space. In this
section we first clarify what we mean by “billiard flow” in the disk. The phase
space associated with the billiard flow on the disk can be defined as a quotient
of D× R

2 (position × frequency). We first define the symmetry with respect
to the line tangent to the circle ∂D at z ∈ ∂D by
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σz(ξ)=ξ − 2(z · ξ)z, and we denote σ(z, ξ)=(z, σz(ξ)), for z ∈ ∂D.

Then, we work on the quotient space

W = D× R
2/ ∼ where (z, ξ) ∼ σ(z, ξ) for |z| = 1.

We denote by π the canonical projection D × R
2 → W which maps a point

(z, ξ) to its equivalence class modulo ∼. Note that π is one-one on D × R
2,

so that D× R
2 may be seen as a subset of W.

A function a ∈ C0(W) can be identified with the function ã = a ◦ π ∈
C0(D× R

2) satisfying ã(z, ξ) = ã ◦ σ(z, ξ) for (z, ξ) ∈ ∂D× R
2.

The billiard flow (φτ )τ∈R on W is the (uniquely defined) action of R on
W such that the map (τ, z, ξ) �→ φτ (z, ξ) is continuous on R × W, satisfies
φτ+τ ′ = φτ ◦ φτ ′ , and such that

φτ (z, ξ) = (z + τξ, ξ)

whenever z ∈ D and z + τξ ∈ D.
In order to understand how the completely integrable nature of the flow φτ

influences the structure of Wigner measures, we need to introduce adapted
coordinates. We denote by

� : (s, θ, E, J ) �→ (x, y, ξx , ξy), (2.6)

the “action-angle” coordinates for the billiard flow (see also Sect. 3.1), defined
by: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x = J
E cos θ − s sin θ,

y = J
E sin θ + s cos θ,

ξx = −E sin θ,

ξy = E cos θ.

These coordinates are illustrated in Fig. 1. The inverse map is given by the
formulas

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E =
√

ξ2x + ξ2y , (velocity)

J = xξy − yξx , (angular momentum)

θ = − arctan
(

ξx
ξy

)
, (angle of ξ with the vertical)

s = −x sin θ + y cos θ, (abscissa of (x, y) along the line( J
E cos θ, J

E sin θ
)+ Rξ).
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Fig. 1 Action-angle
coordinates for the billiard
flow on the disk. On the
picture, we have J > 0 and
θ ∈ (−π

2 , 0)

J/E

(ξx, ξy)

s

E
θ

(x, y)

(0, 0)

In other words, we have: ⎧⎪⎨
⎪⎩
E = |ξ |,
J = z · ξ⊥,

s = z · ξ
|ξ | ,

where ξ⊥ := (ξy,−ξx ), and

⎧⎪⎨
⎪⎩

ξ = (ξx , ξy) = E(− sin(θ), cos(θ)),

z = (x, y) = s(− sin(θ), cos(θ))+ J
E (cos(θ), sin(θ))

=
(
z · ξ

|ξ |
)

ξ
|ξ | +

(
z · ξ⊥

|ξ |
)

ξ⊥
|ξ | .

Note that the velocity E and the angular momentum J are preserved both
by the free transport flow inR

2×R
2 and the symmetry σ . Hence, they are also

preserved along φτ ; the variables s and θ play the role of “angle” coordinates.
We call α = − arcsin

( J
E

)
the angle that a billiard trajectory makes with the

normal to the circle, when it hits the boundary (see Fig. 2). The quantity α is
preserved by the billiard flow.

Let us denote T(E,J ) the level sets of the pair (E, J ), namely

T(E,J ) = {(z, ξ) ∈ D× R
2 : (|ξ |, z · ξ⊥) = (E, J )}. (2.7)

For E 
= 0 let us denote λE,J the probability measure on T(E,J ) that is both
invariant under the billiard flow and invariant under rotations. In the coordi-
nates (s, θ, E, J ), we have
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Fig. 2 Angle α. On the
picture, we have J > 0 and
α ∈ (−π

2 , 0)

α
J/E z + t1ξ

σz+t1ξ(ξ)

z

(0, 0)

ξ

z + t2ξ

D

ξ

α

λE,J (ds, dθ) = c(E, J )dsdθ, c(E, J ) =
(∫

T (E,J )

dsdθ

)−1

> 0.

Note that for E 
= 0 and α ∈ πQ the billiard flow is periodic on T(E,J ) whereas
α /∈ πQ corresponds to trajectories that hit the boundary on a dense set. More
precisely, if α /∈ πQ then the billiard flow restricted to T(E,J ) has a unique
invariant probability measure, namely λE,J .

2.3 Standard facts about Wigner measures

We start formulating the question and results in a semiclassical framework:
we have a parameter hn going to 0, meant to represent the typical scale of
oscillation of our sequence of initial conditions (u0n).

We simplify the notation by writing h = hn , u0h = u0n . We will
always assume that the functions u0h are normalized in L2(D). We define
uh(z, t) = UV (t)u0h(z) (the reader should be aware that uh satisfies the classi-
cal Schrödinger equation (1.1); the index h only reminds its oscillation scale).
Since this is a function on D× R it is natural to do a frequency analysis both
in z and t . Recall that we keep the notation uh after the extension by zero
outside D. The semiclassical Wigner distribution associated to uh (at scale h)
is a distribution on the cotangent bundle T ∗R2×T ∗R = R

2
z ×R

2
ξ ×Rt ×RH ,

defined by

Wh
uh : a �→

〈
uh,Op1(a(z, hξ, t, h2H))uh

〉
L2(R2×R)

,

for all a ∈ C∞
c (T ∗R2 × T ∗R). (2.8)
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The scaling Op1(a(z, hξ, t, h2H)) is performed in order to capture all the
information when uh is h-oscillating from above (otherwise, the discussion
below remains entirely valid but part of the information about uh(z, t) is lost
when studying Wh

uh (a)). When no confusion arises, we shall denote Wh for
Wh

uh .
By standard estimates on the norm of Op1(a), it follows that Wh belongs

to D′(T ∗R2 × T ∗R), and is uniformly bounded in that space as h → 0+.
Thus, one can extract subsequences that converge in the weak-∗ topology of
D′(T ∗R2×T ∗R). In other words, after possibly extracting a subsequence, we
have

Wh(a)−→
h→0

μsc(a) (2.9)

for all a ∈ C∞
c (T ∗R2 × T ∗R) (the fact that we may extract a common sub-

sequence for all functions a follows from a diagonal extraction argument, see
e.g. [23]).

In this paper such a measureμsc will be called a semiclassical Wigner mea-
sure, or in short semiclassical measure, associated with the initial conditions
(u0h) and the scale h.

Remark 2.4 Fix R > 0; Lemma 8.2 below tells us that in order to compute the
restriction of μsc to the set {|H | < R} we may assume that u0h ∈ H1

0 (D) and
‖∇u0h‖L2(D) = OR(h−1). In that case Proposition 8.1 says that the boundary
data h∂n(UV (t)u0h) form a bounded sequence in L2

loc(R× ∂D). We can work
under these assumptions when necessary. Since R is arbitrary, this constitutes
no loss of generality.

It follows from standard properties of pseudodifferential operators that the
limit μsc in (2.9) has the following properties:

• μsc is a nonnegative measure, of the form μsc(dz, dξ, dt, dH) =
μsc(dz, dξ, t, dH)dt where t �→ μsc(t) ∈ L∞(Rt ;M+(T ∗R2 × RH )).
Moreover, for a.e. t ∈ R, μsc(t) is supported in {|ξ |2 = 2H} ∩(
D× R

2 × RH
)
. See [26,42] for a proof of nonnegativity; the time regu-

larity and the localization of the support are shown in Proposition 9.1.
• From the normalization of u0h in L2, we have for a.e. t :

∫
D×R2×R

μsc(dz, dξ, t, dH) ≤ 1,

the inequality coming from the fact that D × R
2 × R is not compact,

and that there may be an escape of mass to infinity. However, if u0h is
h-oscillating from above, escape of mass does not occur and we have∫
D×R2×R

μsc(dz, dξ, t, dH) = 1.
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• The standard quantization enjoys the following property:
[
− ih

2
�,Oph(a)

]
= Oph

(
ξ · ∂za − ih

2
�za

)
, (2.10)

where� is the Laplacian onR
2. From this identity together with (2.2), one

can show that ∫
D×R2×R

ξ · ∂za μsc(dz, dξ, t, dH) = 0 (2.11)

for a.e. t and for every smooth a such that a(z, ξ, t, H) = a(z, σz(ξ), t, H)

for |z| = 1. Equivalently,
∫
D×R2×R

a ◦ φτ ◦ π(z, ξ, t, H)μsc(dz, dξ, t, dH)

=
∫
D×R2×R

a ◦ π(z, ξ, t, H)μsc(dz, dξ, t, dH)

for every a ∈ C0(W), τ ∈ R—where φτ is the billiard flow in the disk and
π : D×R

2 → W is the canonical projection, defined in Sect. 2.2. In other
words, π∗μ is an invariant measure of the billiard flow.
We refer to Sect. 2.8 for a more general version of (2.11) (formulated
initially in [25], see also [56]) involving a measure associated to boundary
traces.

2.4 The structure theorem: semiclassical formulation

Now comes our central result, giving the structure of semiclassical measures
arising as weak-∗ limits of sequences (Wh) associated to solutions of (1.1).
As a by-product it clarifies the dependence of μsc(t, ·) on the time parameter
t . It was already noted in [45] that the dependence of μsc(t, ·) on the sequence
of initial conditions is a subtle issue.

The statement of Theorem 2.5 is technical and needs introducing some nota-
tion. The notation (s, θ, E, J ), α was introduced in Sect. 2.2. We first restrict
our attention to the casewhere the initial conditions (u0h) are h-oscillating from
below, or equivalently μsc does not charge {ξ = 0} (otherwise, the restriction
of μsc to {ξ = 0} will be better understood at the end of Sect. 2.6); hence, we
may restrict our discussion to E 
= 0. For each α0 ∈ πQ ∩ (−π/2, π/2) we
will introduce a flow (φτ

α0
) on the billiard phase space W, all of whose orbits

are periodic (Definition 3.4). It coincides with the billiard flow on the set

Iα0 = {(s, θ, E, J ) ∈ �−1(D× R
2), J = −E sin α0} = {α = α0},

123



508 N. Anantharaman et al.

which is the union of all the lagrangian manifolds T(E,J ) with J = −E sin α0.
If a is a function on W, we shall denote by 〈a〉α0 its average along the orbits
of φτ

α0
(actually, 〈a〉α0 is well defined even if a is not symmetric with respect

to the boundary, since the set of hitting times of the boundary has measure 0).
In the coordinates (s, θ, E, J ), this is a function whose restriction to Iα0 does
not depend on s.

We will denote by

mα0
a (s, E, t, H)

the operator on L2
loc(Rθ ) acting by multiplication by the function

a (�(s, θ, E,−E sin α0), t, H) .

Remark that mα0〈a〉α0 does not depend on the variable s. For our potential V ,

the function 〈V 〉α0 ◦ � depends only on θ (and, of course, on t if V is time-
dependent).

Given ω ∈ T := R/2πZ, we denote by Uα0,ω(t) the unitary propagator
(starting at time 0) of the equation

− cos2 α0 Dtv(t, θ)+
(
−1

2
∂2θ + cos2 α0 〈V 〉α0 ◦�(t, θ)

)
v(t, θ) = 0

acting on the Hilbert space

Hω = {v ∈ L2
loc(R) : v(θ + 2π) = v(θ)eiω, for a.e. θ ∈ R}, (2.12)

i.e. with Floquet-periodic condition. In the statements below, eachHω is iden-
tified with L2(0, 2π) by taking restriction of functions to (0, 2π). Note that,
by definition of �, the functions 〈V 〉α0 ◦�, 〈a〉α0 ◦� are 2π -periodic in the
variable θ , so that they indeed act on Hω by multiplication.

Theorem 2.5 Let (u0h) be a family of initial data, assumed to be h-oscillating
from below. Let μsc be a semiclassical measure, associated with the initial
conditions (u0h) and the scale h. Thenμsc can be decomposed into a countable
sum of non-negative measures:

μsc = νLeb +
∑

α0∈πQ∩[−π/2,π/2]
να0,

satisfying:

(i) Each of the measures in the decomposition above is carried by the set
{H = E2

2 } and is invariant under the billiard flow.
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(ii) The measure νLeb is constant in t and is of the form νLeb =∫
E>0,|J |≤E λE,J dν′(E, J )dt for some nonnegative measure ν′ on R

2. In
other words νLeb is a combination of Lebesgue measures on the invariant
“tori” T(E,J ).

(iii) For every α0 ∈ πQ∩ (−π/2, π/2), the measure να0 is carried by the set
Iα0 ∩ {H = E2/2} and is characterized by

∫
Iα0

a dνα0 =
∫
Iα0

TrL2(0,2π)

(
mα0〈a〉α0 σα0

)
d�α0dt,

for all a ∈ C∞
c (T ∗R2 × T ∗R), (2.13)

where �α0(dω, dE, dH) is a nonnegative measure on Tω × RE × RH ,
and

σα0 : Tω × RE × RH × Rt → L1+
(
L2(0, 2π)

)
,

is integrable with respect to �α0 , continuous with respect to t and takes
values in the set of nonnegative trace-class operators on L2(0, 2π), and,
for �α0-almost every (ω, E, H), satisfies Tr(σα0(ω, E, H, t)) = 1.
In addition, for �α0-almost every (ω, E, H), we have:

σα0(ω, E, H, t) = Uα0,ω(t)σα0(ω, E, H, 0)U∗
α0,ω

(t). (2.14)

Finally, �α0 andσα0(·, 0) only depend on the sequence of initial conditions
(u0h).

(iv) For α0 = ±π
2 , να0 is a measure that does not depend on t , carried by

{H = |ξ |2/2}∩T ∗∂D and is invariant under rotations around the origin.

Note that if we do not identify Hω with L2(0, 2π), then for each
(ω, E, H, t), the operator σα0(ω, E, H, t) is in L1+(Hω), so that σα0 is actu-
ally a section of a vector bundle over Tω. We would also like to stress the fact
that the family of operators σα0(ω, E, H, 0) (which, recall, only depend on
the sequence of initial data) are in some sense, more precise objects than the
Wigner measure associated to the sequence of initial data. It may happen that
two sequences of initial data have the same Wigner measure but give rise to
different families of operators σα0(ω, E, H, 0). We refer the reader to refer-
ence [45] for examples of this type of behavior when the disk is replaced by
the flat torus.

Remark 2.6 The conclusion of the results above (as well as their counter-
parts in the next section) also holds for semiclassical measures associated to
sequences of approximate solutions of the Schrödinger equation, i.e. satisfying
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(
Dt + 1

2
�− V (t, z)

)
uh(z, t) = oL2

loc(D×R)(1).

Moreover, as in the torus [1,6], all conclusions of Theorem 2.5 hold as well
for solutions of

(
Dt + 1

2
�

)
uh(z, t) = OL2

loc(D×R)(1),

except for the continuity in time of σα0 and the propagation law (2.14). This
is thus also the case for Corollary 1.1 (whose proof does not use these two
properties). This includes for instance the case of “operator potentials” V ∈
L2
loc(R;L(L2(D))) (see also [14] for related results).

2.5 The structure theorem: microlocal formulation

We now give the microlocal version of Theorem 2.5. The main difference is
that we now use the class of test functions S0 defined in Sect. 2.1.

Let (u0n) be a sequence of initial conditions, normalized in L2(D). Denote
by un(·, t) := UV (t)u0n the associated solution of (1.1), and recall that we also
write un for its extension by zero to the whole R

2. All over the paper we let
χ ∈ C∞

c (R) be a nonnegative cut-off function that is identically equal to one
near the origin. Let R > 0. For a ∈ S0, we define

〈
W∞

n,R, a
〉 :=
〈
un,Op1

((
1− χ

( |ξ |2 + |H |
R2

))
a(z, ξ, t, H)

)
un

〉
L2(R2×R)

,

and

〈
Wc,n,R, a

〉 :=
〈
un,Op1

(
χ

( |ξ |2 + |H |
R2

)
a(z, ξ, t, H)

)
un

〉
L2(R2×R)

.

(2.15)
TheCalderón–Vaillancourt theorem [18] ensures that bothW∞

n,R andWc,n,R are
bounded in S ′0. After possibly extracting subsequences, we have the existence
of a limit: for every a ∈ S0,

〈
μ∞, a

〉 := lim
R→∞ lim

n→+∞
〈
W∞

n,R, a
〉
, (2.16)

and
〈μc, a〉 := lim

R→∞ lim
n→+∞

〈
Wc,n,R, a

〉
. (2.17)
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As a consequence, after extraction, the subsequenceWn convergesweakly-∗
to a limit μml ∈ S ′0, which can be decomposed into

μml = μ∞ + μc.

The two limit objects μc and μ∞ enjoy the following standard properties:

• The distributionμc vanishes if and only if the family (u0n) convergesweakly
to 0 in L2(D); in other wordsμc reflects the “compact part” of the sequence
(u0n), hence the subscript c in the notation.• Thedistributionμ∞ is nonnegative, 0-homogeneous and supported at infin-
ity in the variable (ξ, H) (i.e., it vanishes when paired with a compactly
supported function). As a consequence, μ∞ may be identified with a non-
negative Radonmeasure onR

2
z×Rt×S

2
ξ,H . Actually,μ

∞ is themicrolocal
defect measure of [23,58] (with the appropriate class of symbols S0).

• In addition, μ∞ is of the form μ∞(dz, dξ, dt, dH) = μ∞(dz, dξ, t, dH)

dt where t �→ μ∞(t) ∈ L∞(Rt ;M+(R2
z × S

2
ξ,H )). Moreover, for a.e.

t ∈ R, μ∞(t) is supported in {|ξ |2 = 2H} ∩ (D× S
2
ξ,H ).

• The projection of the distribution μml = μc + μ∞ on the (z, t)-variables
is the Radon measure ν defined in the introduction (Sect. 1). From the
normalization of u0n in L2, we have for a.e. t :

∫
D×S

2
ξ,H

μ∞(dz, dξ, t, dH) ≤ 1,

if u0n ⇀ 0 in L2(D), then we have
∫
D×S

2
ξ,H

μ∞(dz, dξ, t, dH) = 1.

• The measure μ∞ satisfies the invariance property:

〈
μ∞,

ξ√
2H

.∂za

〉
= 0, (2.18)

for a satisfying the symmetry condition a(z, ξ, t, H) = a(z, σz(ξ), t, H)

for |z| = 1. In other words, π∗μ∞ is invariant by the billiard flow.

These properties are well-known and won’t be proved in detail here (the fact

that it is carried on {H = |ξ |2
2 } follows from Appendix A and the proof of

invariance is essentially contained in [25] or [56]).
Let us now discuss separately the finer properties of μ∞ (high frequencies)

and of μc (low frequencies).
Wefirst describeμ∞ and state the analogue ofTheorem2.5 in themicrolocal

setting. As previously we call T(E,J ) the level sets of (E, J ) and Iα0 = {J =
− sin α0E}. The only difference with the semiclassical formalism is that the
test functions are homogeneous as in Definition 2.1. Recall that, if we identify
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homogeneous functions with functions on the 2-dimensional sphere S
2
ξ,H =

{(ξ, H), |ξ |2 + 2|H | = 2}, the measure μ∞ may be seen as a measure on
R
2
z × Rt × S

2
ξ,H (supported by D × Rt × S

2
ξ,H ). The microlocal version of

Theorem 2.5 reads as follows:

Theorem 2.7 Let (u0n) be normalized in L2(D), and such that (2.16) holds.
Then the measure μ∞ can be decomposed as a countable sum of nonnegative
measures on R

2 × Rt × S
2:

μ∞ = μLeb +
∑

α0∈πQ∩[−π/2,π/2]
μα0,

satisfying:

(i) Each of the measures in the above decomposition is carried by D×Rt ×
S
2 ∩ {|ξ |2 = 2H} and by the cone {|J | ≤ E}, and is invariant under the

billiard flow.
(ii) The measure μLeb does not depend on t and is of the form μLeb =∫

E>0,|J |≤E λE,J dμ′(E, J )dt for some nonnegative measure μ′, defined
on the set of pairs (E, J ) modulo homotheties.

(iii) For every α0 ∈ πQ∩ (−π/2, π/2), the measure μα0 is carried by the set
Iα0 ∩ {H = E2/2} and is defined by:
∫
Iα0

adμα0 =
∫
Iα0

TrL2(0,2π)

(
mα0〈a〉α0 σα0

)
d�α0dt, for all a ∈ S0,

where �α0(dω, dE, dH) is a non-negativemeasure onTω×{E2+2|H | =
2} carried by {H = E2/2} and

σα0 : Tω × {E2 + 2|H | = 2} × Rt → L1+
(
L2(0, 2π)

)
,

is integrable with respect to �α0 , continuous in t and takes values in the set
of nonnegative trace-class operators on L2(0, 2π), and, for �α0-almost
every (ω, E, H), satisfies Tr(σα0(ω, E, H, t)) = 1.
Moreover, for �α0-almost every (ω, E, H), we have

σα0(ω, E, H, t) = Uα0,ω(t)σα0(ω, E, H, 0)U∗
α0,ω

(t).

Finally, �α0 andσα0(·, 0) only depend on the sequence of initial conditions
(u0n).

(iv) For α0 = ±π
2 , μα0 does not depend on t , it is a measure carried by the

set I± π
2
∩ {H = E2/2} (which consists of vectors tangent to ∂D) and is

invariant under rotations around the origin.
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In point (iii), the measure �α0 arises as an element of the dual of the
space of continuous homogeneous functions (satisfying a(ω, λE, λ2H) =
a(ω, E, H)). This space has been identified with the space of continuous
functions on R/2πZ× {(E, H), E2 + 2|H | = 2}.

To conclude the description of μml , it now remains to describe more pre-
cisely μc. After extraction, we can always assume that the sequence of initial
conditions (u0n) has a weak limit u0 in L2(D).

Theorem 2.8 Assume that (u0n) has aweak limit u
0 in L2(D), and set u(x, t) =

[UV (t)u0](x). Then, for all a ∈ S0, we have

〈μc, a〉 =
〈
u,Op1 (a(z, ξ, t, H)) u

〉
L2(R2×R)

. (2.19)

As a consequence, the projection of μc on D× Rt is a nonnegative Radon
measure, which is absolutely continuous, and continuous with respect to t .

We refer to Remark 2.2 for the meaning of (2.19). The proof of this result
is given in Sect. 6.1.

2.6 Link between microlocal and semiclassical Wigner measures

Let us clarify the link between the two approaches in the context of the present
article (see also [22,25] for a related discussion).

2.6.1 Sequences hn-oscillating from above and below

As was said, if (u0n) is hn-oscillating from above and below, the semiclassical
Wigner measures convey more information than the microlocal ones. In fact,
if (u0n) is hn-oscillating from above and below (with hn → 0), we have for
a ∈ S0, and χ a smooth cut-off function that equals 1 in a neighborhood of the
origin,

lim
n→∞Wun (a) = lim

n→∞

〈
un,Op1

(
a(z, ξ, t, H)

(
χ

(
h2n(|ξ |2 + |H |)

R

)

−χ

(
h2n(|ξ |2 + |H |)

ε

)))
un

〉
L2(R2×R)

+ o(1)ε→0,R→+∞

= lim
n→∞

〈
un,Op1

(
ahom(z, hnξ, t, h2nH)

(
χ

(
h2n(|ξ |2 + |H |)

R

)

−χ

(
h2n(|ξ |2 + |H |)

ε

)))
un

〉
L2(R2×R)

+ o(1)ε→0,R→+∞
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= lim
n→∞Whn

un

(
ahom

(
χ

(
(|ξ |2 + |H |)

R

)
− χ

(
(|ξ |2 + |H |)

ε

)))

+ o(1)ε→0,R→+∞

From this identity, one sees that if Wun converges weakly to μml and Whn
un

converges weakly to μsc, and if (u0n) is hn-oscillating from above and below,
we have

μml(a) = μsc(ahom).

The right-hand side is well-defined since μsc is a nonnegative measure which
is bounded on sets of the form D× R

2 × [−T, T ] × R for any T > 0.

2.6.2 Sequences not hn-oscillating from below

On the other hand, if in Theorem 2.5 the sequence (u0n) is not hn-oscillating
from below, then μsc does charge the set {ξ = 0}, and we have for any com-
pactly supported function a and any cut-off χ ∈ C∞

c ((−1, 1))with χ(0) = 1,

μsc�(ξ,H)=0(a) = lim
ε→0

∫
T ∗(R2×R)

a(z, ξ, t, H)χ2
( |ξ |2 + |H |

ε

)
dμsc

= lim
ε→0

∫
T ∗(R2×R)

a(z, ξ, t, H)χ2
(
3|H |

ε

)
dμsc

= lim
ε→0

lim
n→+∞WUV (t)v0n,ε

(a), (2.20)

where v0n,ε = χ(
3h2n |Dt |

ε
)χT un�t=0, for some χT = χT (t) ∈ C∞

c (R) equal to
one in a neighborhood of the t-support ofa. Equality of the first two lines comes
from the fact that the measure μsc is suported by {|ξ |2 = 2H} (see Propo-
sition 8.3), and equality of the last two lines is proved in Appendix A (see
Lemma 8.2). We see that the microlocal Wigner measures μml,ε associated
with UV (t)v0n,ε encompass the description of μsc�(ξ,H)=0 (on the time inter-
val where χT = 1): calling μml,0 = limε→0 μml,ε (in S ′0 and after extraction),
we have

μsc�(ξ,H)=0(a(z, ξ, t, H)) = μml,0(a(z, 0, t, 0)).

Obtained as a limit of μml,ε , the measure μml,0 also possesses the structure
described in Theorem 2.7.
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2.6.3 Sequences not hn-oscillating from above

Finally, if (u0n) is not hn-oscillating from above, we see that (using cutoff
functions χ and χT as above),

lim
R→+∞ lim

n→+∞Whn

(1−χ)

(
h2n (|Dz |2+|Dt |)

R

)
χT un

(a) = 0

for compactly supported a, whereas the limit

lim
R→+∞ lim

n→+∞W
(1−χ)

(
h2n (|Dz |2+|Dt |)

R

)
χT un

(a)

does not necessarily vanish for a ∈ S0. This last limit coincides with

lim
R→+∞ lim

n→+∞W
(1−χ)

(
3h2n |Dt |

R

)
χT un

(a) = lim
R→+∞ lim

n→+∞WUV (t)w0
n,R

(a)

where w0
n,R = (1− χ)(

3h2n |Dt |
R )χT un�t=0, and equality of the limits is proved

in Appendix A (see Lemma 8.2).

We may thus conclude from the last two paragraphs that the frequencies of
u0n that are of order � h−1

n or � h−1
n are better captured by the microlocal

approach.

2.7 Application to the regularity of limit measures

As will be explained at the end of Sect. 5.2, Theorems 2.5 or 2.7 imply
Corollary 1.1. Here, we state a more precise version of this result (say, in
the semiclassical setting), and first need for this an intermediate proposition.
As in Theorem 2.5, let us first assume that we are considering a sequence of
initial data (u0h) which is h-oscillating from below.

Proposition 2.9 Suppose that μsc is a semiclassical measure associated to
(uh) solution of (1.1)–(1.2). Denote by μ̄sc(dE, d J, t) the image of the mea-
sure μsc(dz, dξ, t, dH) under the moment map

M : (z = (x, y), ξ, H) �→ (E, J ) = (|ξ |, xξy − yξx )

(velocity and angular momentum). Then μ̄sc does not depend on t.

This proposition is proved in Sect. 5.1.
The following theorem holds—and implies Corollary 1.1 for sequences that

are h-oscillating from below.
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Theorem 2.10 Define byμE,J (t, ·) the disintegration ofμsc(t, ·)with respect
to the variables (E, J ), carried on the 2-dimensional (Lagrangian) manifold
T(E,J ) = {(z, ξ) ∈ D× R

2, (|ξ |, xξy − yξx ) = (E, J )}, i.e.
∫
RH

∫
D×R2

f (z, ξ, t, H)μsc(dz, dξ, t, dH)

=
∫
R2

(∫
T(E,J )

f

(
z, ξ, t,

E2

2

)
μE,J (t, dz, dξ)

)
μ̄sc(dE, d J ),

for every bounded measurable function f , for t ∈ R.
Then for μ̄sc-almost every (E, J ) with |J | 
= E , the measure μE,J (t, ·) is

absolutely continuous on T(E,J ).

Note that |J | = E , with E 
= 0,means that T(E,J )∩
(
D× R

2
)
is contained in

the set {(z, ξ), |z| = 1, z ⊥ ξ} of tangent rays to the boundary. The restriction
of μsc(t) to that set may be considered trivial, since (2.11) implies that it is
invariant under rotation.

Finally, for J = E = 0, we can use the last lines of Sect. 2.6, combined
with Theorem 2.7: the measure μsc restricted to {ξ = 0} = D×{0} is the sum
of an absolutely continuous measure carried by the interior D and a multiple
of the Lebesgue measure on ∂D.

Remark 2.11 The analogues of Proposition 2.9 and Theorem 2.10 hold as well
in the microlocal setting, for the measureμ∞. In particular, if μ̄∞ is the image
of μ∞(t) under the map (z, ξ, t, H) �→ (E, J ), this measure is independent
of t . Concerning the compact part μc, it is clear from Theorem 2.8 that its
projection on D× Rt is absolutely continuous, and its density is |u(x, t)|2.
Remark 2.12 Proposition 2.9 (and Remark 2.11) allows us to complete the
proof of the necessity of the assumption � ∩ ∂D 
= ∅ in Theorem 1.2 when
V does not identically vanish (see the discussion in Sect. 1.6.2). Taking for
instance as initial data u0n := ψ±

n,0/‖ψ±
n,0‖L2(D) (see (1.7)) with and n →∞,

then one has |u0n|2dx ⇀ (2π)−1δ∂D (see Sect. 1.3); more precisely, theWigner
measures associated with the initial data u0n := ψ±

n,0/‖ψ±
n,0‖L2(D) concentrate

on the set {|J | = E}. Combined with Proposition 2.9 (and Remark 2.11), this
shows that μ̄ml is entirely carried by the set {|J | = E}, and thus μml itself
does not charge the interior of the disk, where |J | < E . This shows that (1.5)
cannot hold if � does not touch the boundary.

2.8 Measures at the boundary

In this section, we define and compare different measures on ∂D. Given any
invariant measure for the billiard flow (for instance μsc or μml obtained from
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sequences of solutions of (1.1)), we first define the associated “projected
measure” on the boundary. Second, we define semiclassical and microlocal
measures associated with the Neumann trace at the boundary of sequences of
solutions of (1.1). We finally explain the links between these objects.

2.8.1 Projection on the boundary of an invariant measure

We recall the following standard construction from the theory of Poincaré
sections in dynamical systems. We define the sets

S± = {(z, ξ), |z| = 1,±ξ · z > 0}, S = S+ ∪ S−, (2.21)

which represent the set of outward (S+) or inward (S−) pointing vectors, and
the set of nontangential vectors (S).

When (z, ξ) ∈ S+, we denote as above by α(z, ξ) = − arcsin
(
J (z,ξ)
|ξ |
)
the

angle of the vector ξ with the normal at z to the disk. The map

P : {(z, ξ, τ ) ∈ S+ × R, τ ∈ [0, 2 cosα(z, ξ)]} → D× R
2

(z, ξ, τ ) �→
(
z + τ

|ξ |σz(ξ), σz(ξ)

)

is ameasurable bijection onto its image S∪(D×R
2), andπ ◦P is ameasurable

bijection onto its image (recall that π is the projection from D×R
2 to W). If

μ is a nonnegative measure on S ∪ (D × R
2) which does not charge S, and

such that π∗μ is invariant under the billiard flow, then P−1∗ μ must be of the
form

P−1∗ μ = μS ⊗ dτ

where μS is a measure on S+ which is invariant under the first return map

(z, ξ) �→
(
z + 2 cosα(z, ξ)

|ξ | σz(ξ), σz(ξ)

)
.

This implies that

∫
D×R2

ξ.∂za dμ =
∫
{(z,ξ,τ )∈S+×R,τ∈[0,2 cosα(z,ξ)]}

|ξ |∂τ (a ◦ P)dμS ⊗ dτ

=
∫
S+
|ξ |
(
a

(
z + 2 cosα(z, ξ)

|ξ | σz(ξ), σz(ξ)

)
− a(z, σz(ξ))

)
μS(dz, dξ)

=
∫
S+
|ξ | (a(z, ξ)− a(z, σz(ξ))) μS(dz, dξ). (2.22)
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Note that the total mass of μ is
∫
dμ = ∫S+ 2 cosα(z, ξ)μS(dx, dξ).

2.8.2 Semiclassical measure associated to Neumann trace

Let (u0h) be a family of initial conditions, normalized in L2(D). When we
look at the semiclassical Wigner distributions (2.5), where we use compactly
supported symbols, Remark 2.4 and Lemma 8.2 show that we may truncate
(u0h) in frequency and assume, without changing the limit as h → 0, that
u0h ∈ H1

0 (D), ‖∇u0h‖L2(D) = O(h−1). Proposition 8.1 then entails that the
boundary data h∂n(UV (t)u0h) form a bounded sequence in L2

loc(R× ∂D).
Now, let μ∂

sc ∈ M+(T ∗∂D × T ∗R) be a semiclassical measure associ-
ated with the boundary data h∂nuh(t) defined by quantizing test functions on
T ∗∂D × T ∗R with the same scaling (hj, h2H) in the cotangent variables as
in (2.8). Then μ∂

sc is carried by the set (see [25])

H = {(u, j, t, H) ∈ T ∗∂D× T ∗R, | j | ≤ √
2H}.

If μsc and μ∂
sc are obtained through the same sequence of initial data, then we

have the relation (see again [25])

∫
D×R2×R×R

ξ · ∂za μsc(dz, dξ, t, dH)dt

=
∫
H

a(u, ξ+( j, H))− a(u, ξ−( j, H))

2
√
2H − j2

μ∂
sc(du, d j, dt, dH),

(2.23)

valid for any smooth function a. For (u, j) ∈ T ∗∂D with | j | ≤ √
2H , the

vectors ξ±( j, H) are the two vectors (pointing outwards and inwards, and
coinciding if | j | = √

2H ) in T ∗u R
2 of norm = √

2H , whose projection to
T ∗u ∂D is j . Note that the expression under the integral on the right hand side
of (2.23) has a well-defined finite limit as | j | → √

2H . Let us point out three
consequences of Identity (2.23):

• First, themeasureμsc does not charge the set S defined in (2.21) (otherwise
the left-hand side of (2.23) would define a distribution of order 1 which is
not a measure). Note that (2.23) is stronger than (2.11).

• Second, let μS
sc(t) be the measure associated to μsc(t) as in Sect. 2.8.1.

Comparing (2.23) with (2.22), we see that for any a vanishing in a neigh-
borhood of S−, we have
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∫
{(u, j)∈T ∗∂D,| j |<√2H}×R×R

a(u, ξ+( j, H), t, H)μ∂
sc(du, d j, dt, dH)

=
∫
S+×R×R

2|ξ |2 cosα(z, ξ)a(z, ξ)μS
sc(dz, dξ, t, dH)dt.

• Third, (2.23) implies

∫
T ∗∂D×R×R

|ξ |2a(z, ξ, t, H)μsc(dz, dξ, t, dH)dt

=
∫
{(u, j)∈T ∗∂D,| j |=√2H}×R×R

a(u, j, t, H)μ∂
sc(du, d j, dt, dH).

This identity can be obtained by replacing a by δχ(
1−|z|

δ
)χ(

z·ξ
δ

)a in (2.23)
where χ ∈ C∞

c (R) satisfies χ(0) = χ ′(0) = 1, and then letting δ tend to
zero. In particular, note that μ∂

sc�H=0 vanishes, since H = 0 corresponds
to ξ = 0 on the left-hand side.

Identities (2.11) and (2.23) are essentially proved in [25] (see also [56])
for general domains and for time-independent solutions of (1.1); we do not
reproduce the proofs here.

2.8.3 Microlocal measure associated to the Neumann trace

The sequences considered here un = UV (t)u0n are bounded in L
∞(R; L2(D)).

Since normal traces are not convenient to work with at this level of regularity,
the definition of associated microlocal measures needs a little care.

For this, let us define ψ ∈ C∞(R), such that ψ = 0 on (−∞, 1] and ψ = 1
on [2,+∞) and the operator A(Dt ) = Op1(

ψ(H)√
2H

). We have the following
regularity result.

Lemma 2.13 For all ϕ ∈ C∞(Rt × Dz) with compact support in the first
variable t ∈ R, there exists a constant C = C(ϕ, ψ) > 0 such that for any
u0 ∈ L2(D), the associated solution u(t) = UV (t)u0 of (1.1)–(1.2) satisfies

‖A(Dt )ϕu‖L2(R;H1(D)) ≤ C‖u0‖L2(D).

This Lemma is proved at the end of Appendix A. We now define, for any
g ∈ C∞

c (R), the sequence ũn = A(Dt )g(t)un , solution of

(
Dt + 1

2
�

)
ũn = A(Dt )

(
g(t)V (t, z)+ ig′(t)

)
un. (2.24)
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As a consequence of Lemma 2.13, we have ‖ũn‖L2(R;H1(D)) ≤ C‖u0n‖L2(D)

together with

‖A(Dt )
(
g(t)V (t, z)un + ig′(t)

)
un‖L2(R;H1(D)) ≤ C‖u0n‖L2(D).

This, together with Eq. (2.24) and basic energy estimates (see (8.3)) then
implies that ‖ũn‖L∞((−T,T );H1(D)) ≤ CT ‖u0n‖L2(D) for any T > 0, and that
A(Dt )g(t)∂nun = ∂nũn is bounded in L2(R × ∂D) by ‖u0n‖L2(D), according
to the hidden regularity of Proposition 8.1. Hence, if we take g to be constant
equal to 1 on the support of a, after extraction of subsequences, the following
limit exists

〈μ∂
ml , a〉 = lim

R→∞ lim
n→+∞

〈
∂nũn,Op1

((
1− χ

( |H |
R2

))
a(u, j, t, H)

)
∂nũn

〉
L2(∂D×R)

,

for symbols a ∈ C∞(T ∗(∂D×R)), compactly supported in the variables z, t ,
such that

a(u, j, t, H) = a(u, λ j, t, λ2H), for |H | > R0 and λ ≥ 1.

Then μ∂
ml is carried by the set H . If moreover μml and μ∂

ml are obtained
through the same sequence of initial data, then we have the relation (see
again [25])

∫
D×Rt×S

2
ξ,H

ξ√
2H

· ∂za μ∞(dz, dξ, t, dH)dt =
∫
| j |≤√2H

1

2

(
2H

2H − j2

) 1
2

× (a(u, ξ+( j, H))− a(u, ξ−( j, H))
)
μ∂
ml(du, d j, dt, dH) (2.25)

valid for any a ∈ S0. The vectors ξ±( j, H) are the two vectors (pointing
outwards and inwards) in T ∗u R

2 of norm = √
2H , whose projection to T ∗u ∂D

is j . As above, this implies that μ∞ does not charge the set S; we then denote
by μS

ml(t) the measure associated to μ∞(t) as in Sect. 2.8.1. Comparing with
(2.22), we see that for any a ∈ S0, we have

∫
(u, j)∈T ∗∂D,| j |<√2H

a(u, ξ+( j, H), t, H)μ∂
ml(du, d j, dt, dH)

=
∫
S+

2 cosα(z, ξ)a(z, ξ)μS
ml(dz, dξ, t, dH)dt. (2.26)
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Moreover, (2.25) implies

∫
(u,ξ)∈T ∗∂D,|ξ |=√2H

a(z, ξ, t, H)μ∞(dz, dξ, t, dH)dt

=
∫
| j |=√2H

a(u, j, t, H)μ∂
ml(du, d j, dt, dH). (2.27)

These links between the different measures shall be particularly useful when
proving the boundary observability result of Theorem 1.3.

2.9 Plan of the proofs

Section 3 first deals with the understanding of action-angle coordinates and the
appropriate decomposition of measures that are invariant by the billiard flow.
Section 3.1 discusses in more detail the coordinates described in the introduc-
tion, in which the dynamics of the billiard can be integrated, and introduces
the Fourier Integral Operator corresponding to this change of coordinates.
Section 3.2 reduces the study of invariant measures on the disk to their restric-
tion to all invariant tori of the dynamics (more precisely, their restriction to
the level sets Iα , which are unions of invariant tori).

Sections 4 and 5 are devoted to the proof of Theorem 2.5 (semiclassical
version of the result). In Sect. 4, we perform the second microlocalization on
a level set Iα: we start by introducing the adapted class of symbols in Sect. 4.1
and the appropriate coordinates (which are a modification of the action-angle
coordinates) in Sect. 4.2. This allows us to construct the two different second-
microlocal measures in Sect. 4.3. We then prove their structure properties in
Sects. 4.4 and 4.5. To complete the analysis, we prove that they obey invariance
laws in Sect. 4.4 and 4.6 respectively. Section 5 then concludes the proof of
Theorem 2.5.

In Sect. 6we explain how to adapt the proof to obtain themicrolocal version,
Theorem 2.7.

The observability inequalities of Theorems 1.2 and 1.3 are then derived in
Sect. 7.

Appendices A and B collect generalities on solutions of Schrödinger equa-
tions:AppendixA is concernedwith the localization in frequency of oscillating
sequences of solutions, and Appendix B states and proves the L∞ regularity
in time of Wigner measures.

Finally, Appendices C, D and E are devoted to the technical calculations
needed to change coordinates from polar to action-angle ones.
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3 Action-angle coordinates and decomposition of invariant measures

3.1 Action-angle coordinates and their quantization

Recall that the change of coordinates �, mapping action-angle coordinates to
cartesian ones, is introduced in Sect. 2.2 (see (2.6)). The map

� : {(s, θ, E, J ) : E > 0, θ ∈ R/2πZ, s ∈ R, J ∈ R}
−→ {(z, ξ) ∈ R

2 × R
2 : ξ 
= 0}

is a diffeomorphism satisfying, in particular,

�−1 (
D× (R2\{0}))

= {(s, θ, E, J ) : (θ, E) ∈ R/2πZ× (0,∞), (J/E)2 + s2 < 1
}
.

Write for θ ∈ T = R/2πZ,

ω (θ) := (− sin θ, cos θ) ;
the transformation � admits the generating function

S(z, s, θ, E) = Eω (θ) · z − Es,

meaning that

Graph� = {(s, θ, E, J, z, ξ) : (z, ξ) = �(s, θ, E, J )}
=
{
(s, θ, E, J, z, ξ) : ∂S

∂E
= 0, ξ = ∂S

∂z
, J = −∂S

∂θ
, E = −∂S

∂s

}
.

The existence of such a generating function implies that the diffeomorphism
� preserves the symplectic form (see for instance [61, Theorem 2.7]), i.e.

dξx ∧ dx + dξy ∧ dy = dE ∧ ds + d J ∧ dθ.

Using this generating function we define a unitary operator that quantizes
the canonical transformation �. The operator

U f (s, θ) = (2π)−3/2
∫ ∞

0

∫
R2

e−i S(z,s,θ,E) f (z)
√
EdzdE, (3.1)

mapping functions on R
2
z to functions on Rs × Rθ that are 2π -periodic in

the variable θ , is in fact a classical Fourier Integral Operator associated with
�−1 (the choice of the term

√
E in this expression is for U to be unitary,
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see Lemma 3.1 below). Noting that S is linear in E , the change of variables
E ← E/h allows to recast U in a semiclassical scaling as

U f (s, θ)=(2πh)−3/2
∫ ∞

0

∫
R2

e−i
Eω(θ)·z−Es

h f (z)
√
EdzdE, for all h > 0.

(3.2)
Note also from (3.1) that U f can be rewritten as

U f (s, θ) =
∫ ∞

0
ei Es f̂ (Eω (θ))

√
E

dE

(2π)3/2
,

where f̂ (ξ) = ∫
R2 e−i z·ξ f (z)dz stands for the usual Fourier transform of f .

Therefore, the Fourier transform with respect to s of U f (s, θ) is merely:

(2π)−1/2 f̂ (Eω (θ))1[0,∞) (E)
√
E .

From this it is clear that for any symbol φ : R → R one has:

φ (Ds)U f = U φ (|Dz|) f,

and, by Plancherel’s theorem,

∫ 2π

0

∫ ∞

0
U f (s, θ)U g (s, θ)dsdθ=

∫ 2π

0

∫ ∞

0
f̂ (Eω (θ)) ĝ (Eω (θ))E

dsdθ

(2π)2

= 〈g, f 〉L2(R2) .

In particular, the following Lemma has been proved:

Lemma 3.1 (i) The operator U is unitary from L2(R2) to L2(R× R/2πZ):
U ∗U = I .

(ii) For f ∈ C∞
c (R2), we have ∂2sU f = U � f .

As a consequence,

−U �U ∗ = −∂2s .

Note that the adjoint operator U ∗ is described explicitly for g ∈ C∞
c (Rs ×

(R/2πZ)θ ) by

U ∗g(z) = (2π)−3/2
∫ ∞

0

∫
Rs×(R/2πZ)θ

e+i S(z,s,θ,E)g(s, θ)dsdθ
√
EdE,
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for z ∈ R
2, and shall be also used in the semiclassical scaling as

U ∗g(z) = (2πh)−3/2
∫ ∞

0

∫
Rs×(R/2πZ)θ

e+i
S(z,s,θ,E)

h g(s, θ)dsdθ
√
EdE,

z ∈ R
2, h > 0. (3.3)

Notation. We denote by P0(z, ξ) = |ξ |2
2 the hamiltonian generating the geo-

desic flow inR
2×R

2; and P1(z, ξ) = xξy−yξx the hamiltonian generating the
(unit speed) rotation.We denote by XP0 = ξ ·∂z and XP1 = z⊥·∂z+ξ⊥·∂ξ the
corresponding hamiltonian vector fields on T ∗R2. We denote by Gτ (z, ξ) =
(z+ τξ, ξ) the geodesic flow (generated by P0) and Rτ the flow generated by
P1 (rotation of angle τ of both z and ξ ). Note that Rτ is given explicitely by
Rτ (z, ξ) = (R(τ )z, R(τ )ξ), where R(τ ) is the rotation matrix of angle τ .
In the new coordinates, these hamiltonians and vector fields are slightly

simpler since P0 ◦ � = E2

2 , P1 ◦ � = J together with XP0◦� = E∂s and
XP1◦� = ∂θ . In these coordinates, the flows Gτ and Rτ thus admit the expres-
sions

(s, θ, E, J ) �→ (s + τ E, θ, J, E), τ ∈ R,

and

(s, θ, E, J ) �→ (s, θ + τ, J, E), τ ∈ R,

respectively. Very often, we shall (with a slight abuse of notation) use the letter
J to mean the function P1, and E for the function

√
2P0.

3.2 Decomposition of an invariant measure of the billiard

This section aims at describing properties shared by all measures μ invariant
by the billiard flow (even if they are not necessarily linked with solutions
to a partial differential equation). It collects a few facts that will be useful
in the next sections when studying measures arising from solutions of the
Schrödinger equation (1.1).

Let (z, ξ) ∈ D × R
2. There exist t1 ≤ 0, t2 ≥ 0 such that |z + t1ξ | =

|z + t2ξ | = 1. Note that if (z, ξ) ∈ D × R
2, then t1 and t2 are unique and

t1 > 0, t2 < 0 (see Fig. 2).
Recall that α ∈ [−π/2, π/2] (defined in Sect. 2.2) is the oriented angle

between−(z+t1ξ) and ξ (that is, the angle between the velocity ξ and the inner
normal to the disk, at the point where the oriented straight line {z+ tξ, t ∈ R}
first hits the disk). See Fig. 2. One has the expression
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α = − arcsin

(
xξy − yξx

|ξ |
)

.

Our work is based on the following partition of phase space:

D× (R2\{0}) = α−1 (πQ ∩ [−π/2, π/2])  α−1 (R\πQ) ,

from which the following lemma follows.

Lemma 3.2 Let μ be any finite, nonnegative Radon measure1 on D × R
2.

Then μ decomposes as a sum of nonnegative measures:

μ = μ�α/∈πQ +
∑

r∈Q∩[−1/2,1/2]
μ�α=rπ + μ�ξ=0. (3.4)

Note that the functions P0, P1, and thus also α, are preserved by the sym-
metry σ , and hence are well-defined on the billiard phase space W. Thus the
previous lemma applies as well to measures on W.

In what follows, we shall call nonnegative invariant measure a nonnegative
Radonmeasure onWwhich is invariant under the billiard flow.We shall extend
this terminology to measures μ defined a priori on D×R

2, to mean that π∗μ
(the image of μ under the projection π ) is invariant under the billiard flow φτ

on W.

Lemma 3.3 Letμ be a nonnegative invariant measure onW. Then every term
in the decomposition (3.4) is a nonnegative invariant measure, and μ�α/∈πQ is
invariant under the rotation flow (Rτ ), as well as μ�α=±π/2.

The rotation flow (Rτ ) is well defined on W, so the last sentence makes
sense. The assertion for α = ±π/2 comes from the fact that the rotation flow
coincides with the billiard flow (up to time change) on the set {α = ±π/2}.
The assertion for α /∈ πQ is a standard fact. It comes from the remark that, for
any given value α0 /∈ πQ, we can find T = T (α0) > 0 such that φT coincides
with an irrational rotation on the set {α = α0}. Thus, the measures μ�α/∈πQ

andμ�α=±π/2 are of the form described in Theorem 2.5 (ii) and (iv), and there
is nothing more to say.

Now consider a term μ�α=r0π , where r0 ∈ Q∩ (−1/2, 1/2) is fixed. Let us
denote α0 = πr0. Introduce the vector field on T ∗R2:

(α0 − α)XP1 +
cosα

E
XP0 .

On the setIα0 = {J = −E sin α0} it coincideswith XP0 up to a constant factor.
We shall denote byφτ

α0
the flowonWgenerated by (α0−α)XP1+ cosα

E XP0 with

1 We denote byM+(D× R
2) the set of all such measures.
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reflection on the boundary of the disk. More precisely, we have the following
definition.

Definition 3.4 For α ∈ πQ ∩ (−π/2, π/2), we denote by φτ
α0

the unique
continuous flow defined on W such that

φτ
α0

(z, ξ) = R(α0−α)τ

(
z + τ

cosα

|ξ | ξ, ξ

)

whenever z ∈ D and z + τ cosα
|ξ | ξ ∈ D, with α = − arcsin P1(z,ξ)

|ξ | .

In the coordinates (s, θ, E, J ), this flow simply reads

φτ
α0
◦�(s, θ, E, J ) = �(s + τ cosα, θ + (α0 − α)τ, E, J ),

α = − arcsin(J/E),

with reflection on the boundary of the disk.
All its orbits are periodic: actually, we determined the coefficients (α0−α)

and cosα
E precisely for that purpose, see Fig. 3. Some trajectories of the flow

are represented on Fig. 4.
Since φτ

α0
coincides with the billiard flow on the set {α = α0}, we have now

proved the following lemma.

α0

α

α0

ξ

z

2 cosα

2(α − α0)

D

α0

z z

α − α0

α

α
α − α0

ξ

ξ

Fig. 3 Construction of the flow φτ
α0

with α0 = π/6. On the figure, (z′, ξ ′) = (z + 2 cosα
|ξ | ξ, ξ)

and (z′′, ξ ′′) = R2(α0−α)(z′, ξ ′) = φ2
α0

(z, ξ)
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ξ1

ξ4

ξ2

φ2
α0
(z, ξ2)

D

α0

ξ3

φ2
α0
(z, ξ4)

φ2
α0
(z, ξ3)

φ2
α0
(z, ξ1)

Fig. 4 Approximate representation of some trajectories of the flow φτ
α0

with α0 = π/6, issued
from (z, ξ j ) with z = (−1, 0) and ξ j , j ∈ {1, 2, 3, 4} such that α(z, ξ1) = 0, α(z, ξ2) = α0,
α(z, ξ3) ∈ (α0, π/2) and α(z, ξ4) = π/2

Lemma 3.5 Let μ be a nonnegative invariant measure on W. Then, for all
a ∈ C0(W) and all τ ∈ R, we have

∫
a ◦ φτ

α0
dμ�α=α0 =

∫
adμ�α=α0 .

Equivalently, we have for all a ∈ C0(W)

∫
adμ�α=α0 =

∫
〈a〉α0dμ�α=α0,

where

〈a〉α0 = lim
T→+∞

1

T

∫ T

0
a ◦ φτ

α0
dt.

Remark that 〈a〉α0 is well defined even if a is a boundedmeasurable function
on D (the times τ where the trajectories of φτ

α0
hit the boundary form a set of

measure 0 in R).
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4 Second microlocalization on a rational angle

This section and the next one are devoted to proving the semiclassical version
of our result, Theorem 2.5.

Let
(
u0h
)
be a bounded family in L2(D). Denote by uh(z, t) = UV (t)u0h(z)

the corresponding solutions to (1.1). After extracting a subsequence, we
suppose that itsWigner distributionsWh (defined by (2.5)) converge to a semi-
classical measure μsc in the weak-∗ topology of D′(R2 × R

2 × Rt × RH ).
The measure μsc ∈ L∞(Rt ;M+(R2×R

2×RH )) is for a.e. t ∈ R supported
by D× R

2 × RH ∩ {H = E2

2 }.
From now on, we skip the index sc to lighten the notation since there is

no possible confusion here (only semiclassical measures are considered until
Sect. 6).

The aim of this section is to understand the term μ�Iα0
, where Iα0 = {α =

α0} and α0 ∈ πQ. In view of Lemma 3.5, it suffices to characterize the action
of μ�Iα0

on test functions that are (φτ
α0

)-invariant.

4.1 Classes of test functions

Here is a list of properties that we may want to impose on our symbols in the
course of our proof. We express these properties both in the “old” coordinates
(x, y, ξx , ξy) and in the “new” ones (s, θ, E, J ).

Definition 4.1 Let a be a smooth function of (x, y, ξx , ξy, t, H), supported
away from {ξ = 0}. Then a ◦ � is a smooth function of (s, θ, E, J, t, H)

supported away from {E = 0}. We shall say that a satisfies Assumption

(A) if the symbol a is compactly supported w.r.t. ξ , t and H . This is equivalent
to a ◦� being compactly supported w.r.t. s, E, J , t and H . Note also that
a ◦� is 2π -periodic w.r.t. θ .

(B) if for |z| = 1, we have a (z, ξ) = a ◦ σ (z, ξ) where σ is the orthogonal
symmetry with respect to the boundary of the disk at z. In the coordinates
of Sect. 3.1, this reads (forgetting to write the (t, H)-dependence of a)

a ◦� (cosα, θ, E, J ) = a ◦� (− cosα, θ + π + 2α, E, J )

for all θ, E, J and for α = − arcsin
( J
E

)
. Terminology. In what follows,

we shall say that a is a smooth function on W if a is a smooth functon on
D× R

2 that satisfies (B).
(C) if a satisfies (B), and, in addition, if a ◦π ◦ φτ defines a smooth function

on W for all τ . This is equivalent to requiring that

∂ks (a ◦�) (cosα, θ, E, J ) = ∂ks (a ◦�) (− cosα, θ + π + 2α, E, J )
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for all k, for all θ, E, J and for α = − arcsin( J
E ). In other words, all the

derivatives of a ◦� w.r.t. s satisfy the symmetry condition (B).
(D) if the function a satisfies (C), and in addition, a is φτ

α0
-invariant, which

reads
(
(α0 − α)XP1 +

cosα

E
XP0

)
a = 0,

or, in the new coordinates,

[(α0 − α)∂θ + cosα∂s]a ◦� = 0.

Furthermore, to fix ideas, let us assume that the support of a with respect
to t is contained in (−1, 1). This implies that

Wh(a) = 〈g(t)uh,Op1(a(z, hξ, t, h2H)g(t)uh〉L2(R2×R) + O(h∞)

= 〈g(t)uh,Oph(a(z, ξ, t, hH)g(t)uh〉L2(R2×R) + O(h∞), (4.1)

for any smooth cut-off function g supported in (−2, 2) and taking the value
1 in a neighborhood of [−1, 1]. In other words, we need only consider the
restriction of uh(z, t) to t ∈ (−2, 2).

4.2 Coordinates adapted to the second microlocalization on Iα0

We wish to study the concentration of Wh around the set {J = −E sin α0}.
If the limit measure (�−1)∗μ is supported on the set {E = √

2H} this is
equivalent to studying the concentration of Wh around {J = −√2H sin α0}.
Since this assumption is satisfied for sequences (uh) satisfying (1.8), we shall
study the concentration of Wh around this set. The reason why it is more
convenient to localize in H than in E is that Dt is tangential to the boundary
of Rt × Dz (and hence commutes with the equation, at least when V is time-
independent), whereas |Dz|, or � (the Laplacian on R

2), are not. Note that in
the associated stationary problem studied in [3], the measure is concentrated
on {E = E0} for a fixed positive constant E0, so that we do not need the
introduction of the FIO V , which simplifies the analysis.

Thus we make the (symplectic) change of variables

(
s, θ, E, J ′ − √

2H sin α0, t
′ + θ sin α0√

2H
, H

)
= (s, θ, E, J, t, H)

which sends {J ′ = 0} to {J = −√2H sin α0} and leaves untouched the
variables (s, E).
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Consider the corresponding Fourier Integral Operator (which leaves
untouched the variables (s, E), omitted here from the notation): for f ∈
C∞
c (Tθ × Rt ), we set

V f (θ, H) = (2π)−1/2ei
√
2H sin α0θ/h

∫
f (θ, ht)e−i Ht/hdt.

Note that hV f (θ, h2H) is in fact h-independent.

Lemma 4.2 If b ∈ C∞
c (Rθ × RJ × Rt × RH ), we have

V Op1(b(θ, h J, t, h2H))V ∗ = Oph(b̃(θ, J ′, H, ht))+ O(h), (4.2)

where b̃(θ, J ′, H, ht) = b(θ, J ′ − √
2H sin α0,−ht, H), and

V V ∗ = I. (4.3)

Remark that Eq. 4.2 applies to functions depending on the variables
(θ, H), their “dual variables” being now (J ′, t).

Proof First notice that we have

V ∗g(θ, t) = (2π)−1/2h−1
∫

g(θ, H)eiHt/h2e−i
√
2H sin α0θ/hdH.

Second, we may now compute A := V Op1(b(θ, h J, t, h2H))V ∗eit0H/h

ei J0θ/h�H=H0,θ=θ0 . We have the exact formula

A = (2πh)−1ei
√
2H0 sin α0θ0/h

∫
b(θ0, J0 −

√
2H sin α0, ht, H)

×eiHt/hei Ht0/hei J0θ0/he−i
√
2H sin α0θ0/he−i H0t/hdHdt.

Note that this expression is exact and thus does not involve the derivatives
of b w.r.t. θ or J . Taking b = 1 in this expression gives the exact formula
A = eit0H0/hei J0θ0/h , which proves (4.3).
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We carry on the computations with a general b. After a change of variables,
A is now equal to

A = (2πh)−1ei
√
2H0 sin α0θ0/hei J0θ0/h

∫
b(θ0, J0 −

√
2H sin α0, ht, H)

× eiH(t+t0)/he−i
√
2H sin α0θ0/he−i H0t/hdHdt

= (2πh)−1eiH0t0/hei
√
2H0 sin α0θ0/hei J0θ0/h

×
∫

b
(
θ0, J0 −

√
2(H + H0) sin α0, h(t − t0), H0 + H

)

× eiHt/he−i
√
2(H+H0) sin α0θ0/hdHdt.

Standard application of the method of stationary phase shows that this expres-
sion is of order O(h∞) if H0 is outside the support of b. Besides, the phase has
a single nondegenerate critical point at (t, H) = ( sin α0θ0√

2H0
, 0), so that uniformly

in t0 ∈ R the method of stationary phase yields

A = (2πh)−1ei H0t0/hei
√
2H0 sin α0θ0/hei J0θ0/h

×
(

(2πh)e−i
√
2H0 sin α0θ0/hb

(
θ0, J0 −

√
2H0 sin α0, h

(
− t0 + sin α0θ0√

2H

)
, H0

))

+O(h).

This is

A = eiH0t0/hei J0θ0/hb
(
θ0, J0 −

√
2H0 sin α0,−ht0, H0

)
+ O(h),

where O(h) is uniform if θ0 stays in a fixed compact set. This concludes the
proof of (4.2). ! 

Recalling the definition of Wh(a) in (2.5), we thus have

Wh(a) = 〈V U uh, (V U Oph(a(z, ξ, t, hH)U ∗V ∗)V U uh〉L2(Rs×Tθ×RH )

= 〈V U uh,Oph(b̃(s, θ, J ′, E, H, ht))V U uh〉L2(Rs×Tθ×RH ) + O(h)

where

b̃(s, θ, J ′, E, H, ht)) = a ◦�(s, θ, E, J ′ − √
2H sin α0,−ht, H), (4.4)

andTθ = R/2πZ is the circle inwhich the variable θ takes values. By (4.1), uh
may actually be replaced by g(t)uh (being compactly supported in t ∈ (−2, 2))
in this formula, so that it is safe to apply V to U uh .

To work in our new coordinates, we now define

〈wh, b〉 = 〈V U uh,Oph(b(s, θ, E, J ′, H, ht))V U uh〉L2(Rs×Tθ×RH ) (4.5)
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for symbols b that satisfy

(A) the symbol b is compactly supported w.r.t. s, E, J ′, t and H , and 2π -
periodic w.r.t. θ .

We then recover Wh(a) = 〈wh, b̃〉 + O(h) with b̃ and a linked by (4.4).

Remark 4.3 Note that the bracket (4.5) can also be written as follows

〈wh, b〉 = 〈V U uh,Oph(χ0(θ)b(s, θ, E, J ′, H, ht))V U uh〉L2(Rs×Rθ×RH )

(4.6)
for any χ0 ∈ C∞

c (R) satisfying
∑

k∈Z χ0(θ + 2πk) ≡ 1 on R. Indeed, we
have

Oph(χ0(θ)b) = χ0(θ)Oph(b) (4.7)

(because Op denotes the standard quantization) and we write for any 2π -
periodic function f ∈ L1

loc(R),
∫
R

χ0(θ) f (θ)dθ = ∫
T
f (θ)dθ . Because

of (4.7), we may also take χ0 = 1(0,2π) when needed.

4.3 Second microlocalization

We now introduce two auxiliary distributions which describe more precisely
how wh concentrates on the set

{
(s, θ, E, J, H, t) ∈ �−1(D× (R2\{0})))× R

2, such that − J√
2H

= sin α0

}

(whose intersection with {E = √
2H} is equal to Iα0 ∩ {E = √

2H}).
For this, we define an appropriate class of symbols depending on an

additional variable η, which later in the calculations will be identified with
J ′
h = J+√2H sin α0

h .

Definition 4.4 • We denote by S the class of smooth functions
b(s, θ, E, J ′, η, H, t) onR

7, supported away from {E = 0} and that satisfy
condition (A) in the variables (s, θ, E, J ′, H, t), and, in addition,
(E) b is homogeneous of degree zero at infinity in η ∈ R. That is, there

exist R0 > 0 and bhom ∈ C∞(R4 × {−1,+1} × R
2) such that

b(s, θ, E, J ′, η, H, t) = bhom

(
s, θ, E, J ′, η

|η| , H, t

)
,

for |η| > R0 and (s, θ, E, J ′, H, t) ∈ R
6.

• We denote by Sσ those symbols b ∈ S that satisfy conditions (B) and (C)
(for all η, H, t , omitted here from the notation):
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(B) b(cosα, θ, E, J ′) = b(− cosα, θ+π+2α, E, J ′) for all θ, E, J ′, and
for α = − arcsin

(
J ′−√2H sin α0

E

)
.

(C) ∂ks b(cosα, θ, E, J ′) = ∂ks b(− cosα, θ + π + 2α, E, J ′) for all k, for
all θ, E, J ′, and for α = − arcsin

(
J ′−√2H sin α0

E

)
.

• Wedenote bySσ
α0
those symbols b ∈ Sσ satisfying the invariance condition

(D) (for all η, H, t , omitted here from the notation):
(D) [(α0 − α)∂θ + cosα∂s]b(s, θ, E, J ′) = 0 for all s, θ, E, J ′, and for

α = − arcsin
(
J ′−√2H sin α0

E

)
.

Let χ ∈ C∞
c (R) be a nonnegative cut-off function that is identically equal

to one near the origin and let R > 0. For b ∈ S, we define
〈
w

α0
h,R, b

〉
:=
〈
V U uh,Oph

((
1− χ

(
J ′

Rh

))
χ0(θ)b

(
s, θ, E, J ′, J ′

h
, H, ht

))

V U uh

〉
L2(Rs×Rθ×RH )

,

and

〈
wα0,h,R, b

〉 :=
〈
V U uh,Oph

(
χ

(
J ′

Rh

)
χ0(θ)b

(
s, θ, E, J ′, J

′

h
, H, ht

))

V U uh

〉
L2(Rs×Rθ×RH )

, (4.8)

where χ0 is as in Remark 4.3.
TheCalderón–Vaillancourt theorem [18] ensures that bothw

α0
h,R andwα0,h,R

are bounded in S ′. After possibly extracting subsequences, we have the exis-
tence of a limit: for every b ∈ S,

〈
μα0, b

〉 := lim
R→∞ lim

h→0+

〈
w

α0
h,R, b

〉
,

and 〈
μα0, b

〉 := lim
R→∞ lim

h→0+
〈
wα0,h,R, b

〉
. (4.9)

Positivity properties are described in the next proposition.

Proposition 4.5 (i) The distribution μα0 is a nonnegative Radon measure
being 0-homogeneous and supported at infinity in the variable η (i.e.,
it vanishes when paired with a compactly supported function). As a
consequence, μα0 may be identified with a nonnegative measure on
R
4 × {−1,+1} × Rt × RH .
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(ii) The projection of μα0 on R
4
s,θ,E,J ′ ×R

2
H,t (that is,

∫
R

μα0(dη)) is a non-
negative measure, carried on {J ′ = 0}.

Moreover, both μα0 and μα0 are carried by the set {E = √
2H}, as can

be seen from Proposition 8.3. Note also that the argument of Proposition 9.1
proves that μα0 enjoys L∞ regularity in the time variable.

Proposition 4.5 (i) is proved at the beginning of Sect. 4.4, whereas (ii) shall
be a consequence of Sect. 4.5.

Remark 4.6 If a = a(z, ξ, t, H) is a continuous function on D×R
2×R

2, let
us define

mα0 (a) := μα0 (b1J ′=0) ,

mα0(a) := μα0(b).

where b(s, θ, E, J ′, H, t) = a ◦�(s, θ, E, J ′ −√2H sin α0,−t, H) (a func-
tion that does not depend on the additional variable η). Then we have

μ�Iα0
= mα0 + mα0 . (4.10)

Thus, understandingμ�Iα0
amounts to understanding bothmα0 andmα0 , which

we shall do by understanding the structure of μα0 and μα0 . Note that, as a
consequence of Proposition 4.5, the distributions mα0,m

α0 are positive.

Let us continue describing properties of the distributions μα0 and μα0 . The
following proposition states that they are both invariant under the billiard flow
(in the coordinates (s, θ, E, J ′)).

Proposition 4.7 The distributions μα0 and μα0 enjoy the following property:

〈μα0, E ∂sb〉 = 0, 〈μα0, E ∂sb〉 = 0

for every b ∈ Sσ .

The proof of this result uses as a “black-box” the technical calculations
developed in Appendices C and D. The main point of these calculations is to
understand how an operator of the form

U ∗Oph (P(s, θ, E, J, t, hH))U

preserves or modifies the Dirichlet boundary condition, according to the prop-
erties of P (the technical difficulty is that our new coordinates (s, θ, E, J ),
well-adapted to the dynamics, are not adapted to express the Dirichlet bound-
ary condition). More precisely, in the appendices we perform the following
technical constructions:
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(1) In Appendices C and D the operator U ∗Oph(P(s, θ, E, J, t, hH))U
is expressed (modulo a small remainder) as a pseudodifferential oper-
ator At,h2Dt

(P) on R
2 × R (defined in Definition 11.2) in polar

coordinates

z = (−r sin u, r cos u).

Note that the polar coordinates are the ones adapted to our boundary
problem, since the boundary is given by the equation r = 1. Thus we
have

lim〈uh,U ∗Oph (P(s, θ, E, J, t, hH))U uh〉 = lim〈uh,At,h2Dt
(P)uh〉.

(2) In Appendix D (see Definition 11.3), we then introduce a pseudodif-
ferential operator Ãt,h2Dt

(P), having the property that the symbols of
At,h2Dt

(P) and Ãt,h2Dt
(P) coincide on {|ξ |2 = 2H}. More precisely, we

are able to prove (Lemma 11.5)

lim
h→0

〈uh,At,h2Dt
(P)uh〉 = lim

h→0
〈uh, Ãt,h2Dt

(P)uh〉

if (uh) is a solution to the Eq. (1.1).
(3) The explicit expression of Ãt,h2Dt

(P) reads

A(r, u, h
√
2Dt , hDu, t)+ B(r, u, h

√
2Dt , hDu, t) ◦ hDr (4.11)

modulo terms of order O(h), where z = (−r sin u, r cos u) is the decom-
position in polar coordinates. The functions A, B,C, D are expressed
explicitly in terms of P in Definition 10.6. If P satisfies the symmetry
condition (B), then B ≡ 0 for r = 1.

(4) Finally, we show in Proposition 12.2 that

lim
h→0

〈uh, Ãt,h2Dt
(E ∂s P)uh〉 = lim

h→0

〈
uh,

[
− ih�

2
, Ãt,h2Dt

(P)

]
uh

〉

where � is the laplacian on R
2.

With this in hand, we may now prove the proposition.

Proof of Proposition 4.7 We prove the statement for μα0 , and, to this aim, we
consider the function P (depending on both parameters R and h) defined by
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P(s, θ, E, J, t, H)

= b

(
s, θ, E, J +√

2H sin α0,
J +√

2H sin α0

h
, H,−t

)

×χ

(
J +√

2H sin α0

Rh

)
. (4.12)

To prove the result for μα0 , the argument would be the same with the function

P̃(s, θ, E, J, t, H)=b

(
s, θ, E, J+√2H sin α0,

J+√2H sin α0

h
, H,−t

)

×(1− χ)

(
J +√

2H sin α0

Rh

)
. (4.13)

With b and P related by (4.12), and writing in the next few lines limR,h for
limR→∞ limh→0+ , we now compute

〈μα0, E ∂sb〉 = lim
R,h

〈
wα0,h,R, E ∂sb

〉 = lim
R,h

〈
V U uh,

Oph
(
E ∂s P(s, θ, E, J ′ − √

2H sin α0,−ht, H)
)
V U uh

〉
L2(Rs×Tθ×RH )

= lim
R,h

〈
U uh,Oph (E ∂s P(s, θ, E, J, t, hH))U uh

〉
L2(Rs×Tθ×Rt )

,

where the last line is a consequence of Lemma 4.2. Using now the remarks
preceding the present proof (proved in the appendices), we obtain (with �

being the Laplacian on R
2)

〈μα0, E ∂sb〉 = lim
R,h

〈
uh, Ãt,h2Dt

(E ∂s P)uh
〉

= lim
R,h

〈
uh,

[
− ih

2
�, Ãt,h2Dt

(P)

]
uh

〉

= lim
R,h

〈
uh,

[
− ih

2
�+ ihV − h∂t , Ãt,h2Dt

(P)

]
uh

〉
(4.14)

= lim
R,h

〈
ih

2

∂uh
∂n

⊗ δ∂D, Ãt,h2Dt
(P)uh

〉

− lim
R,h

〈
uh, Ãt,h2Dt

(P)
ih

2

∂uh
∂n

⊗ δ∂D

〉
. (4.15)
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The last line (4.15) comes from the fact that uh , extended to R
2 by the value

0 outside D, satisfies

(
− ih

2
�+ ihV − h∂t

)
uh = ih

2

∂uh
∂n

⊗ δ∂D (4.16)

where� is the laplacian on R
2. The previous line (4.14) holds simply because

the additional terms hV and h∂t give a vanishing contribution as h → 0 (if P
depends on t , we can write [h∂t , Ãt,h2Dt

(P)] = hÃt,h2Dt
(∂t P)).

We use now the explicit expression (4.11) of Ãt,h2Dt
(P), modulo terms

that vanish at the limit. Using the fact that uh satisfies Dirichlet boundary
conditions, and the fact that B vanishes for r = 1 if P satisfies the symmetry
condition (B), we see that the last line (4.15) vanishes.

Note that only the limit h → 0 was actually used, so that the result holds
even before taking the limit R →+∞. ! 

Note that Appendices C and D provide with identities modulo O(h2). Here
we only used these results with remainders of order O(h); the full results of
Appendices C and D shall be used in the next sections.

Remark 4.8 More generally, let b(s, θ, E, J, η, H, t) be a smooth func-
tion on R × R/2πZ × R

5 with bounded derivatives, and compactly
supported w.r.t. s, E, J, H, t . Let P(s, θ, E, J, t, H) = b(s, θ, E, J +√
2H sin α0,

J+√2H sin α0
h , H,−t). Then, the same proof yields,without using

the symmetry condition (B), the formula

lim
h

〈
V U uh,Oph

(
E ∂sb(s, θ, E, J ′, J

′

h
, H, ht)

)
V U uh

〉
L2(Rs×Tθ×RH )

= lim
h

〈
U uh,Oph (E ∂sP(s, θ, E, J, t, hH))U uh

〉
L2(Rs×Tθ×Rt )

= − lim
h

〈
h
∂uh
∂n

, B(1, u, h
√
2Dt , hDu, t)h

∂uh
∂n

〉
L2(∂D×R)

(4.17)

where B is the function associated to P by the formulas of Definition 10.6.
Again, if P satisfies (B), the operator B(1, u, h

√
2Dt , hDu, t) vanishes.

This formula, relating the semiclassical measures of boundary data to the
semiclassical measures of interior data, is analogous to formula (2.23) but is
expressed in a different set of coordinates.

Applying (4.17) to s
E P instead of P (that is, s

E b instead of b) has the fol-
lowing consequence that will be used later on:
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lim
h

〈
U uh,Oph ((P + s∂sP)(s, θ, E, J, t, hH))U uh

〉
L2(Rs×Tθ×Rt )

= − lim
h

〈
h
∂uh
∂n

, (E−2P)σ (1, u, h
√
2Dt , hDu, t)h

∂uh
∂n

〉
L2(∂D×R)

(4.18)

with the notation (10.5).

The following result states that bothμα0 andμα0 have some extra regularity
(for two different reasons).

Theorem 4.9 (i) The measure μα0 satisfies the invariance property:

〈μα0, ∂θb〉 = 0, for every b in Sσ
α0

. (4.19)

(ii) The distribution μα0 is concentrated on {J ′ = 0} and its projection
onto the variables (s, θ) is a nonnegative absolutely continuousmeasure.
More precisely, we can write

∫
b(s, θ, E, J, H, t)μα0(ds, dθ, d J, dη, dE, dH, dt)

=
∫ (∫

b(s, θ, E, 0, H, t)dνE,H,t (s, θ)

)
�̃α0(dE, dH, dt)

where �̃α0 is a positive measure on RE × RH × Rt , and for almost all
E, H, t , νE,H,t is a positive measure onRs×R/2πZwhich is absolutely
continuous.

Section 4.4 is devoted to the study of the properties of μα0 and gives the
proofs of Proposition 4.5 (i) and Theorem 4.9 (i). The study of the structure of
μα0 is performed in Sect. 4.5 using the notion of second-microlocal measures.
This structure will imply (2.13) in Theorem 2.5 (iii). In particular, we prove
at the end of Sect. 4.5 that it yields Theorem 4.9 (ii).

4.4 Structure and propagation of μα0

In this section, we prove Proposition 4.5 (i) and the invariance property given
by Theorem 4.9 (i).

The positivity ofμα0 can be deduced following the lines of [21] Section 2.1,
or those of the proof of Theorem 1 in [23]; or also Corollary 27 in [6]. The
argument will not be reproduced here. Given b ∈ S there exists R0 > 0 and
bhom ∈ C∞

c

(
R
4 × {−1,+1} × R

2
)
such that

b
(
s, θ, E, J ′, η, H, t

) = bhom

(
s, θ, E, J ′, η

|η| , H, t

)
, for |η| ≥ R0.
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Clearly, for R large enough, the value 〈wα0
h,R, b〉 only depends on bhom. There-

fore, the limiting distribution μα0 can be viewed as an element of the dual
space of C∞

c (R4× {−1,+1} ×R
2). Its positivity implies that it is a measure,

which proves Proposition 4.5 (i).
We now prove the invariance property of Theorem 4.9 (i). Let b ∈ Sσ

α0
, and

define P̃ as in formula (4.13). Because of property (D) in the definition of the
class Sσ

α0
, we have:

∂θ P̃
(
s, θ,

√
2H , J, t, H

)
= − cosα

α0 − α
∂s P̃
(
s, θ,

√
2H , J, H, t

)
(4.20)

where α = − arcsin( J√
2H

). The crucial point in what follows is that

∣∣∣∣ cosα

α0 − α

∣∣∣∣ ≤ C

hR
(4.21)

on the support of P̃(s, θ,
√
2H , J, t, H).

Recall that by definition

〈μα0, ∂θb〉 = lim
R→∞ lim

h→0+

〈
w

α0
h,R, ∂θb

〉
.

Let us first fix R and study the limit h → 0. Arguing as in the proof of
Proposition 4.7, we have

lim
h→0+

〈
w

α0
h,R, ∂θb

〉
= lim

〈
U uh,Oph

(
∂θ P̃(s, θ, E, J, t, hH)

)
U uh
〉
L2(Rs×Tθ×RH )

= lim
〈
uh,At,h2Dt

(
∂θ P̃
)
uh
〉

= lim
〈
uh, Ãt,h2Dt

(
∂θ P̃
)
uh
〉

= lim

〈
uh, Ãt,h2Dt

(
− cosα

(α0 − α)
∂s P̃

)
uh

〉

after having used (4.20). Now using (4.21), we obtain

lim
h→0+

〈
w

α0
h,R, ∂θb

〉

= lim

〈
uh,

[
−ih
2

�+ihV − h∂t , Ãt,h2Dt

(
− cosα

E(α0−α)
P̃

)]
uh

〉
+O(R−1)
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= lim

〈
ih

2

∂uh
∂n

⊗ δ∂D, Ãt,h2Dt

(
− cosα

E(α0 − α)
P̃

)
uh

〉

− lim

〈
uh, Ãt,h2Dt

(
− cosα

E(α0 − α)
P̃

)
ih

2

∂uh
∂n

⊗ δ∂D

〉
+ O(R−1)

(4.22)

where we used again (4.16).
But Ãt,h2Dt

(− cosα
E(α0−α)

P̃) equals (modulo terms which only add an error

O(R−1) to the whole calculation)

− Ã(r, u, h
√
2Dt , hDu, t)

cosα(hDu, h2Dt )

h
√
2Dt (α0 − α(hDu, h2Dt ))

−B̃(r, u, h
√
2Dt , hDu, t)

cosα(hDu, h2Dt )

h
√
2Dt (α0 − α(hDu, h2Dt ))

◦ hDr

where z = (−r sin u, r cos u) is the decomposition in polar coordinates, and
Ã, B̃ are the functions associated to P̃ by the formulas of Definition 10.6.
If P̃ satisfies (B) then B̃ ≡ 0 for r = 1. Since uh satisfiesDirichlet boundary

conditions, we see that the last terms in (4.22) vanish.
To conclude the proof of Theorem 4.9 (i), we take R → +∞ after taking

h → 0, so that the terms estimated as O(R−1) vanish.

4.5 Second microlocal structure of μα0

IfH is aHilbert space,we shall denote byL(H),K(H) andL1(H) the spaces of
bounded, compact and trace class operators onH. It is well known thatL1(H)

is the dual ofK(H) (see e.g. [53, SectionVI.6]). Ameasure on a polish space T ,
taking values inL1(H), is defined as a bounded linear functional ρ fromCc(T )

toL1(H);ρ is said to be nonnegative if, for every nonnegative b ∈ Cc(T ),ρ(b)
is a nonnegative hermitian operator. The set of such measures is denoted by
M+(T ;L1(H)); they can be identified in a natural way to nonnegative linear
functionals on Cc(T ;K(H)). Background and further details on operator-
valued measures may be found for instance in [23].

For each ω ∈ T = R/2πZ, we recall that Hω, defined in (2.12), is the
space of functions f on R satisfying f (θ + 2π) = f (θ)eiω and that are
square-integrable on (0, 2π).

We shall denote by K2π the space of operators on L2(R) whose kernel K
satisfies K (θ +2π, θ ′ +2π) = K (θ, θ ′) and that define compact operators on
eachHω. Each Hilbert spaceHω is isometric to L2(0, 2π) (just by restricting
functions to (0, 2π)), and in this identification the kernel of K acting on Hω

is given by
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Kω(θ, θ ′) := 1(0,2π)(θ)1(0,2π)(θ
′)
∑
n∈Z

K (θ, θ ′ + 2πn)einω. (4.23)

The idea of the Floquet-Bloch theory (see e.g. [52, Section XIII.16]) is that it
is completely equivalent to know K (θ, θ ′) and to know Kω(θ, θ ′) for almost
all ω, by decomposing

L2(R) =
∫ ⊕

(0,2π)

Hωdω.

In particular, we recover K from (Kω)ω∈T by

K (θ, θ ′) =
∫
T

Kω(θ, θ ′)dω.

Besides, the operator with kernel K is nonnegative (resp. bounded) if and only
if Kω is nonnegative (resp. bounded) for a.e. ω.

Examples of operators in K2π are, given a symbol b ∈ S and parameters
R, h, t, H, s, E , furnished by

Kb,h,R(s, E, H, t) = b(s, θ, E, hDθ , Dθ , H, t)χ(Dθ /R). (4.24)

Note that, as h → 0, we have Kb,h,R(s, E, H, t) = Kb,0,R(s, E, H, t) +
OR(h).
If b satisfies the symmetry condition (B), note that the operator

Kb,0,R(s, E, H, t) has the property

K (cosα, E, H, t) = R−1
π+2α ◦ K (− cosα, E, H, t) ◦ Rπ+2α, (4.25)

where R is a translation operator on L2(Rθ ): Rα f (θ) = f (θ − α) and where

α = arcsin(
√
2H sin α0

E ). In particular,

K (cosα0,
√
2H , H, t) = R−1

π+2α0
◦ K (− cosα0,

√
2H , H, t) ◦ Rπ+2α0 .

(4.26)

Remark 4.10 The fact that the orbits of the billiard flow are periodic on Iα0

(α0 ∈ πQ) is reflected in the fact that the function s �→ K (s,
√
2H , H, t) is

periodic, if K satisfies (4.26).
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For K ∈ C∞
c

(
Tω × Rs × RE × RH × Rt ;K

(
L2(0, 2π)

))
, let us define:

〈
nα0
h , K

〉 = (2πh)−2
∫ 2π

ω=0

∑
H,
√
2H sin α0/h≡ω(2π)

h

sin α0

√
H

2
∫
s,s′,E,H ′,t

〈
χ0V U uh(s

′, H ′), K
(
ω, s, E, H ′, ht

)
χ0V U uh(s, H)

〉
L2(0,2π)

×ei E(s′−s)/heit (H
′−H)/hds dE ds′ dH ′ dt dω (4.27)

where χ0 is 1(0,2π) as in Remark 4.3. This can be rewritten as

〈χ0V U uh,K χ0V U uh〉L2(Rs×RH ,L2(0,2π)),

where K is the pseudodifferential operator with operator-valued symbol:

k(s, E, H ′, ht) =
∫ 2π

ω=0

∑
H,
√
2H sin α0/h≡ω(2π)

h

sin α0

√
H

2
K
(
ω, s, E, H ′, ht

)
dω.

(4.28)

Remark 4.11 As noted earlier, it is equivalent (by the relation (4.23)) to con-
sider a family K (ω) of kernels on (0, 2π)2 and a kernel K on R

2 satisfying
K (θ, θ ′) = K (θ + 2π, θ ′ + 2π). With this identification in mind, formula
(4.27) amounts to

(2πh)−2
∫
s,s′,E,H,H ′,t

〈
χ0V U uh(s

′, H ′), k
(
s, E, H ′, ht

)
V U uh(s, H)

〉
L2(R)

×ei E(s′−s)/heit (H
′−H)/hdsdEds′dHdH ′dt

= 〈χ0V U uh, k
(
s, hDs, h

2Dt , t
)
V U uh

〉
L2(Rs×RH ,L2(Rθ ))

. (4.29)

The motivation for rewriting (4.29) in the apparently more complicated form
(4.27) is that it will be more convenient to use the compact operators K (ω) on
eachHω than the non-compact operator K on L2(R).

The relevance of definition (4.27) for us is that we have the relation

〈wα0,h,R, b〉 = 〈nα0
h , Kb,h,R

〉
= 〈nα0

h , Kb,0,R
〉+ OR(h), (4.30)

where Kb,h,R was defined in (4.24).
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Proposition 4.12 Suppose (u0h) is bounded in L2 (D). Then, modulo taking
subsequences, the following convergence takes place:

lim
h→0+

〈
nα0
h , K

〉 =
∫ 2π

0

∫
Rs×RE×RH×Rt

Tr
{
K (ω, s, E, H, t) ρα0 (dω, ds, dE, dH, dt)

}
, (4.31)

for every K ∈ C∞
c (Tω×Rs×RE×RH×Rt ;K(L2(0, 2π))). In other words,

ρα0 is the limit of n
α0
h in the weak-∗ topology of

D′ (
Tω × Rs × RE × RH × Rt ,L1 (L2(0, 2π)

))
.

The distribution ρα0 is a nonnegative, L1(L2(0, 2π))-valued measure on
R/2πZ× Rs × RE × RH × Rt .

In addition, ρα0 is supported in {s ∈ [− cosα0, cosα0], E = √
2H}.

Proof Note that χ0V U uh(s, H) is bounded in L2(Rs×RH , L2(0, 2π)). The
Calderón–Vaillancourt theorem [18] gives that the operators K with symbols
of the form (4.28) are uniformly bounded with respect to h. Therefore, the
linear map

Lh : K �→ 〈nα0
h , K 〉

is uniformly bounded as h → 0. As a consequence, for any K , up to extraction
of a subsequence, it has a limit l(K ).

Considering a countable dense subset of C∞
c (Tω × Rs × RE × RH ×

Rt ;K(L2(0, 2π))), and using a diagonal extraction process, one finds a
sequence (hn) tending to 0 as n goes to +∞ such that for any K ∈
C∞
c (R/2πZ × Rs × RE × RH × Rt ;K(L2(0, 2π))), the sequence Lhn (K )

has a limit as n goes to +∞.
The limit is a linear form onC∞

c (Tω×Rs×RE×RH×Rt ;K(L2(0, 2π))),
characterized by an element ρα0 of the dual space D′(Tω ×Rs ×RE ×RH ×
Rt ,L1(L2(0, 2π))).

The positivity of the limit is classical. Note that it is immediately seen in
the expression (4.29). ! 

Comparing with (4.30), we obtain the following result.

Corollary 4.13 For every b ∈ S, we have
∫

b(s, θ, E, J, η, H, t)μα0(ds, dθ, d J, dη, dE, dH, dt)

= TrL2(0,2π)

∫
Kb,0,∞(s, E, H, t)ω ρα0(dω, ds, dE, dH, dt).
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Remember that Kb,0,R(s, E, H, t) = b(s, θ, 0, Dθ , H, t)χ(Dθ /R), so that
Kb,0,∞(s, E, H, t) = b(s, θ, 0, Dθ , H, t).

Corollary 4.14 If b does not depend on η then the above identity can be
rewritten as:∫

b(s, θ, E, J, H, t)μα0(ds, dθ, d J, dη, dE, dH, dt)

= TrL2(0,2π)

∫
mb(s, E, H, t) ρα0(dω, ds, dE, dH, dt),

where mb(s, E, H, t) is the multiplication operator by b(s, θ, E, 0, H, t) act-
ing on L2(0, 2π).

Note that
∫
b(s, θ, E, J, H, t)μα0(ds, dθ, d J, dη, dE, dH, dt) ≥ 0 if b

does not depend on η and b ≥ 0. Thus the projection on μα0 on the variables
(s, θ, E, J, H, t) defines a nonnegative measure.

We finish this section by explaining why this implies Theorem 4.9 (ii). The
fact that μα0 is carried by the set {J ′ = 0} is obvious from the last line of
Corollary 4.14.

If b ∈ Sσ does not depend on η, Proposition 4.7 implies that
∫

b(s, θ, E, J, H, t)μα0(ds, dθ, d J, dη, dE, dH, dt)

=
∫
〈b〉α0(θ, E, J, H, t)μα0(ds, dθ, d J, dη, dE, dH, dt).

We know from Sect. 2.8.2 that μ = μsc does not charge the set S. Since
μα0 ≤ μ by (4.10), the measure μα0 does not charge the set {s = ± cosα0},
and the previous equality actually holds for all b ∈ S. Thus for all b ∈ S we
get the formula

∫
b(s, θ, E, J, H, t)μα0(ds, dθ, d J, dη, dE, dH, dt)

= TrL2(0,2π)

∫
m〈b〉α0 (E, 0, H, t) ρα0(dω, ds, dE, dH, dt)

= TrL2(0,2π)

∫
m〈b〉α0 (E, 0, H, t) ρ̃α0(dE, dH, dt),

where ρ̃α0 is the measure ρα0 integrated with respect to ω and s.
The Radon–Nikodym theorem [23, Appendix] implies that the operator

valued measure ρ̃α0 can also be written as ρ̃α0 = σ̃α0 �̃α0 where �̃α0 = Tr(ρ̃α0)

is a nonnegative scalar measure on RE × RH × Rt , and

σ̃α0 : RE × RH × Rt → L1+
(
L2(0, 2π)

)
,
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is an integrable function with respect to �̃α0 , taking values in the set of non-
negative trace-class operators on L2(0, 2π). Note that Tr(σ̃α0) = 1. For all
b ∈ S we finally get the formula

∫
b(s, θ, E, J, H, t)μα0(ds, dθ, d J, dη, dE, dH, dt)

=
∫ (

TrL2(0,2π)m〈b〉α0 (E, 0, H, t) σ̃α0(E, H, t)
)

�̃α0(dE, dH, dt).

Let us fix (E, H, t) and define

∫
b(s, θ, E, 0, H, t)dνE,H,t (s, θ)

:= TrL2(0,2π)m〈b〉α0 (E, 0, H, t) σ̃α0(E, H, t).

This formula, defined a priori for continuous b, extends to b measurable
with respect to (s, θ). If b(·, ·, E, 0, H, t) vanishes for Lebesgue-almost every
(s, θ), the multiplication operator m〈b〉α0 (E, 0, H, t) vanishes on L2(0, 2π),
and

TrL2(0,2π)m〈b〉α0 (E, 0, H, t) σ̃α0(E, H, t) = 0,

which proves that the measure νE,H,t is absolutely continuous as announced
in Theorem 4.9 (ii).

4.6 Propagation law for ρα0

Wenow show that the operator-valuedmeasure ρα0 constructed in the previous
section possesses some invariance properties. Below, the notation 〈V 〉α0 stands
short for the function 〈V 〉α0 ◦�(s, θ, E,−E sin α0, t), a function that actually
does not depend on s and is 2π -periodic in θ .

Proposition 4.15 (i) If K satisfies (4.26), we have

TrL2(0,2π)

∫
E ∂s K (ω, s, E, H, t) ρα0 (dω, ds, dE, dH, dt) = 0. (4.32)

(ii) If in addition K (s,
√
2H , H, t) does not depend on s, we have

∫
Tr

(
− cos2 α0 ∂t K + i

[
−∂2θ

2
+ cos2 α0〈V 〉α0, K

]
ω

)
(ω, s, E, H, t)

ρα0 (dω, ds, dE, dH, dt) = 0, (4.33)
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where [− ∂2θ
2 + cos2 α0〈V 〉α0, K ]ω means that we are considering ∂2θ acting

on Hω (in other words, L2(0, 2π) with Floquet-periodic boundary condition
( f (θ + 2π) = f (θ)eiω).

The proof of this key proposition is postponed to the end of this Section.
Let us first draw some of its consequences in view of Theorem 2.5.

Remark 4.16 Proposition 4.15 (ii) implies the following. Take K = a(ω,

E, H, t)I dL2(0,2π) with a a scalar continous function (independent on s), then

Tr

(∫
∂t a (ω, E, H, t) ρα0 (dω, ds, dE, dH, dt)

)
= 0.

Therefore, the image of ρα0 by the projection on Rs ,

ρα0
(dω, dE, dH, dt) :=

∫
ρα0(dω, ds, dE, dH, dt)

is such that Tr(ρα0
) does not depend on t .

Remark 4.17 The Radon–Nikodym theorem [23, Appendix] now implies that
the operator valued measure ρα0

can also be written as ρα0
= σα0�α0 where

�α0 = Tr(ρα0
) is a nonnegative scalar measure on R/2πZ× RE × RH , and

σα0 : Tω × RE × RH × Rt → L1+
(
L2(0, 2π)

)
,

is an integrable function with respect to �α0 , taking values in the set of non-
negative trace-class operators on L2(0, 2π). Note that Tr(σα0) = 1.

Corollary 4.18 Let ρα0
as in Remark 4.16 and let �α0 and σα0 as in

Remark 4.17. Then for �α0-almost every (ω, E, H), we have

− cos2 α0∂tσα0 + i

[
−∂2θ

2
+ cos2 α0〈V 〉α0, σα0

]
ω

= 0

in D′(Rt ;L1+(L2(0, 2π))).
Therefore, for �α0-almost every (ω, E, H), σα0 coincides with a continuous

function in

C0 (
Rt ;L1+

(
L2(0, 2π)

))

and

σα0(ω, E, H, t) = Uα0,ω(t)σα0(ω, E, H, 0)U∗
α0,ω

(t),
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where Uα0,ω(t) is the unitary propagator of the equation

− cos2 α0Dtv(t, θ)+
(
−1

2
∂2θ + cos2 α0〈V 〉α0 ◦�

)
v(t, θ) = 0.

Proof We first rewrite (4.33) for s-independent operators K as

∫
Tr

{(
− cos2 α0 ∂t K + i

[
−∂2θ

2
+ cos2 α0〈V 〉α0, K

]
ω

)
σα0

}

�α0 (dω, dE, dH) dt = 0.

Therefore, we have, for all such K , the identity

∫
Tr

{
K

(
− cos2 α0 ∂tσα0 + i

[
−∂2θ

2
+ cos2 α0〈V 〉α0, σα0

]
ω

)}

�α0 (dω, dE, dH) dt = 0,

which concludes the proof of Corollary 4.18. ! 
To conclude this section, let us now prove its main result, namely Propos-

tion 4.15.

Proof of Propostion 4.15 As was already mentioned, it is equivalent to con-
sider a family of kernels depending on ω, K (ω, s, E, H, t)(θ, θ ′) defined for
(θ, θ ′) ∈ (0, 2π)2, and a kernel K (s, E, H, t)(θ, θ ′) defined for (θ, θ ′) ∈ R

2

and satisfying K (s, E, H, t)(θ, θ ′) = K (s, E, H, t)(θ + 2π, θ ′ + 2π). The
link between both representations is the formula

K (ω, s, E, H, t)(θ, θ ′) =
∑
n∈Z

K (s, E, H, t)(θ, θ ′ + 2nπ)einω.

By a density argument, it is enough to treat the case where K (s, E, H, t) is
smooth in (s, E, H, t) and is a pseudodifferential operator on L2(R). By this,
wemean that there is a b0(s, θ, E, η, H, t) ∈ C∞

c (R×R/2πZ×R
4) such that

K (s, E, H, t) = b0(s, θ, E, Dθ , H, t). As ρα0 is supported by {E = √
2H},

we may further assume that K satisfies (4.25) instead of (4.26).
IfK satisfies (4.25), thenwehaveb0(cosα, θ, E, η, H, t) = b0(− cosα, θ+

π+2α, E, η, H, t) for α = arcsin(
√
2H sin α0

E ). We can extend b0 to a function
b(s, θ, E, J ′, η, H, t) ∈ C∞

c (R × R/2πZ × R
5) such that, for J ′ = 0, we

have b(s, θ, E, 0, η, H, t) = b0(s, θ, E, η, H, t), and such that b satisfies the

symmetry condition (B) with sin α = − J ′−√2H sin α0
E . We are now back to our
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previous notation. The proof Proposition 4.15 (i) goes exactly along the lines
of the proof of Proposition 4.7 (see Remark 4.8).

Let us now focus on the proof of (4.33).
If K (s,

√
2H , H, t) does not depend on s, then b0(s,

√
2H , θ, η, H, t) does

not depend on s, and we can impose that the function b constructed above
satisfy equation (D).

Letting η = J ′
h , we note that, for η in the (compact) support of

b(s,
√
2H , θ, J ′, η, H, t), we have

α − α0 ∼ −hη√
2H cosα0

(1+ O(h))

so that
−η cosα√
2H(α − α0)

∼ cos2 α0

h
(1+ O(h)). (4.34)

We set

Q0 :=
∫

Tr

(
−cos2 α0 ∂t K+i

[
−∂2θ

2
+cos2 α0〈V 〉α0, K

]
ω

)
(ω, s, E, H, t)

ρα0 (dω, ds, dE, dH, dt) ,

so that proving (4.33) amounts to showing that Q0 = 0.
First note that

Q0 =
∫

Tr

(
− cos2 α0 ∂t K + i

[
−∂2θ

2
+ cos2 α0〈V 〉α0 , K

]
ω

)(
ω, s,

√
2H , H, t

)

ρα0 (dω, ds, dE, dH, dt)

=
∫

Tr

(
−cos2 α0 ∂t K+i

[
−∂2θ

2
+cos2 α0V, K

]
ω

)(
ω, s,

√
2H , H, t

)

ρα0 (dω, ds, dE, dH, dt) , (4.35)

sinceρα0 is carriedby E = √
2H .With a slight abuseof notationwedenotedby

V = V (s, E, t) the operator of multiplication by V ◦�(s, θ, E,−E sin α0, t)
acting on L2(0, 2π). Note that it does not depend onω. It satisfies the condition
(4.26) since the function V ◦� satisfies the symmetry condition (B) (since V
is only a function of z in the old coordinates). In (4.35) we used the fact that
K (s,

√
2H , H, t) does not depend on s, and the result of Proposition 4.15 (i),

to replace 〈V 〉α0 by V .
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Now, by definition of ρα0 , we have

Q0 = lim

〈
nα0
h ,− cos2 α0 ∂t K + i

[
− ∂2θ

2
+ cos2 α0V, K

]
ω

〉

= lim

〈
χ0V U uh,

(
− cos2 α0 ∂t K + i

[
− ∂2θ

2
+ cos2 α0V, K

]) (
s, hDs , H, h2Dt

)
V U uh

〉
L2(Rs×RH ,L2(Rθ ))

.

Using the fact that K (s, E, H, t) = b0(s, θ, E, Dθ , H, t) and the commutator
calculus rule (2.10) for the standard quantization, we obtain

Q0 = lim
h→0+

i
〈
χ0V U uh ,

([
cos2 α0V, K

]) (
s, hDs , H, h2Dt

)
V U uh

〉
L2(Rs×RH ,L2(Rθ ))

+
〈
χ0V U uh ,Oph

((
η∂θ − i

∂2θ

2
− cos2 α0∂t

)
b

(
s, θ, E, J ′, J ′

h
, H, ht

))
V U uh

〉
L2(Rs×Rθ×RH )

,

using the notation η = J ′
h = J+√2H sin α0

h .
We now set

Q1 := lim
h→0+

〈
χ0V U uh,Oph

((
η∂θ − cos2 α0∂t

)
b

(
s, θ, E, J ′, J ′

h
, H, ht

))
V U uh

〉
L2(Rs×Rθ×RH )

+i
〈
χ0V U uh,

([
cos2 α0V, K

]) (
s, hDs , H, h2Dt

)
V U uh

〉
L2(Rs×RH ,L2(Rθ ))

,

so that we have

Q0 = Q1 + lim
h→0+

〈
χ0V U uh,Oph

(
−i ∂

2
θ

2
b

(
s, θ, E, J ′, J ′

h
, H, ht

))
V U uh

〉
L2(Rs×Rθ×RH )

.

(4.36)

Let us for the moment focus on the term Q1, involving only derivatives of
order 1 of b. As in Remark 4.8, we let P(s, θ, E, J, t, H) = b(s, θ, E, J +√
2H sin α0,

J+√2H sin α0
h , H,−t). Since b is compactly supported in the fifth

variable, this is also, modulo O(h),

P(s, θ, E, J, t, H) = b

(
s, θ, E, 0,

J +√
2H sin α0

h
, H,−t

)
.
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Still using the notation η = J ′
h = J+√2H sin α0

h , we have

Q1 = lim
〈
U uh,Oph

(
(η∂θ − cos2 α0∂t )P(s, θ, E, J, t, hH)

)
U uh
〉
L2(Rs×Tθ×Rt )

+ i
〈
χ0V U uh,

([
cos2 α0V, K

]) (
s, hDs, H, h2Dt

)
V U uh

〉
L2(Rs×RH ,L2(Rθ ))

= lim
〈
uh, Ãt,h2Dt

(
(η∂θ − cos2 α0∂t )P

)
uh
〉
L2(R2×R2×Rt )

+ i
〈
uh,
[
cos2 α0V, Ãt,h2Dt

(P)
]
uh
〉
L2(R2×R2×Rt )

= lim

〈
uh, Ãt,h2Dt

(
− η cosα

E(α0 − α)
(E ∂s − h∂t )P

)
uh

〉

+ i
〈
uh,
[
cos2 α0V, Ãt,h2Dt

(P)
]
uh
〉
.

Using that b (and thus also P) satisfies equation (D), together with (4.34),
we obtain

Q1 = lim
cos2 α0

h

〈
uh, Ãt,h2Dt

((E ∂s − h∂t )P) uh
〉

+i 〈uh, [cos2 α0V, Ãt,h2Dt
(P)
]
uh
〉
. (4.37)

Finally, we use again the Schrödinger equation (4.16) satisfied by uh
extended to R

2, and rewrite the last line as

Q1 = lim
cos2 α0

h

〈
uh,

[
− ih

2
�+ ihV − h∂t , Ãt,h2Dt

(P)

]
uh

〉

= lim−cos2 α0

h

〈
ih

2

∂uh
∂n

⊗ δ∂D, Ãt,h2Dt
(P) uh

〉

+ lim−cos2 α0

h

〈
uh, Ãt,h2Dt

(P)
ih

2

∂uh
∂n

⊗ δ∂D

〉
. (4.38)

Here we need the knowledge of Ãt,h2Dt
(P) modulo O(h2) (because of

the factor cos2 α0
h that appears in the previous expression). Our calculations of

Proposition 10.7 give us the expression

Ãt,h2Dt
(P) = A(r, u, h

√
2Dt , hDu, t)+ B(r, u, h

√
2Dt , hDu, t) ◦ hDr

+ihC(r, u, h
√
2Dt , hDu, t)+ ihD(r, u, h

√
2Dt , hDu, t) ◦ hDr

if z = (−r sin u, r cos u) is the decomposition in polar coordinates and
A, B, C, D are the functions associated toP by the formulas of Definition 10.6.

The terms A, C give a vanishing contribution in formula (4.38) because
they are radial operators and uh satisfies a Dirichlet boundary condition. The

123



Wigner measures and observability for the… 551

term B gives a vanishing condition if b (and hence P) satisfy the symmetry
condition (B): in that case we have B(1, u, h

√
2Dt , hDu, t) = 0. So there just

remains to look at the term D(1, u, h
√
2Dt , hDu, t).

Look at formula (10.10) defining the function D. Remember that
P(s, θ,

√
2H , J, t, H) is supported where J + √

2H sin α0 = O(h), so that
we have ∂sP = O(h); also note that, on the set {J = −E sin α0}, the bound-
ary equation r = 1 amounts to s = ± cosα0, cos θ1(r, J, E) = ± cosα0, so
that s cos θ1(r, J, E) = cos2 α0 in formulas (10.10) and the following lines.
We see that the function D(1, u,

√
2H , J, t) coincides, modulo O(h), with

1
2H cos2 α0

Pσ (1, u,
√
2H , J, t), so that

Q1 = − lim

〈
h

2

∂uh
∂n

⊗ δ∂D, D(1, u, h
√
2Dt , hDu, t) ◦ hDruh

〉

+ h lim

〈
uh, D(1, u, h

√
2Dt , hDu, t) ◦ hDr

h

2

∂uh
∂n

⊗ δ∂D

〉

= − 1

2 cos2 α0
lim

〈
h

∂uh
∂n

, (E−2∂22Pσ )(1, u, h
√
2Dt ,−h

√
2Dtα0, ht, h

2Dt )h
∂uh
∂n

〉
.

Hence, we obtain

Q1 = − lim
cos2 α0

h
ih

〈
h

2

∂uh
∂n

⊗ δ∂D, D(1, u, h
√
2Dt , hDu, t) ◦ hDruh

〉

=− i

2
lim

〈
h
∂uh
∂n

, (E−2∂22P)(1, u, h
√
2Dt ,−h

√
2Dtα0, ht, h

2Dt )h
∂uh
∂n

〉
.

Using Remark 4.8, this limit expressed in terms of boundary data can also be
expressed in terms of the interior, and we see that it equals

Q1 = i

2
lim

〈
U uh,Oph

(
∂22P(s, θ, E, J ′, J ′

h
, H, ht)

)
U uh

〉
L2(Rs×Tθ×Rt )

= i

2
lim

〈
V U uh,Oph

(
∂22b(s, θ, E, J ′, J ′

h
, H, ht)

)
V U uh

〉
L2(Rs×Tθ×RH )

.

Finally coming back to (4.36), this yields Q0 = 0, that is, identity (4.33).
This concludes the proof of Proposition 4.15. ! 

5 End of the semiclassical construction: proof of Theorem 2.5

In this section, we first prove Proposition 2.9, and then conclude the proof of
Theorem 2.5.
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5.1 A proof of Proposition 2.9

For a a smooth compactly supported function on R
4, we show that

lim
h→0

〈uh,Oph(∂t a(|ξ |2, xξy − yξx , t, hH)uh〉L2(R2×R) = 0.

According to Proposition 8.3, this limit is the same as

lim
h→0

〈uh,Oph(∂t a(2hH, xξy − yξx , t, hH)uh〉L2(R2×R),

which is

lim
h→0

〈uh, [∂t ,Oph(a(2hH, xξy − yξx , t, hH)]uh〉L2(R2×R)

= lim
h→0

〈uh, [∂t , a(2h2Dt , hDu, t, h
2Dt )]uh〉,

where z = (−r sin u, r cos u) is the decomposition of z = (x, y) into polar
coordinates. Because of the equation satisfied by uh , this is also (with �D the
Dirichlet laplacian)

lim
h→0

〈
uh,

[
−i�D

2
+ iV, a(2h2Dt , hDu, t, h

2Dt )

]
uh

〉
.

Note that a(2h2Dt , hDu, t, h2Dt ) actually defines an operator on L2(D) as it
is tangential to ∂D, which is why the scalar product on R

2 has been replaced
by a scalar product on D. This limit vanishes, because �D commutes with
a(2h2Dt , hDu, t, h2Dt ) and because

[
V, a(2h2Dt , hDu, t, h

2Dt )
] = O(h).

This concludes the proof of Proposition 2.9.

5.2 End of the proofs of Theorems 2.5 and 2.10

There only remains to fit all the pieces together to conclude the proofs of
Theorems 2.5 and 2.10.

The measuresmα0 (α0 ∈ πQ) in the theorem are the ones defined in (4.10).
The fact that mα0 is of the announced form is the contents of Corollaries 4.14
and 4.18, the measure �α0 and the function σα0 of Theorem 2.5 (iii) being the
ones appearing in Remark 4.17.
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The object called νLeb in Theorem 2.5 (ii) is defined as

νLeb = μsc�α/∈πQ +
∑

α0∈πQ

mα0

where mα0 was defined in Remark 4.6. For α /∈ πQ, we must have

μsc�Iα (t) =
∫

c1(t, E, J )λE,J dν1(E, J )

for some nonnegative measure ν1 (carried by {J = − sin αE}) and some
measurable function c1(t, E, J ). But, because the image ofμsc under the map
M : (z, ξ) �→ (E, J ) does not depend on t (Proposition 2.9, proved in the
previous section), the function c1(t, E, J ) actually does not depend on t .

The two invariance properties Proposition 4.7 (invariance w.r.t. s) and The-
orem 4.9 (i) (invariance w.r.t. θ ) also imply that mα0 is of the form

mα0(t) =
∫

c2(t, E, J )λE,J dν2(E, J )

for some nonnegative measure ν2 (carried by {J = − sin α0E}).
We now prove that the function c2(t, E, J ) actually does not depend on t .

For this, we remark that the same proof as that of Proposition 2.9 above applies
if we replace

Oph
(
∂t a(|ξ |2, xξy − yξx , t, hH)

)

in the first line by

U ∗Oph

(
∂t a(E2, J, t, hH)(1− χ)

(
J +√

2H sin α0

hR

))
U

in the limits h → 0 followed by R →+∞.
Using the notation of Remark 4.6, this shows that the image ofmα0 under the

map M is independent of t . Since we already know that mα0(t) is of the form∫
c2(t, E, J )λE,J dν2(E, J ) for some nonnegative measure ν2, we conclude

that c2(t, E, J ) actually does not depend on t .
The proof of Theorem 2.5 is now complete. Theorem 2.10 also follows if

we remember Theorem 4.9.

6 The microlocal construction: sketch of the proof of Theorem 2.7

Herein we use the definitions and notation introduced in Sects. 2.1 and 2.5.
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Let (u0n) be a sequence of initial data, normalized in L2, and as above denote
un(z, t) = UV (t)u0n(z) or in short un = UVu0n .

6.1 Structure of μc, proof of Theorem 2.8

Let a ∈ S0. Recall that 〈μc, a〉 is defined as the limit (after extraction of
subsequences) as n →+∞ followed by R →+∞ of

〈
Wc,n,R, a

〉 :=
〈
un,Op1

(
χ

( |ξ |2 + |H |
R2

)
a(z, ξ, t, H)

)
un

〉
L2(R2×R)

.

(6.1)
This is also

〈
Wc,n,R, a

〉 =
〈
u0n,
∫
R

UV (t)−11DOp1

(
χ

( |ξ |2 + |H |
R2

)
a(z, ξ, t, H)

)

1D[UV (·)u0n]dt
〉
L2(D)

.

Note now that for any given R, the operator

f ∈ L2(D) �→
∫
R

UV (t)−11DOp1

(
χ

( |ξ |2 + |H |
R2

)
a(z, ξ, t, H)

)

1D[UV (·) f ]dt

is compact from L2(D) to itself. As a consequence, calling u0 a weak-∗ limit
of the sequence (u0n) in L2(D) and writing u(t, x) = [UV (t)u0](x), we have
for fixed R > 0 that the sequence

〈
Wc,n,R, a

〉
converges to

〈
u0,
∫
R

UV (t)−11DOp1

(
χ

( |ξ |2 + |H |
R2

)
a(z, ξ, t, H)

)
1D[UV (·)u0]dt

〉
L2(D)

.

Letting now R →+∞ we find the expression

〈μc, a〉 =
〈
u0,
∫
R

UV (t)−11DOp1 (a(z, ξ, t, H))1D[UV (·)u0]dt
〉
L2(D)

= 〈u,Op1 (a(z, ξ, t, H)) u
〉
L2(R2×R)

,

which concludes the proof of Theorem 2.8.
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6.2 Structure of μ∞, proof of Theorem 2.7

Let ξ̃ = ξ√
2H

. On the support ofμ∞, ξ̃ has norm 1. To any pair (z, ξ̃ ) ∈ D×S
1

we now associate j = x ξ̃y − yξ̃x and α = − arcsin j which is the angle that
the billiard ray issued from (z, η)makeswith the inner normal when it bounces
on the boundary of the disk. Exactly as in Lemma 3.2 we decompose μ∞ as
a sum of nonnegative measures:

μ∞ = μ∞�α/∈πQ +
∑

r∈Q∩[−1/2,1/2]
μ∞�α=rπ . (6.2)

The invariance (2.18) implies that μ∞�α/∈πQ is of the form∫
E>0,|J |≤E,α /∈πQ

λE,J dμ̄∞(E, J ). Note that the measure μ̄∞ is in the dual of
the space of continuous 0-homogeneous functions of (E, J ); in other words
we may see it as a measure on the set {E = 1, |J | ≤ 1} and consider only
the measures λ1,J . The fact that μ̄∞ does not depend on t is the microlocal
version of Proposition 2.9.

We now fix r0 ∈ Q ∩ (−1/2, 1/2), write α0 = r0π and wish to study
μ∞�α=α0 . We define

〈
μ∞

α0
, a
〉

:= lim
R′→+∞

lim
R→∞ lim

n→+∞〈
un,Op1

((
1− χ

( |ξ |2 + H

R2

))
a(z, ξ, t, H)χ

(
J +√

2H sin α0

R′

))
un

〉
L2(R2×R)

= lim
R′→+∞

lim
R

lim
n〈

U un,Op1

((
1− χ

(
H

R2

))
a ◦�(s, θ,

√
2H , J, t, H)χ

(
J +√

2H sin α0

R′

))
U un

〉
L2(R×T×R)

and

〈
μ∞,α0 , a

〉
:= lim

R′
lim
R→∞ lim

n→+∞〈
un,Op1

((
1− χ

( |ξ |2 + H

R2

))
a(z, ξ, t, H)

(
1− χ

(
J +√

2H sin α0

R′

)))
un

〉
L2(R2×R)

= lim
R′

lim
R

lim
n〈

U un,Op1

((
1− χ

(
H

R2

))
a ◦�(s, θ,

√
2H , J, t, H)

(
1− χ

(
J +√

2H sin α0

R′

)))
U un

〉
.

The following results are proved in essentially the same way as in the
semiclassical case. Again, we identify homogeneous functions in (E, H)with
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functions on the “sphere” S
2
E,H = {(E, H), E2 + 2|H | = 2}, which explains

that our measures are also defined there.

Theorem 6.1 (i) μ∞,α0 is invariant under rotations (that is, under the flow of
P1). Thus it is a multiple of the Lebesgue measure λ1,− sin α0 . That is, μ

∞,α0 =
c(α0)λ1,− sin α0 with c(α0) ≥ 0 independent of t .

(ii) for every α0 ∈ πQ ∩ (−π/2, π/2), we can build from the sequence of
initial conditions (un) a nonnegative measure σα0(dω, ds, dE, dH, dt) (car-
ried by {H = E2/2}) on R/2πZ × Rs × S

2
E,H × Rt , taking values in the

trace-class operators on L2(0, 2π), so that μ∞
α0

is the measure carried by the
set { j = − sin α0} ∩ {H = E2/2} such that
∫

ahom(z, ξ, t)μ∞
α0

(dz, dξ, dt, dH)

=TrL2(0,2π)

(∫
mahom◦�(s, ·, E,−E sin α0, t) σα0(dω, ds, dE, dH, dt)

)
.

If in addition a is symmetric w.r.t. the boundary, we have

∫
ahom(z, ξ)μ∞

α0
(dz, dξ, dt, dH)

= TrL2(0,2π)

(∫
Uα0,ω(t)∗m〈ahom〉α0◦�(·, E,−E sin α0)

Uα0,ω(t) σα0(dω, ds, dE, dH, 0) dt

)
.

The decomposition formula of Theorem 2.7 (i) now holds with

• the distribution μc ∈ S ′0 described in Sect. 6.1;• the measure μLeb given by

μLeb = μ∞�α/∈πQ +
∑

α0∈πQ∩(−π/2,π/2)

μ∞,α0�α=α0;

• for α0 ∈ πQ ∩ (−π/2, π/2) the measure μα0 given by

μα0(t) = μ∞
α0

(t);
• for α0 = ±π/2 the measure μα0 given by

μα0 = μ∞�α=α0 .

Theorem 6.1 then implies Theorem 2.7.
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7 Proof of Theorems 1.2 and 1.3: Observability inequalities

In this section, we prove Theorems 1.2 and 1.3 using the microlocal version of
our results. We could have chosen to do it with semiclassical measures as well.
However, since there is no natural frequency-scale, it would have required
to perform a dyadic decomposition in frequency (see for instance [6,39]).
Note that the idea of proving observability inequalities usingmicrolocal defect
measures is due to Lebeau [40].

7.1 Unique continuation for microlocal measures

The goal of this section is to prove a unique continuation result for microlo-
cal measures μml associated to solutions of the Schrödinger equation (1.1).
According to Theorem 2.7, such a measure decomposes as

μml = μ∞ + μc,

that we shall study independently.
In order to state the result for μ∞, we introduce the following notation. For

z ∈ ∂D, we define

S+z = {ξ ∈ R
2, ξ · z > 0}, S

+
z = {ξ ∈ R

2, ξ · z ≥ 0}.

The set S+ defined in Sect. 2.8.1 is S+ =⋃{(z, ξ), z ∈ ∂D, ξ ∈ S+z } and
⋃
z∈∂D

S
+
z =
{
�

((
1− (J/E)2

) 1
2 , θ, E, J

)
, E > 0, |J | ≤ E, θ ∈ R/2πZ

}
.

The following two lemmas are respectively useful for the proof of internal
and boundary observability.

Lemma 7.1 Fix T > 0. Take b ∈ S0 independent of (t, H) and assume that

there exists z0 ∈ ∂D such that b > 0 in a neighbourhood of S
+
z0 . (7.1)

Then
∫ T
0

∫
R2×S

2
H,ξ

b2hom(z, ξ)μ∞(dz, dH, dξ, t)dt = 0 implies μ∞ = 0 on

Rt × R
2
z × S

2
H,ξ .

Lemma 7.2 Take any nonempty set 
 ⊂ ∂D and T > 0. Then μ∂
ml = 0 on

T ∗((0, T )× 
) implies μ∞ = 0 on Rt × R
2
z × S

2
H,ξ .

123



558 N. Anantharaman et al.

The proof of these lemmas relies on the properties of μ∞ together with a
unique continuation result for the one dimensional Schrödinger flowsUα0,ω(t)
on L2(0, 2π) from any nonempty open set (0, T ) × �, where � ⊂ (0, 2π).
Such unique continuation property holds as soon as 〈V 〉α0 ∈ L∞((0, T ) ×
(0, 2π)), for instance as a consequence of [37, Appendix B] (see also the
references therein).

Concerning μc we have the following result.

Lemma 7.3 Let � ⊂ D be a nonempty open set. Assume that the unique
continuation property (UCPV,�,T ) holds. Then we have

〈μc,1(0,T )×�〉 = 0 
⇒ μc = 0.

The unique continuation property (UCPV,�,T ) is for instance known to
hold (in any time T > 0 and for any nonempty open set �) if V is analytic in
(t, z) as a consequence of the Holmgren theorem (as stated by Hörmander [28,
Theorem 5.3.1]). If V = V (z) is smooth and does not depend on t , it is proved
in the next section. Note that this last result could be extended to the case
where V is continuous outside a set of measure zero, as was done in [6] for
the same problem on flat tori.

Remark 7.4 Note that the analogues of the unique continuation results of Lem-
mas 7.1, 7.2 and 7.3 also hold for semiclassical measures (which do not charge
{ξ = 0}). We chose not to state them here for the sake of brevity.

Proof of Lemma 7.1 We decompose μ∞ as in Theorem 2.7

μ∞(t, ·) = μLeb +
∑

α0∈πQ∩[−π/2,π/2]
μα0(t, ·).

As every term in this sum is a non-negative measure, the assumption on μ∞
implies ∫ T

0

∫
R2×S2

b2hom(z, ξ)μLeb(dz, dH, dξ, t)dt = 0, (7.2)

∫ T

0

∫
R2×S2

b2hom(z, ξ)μα0(dz, dH, dξ, t)dt = 0, (7.3)

for all α0 ∈ πQ ∩ [−π/2, π/2].
Still according to Theorem 2.7, μLeb is of the form

∫
E>0,|J |≤E λE,J dμ′

(E, J ) for some nonnegative measure μ′ on he set of pairs (E, J ) modulo
homotheties. Together with (7.2), this reads

0 =
∫
E>0,|J |≤E

∫
T (E,J )

b2hom ◦�(s, θ, E, J )λE,J (ds, dθ)μ′(dE, d J ).
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Recall (see Sect. 2.2) that λE,J (ds, dθ) = c(E, J )dsdθ where c(E, J ) =
(
∫
T (E,J )

dsdθ)−1 > 0, so that we have

0 =
∫
E>0,|J |≤E

(∫
T (E,J )

b2hom ◦�(s, θ, E, J )dsdθ

)
c(E, J )μ′(dE, d J ).

Now, for any (E, J ) such that E > 0, |J | ≤ E , there exists θ ∈ S
1 (depending

only on J/E), such that

�

((
1− (J/E)2

) 1
2 , θ, E, J

)
∈ S

+
z0 .

Assumption (7.1) then implies that
∫
T (E,J )

b2hom ◦�(s, θ, E, J )dsdθ > 0 for
any (E, J ). As a consequence, c(E, J ) = 0 forμ′-almost all (E, J ), andμLeb
vanishes identically.

Let us now consider α0 = ±π/2. The rotation invariance given by Theo-
rem 2.7 together with Assumption (7.1) imply that μ±π/2 vanish.

Let us now considerα0 ∈ πQ∩(−π/2, π/2). Themeasureμα0 is supported
by Iα0 and invariant by the billiard flow, so that

∫ T

0

∫
R2×S2

b2hom μα0(dz, dH, dξ, t)dt

=
∫ T

0

∫
R2×S2

〈b2hom〉α0 μα0(dz, dH, dξ, t)dt.

Using Theorem 2.7 with (7.3), we obtain

0 =
∫

TrL2(0,2π)

(
Bα0 σα0

)
d�α0dt, with Bα0 := mα0

〈b2hom〉α0
.

According to Corollary 4.18, this yields

0=
∫

TrL2(0,2π)

(
Bα0Uα0,ω(t)σα0(ω, E, H, 0)U∗

α0,ω
(t)
)
�α0(dω, dE, dH)dt.

Since the integrand is non-negative, we have for �α0 -almost every (ω, E, H),

0 =
∫ T

0
TrL2(0,2π)

(
Bα0Uα0,ω(t)σα0(ω, E, H, 0)U∗

α0,ω
(t)
)
dt. (7.4)

For �α0 -almost every (ω, E, H), σα0(ω, E, H, 0) is a non-negative trace-class
operator. We can decompose it as a sum of of orthogonal projectors on its
eigenfunctions:
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σα0(·, 0) =
∑
k∈N

λk |ϕk〉〈ϕk |, with λk ≥ 0,

∑
k∈N

λk = 1, 〈ϕk |ϕ j 〉L2(0,2π) = δk j .

Note that λk, ϕk depend on (ω, E, H). Now Eq. (7.4) is equivalent to having,
for all k ∈ N, such that λk > 0,

0 =
∫ T

0

∫ 2π

0
〈b2hom〉α0 ◦�(s, θ, E,−E sin α0)

∣∣Uα0,ω(t)ϕk
∣∣2 (θ)dθdt.

(7.5)

As above, there exists θ ∈ S
1 depending only on α0, such that

� (cosα0, θ, E,−E sin α0) ∈ S
+
z0 .

Hence, 〈b2hom〉α0 > 0 in a neighborhood of this θ . Then (7.5) implies that
Uα0,ω(t)ϕk vanishes in a nonempty open subset of (0, T ) × (0, 2π). One
dimensional unique continuation (see e.g. [37, Appendix B] and the references
therein) then implies that ϕk = 0. Therefore, σα0(ω, E, H, 0) vanishes �α0 -
almost everywhere, which yields μα0 = 0.

This finally proves that μ∞ = 0 and concludes the proof of the lemma. ! 

Proof of Lemma 7.2 Let us fix z0 ∈ 
 and prove that μ∞ vanishes in a
neighborhood of S

+
z0 . The result shall then follow from Lemma 7.1. First,

according to (2.27), the assumption implies that μ∞�T ∗((0,T )×
) vanishes.
Second, as a consequence of the assumption together with (2.26), we have
μS
ml�(z,ξ)∈S+,z∈
 = 0. Coming back to the definition of the measure μS

ml in
Sect. 2.8.1, this implies that μ∞ vanishes on all trajectories of the billiard
flow touching the boundary on {(z, ξ) ∈ S+, z ∈ 
}. In particular, this yields
μ∞�

S
+
z0
= 0 and the result follows from Lemma 7.1. ! 

Proof of Lemma 7.3 Theorem 2.8 together with 〈μc,1(0,T )×�〉 = 0 imply
that

0 =
∫ T

0
‖UV (t)u0‖2L2(�)

dt.

The unique continuation property (UCPV,�,T ) then implies u0 = 0 and this
proves the lemma. ! 

123



Wigner measures and observability for the… 561

7.2 Interior observability inequality: proof of Theorem 1.2

7.2.1 Unique continuation implies observability

In this section, we prove the observability inequality (1.5) assuming that
(UCPV,�,T ) holds. Instead of proving (1.5) for any open set� ⊂ D containing
a neighbourhood in D of a point of ∂D, we prove the equivalent statement: for
any function b ∈ C0(R2) (also considered as a function in C0(D)) which is
positive on a nonempty open subset of ∂D, for any T > 0, there exists C > 0
such that the following inequality holds:

∥∥u0∥∥2L2(D)
≤ C
∫ T

0

∥∥b(z)UV (t)u0
∥∥2
L2(D)

dt. (7.6)

Note that under these conditions on � and b, inequalities (7.9) and (7.6) are
equivalent.

We proceed by contradiction and suppose that the observability inequal-
ity (7.6) is not satisfied. Thus, there exists a sequence (u0n)n∈N in L2(D) such
that

‖u0n‖L2(D) = 1, (7.7)∫ T

0

∥∥b(z)UV (t)u0n
∥∥2
L2(D)

dt → 0, n →∞, (7.8)

We write un(t) = UV (t)u0n the associated solution of (1.1)–(1.2). As previ-
ously, we extend un to R

2 by zero outside D (and still use the notation un for
its extension).

After having extracted a subsequence, we associate to (un) a microlocal
measure

μml = μ∞ + μc

as in Theorem 2.7. Equation (7.8) implies that

∫ T

0

∫
R2×S2

b2(z)μ∞(dz, dH, dξ, t)dt = 0, 〈μc,1(0,T ) ⊗ b2〉 = 0.

Lemmas 7.1 and 7.3 imply thatμ∞ = 0 andμc = 0 respectively. However,
Eq. (7.7) implies that

〈μml,1(0,T ) ⊗ 1〉 = T .
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This yields a contradiction and concludes the proof. Note that (UCPV,�,T )
has only been used to apply Lemma 7.3 in order to deal with the term μc.

7.2.2 Observability for time independent potentials

The structure of the proof in this setting is classical [11,39]. In a first step, we
prove the following weakened observability inequality:

∥∥u0∥∥2L2(D)
≤ C
∫ T

0

∥∥UV (t)u0
∥∥2
L2(�)

dt + C
∥∥u0∥∥2H−1(D)

, (7.9)

In a second step, we conclude the proof of Theorem 1.2 using a unique con-
tinuation property for eigenfunctions of the elliptic operator −�D + V .

The first step is similar to Sect. 7.2.1. We consider a sequence of initial data
(u0n) contradicting (7.9). It satisfies (7.7), (7.8), together with

‖u0n‖H−1(D) → 0, n →∞. (7.10)

As before, we consider the associated microlocal measure μml = μ∞ + μc.
Note now that (7.10) implies that μc = 0. The rest of the proof is completely
similar.

We now prove that (7.9) implies the observability inequality (1.5): this step
is by now classical [11,39] but we include it for the sake of completeness. We
proceed again by contradiction and suppose that the inequality

‖u0‖H−1(D) ≤ C
∫ T

0

∥∥b(z)UV (t)u0
∥∥2
L2(�)

dt (7.11)

is not satisfied. Then, there exists a sequence (u0n)n∈N in L2(D) such that

‖u0n‖H−1(D) = 1,
∫ T

0

∥∥b(z)UV (t)u0n
∥∥2
L2(D)

dt → 0, n →∞. (7.12)

Inequality (7.6) implies that u0n is bounded in L2(D), so that, after having
extracted a subsequence, we have un0 ⇀ u0 in L2(D) and u0n → u0 in H−1(D).
We deduce from (7.12) that

‖u0‖H−1(D) = 1, UV (t)u0 = 0 on {b2 > 0} for all t ∈ (0, T ).

The weak limit u0 belongs to the set

N = { f ∈ L2(D),UV (t) f = 0 on {b2 > 0} for all t ∈ (0, T )}.
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Then, by linearity, N is a closed vector subspace of L2(D). Inequality (7.9)
proves that N is finite dimensional and the time independence of V implies
that it is a subspace of H2(D) ∩ H1

0 (D), stable by the action of the operator
−�D+V . If not reduced to {0}, the spaceN hence contains an eigenfunction
of−�D + V , vanishing on {b2 > 0}. A classical uniqueness result for elliptic
operators then implies that this does not occur. This yields N = {0} and thus
u0 = 0, which contradicts ‖u0‖H−1(D) = 1.

7.3 Boundary observability inequality: proof of Theorem 1.3

We proceed as in the previous section: in a first step, we prove the following
weakened observability inequality:

Lemma 7.5 For all T > 0, there exists C > 0 such that for all u0 ∈ H1
0 (D),

we have

∥∥u0∥∥2H1(D)
≤ C
∫ T

0

∥∥∂n(UV (t)u0)
∥∥2
L2(
)

dt + C
∥∥u0∥∥2L2(D)

, (7.13)

With this lemma, we now conclude the proof of the observability inequal-
ity (1.6). We proceed by contradiction and suppose that the inequality

‖u0‖L2(D) ≤
∫ T

0

∥∥∂n(UV (t)u0)
∥∥2
L2(
)

dt (7.14)

is not satisfied. Then, there exists a sequence (u0n)n∈N in L2(D) such that

‖u0n‖L2(D) = 1,
∫ T

0

∥∥∂n(UV (t)u0n)
∥∥2
L2(
)

dt → 0, n →∞. (7.15)

Then, (7.13) implies thatu0n is bounded in H
1(D), so that, after having extracted

a subsequence, we have u0n ⇀ u0 in H1
0 (D) and u0n → u0 in L2(D).We deduce

from (7.15) that

‖u0‖L2(D) = 1, ∂n(UV (t)u0) = 0 on 
 for all t ∈ (0, T ).

From here, we discuss the two cases with different uniqueness arguments.
In the case V (t, z) = V (z), the proof of u = 0 follows exactly Sect. 7.2.2
(using unique continuation from the boundary for elliptic operators). The same
conclusion holds if we assume (UCPV,
,T ). This contradicts ‖u0‖L2(D) = 1,
and proves (7.14). Then, (7.14) and (7.13) imply the sought observability
inequality (1.6).
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Proof of Lemma 7.5 Assume that (7.13) is not satisfied. Then, there exists a
sequence u0n such that

‖u0n‖2H1(D)
= 1, (7.16)

‖u0n‖2L2(D)
→ 0, (7.17)∫ T

0
‖∂n(un(t))‖2L2(
)

dt → 0, (7.18)

where, as usual, un(t) = UV (t)u0n . Let us now fix χT ∈ C∞
c (R) such that

χT = 1 in a neighbourhood of [0, T ], ψ ∈ C∞(R), such that ψ = 0 on
(−∞, 1] and ψ = 1 on [2,+∞) and set

wn = B(Dt )χT (t)un, where B(Dt ) = Op1(ψ(H)
√
2H).

The properties of un translate into properties of wn , from which we shall
deduce the sought contradiction.

Lemma 7.6 We set A(Dt ) = Op1(
ψ(H)√
2H

). For any R > 0 and ε > 0, we have

∥∥∥∥
(
Dt + 1

2
�− V

)
wn

∥∥∥∥
L2((0,T )×D)

→ 0 (7.19)

‖A(Dt )wn‖L2((−R,R)×D) → 0, (7.20)

T/2+ oε(1) ≤ ‖wn‖2L2((−ε,T+ε)×D),
(7.21)

‖wn‖2L2((−R,R)×D)
≤ R + ε + oR,ε(1), (7.22)

‖∂n(A(Dt )wn)‖L2((−R,R)×∂D) ≤ C, (7.23)

‖∂n(A(Dt )wn)‖L2((ε,T−ε)×
) → 0. (7.24)

Now, as (wn) forms a bounded sequence of L2
loc(R×D), we associate to a

subsequence a microlocal measureμml = μ∞+μc as in Sect. 2.5. According
to (7.19) and Remark 2.6, the measure μml satisfies the conclusions of The-
orem 2.7. The measure μc vanishes as a consequence of (7.20). According
to (7.23), the sequence ∂n(A(Dt )wn) is bounded in L2((0, T ) × D), so we
may again extract another subsequence and associate a microlocal measure
μ∂
ml as in Sect. 2.8.3. According to (7.24), μ∂

ml = 0 on T ∗((ε, T − ε) × 
).
As a consequence of Lemma 7.2, μ∞ vanishes identically on Rt ×R

2
z ×S

2
H,ξ .

Thus,wn converges to zero in L2
loc(R×D), which is contradiction with (7.21).

This concludes the proof of Lemma 7.5. ! 
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Proof of Lemma 7.6 Take χ̃ ∈ C∞
c (R) such that χ̃ = 1 on (0, T ) and χT = 1

on supp(χ̃). Using that
(
Dt + 1

2�− V
)
un = 0, we have

∥∥∥∥
(
Dt + 1

2
�− V

)
wn

∥∥∥∥
L2(0,T×D)

≤
∥∥∥∥χ̃
(
Dt + 1

2
�− V

)
wn

∥∥∥∥
L2(R×D)

≤ ∥∥χ̃B(Dt )χ
′
T un
∥∥
L2(R×D)

+ ‖χ̃ [V, B(Dt )]χT un‖L2(R×D)

≤ C
∥∥χ ′

T un
∥∥
L2(R×D)

+ C ‖χT un‖L2(R×D) ≤ C
∥∥u0n∥∥L2(D)

→ 0,

as χ̃ = 0 on supp(χ ′
T ) and [V, B(Dt )] is bounded on L2(R × D). This

proves (7.19).
Let us now take χ̃ ∈ C∞

c (R) such that χ̃ = 1 on (−R, R). We have

‖A(Dt )wn‖L2((−R,R)×D) ≤
∥∥χ̃ Op1(ψ

2(H))χT un
∥∥
L2(R×D)

≤ ‖χT un‖L2(R×D) → 0,

which proves (7.20).
Let us fix now χ̌ ∈ C∞

c (−ε, T + ε) such that χ̌ = 1 in a neighbourhood of
[0, T ], and compute

‖wn‖2L2((−ε,T+ε)×D)

≥ ∥∥χ̌wn
∥∥2
L2(R×D)

= 〈B(Dt )χ̌
2B(Dt )χT un, χT un〉L2(R×D)

≥ 〈χ̌2 Op1(ψ
2(H))Dt (χT un), χT un〉L2(R×D)

+ 〈[B(Dt ), χ̌
2]B(Dt )χT un, χT un〉L2(R×D),

where |〈[B(Dt ), χ̌
2]B(Dt )χT un, χT un〉L2(R×D)| ≤ ‖χT un‖L2(R×D) → 0. As

a consequence, we have

‖wn‖2L2((−ε,T+ε)×D)
≥ 〈χ̌2 Op1(ψ

2(H))Dt (χT un), χT un〉L2(R×D) + o(1).

(7.25)

On the other hand, we have

〈χ̌2Dt (χT un), χT un〉L2(R×D) = 〈χ̌2 Op1(ψ
2(H))Dt (χT un), χT un〉L2(R×D)

+ 〈χ̌2 Op1(ψ
2(−H))Dt (χT un), χT un〉L2(R×D) + o(1),

(7.26)
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where

〈χ̌2 Op1(ψ
2(−H))Dt (χT un), χT un〉L2(R×D)

= 〈Op1(χ̌2(t)ψ2(−H)H)(χT un), χT un〉L2(R×D).

Since the classical symbol χ̌2ψ2(−H)H ∈ S1(R×R) satisfies χ̌2ψ2(−H)H
≤ 0, the sharp Gårding inequality then gives

〈χ̌2 Op1(ψ
2(−H))Dt (χT un), χT un〉L2(R×D) ≤ C‖χT un‖2L2(R×D)

.

With (7.26), this implies

〈χ̌2Dt (χT un), χT un〉L2(R×D)

≤ 〈χ̌2 Op1(ψ
2(H))Dt (χT un), χT un〉L2(R×D) + C‖χT un‖2L2(R×D)

≤ 〈χ̌2 Op1(ψ
2(H))Dt (χT un), χT un〉L2(R×D) + o(1).

This, combined with (7.25) now yields

‖wn‖2L2((−ε,T+ε)×D)
≥ 〈χ̌2Dt (χT un), χT un〉L2(R×D) + o(1)

≥ 〈χ̌2χT Dtun, χT un〉L2(R×D) + o(1)

≥
〈
χ̌2χT

(
−1

2
�+ V

)
un, χT un

〉
L2(R×D)

+ o(1)

≥ 1

2
〈χ̌2χT∇un, χT∇un〉L2(R×D) + o(1)

≥ T

2
‖∇u0n‖2L2(D)

+ o(1) = T

2
+ o(1).

This concludes the proof of (7.21). The proof of (7.22) follows the same
arguments.

Finally, according to (7.16) and the hidden regularity result of Proposi-
tion 8.1 the sequence ∂n(un) is bounded in L2((−R, R)× ∂D). Moreover, we
have

‖∂n(A(Dt )wn)‖L2((−R,R)×∂D) ≤
∥∥χ̃ Op1(ψ

2(H))χT ∂n(un)
∥∥
L2(R×∂D)

≤ ‖χT ∂n(un)‖L2(R×∂D) ≤ C.

This proves (7.23). The proof of (7.24) comes from a similar computation
combined with (7.18). ! 
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Appendix A: Energy estimates, regularization of solutions, and
localization on the characteristic set

In this appendix, we present general properties of the Schrödinger equation:

⎧⎨
⎩

1
i

∂u
∂t =

(−1
2�+ V

)
u + f, t ∈ (0, T ), z ∈ D,

u�∂D = 0,
u�t=0 = u0,

(8.1)

that are used throughout the article. None of these properties are specific to
the disk D, and they all could be stated as well on any smooth manifold
with boundary. We first recall basic energy estimates (and hidden regularity
of the trace) for the solution u of (8.1). Second, we define an appropriate
regularization operator. Third, we prove a localization property on the set
{2H = |ξ |2} for solutions of (8.1). Finally, we give a proof of Lemma 2.13.

First recall that for every V ∈ L1(−T, T ; L∞(D;C)), u0 ∈ L2(D) and
f ∈ L1(−T, T ; L2(D)), there is a unique solution u ∈ C0([−T, T ]; L2(D))

to (8.1). Moreover, there exists CT,V > 0 such that for all such u, f and for
all t, s ∈ [−T, T ] the following energy estimate holds:

‖u(t)‖L2(D) ≤ CT,V

(
‖u(s)‖L2(D) +

∫
I (s,t)

‖ f (σ )‖L2(D)dσ

)
. (8.2)

Above, I (s, t) denotes the interval ofRwhose endpoints are t, s. This estimate
is obtained by taking the inner product of the equation with u, taking the real
part and applying a Gronwall lemma, and using the fact that u(−t) also solves
a Schrödinger equation of the form (8.1) (with f, V replaced by their time-
reversed counterparts).

Energy estimates at the H1 level, though classical, are a little subtler.
Assume now that V ∈ L1(−T, T ;W 1,∞(D;C)) and let u be a smooth solution
of (8.1). Using the equation, one obtains:
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1

2

d

dt
‖∇u‖2L2(D)

= d

dt

〈
−�

2
u, u

〉

= 〈∂t u, (Dt − V )u − f 〉 + 〈(Dt − V )u − f, ∂t u〉
= 〈∂t u,−Vu − f 〉 + 〈−Vu − f, ∂t u〉 ,

which simplifies in:

1

2

d

dt
‖∇u‖2L2(D)

= 2Im

〈
−�

2
u, Vu + f

〉

= Im (〈∇u, V∇u〉 + 〈∇u, u∇V 〉 + 〈∇u,∇ f 〉) .

Gronwall’s lemma yields, for any t, s ∈ (−T, T ),

‖∇u(t)‖L2(D) ≤ e
∫
I (s,t) m(σ )dσ‖∇u(s)‖L2(D)

+2
∫
I (s,t)

e
∫
I (ζ,t) m(σ )dσ‖∇ f (ζ )‖L2(D)dζ, (8.3)

wherem(σ ) = ‖Im V (σ )‖L∞(D)+CP‖∇V (σ )‖L∞(D) and CP is the constant
in the Poincaré inequality. This estimate implies the well-posedness of (8.1)
in C0([−T, T ]; H1

0 (D)) for data u0 ∈ H1
0 (D) and f ∈ L1(−T, T ; H1

0 (D)).
Of course, it is possible to relax the L1

t W
1,∞
x regularity of the potential V ;

however, in the main part of the paper, much more regularity is required.
We also use the following classical “hidden regularity” estimate for the

restriction to the boundary of normal derivatives of solutions of (8.1), whose
proof can be found, for instance, in [39, p. 284] or [25, Lemma 2.1].

Proposition 8.1 For every T > 0 there exists a constant C > 0 such that,
for every u0 ∈ H1

0 (D) and every f ∈ L1(−T, T ; H1
0 (D)), the solution u ∈

C0([−T, T ]; H1
0 (D)) of (8.1) satisfies

‖∂nu‖L2((−T,T )×∂D) ≤ C
(‖∇u0‖L2(D) + ‖ f ‖L1(−T,T ;H1(D))

)
. (8.4)

These estimateswill be used to derive properties of the quadratic expression

〈u,Op1(a(z, εξ, t, ε2H))u〉,
where u is the extension by zero outsideD of a solution to (1.1) and a is smooth
and compactly supported in all variables. We prove that, up to a small error in
terms of ε, we may truncate u in time t and in frequency H , so that the new
functionw is ε-oscillating, and its corresponding quadratic expression is close
to the original one. This type of result is rather straightforward in the case of
a compact manifold without boundary and a time-independent potential.

123



Wigner measures and observability for the… 569

We assume u = UV (t)u0 is the solution to (1.1) with initial datum u0; take
g ∈ C∞

c (R), let T, δ > 0 and take χT ∈ C∞
c ((−δ − T, T + δ)) equal to 1 in

a neighborhood of [−T, T ]. Let us define

w(t) = g(ε2Dt )χT (t)UV (t)u0, and w0 = w�t=0. (8.5)

We have the following lemma concerning the map u0 �→ w0.

Lemma 8.2 The time T , the functions χT and g being fixed, and the functions
w and w0 being defined by (8.5), we have the following properties:

(1) There is C > 0 such that for all u0 ∈ L2(D), and all ε ∈ (0, 1], we have

‖w0‖L2(D) ≤ C‖u0‖L2(D), ‖ε∇w0‖L2(D) ≤ C‖u0‖L2(D).

(2) For each ε > 0, the operator u0 �→ w0 is compact on L2(D).
(3) If g = 1 in a neighborhood of zero, then w0 → u0 in L2(D) as ε → 0.
(4) For every a ∈ C∞

c (T ∗(R2 × R)) such that g = 1 in a neighborhood of
the H-support of a, for any ϕ ∈ C∞

c (−T, T ), we have

∥∥Op1 (a(x, εξ, t, ε2H)
)
ϕ
(
UV (t)u0−UV (t)w0)∥∥

L2(R×R2)
≤Cε‖u0‖L2(D),

and

∣∣∣〈UV (t)w0,Op1
(
a(x, εξ, t, ε2H)

)
ϕUV (t)w0〉

L2(R2×R)

− 〈UV (t)u0,Op1
(
a(x, εξ, t, ε2H)

)
ϕUV (t)u0

〉
L2(R2×R)

∣∣∣≤Cε‖u0‖2L2(D)
.

In the context of this paper, the reader can think of ε as being h or R−1. Note
that, as a consequence of conclusion (4) in the above lemma, the restriction
of semiclassical measures of the sequences UV (t)u0n and UV (t)w0

n (w
0
n being

computed from u0n according to (8.5)) to the set t ∈ (−T, T ), H ∈ {g = 1}
are the same. When tested with compactly supported symbols, we may thus
always assume that the sequence u0n is ε-oscillating.

Proof of Lemma 8.2 Using that u solves (1.1), the function w satisfies the
equation

⎧⎨
⎩

1
i

∂w
∂t =
(− 1

2�+V
)
w − ig(ε2Dt )χ

′
T u+[g(ε2Dt ), V ]χT u, t ∈ R, z ∈ D,

w�∂D = 0,
w�t=0 = w0.

(8.6)
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Using the energy estimate (8.2) for w with t = 0, and integrated over s ∈
(−T, T ), we obtain

‖w0‖2L2(D)
≤ C
∫ T

−T
‖w(t)‖2L2(D)

dt + C
∫
R

‖χ̃T g(ε
2Dt )χ

′
T u‖2L2(D)

dt

+C
∫
R

‖χ̃T [g(ε2Dt ), V ]χT u‖2L2(D)
dt,

where χ̃T ∈ C∞
c (R) such that χ̃T = 1 in a neighborhood of [−T, T ] and

χT = 1 on a neighborhood on supp(χ̃T ). Note moreover that χ̃T g(ε2Dt )χ
′
T =

OL2→L2(ε∞) and χ̃T [g(ε2Dt ), V ]χT = OL2→L2(ε2)‖∂t V ‖L∞ . We hence
obtain

‖w0‖2L2(D)
≤ C
∫ T

−T
‖w(t)‖2L2(D)

dt + Cε2
∫ T+δ

−T−δ

‖u(t)‖2L2(D)
dt.

We now notice that, by definition of w, we have

∫ T

−T
‖w(t)‖2L2(D)

dt≤
∫
R

‖χT g(ε
2Dt )χT u‖2L2(D)

dt≤C
∫ T+δ

−T−δ

‖u(t)‖2L2(D)
dt.

(8.7)

Since u solves (1.1), the energy estimate (8.2) for u with s = 0, integrated
over t ∈ (−T − δ, T + δ) then yields

∫ T+δ

−T−δ
‖u(t)‖2

L2(D)
dt ≤ C‖u0‖2

L2(D)

and thus, combined with the two above estimates, proves the first inequality
of Item (1).

Let us now consider the second estimate of Item (1). Using the energy
estimate (8.3) for w (satisfying (8.6)) with t = 0, and integrated over s ∈
(−T, T ), we obtain (with χ̃T defined above),

‖∇w0‖2L2(D)
≤ C

∫ T

−T
‖∇w(t)‖2L2(D)

dt

+ C
∫
R

‖χ̃T g(ε
2Dt )χ

′
T∇u‖2L2(D)

dt

+ C
∫
R

‖χ̃T [g(ε2Dt ), V ]χT∇u‖2L2(D)
dt.
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With B = χ̃T g(ε2Dt )χ
′
T or B = χ̃T [g(ε2Dt ), V ]χT , we have, using that u

solves (1.1),

1

2
‖Bu‖2L2(R×D)

= 〈B
(
−�

2

)
u, u〉L2(R×D)

= 〈BDtu, u〉L2(R×D) − 〈BVu, u〉L2(R×D).

For both choices of B,wehave |〈BVu, u〉L2(R×D)|≤Cε2
∫ T+δ

−T−δ
‖u(t)‖2

L2(D)
dt

≤ Cε2‖u0‖2
L2(D)

, and, since g is compactly supported, BDt = OL2→L2(ε−2),

so that |〈BDtu, u〉L2(R×D)| ≤ Cε−2‖u0‖2
L2(D)

. As a consequence, we obtain

‖∇w0‖2L2(D)
≤ C
∫ T

−T
‖∇w(t)‖2L2(D)

dt + Cε−2‖u0‖2L2(D)
. (8.8)

Integrating by parts, and using that w solves (8.6), we have

1

2

∫ T

−T
‖∇w(t)‖2L2(D)

dt =
∫ T

−T

〈
−�

2
w, w

〉
L2(D)

dt

=
∫ T

−T
〈(Dt − V )w, w〉L2(D)dt

+
∫ T

−T

〈(
ig(ε2Dt )χ

′
T u − [g(ε2Dt ), V ]χT u

)
, w

〉
L2(D)

dt.

We also have, as above,

‖Dtw‖2L2((−T,T )×D)
= ‖Dtg(ε

2Dt )χT u‖2L2((−T,T )×D)

≤ Cε−4
∫ T+δ

−T−δ

‖u(t)‖2L2(D)
dt ≤ Cε−4‖u0‖2L2(D)

,

together with the L2 estimate (8.7) for w. This, together with above estimates
and (8.8) finally implies ‖∇w0‖2

L2(D)
≤ Cε−2‖u0‖2

L2(D)
, which is the second

inequality of Item (1).
Item (2) directly follows from the second estimate of Item (1). To prove

Item (3), notice first that

‖u − w‖L2((−T,T )×D) ≤ ‖χ̃T (1− g(ε2Dt )χT )u‖L2(R×D) → 0, as ε → 0,

since 1− g(ε2H) = 0 on any compact set for ε sufficiently small. Then, since
w solves (8.6) and u solves (1.1), the functionw−u also satisfies (8.6) with the
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same right hand-side, but with initial data w0 − u0. Using the same estimates
as for the proof of Item (1), we now have

‖w0 − u0‖2L2(D)
≤ C
∫ T

−T
‖w(t)− u(t)‖2L2(D)

dt

+ C
∫
R

‖χ̃T g(ε
2Dt )χ

′
T u‖2L2(D)

dt + C
∫
R

‖χ̃T [g(ε2Dt ), V ]χT u‖2L2(D)
dt

≤ ‖u − w‖2L2((−T,T )×D)
+ Cε2‖u0‖2L2(D)

→ 0, as ε → 0,

which proves Item (3).
To prove Item (4), we now write A = Op1(a(x, εξ, t, ε2H)), and compute

∥∥Aϕ
(
UV (t)u0 −UV (t)w0)∥∥

L2(R×R2)
≤ ‖Aϕ (u − w)‖L2((−T,T )×R2)

+ ∥∥Aϕ
(
w(t)−UV (t)w0)∥∥

L2((−T,T )×R2)
.

Concerning the first term in the right hand-side, we have

‖Aϕ (u − w) ‖L2((−T,T )×R2) = ‖Aϕ(1− g(ε2Dt )χT )u‖L2(R×R2)

≤ CN εN‖u‖L2((−δ,T+δ)×D) ≤ CN εN‖u0‖L2(D),

since the supports of a and 1 − g are disjoint. Concerning the second term,
we notice that w(t) − UV (t)w0 satisfies (8.6) with the same right hand-side,
but with initial data 0. Thus, using the boundedness of A on L2, and the same
estimates as for the proof of Item (1), we have
∥∥Aϕ
(
w(t)−UV (t)w0)∥∥

L2(R×R2)
≤ C‖w(t)−UV (t)w0‖L2((−T,T )×D)

≤ Cε‖u0‖L2(D).

The last three estimates conclude the proof of the first estimate in Item (4).
Finally, with y = UV (t)w0, we have

∣∣∣〈y, Aϕy〉L2(R2×R) − 〈u, Aϕu〉L2(R2×R)

∣∣∣
=
∣∣∣〈y, Aϕ(y − u)〉L2(R2×R) − 〈y − u, Aϕu〉L2(R2×R)

∣∣∣
≤ ‖y‖L2(R2×R)‖Aϕ(y − u)‖L2(R2×R)

+ ‖u‖L2(R2×R)‖ϕA∗(y − u)‖L2(R2×R)

≤ Cε‖u0‖2L2(D)
,

according to the first estimate in Item (4) (together with Item (1)) applied
both to Aϕ and ϕA∗ (which, as well, is of the form ϕA∗ψ for some ψ ∈
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C∞
c (−T, T ), since the t-support of a is contained in (−T, T )). This concludes

the proof of the second estimate in Item (4), and hence, of the lemma. ! 
The following proposition states that solutions of (1.1) are localized on the

set {|ξ |2 = 2H} at high frequency.
Proposition 8.3 For all s ∈ (1/2, 1), for any a ∈ C∞

c (T ∗(R2×R)) supported
away from H = 0, respectively away from ξ = 0, for all ϕ ∈ C∞

c (R), there is
C > 0 such that for all solutions u to (1.1)–(1.2) with u0 ∈ L2(D), we have
for ε ∈ (0, 1],
∣∣∣∣∣
〈
u,Op1

(
a(z, εξ, t, ε2H)

( |ξ |2
2H

− 1

))
ϕu

〉
L2(R2×R)

∣∣∣∣∣ ≤ Cε1−s‖u0‖2L2(D)
,

(8.9)
respectively,
∣∣∣∣∣
〈
u,Op1

(
a(z, εξ, t, ε2H)

(
2H

|ξ |2 − 1

))
ϕu

〉
L2(R2×R)

∣∣∣∣∣ ≤ Cε1−s‖u0‖2L2(D)
.

(8.10)

As everywhere in the paper, the notation u stands both for the function on
C0([0, T ]; L2(D)) and its extension by zero to the whole R

2. Note that this
holds for allu0 ∈ L2(D), without assuming a priori thatu0 is ε-oscillating. This
comes from the nice properties of the regularization (8.5) proved inLemma8.2.

Proof of Proposition 8.3 Note first that it suffices to prove the estimate
∣∣∣∣∣
〈
u,Op1

(
a(z, εξ, t, ε2H)

(
ε2|ξ |2
2

− ε2H

))
ϕu

〉
L2(R2×R)

∣∣∣∣∣
≤ Cε1−s‖u0‖2L2(D)

. (8.11)

Estimates (8.9) and (8.10) then follow by changing a into a
ε2H

and a
ε2|ξ |2

respectively. According to Lemma 8.2 Item (4), (8.11) is equivalent to the
same estimate with u replaced by UV (t)w0 (extended by zero outside D),
where w0 is defined from u0 by (8.5). Writing A = Op1(a(z, εξ, t, ε2H)),

we have Op1(a(z, εξ, t, ε2H)(
ε2|ξ |2

2 − ε2H)) = A(− ε2�
2 − ε2Dt ), where �

is the Laplace operator on R
2. We thus obtain

Op1

(
a(z, εξ, t, ε2H)

(
ε2|ξ |2
2

− ε2H

))
ϕUV (t)w0

= Aϕ

(
−ε2�

2
− ε2Dt

)
UV (t)w0 + iε2Aϕ′UV (t)w0.
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Recall now that the extended function UV (t)w0 solves

ε2

2
∂n
(
UV (t)w0)⊗ δ∂D = ε2

(
−�

2
+ V − Dt

)
UV (t)w0,

so that

Op1

(
a(z, εξ, t, ε2H)

(
ε2|ξ |2
2

− ε2H

))
ϕUV (t)w0

= −ε2AϕVUV (t)w0 + ε2

2
Aϕ
(
∂n
(
UV (t)w0)⊗ δ∂D

)+ iε2Aϕ′UV (t)w0.

(8.12)

The operators Aϕ and Aϕ′ being bounded on L2(−T, T ; L2(D)), and accord-
ing to the energy estimate (8.2) for UV (t)w0 solution of (1.1), we have

‖ − ε2AϕVUV (t)w0 + iε2Aϕ′UV (t)w0‖L2(R2×R) ≤ Cε2‖w0‖L2(D)

≤ Cε2‖u0‖L2(D), (8.13)

after having used Lemma 8.2 Item (1), and it only remains to estimate

ε2
〈
UV (t)w0, Aϕ

(
∂n
(
UV (t)w0)⊗ δ∂D

)〉
L2(R2×R)

.

To this aim, we write, for every s > 0,

∣∣∣〈UV (t)w0, A ϕ
(
∂n
(
UV (t)w0)⊗ δ∂D

)〉
L2(R2×R)

∣∣∣
≤ ‖A‖L2((−T,T ),H−s(R2))→L2((−T,T )×R2) ‖UV (t)w0‖L2((−T,T )×D)

×‖∂nUV (t)w0 ⊗ δ∂D‖L2((−T,T ),H−s(R2)).

Moreover, for s >1/2, the standard trace estimates (see for instance [17, Chap-
ter 2, Section 4]) imply that

‖∂nUV (t)w0 ⊗ δ∂D‖L2((−T,T ),H−s(R2)) ≤ C
∥∥∂n (UV (t)w0)∥∥

L2((−T,T )×∂D)
,

which, by Proposition 8.1, is bounded by C
∥∥∇w0

∥∥
L2(D)

. Using the fact that

‖A‖L2((−T,T ),H−s(R2))→L2((−T,T )×R2) ≤ Cε−s,
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we now obtain∣∣∣ε2 〈UV (t)w0, Aϕ
(
∂n
(
UV (t)w0)⊗ δ∂D

)〉
L2(R2×R)

∣∣∣
≤ Cε1−s‖w0‖L2(D)

∥∥ε∇w0
∥∥
L2(D)

≤ Cε1−s‖u0‖2L2(D)
,

after having used Lemma 8.2 Item (1). This, together with (8.12) and (8.13),
concludes the proof of the proposition. ! 

Finally, we prove by dyadic decomposition a statement similar to that of
(8.9)–(8.10) for homogeneous functions.

Proposition 8.4 Recall that χ ∈ C∞
c (R) is a nonnegative cut-off function

that is identically equal to one near the origin. For all s ∈ (1/2, 1), all a ∈ S0
(see Definition 2.1) vanishing on the set {|ξ |2 = 2H} and for all ϕ ∈ C∞

c (R),
there is C > 0 such that for all u0 ∈ L2(D) and R large enough, we have

∣∣∣∣∣
〈
UV (t)u0,Op1

(
a(z, ξ, t, H)

(
1− χ

( |ξ |2 + |H |
R2

)))
ϕ(t)UV (t)u0

〉
L2(R2×R)

∣∣∣∣∣
≤ CRs−1‖u0‖2L2(D)

. (8.14)

Proof To see that, using the homogeneity of a for large R, we write the fol-
lowing decomposition:

a(z, ξ, t, H)

(
1− χ

( |ξ |2 + |H |
R2

))

=
∞∑
k=0

a(z, 2−k R−1ξ, t, 2−2k R−2H)

(
χ

( |ξ |2 + |H |
22(k+1)R2

)
− χ

( |ξ |2 + |H |
22k R2

))
.

For each k in the sum above, decompose further

χ

( |ξ |2 + |H |
22(k+1)R2

)
− χ

( |ξ |2 + |H |
22k R2

)
=
(

χ

( |ξ |2 + |H |
22(k+1)R2

)
− χ

( |ξ |2 + |H |
22k R2

))

×
(

χ

( |H |
22k−1R2

)
+ (1− χ)

( |H |
22k−1R2

))

and note that we must have |ξ |2 ≥ 22k−1R2 or |H | ≥ 22k−1R2 on the support
of this function.

If a vanishes on the set {|ξ |2 = 2H}, we can write

a(z, ξ, t, H) = b(z, ξ, t, H)

(
2H

|ξ |2 − 1

)
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where |ξ |2 ≥ 22k−1R2 and

a(z, ξ, t, H) = b(z, ξ, t, H)

( |ξ |2
2H

− 1

)

where |H | ≥ 22k−1R2. Applying (8.9) and (8.10) for each k (with ε =
2−k R−1), we finally obtain

〈
UV (t)u0,Op1

(
a(z, ξ, t, H)

(
1− χ

( |ξ |2 + |H |
R2

)))
UV (t)u0

〉
L2(R2×R)

≤ C
+∞∑
k=0

Rs−12k(s−1)‖u0‖2L2(D)
, (8.15)

which proves the proposition.

To conclude this section, we give a proof of Lemma 2.13.

Proof of Lemma 2.13 Note that operator A(Dt )ϕ is bounded on L2(R × D).
Moreover, we have

‖∇A(Dt )ϕu‖2L2(R×D)
= 〈−�A(Dt )ϕu, A(Dt )ϕu〉L2(R×D)

= 〈A(Dt )ϕ(−�)u, A(Dt )ϕu〉L2(R×D)

+ 〈[−�, A(Dt )ϕ]u, A(Dt )ϕu〉L2(R×D). (8.16)

One the one hand, we have

∣∣〈[−�, A(Dt )ϕ]u, A(Dt )ϕu〉L2(R×D)

∣∣
= ∣∣−〈2∇ϕ · ∇u + u�ϕ, A(Dt )

2ϕu〉L2(R×D)

∣∣
≤ 2
∣∣〈u, div

{∇ϕ
(
A(Dt )

2ϕu
)}〉L2(R×D)

∣∣+ C‖ϕ̃u‖2L2(R×D)

≤ 2
∣∣〈u,∇ϕ · ∇ (A(Dt )

2ϕu
)〉L2(R×D)

∣∣+ C‖ϕ̃u‖2L2(R×D)

≤ ε‖∇A(Dt )ϕu‖2L2(R×D)
+ C(1+ ε−1)‖ϕ̃u‖2L2(R×D)

for some ϕ̃ equal to one on the support of ϕ, for all ε > 0.
On the other hand, since u solves (1.1), we have

∣∣〈A(Dt )ϕ(−�)u, A(Dt )ϕu〉L2(R×D)

∣∣
= ∣∣〈A(Dt )ϕ(2Dt − V )u, A(Dt )ϕu〉L2(R×D)

∣∣
≤ ∣∣〈A(Dt )ϕ(2Dt − V )u, A(Dt )ϕu〉L2(R×D)

∣∣
≤ 2
∣∣〈A(Dt )

2ϕDtu, ϕu〉L2(R×D)

∣∣+ C‖ϕ̃u‖2L2(R×D)
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≤ 2
∣∣〈A(Dt )

2Dtϕu, ϕu〉L2(R×D)

∣∣+ C‖ϕ̃u‖2L2(R×D)

≤ C‖ϕ̃u‖2L2(R×D)
,

since A(Dt )
2Dt = 1/2Op1(ψ

2(H)) is bounded. Collecting these estimates
in (8.16), recalling (8.2) that ‖ϕ̃u‖2

L2(R×D)
≤ C‖u0‖2

L2(D)
, and taking ε suffi-

ciently small concludes the proof of Lemma 2.13. ! 

Appendix B: Time regularity of Wigner measures

In this section we present a proof of the following (general) result on time
regularity of semiclassical measures associated to solutions of the Schrödinger
equation (1.1). Even if not stated here, its microlocal counterpart also holds.

Proposition 9.1 Let μsc be obtained as a limit (2.5). Then there exists μ ∈
L∞(Rt ;M+(T ∗R2)) such that, for every a ∈ C∞

c (T ∗R2 × T ∗R) we have:

∫
T ∗R2×T ∗R

a (z, ξ, t, H) μsc (dz, dξ, dt, dH)

=
∫
R

∫
T ∗R2

a

(
z, ξ, t,

|ξ |2
2

)
μ (t, dz, dξ) dt.

Note that if the potential V is complex valued, we only have μ ∈
L∞loc(Rt ;M+(T ∗R2)).

Proof Let uh(·, t) := UV (t)u0h and note that the Wigner distributions:

W̃ h
uh (t) : C∞

c

(
T ∗R2) % l �−→ 〈UV (t) u0h,Oph (l)UV (t) u0h

〉
L2(R2)

∈ C

are uniformly bounded in L∞(Rt ;D′(T ∗R2)). Hence, possibly after extract-
ing a subsequence (and having used a diagonal extraction argument), we can
assume that, for every b ∈ C∞

c (T ∗R2 × R):

lim
h→0+

∫
R

〈
UV (t) u0h,Oph (b (·, t))UV (t) u0h

〉
L2(R2)

dt

=
∫
R

∫
T ∗R2

b (z, ξ, t) μ̃sc (t, dz, dξ) dt.

Moreover, using the sharp Gårding inequality, we see that the limiting Wigner
distribution is a nonnegative measure μ̃sc ∈ L∞(Rt ;M+(T ∗R2)). We next
show that for any b ∈ C∞

c (T ∗R2 × R) with b ≥ 0 one has:
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∫
T ∗R2×T ∗R

b (z, ξ, t) μsc (dz, dξ, dt, dH)

≤
∫
R

∫
T ∗R2

b (z, ξ, t) μ̃sc (t, dz, dξ) dt. (9.1)

To see this, let χ ∈ C∞
c (R) be a cut-off function satisfying 0 ≤ χ ≤ 1,

strictly positive in (−3/2, 3/2), vanishing outside that interval, and such that
χ�(−1,1) ≡ 1. Write, for R > 0, χR := χ(·/R) and σR := √

1− χR (which
we may also assume smooth). Then we have:

〈
uh,Oph (b) χR

(
h2Dt

)
uh
〉
L2(R2×R)

= 〈uh,Oph (b) uh
〉
L2(R2×R)

+ kh,R (b)+ O (h) , (9.2)

where:

kh,R (b) := 〈σR
(
h2Dt

)
uh,Oph (b) σR

(
h2Dt

)
uh
〉
L2(R2×R)

.

Taking limits in (9.2) as h → 0+ we find that:

∫
T ∗R2×T ∗R

b (z, ξ, t) χR (H) μsc (dz, dξ, dt, dH)

=
∫
R

∫
T ∗R2

b (z, ξ, t) μ̃sc (t, dz, dξ) dt + lim
h→0+

kh,R (b) . (9.3)

But clearly, as b ≥ 0, we always have

lim
h→0+

kh,R(b) = lim
h→0+

∫
R

W̃ h
σR(h2Dt)uh

(b (t, ·)) dt ≥ 0,

for every R > 0. Taking this into account and letting R →∞ in (9.3) proves
(9.1).

Now, as a consequence of (9.1) we have that the image of μsc under
the projection onto the H -component is of the form μ(t, ·)dt for some
μ ∈ L∞(Rt ;M+(T ∗R2)). The disintegration theorem then ensures that μsc
can be written as:

μsc (dz, dξ, dt, dH) = μz,ξ,t (dH) μ (t, dz, dξ) dt,

where, for μ-amost every (z, ξ), μz,ξ,t is a probability measure on R. Since
μsc is supported on the characteristic set |ξ |2 = 2H (see Proposition 8.3), we
conclude that μz,ξ,t (dH) = δ|ξ |2/2(dH) and the result follows. ! 
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Appendix C: From action-angle coordinates to polar coordinates

Here we develop the technical calculations leading to the definitions of the
operators At,h2Dt

(P) and Ãt,h2Dt
(P) used as a black-box in the paper. The

point is that our “action-angle” coordinates (s, θ, E, J ), well adapted to inte-
grate the dynamics of the billiard flow, are not so convenient to express the
Dirichlet boundary condition (v(z) = 0 for |z| = 1). Actually the best coordi-
nates inwhich towrite the boundary condition are the polar coordinates (which
below will be written as (x = −r sin u, y = r cos u)) since the boundary is
simply expressed as the set {r = 1}.

Let P(s, θ, E, J ) be a function expressed in the new coordinates and let
U be the Fourier integral operator defined in (3.1). The technical calculations
done below are aimed at understanding howU ∗Oph(P)U acts in polar coor-
dinates; in particular, under which conditions on the symbol P the boundary
condition is preserved by U ∗Oph(P)U .

For our purposes we need to understand the operatorU ∗Oph(P)U modulo
O(h2). Ideally we would like to separate it into a “tangential part” (involving
only angular derivation ∂

∂u ) and a “radial part” involving the radial derivative
∂
∂r

in a simple way. Below we calculate the action of the operatorU ∗Oph(P)U
on a plane wave

eξ (z) := ei
(ξx x+ξy y)

h

(where we use z = (x, y), ξ = (ξx , ξy) and |ξ |2 = ξ2x + ξ2y ) and apply the
method of stationary phase. The length of the calculation comes from the fact
that we explicitly need the term of order h in the expansion.

In this section, we shall assume that P(s, θ, E, J ) satisfies the following
properties.

Assumption 10.1 Assume first that P(s, θ, E, J ) is a smooth compactly sup-
ported function (possibly depending on h), with support away from {E = 0}
and inside {|J | < E}, and being 2π -periodic in the variable θ . We assume
further that it satisfies the following estimates

‖∂α
s ∂

β
θ ∂

γ

E∂δ
J P‖∞ ≤ Cα,β,γ,δh

−δ, for all α, β, γ, δ ∈ N.

The function P may also depend on the time variable t and its dual H , but,
in this section, we omit them from the notation since they are transparent in the
calculation. Typical symbols P for which the calculations below are needed
can be found in (4.12) and (4.13).
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Using the notation

a(E) = √
E, (s0, θ0, |ξ |, j0) = �−1(x, y, ξx , ξy),

and s(x, y, θ) = −x sin θ + y cos θ,

recalling the expressions of U and U ∗ in (3.2)–(3.3), and unfolding all the
integrals, we write

U ∗Oph(P)U eξ (x, y)

= (2πh)−5
∫

P
(
s, θ, E ′, j

)
e
i j (θ−θ ′)

h e
i E ′(s−s′)

h e−i
S(x ′,y′,θ ′,s′,E)

h ei
(ξx x ′+ξy y′)

h ei
S(x,y,θ,s,E ′′)

h

× a(E)a(E ′′) dθ ds dE ′′ dx ′ dy′ dE dθ ′ ds′ dE ′ d j

= (2πh)−3
∫

P
(
s, θ, E ′, j

)
e
i j (θ−θ0)

h e
i E ′(s−s′)

h ei
s′ |ξ |
h ei

S(x,y,θ,s,E ′′)
h

a(|ξ |)
|ξ |

× a(E ′′) dθ ds dE ′′ ds′ dE ′ d j

= (2πh)−2
∫

P (s, θ, |ξ |, j) e i j (θ−θ0)

h ei
s|ξ |
h ei

S(x,y,θ,s,E ′′)
h

a(|ξ |)
|ξ | a(E ′′) dθ dE ′′ ds d j

= (2πh)−1
∫

(P (s(x, y, θ), θ, |ξ |, j) a(|ξ |)
−ih∂s P (s(x, y, θ), θ, |ξ |, j) a′(|ξ |))

× e
i j (θ−θ0)

h ei
−|ξ |x sin θ+|ξ |y cos θ

h
a(|ξ |)
|ξ | dθ d j + O(h2)

inf P(s,θ,E,J ) 
=0 |E |2 .

By standard estimates on pseudodifferential operators, the remainder termwill
correspond to an estimate in the L2

comp → L2
loc topology of operators.

Letting (x, y) = (−r sin u, r cos u), we have r = √
x2 + y2, u =

arccos y/r and s(x, y, θ) = r cos(θ − u). Modulo O(h2)
inf P(s,θ,E,J ) 
=0 |E |2 , we are

thus left with

U ∗Oph(P)U eξ (x, y)

= (2πh)−1 a(|ξ |)
|ξ |
∫

(P (r cos(θ − u), θ, |ξ |, j) a(|ξ |)

− ih∂s P (r cos(θ − u), θ, |ξ |, j) a′(|ξ |))e i j (θ−θ0)

h ei
|ξ |r cos(θ−u)

h dθd j

= (2πh)−1
∫

(P (r cos(θ − u), θ, |ξ |, j)

− ih

2|ξ |∂s P (r cos(θ − u), θ, |ξ |, j) e i j (θ−θ0)

h ei
|ξ |r cos(θ−u)

h dθd j.
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Remark 10.2 Note that in the above integral, the functions integrated are all

2π -periodic in the variable θ except for the oscillating factor ei
jθ
h . This integral

has to be interpreted in one of the following two (equivalent) ways:

• either in the sense of oscillatory integrals [29, Section 7.8]: the integral
over θ ∈ R is the Fourier transform of the periodic function of θ , seen
as a tempered distribution. The result is a tempered distribution given by
a linear combination of Dirac masses carried by j ∈ hZ. The integration
with respect to j has to be interpreted as a duality product;

• or in the sense of Fourier series: assuming j ∈ hZ, the function of θ is 2π -
periodic and the integral over θ takes place on R/2πZ, i.e. on any period.
The integral with respect to j has then to be understood as a discrete sum
over hZ.

Using for instance the second approach of this remark, we now apply sta-
tionary phase w.r.t. θ (while j ∈ hZ is kept fixed, since our symbols may
be rapidly oscillating in j). We start with the P term (the ih∂s P-term can be
treated exactly the same way). Fixing j and looking at the θ -integral, we let

I = (2πh)−1/2
∫
R/2πZ

P (r cos(θ − u), θ, |ξ |, j) e i j (θ−θ0)

h ei
|ξ |r cos(θ−u)

h dθ.

(10.1)
The phase in I has 2 critical points θ = u + θ1, u + θ2, where θk are the

solutions of j − |ξ |r sin θ = 0. Since we are assuming that P(s, θ, E, j) is
supported in {| j | < E}, these two solutions are distinct for r close to 1, and cor-
respond to non-degenerate stationary points (in all that followswe consider that
r is close to 1 since this calculation only serves to understand U ∗Oph(P)U
near the boundary of the disk). We will denote by θ1(r, E, j), θ2(r, E, j) the
solutions of j − Er sin θ = 0. To fix ideas, θ1 will be the one with cos θ1 > 0
and θ2 the one with cos θ2 < 0 (that is, θ1 ∈ (−π/2, π/2), θ2 ∈ (π/2, 3π/2)).

We let χk be smoth cutoff functions such that χk = 1 on a neighborhood
of θk , for k = 1, 2 and such that supp(χ1) ⊂ (−π/2, π/2) and supp(χ2) ⊂
(π/2, 3π/2). Using the non-stationary phase lemma, we have modulo O(h∞)

I = (2πh)−1/2
∫

χ1(θ − u)P (r cos(θ − u), θ, |ξ |, j) e i j (θ−θ0)

h ei
|ξ |r cos(θ−u)

h dθ

+ (2πh)−1/2
∫

χ2(θ − u)P (r cos(θ − u), θ, |ξ |, j) e i j (θ−θ0)

h ei
|ξ |r cos(θ−u)

h dθ.

Below, E will always take the value E = |ξ |.
We will work on the integral I by applying the following lemma (which

follows from the method of stationary phase):
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Lemma 10.3 Let

I f =
∫

χ(θ) f (θ)ei
S(θ)
h dθ,

where S : R → R is a smooth function having only one critical point θc,
which is non degenerate; where χ is a smooth compactly supported function
which is constant in a neighborhood of θc; and where f is a smooth function.

Then, letting a = f (θc), b = f ′(θc)
S′′(θc) and c = 1

2 (
f ′′(θc)
S′′(θc)2 −

S(3)(θc) f ′(θc)
S′′(θc)3 ), we

have

(i) I f = a
∫

χ(θ)ei
S(θ)
h dθ+b

∫
χ(θ)S′(θ)ei

S(θ)
h dθ+c

∫
χ(θ)S′(θ)2ei

S(θ)
h dθ

+ O(h2+1/2);
(ii) I f =

(
a + ihcS′′(θc)

) ∫
χ(θ)ei

S(θ)
h dθ + O(h2+1/2).

Proof (i) The functions f and g : θ �→ a + bS′(θ)+ cS′(θ)2 coincide up to
order 2 at θc. The method of stationary phase tells us that I f and Ig coincide
modulo O(h2+1/2) = O(h5/2).

Item (ii) is obtained from (i) by integration by parts, noting that S′(θ)ei
S(θ)
h

is the derivative of h
i e

i S(θ)
h . ! 

In what follows, this lemma will be applied with S(θ) = j (θ − θ0) +
Er cos(θ − u), f (θ) = P (r cos(θ − u), θ, E, j), χ(θ) = χk(θ − u) (k =
1, 2), θc = u + θk . Starting with

S′(θ) = j − Er sin(θ − u) ∼ Er

[
− cos θk(θ − u − θk)+ sin θk

2
(θ − u − θk)

2
]

(10.2)

(modulo O(θ − u − θk)
3), we have

P(r cos(θ−u), θ)∼ P(r cos θk, u+θk)− S′(θ)

Er cos θk

d

dθ
P(r cos θk, u+θk)

+ S′(θ)2

(Er cos θk)2

[
sin θk

2 cos θk

d

dθ
P(r cos θk, u + θk)+ 1

2

d2

dθ2
P(r cos θk, u + θk)

]
.

(10.3)

We have momentarily dropped the j and E variables from the argument of P
since they are fixed in the upcoming calculation.
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Wewant to apply themethod of Lemma 10.3with a = ak = P(r cos θk, u+
θk) (k = 1, 2),

c = ck = 1

(Er cos θk)2

[
sin θk

2 cos θk

d

dθ
P(r cos θk, u + θk)

+1

2

d2

dθ2
P(r cos θk, u + θk)

]
.

The lemma yields that

I = (2πh)−1/2(a1 + ihc1S
′′(u + θ1))

∫
χ1(θ − u)e

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ

+(2πh)−1/2(a2 + ihc2S
′′(u + θ2))

∫
χ2(θ − u)e

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ + O(h2).

(10.4)

Remark 10.4 Denoting by ∂1 = ∂s, ∂2 = ∂θ (to avoid possible confusion), we
have

d

dθ
P(r cos θ, u + θ) = ∂2P(r cos θ, u + θ)− r sin θ ∂1P(r cos θ, u + θ),

and

d2

dθ2
P(r cos θ, u + θ) = ∂22 P(r cos θ, u + θ)− r cos θ ∂1P(r cos θ, u + θ)

−r sin θ ∂2∂1P(r cos θ, u + θ)

+ r2 sin2 θ ∂21 P(r cos θ, u + θ).

Remark 10.5 Important remark about symmetry. We keep denoting θk for
θk(r, E, j). We first note that θ2 = π − θ1, cos θ1 = − cos θ2, sin θ1 = sin θ2.

Moreover, if P satisfies the symmetry condition (B) of Definition 4.1, we
have for r = 1 (restoring in our notation the dependence of P on the full set
of variables)

P(cos θ1, u + θ1, E, j) = P(cos θ2, u + θ2, E, j).

And similarly for all partial derivatives of P if we assume the stronger sym-
metry condition (C) (in Definition 4.1).

Here we don’t necessarily want to assume that P is symmetric; but, moti-
vated by the previous remark, we introduce the functions Pσ and Pα , the
symmetric and antisymmetric parts of P respectively:
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Pσ (r, θ, E, j) := P(r cos θ1, θ+θ1, E, j)+P(−r cos θ1, θ+π−θ1, E, j)

2

= P(r cos θ1, θ + θ1, E, j)+ P(r cos θ2, θ + θ2, E, j)

2
,

(10.5)

and

Pα(r, θ, E, j) := P(r cos θ1, θ+θ1, E, j)−P(−r cos θ1, θ+π − θ1, E, j)

2

= P(r cos θ1, θ + θ1, E, j)− P(r cos θ2, θ + θ2, E, j)

2
,

(10.6)

for θ1 = θ1(r, E, j), θ2 = θ2(r, E, j) defined previously, so that

P(r cos θ1, θ + θ1, E, j) = Pσ (r, θ, E, j)+ Pα(r, θ, E, j),

P(r cos θ2, θ + θ2, E, j) = Pσ (r, θ, E, j)− Pα(r, θ, E, j).

Working from the expression (10.4), the terms

(2πh)−1/2a1

∫
χ1(θ − u)e

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ

+(2πh)−1/2a2

∫
χ2(θ − u)e

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ

maybe grouped as follows:

(2πh)−1/2
∫

χ1(θ − u)P(r cos θ1, u + θ1, E, j)e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ

+(2πh)−1/2
∫

χ2(θ − u)P(r cos θ2, u + θ2, E, j)e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ

= (2πh)−1/2Pσ (r, u, E, j)
∫ 2π

0
e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ

+(2πh)−1/2Pα(r, u, E, j)

(∫
χ1(θ − u)e

i j (θ−θ0)

h ei
|ξ |r cos(θ−u)

h dθ

−
∫

χ2(θ − u)e
i j (θ−θ0)

h ei
|ξ |r cos(θ−u)

h dθ

)
. (10.7)

Applying again Lemma 10.3 (this time with the function f (θ) = cos(θ −
u)), this expression can be rewritten modulo O(h2) as
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(2πh)−1/2
∫ 2π

0
Pσ (r, u, E, j)e

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ

+(2πh)−1/2
∫ 2π

0

Pα(r, u, E, j)

E cos θ1(r, E, j)(
E cos(θ − u)− ih

1

2r cos2 θ1(r, E, j)

)

×e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ.

With the change of variable θ − θ0 � u − θ , this may also be written as

(2πh)−1/2
∫ 2π

0
Pσ (r, u, E, j)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθ

+(2πh)−1/2
∫ 2π

0

Pα(r, u, E, j)

E cos θ1(r, E, j)(
E cos(θ − θ0)− ih

1

2r cos2 θ1(r, E, j)

)

×e
i j (u−θ)

h ei
Er cos(θ−θ0)

h dθ. (10.8)

We note that ei
Er cos(θ−θ0)

h = ei
(ξx x ′+ξy y′)

h = eξ (x ′, y′) if (x ′, y′) =
(−r sin θ, r cos θ), and E cos(θ − θ0)ei

Er cos(θ−θ0)

h = hDrei(ξx x
′+ξy y′)/h where

Dr = 1
i ∂r .

Terms of order h. Apart from the term of order h arising in the last line of
(10.8), other terms of order h in (10.4) come from evaluation of the integrals

(2πh)−1/2ihc1S
′′(u + θ1)

∫
χ1(θ − u)e

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ

+ (2πh)−1/2ihc2S
′′(u + θ2)

∫
χ2(θ − u)e

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ.

This is equal to:

∑
k=1,2

{
(2πh)−1/2ih

∫
χk(θ − u)

1

(Er cos θk)

×
[

sin θk

2 cos θk

d

dθ
P(r cos θk, u + θk)+ 1

2

d2

dθ2
P(r cos θk, u + θk)

]

×e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθ

}
. (10.9)
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Here d
dθ

P(r cos θk, u + θk) and d2

dθ2
P(r cos θk, u + θk) may be replaced by

their expressions in terms of partial derivatives of P , as in Remark 10.4.
To summarize our computations, we need to introduce some notation.

Definition 10.6 Assume P satisfies Assumption 10.1. Then, we define by
I (P), I I (P), I I I (P), I V (P) the operators whose action on eξ at the point
(x, y) = (−r sin u, r cos u) is given as follows: for ξ = (ξx , ξy), E = |ξ |, we
have (referring to Remark 10.2 for the meaning of the integrals)

I (P)eξ (x, y) = 1

2πh

∫
A(r, u, E, j)e

i j (u−θ)
h eξ (−r sin θ, r cos θ)dθd j

I I (P)eξ (x, y) = 1

2πh

∫
B(r, u, E, j)e

i j (u−θ)
h hDreξ (−r sin θ, r cos θ)dθd j

I I I (P)eξ (x, y) = 1

2πh

∫
C(r, u, E, j)e

i j (u−θ)
h eξ (−r sin θ, r cos θ)dθd j

I V (P)eξ (x, y)= 1

2πh

∫
D(r, u, E, j)e

i j (u−θ)
h hDreξ (−r sin θ, r cos θ)dθd j,

where

A(r, u, E, j) = Pσ (r, u, E, j),

B(r, u, E, j) = Pα(r, u, E, j)

E cos θ1(r, E, j)
,

C(r, u, E, j) = − 1

2E
∂s P

σ (r, u, E, j)+ cσ (r, u, E, j)

− 1

2r cos2 θ1(r, E, j)

Pα(r, u, E, j)

E cos θ1(r, E, j)
,

D(r, u, E, j) = − 1

2E

∂s Pα(r, u, E, j)

E cos θ1(r, E, j)
+ cα(r, u, E, j)

E cos θ1(r, E, j)
,

(10.10)

with the notation Pσ , Pα of (10.5), (10.6), and where, in addition

c(s, θ, E, j) = 1

(Es)

[
j

2Es

(
∂2P(s, θ, E, j)− j

E
∂1P(s, θ, E, j)

)

+1

2

(
∂22 P(s, θ, E, j)− s∂1P(s, θ, E, j)− j

E
∂2∂1P(s, θ, E, j)

+ j2

E2 ∂21 P(s, θ, E, j)

)]
. (10.11)
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Remark first that the expression of c(s, θ, E, j) is calculated so that

c(r cos θk, u + θk, E, j)

= 1

(Er cos θk)

[
sin θk

2 cos θk

d

dθ
P(r cos θk, u + θk)

+1

2

d2

dθ2
P(r cos θk, u + θk)

]
,

which is the expression appearing in the last lines of (10.9).
Second, note that A, B,C, D are real-valued functions if P is.
With this notation in hand, we can now summarize our calculations in the

following proposition.

Proposition 10.7 Assume P satisfies Assumption 10.1. Then, modulo a term

of order O(h2)
inf P(s,θ,E,J ) 
=0 |E |2 in the L2

comp → L2
loc topology of operators,

U ∗Oph(P)U satisfies

U ∗Oph(P)U = I (P)+ I I (P)+ ih I I I (P)+ ih I V (P).

Let us now check that operators of the form I (P), I I (P), I I I (P), I V (P)

belong to a reasonable class of spatial pseudodifferential operators.

Lemma 10.8 Let M(r, u, E, j) be a smooth (possibly h-dependent) function,
compactly supported in r, E, j , 2π -periodic in u, supported in {| j | < E} and
away from {r = 0} and {E = 0}. Assume M satisfies estimates of the form

sup
h,r,u,E, j

hγ+δ|∂α
r ∂β

u ∂
γ

E∂δ
j M | < +∞, for all α, β, γ, δ ∈ N. (10.12)

Then the operators defined by their action on eξ at (x, y) = (−r sin u, r cos u)

by

Âeξ (x, y) = 1

2πh

∫
M(r, u, |ξ |, j)e i j (u−θ)

h eξ (−r sin θ, r cos θ)dθd j,

and

B̂eξ (x, y) = 1

2πh

∫
M(r, u, |ξ |, j)e i j (u−θ)

h hDreξ (−r sin θ, r cos θ)dθd j

are semiclassical pseudodifferential operators of the form mh(z, hDz) where
mh satisfies estimates of the form
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sup
h,z,ξ

h|β||∂α
z ∂

β
ξ mh| < +∞, for all α, β ∈ N

2. (10.13)

In particular, these operators are bounded on L2(R2).

Proof Let us first treat the case of Â. Define κ(r, u) = (−r sin u, r cos u). The
function mh is given by the formula

mh(κ(r, u), hξ) = 1

2π

∫
M(r, u, h|ξ |, hj)ei j (u−θ)eiξ ·(κ(r,θ)−κ(r,u))dθd j.

The proof of [30, Theorem 18.1.17] applies to prove the desired estimate on
mh .

The operator B̂ is an operator of the previous form, composed with hDr .
Since M is assumed to be compactly supported in E , the desired estimate
also holds for B̂. The bounded follows from the Calderón–Vaillancourt theo-
rem [18].

Coming back to the operators defined in Definition 10.6, we have obtained
the following corollary.

Corollary 10.9 Assume P satisfies Assumption 10.1. Then, the operators
I (P), I I (P), I I I (P), I V (P) of Definition 10.6 are semiclassical pseudodif-
ferential operators of the form mh(z, hDz) where mh satisfies estimates of the
form (10.13). In particular, these operators are bounded on L2(R2).

Appendix D: The operators At,h2 Dt
(P) and Ãt,h2 Dt

(P)

We recall that the operators wemanipulate are given byU ∗Oph(P(s, θ, E, J,
t, hH))U where the symbol P(s, θ, E, J, t, H) is typically of the form (4.12)
or (4.13), and thus satisfies Assumption 10.1 with respect to the space variable
(or more precisely Assumption 11.1 below). The goal of this Appendix is to
understand further (and up to order two in powers of h) howU ∗Oph(P)U acts
on functions vanishing on the boundary. The euclidean laplacian�R2 does not
preserve the set of functions vanishing on the boundary. That is why we would
like to eliminate the dependence of P on the variable E .We use the fact that the
semiclassical measures associated with solutions of the Schrödinger equation
are supported on {E2 = 2H}, to replace E by

√
2H in the calculations. This

induces an additional error term, that will be shown to converge to 0 in Lemma
11.5 below.

This means, in particular, that we need to write explicitly the (t, H) depen-
dence of the symbols (skipped in Appendix A above). As a consequence, the
functions A, B,C, D defined from P in Definition 10.6 now also depend on t
and H since P does.
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The assumptions made on the symbol P in this section are similar to
Assumption 10.1 above. We recall that typical symbols P under interest here
are given by (4.12) and (4.13).

Assumption 11.1 Assume first that the function P is a smooth compactly
supported function in s, E, j, t, H (possibly depending on h), with support in
{| j | < E} and away from { j = 0, s = 0} ∪ {H = 0}, and being 2π -periodic
in the variable θ . We assume further that it satisfies the following estimates:

sup
h,s,u,E, j,t,H

hνhδ|∂α
s ∂

β
θ ∂

γ

E∂δ
j ∂

μ
t ∂ν

H P| < +∞, for all α, β, γ, δ, ν, μ ∈ N.

In the following formal calculations, it will be convenient to introduce the
following notation.

Definition 11.2 If P depends on t and H , we write It,H (P) := I (P),
I It,H (P) := I I (P), I I It,H (P) := I I I (P), I Vt,H (P) := I V (P): they
are t, H -families of operators defined in Definition 10.6. We then denote by
At,H (P) the family of operators given by

At,H (P) = It,H (P)+ I It,H (P)+ ih I I It,H (P)+ ih I Vt,H (P). (11.1)

We have shown (see Proposition 10.7) that for any given (t, H), At,H (P)

coincides withU ∗Oph(P(·, t, H))U (where the quantification is only in the

variables (s, θ, E, J )) modulo O(h2)
inf P(s,θ,E,J ) 
=0 |E |2 in the L

2
comp → L2

loc topology

of operators.
We now define a modified operator Ãt,H (P) whose action on functions

vanishing on ∂D is easier to understand.

Definition 11.3 We denote by Ãt,H (P) the family of operators

Ãt,H (P) = Ĩt,H (P)+ Ĩ I t,H (P)+ i h̃ I I I t,H (P)+ ih Ĩ V t,H (P), (11.2)

where the four operators involved are defined by their action on eξ at the point
(x, y) = (−r sin u, r cos u) is given by

Ĩt,H (P)(eξ )(x, y)

= 1

2πh

∫
A(r, u,

√
2H , j, t, H)e

i j (u−θ)
h eξ (−r sin θ, r cos θ)dθd j,

Ĩ I t,H (P)(eξ )(x, y)

= 1

2πh

∫
B(r, u,

√
2H , j, t, H)e

i j (u−θ)
h hDreξ (−r sin θ, r cos θ)dθd j,
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Ĩ I I t,H (P)(eξ )(x, y)

= 1

2πh

∫
C(r, u,

√
2H , j, t, H)e

i j (u−θ)
h eξ (−r sin θ, r cos θ)dθd j,

Ĩ V t,H (P)(eξ )(x, y)

= 1

2πh

∫
D(r, u,

√
2H , j, t, H)e

i j (u−θ)
h hDreξ (−r sin θ, r cos θ)dθd j,

where A, B,C, D are defined (as functions of P) in Definition 10.6.

In other words, in the definition of At,H (P) we have replaced |ξ | by√2H
in the symbols. For us, Ãt,H (P) is a very convenient operator to study the
Dirichlet boundary problem, since we have

Ĩt,H (P) = A(r, u,
√
2H , hDu, t, H),

Ĩ I I t,H (P) = C(r, u, h
√
2H , hDu, t, H)

(so that they do not involve any derivative w.r.t. r ) and

Ĩ I t,H = B(r, u,
√
2H , hDu, t, H) ◦ hDr ,

Ĩ V t,H (P) = D(r, u,
√
2H , hDu, t, H) ◦ hDr

which are only of degree 1 w.r.t. the variable r . We define the operators

At,h2Dt
(P) := Oph2

(At,H (P)
)
, and Ãt,h2Dt

(P) := Oph2
(Ãt,H (P)

)
,

where the quantification only concerns the variables (t, H). We have the
analogue of Corollary 10.9 stating that these operators are proper pseudodif-
ferential operators.

Corollary 11.4 Assume P satisfies Assumption 11.1. Then, the operators
It,h2Dt

(P), I It,h2Dt
(P), I I It,h2Dt

(P), I Vt,h2Dt
(P),At,h2Dt

(P) and the oper-

ators Ĩt,h2Dt
(P), Ĩ I t,h2Dt

(P), Ĩ I I t,h2Dt
(P), Ĩ V t,h2Dt

(P), Ãt,h2Dt
(P) are

semiclassical pseudodifferential operators of the form mh(z, t, hDz, h2Dt )

where mh satisfies estimates of the form:

sup
h,z,ξ,t,H

h|β|hν |∂α
z ∂

β
ξ ∂

μ
t ∂ν

Hmh| < +∞, for all α, β ∈ N
2, μ, ν ∈ N.

In particular, these operators are bounded on L2(R2 × R).

Now, we want to replace everywhere At,h2Dt
(P) by Ãt,h2Dt

(P). This is
possible thanks to the fact that our semiclassical measures are supported by
the set {E2 = 2H}; a precise statement is given in Lemma 11.5 below.
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Lemma 11.5 If uh is a solution to the Schrödinger equation (1.1) satisfying
in addition the assumptions of Remark 2.4, then, for any P satisfying Assump-
tion 11.1, we have

〈uh,At,h2Dt
(P)uh〉L2(R2×R) − 〈uh, Ãt,h2Dt

(P)uh〉L2(R2×R)

= Oε

(
h1/2−ε

) ‖u0h‖2L2(D)
.

Proof We write the decompositions (11.1) and (11.2) of the operators
At,h2Dt

(P) and Ãt,h2Dt
(P). Terms coming from I I It,h2Dt

(P), Ĩ I I t,h2Dt
(P),

I Vt,h2Dt
(P), Ĩ V t,h2Dt

(P) are of order h, and it suffices to treat the term
It,h2Dt

(P) − Ĩt,h2Dt
(P) (the term I It,h2Dt

(P) − Ĩ I t,h2Dt
(P) is treated simi-

larly).
First, for E restricted to a compact set, we can divide A(r, u, E, j, t, H)−

A(r, u,
√
2H , j, t, H) by E2 − 2H thanks to the following Taylor formula:

A(r, u, E, j, t, H)− A(r, u,
√
2H , j, t, H)

=(E+√2H)−1
∫ 1

0

∂A

∂E
(r, u,

√
2H+l(E−√2H), j, t, H)dl (E2−2H).

The function (E + √
2H)−1

∫ 1
0

∂A
∂E (r, u,

√
2H + l(E − √

2H), j, t, H)dl,
restricted to a compact set in E , satisfies the estimate of Assumption 11.1.
We can apply Corollary 11.4 to see that, for any compactly supported χ , the
operator

(
It,h2Dt

(P)− Ĩt,h2Dt
(P)
)
χ(−h2�R2)

is of the form ãh(z, hDz, t, h2Dt ) where ãh is of the form

ãh(z, ξ, t, H) = ah(z, ξ, t, H)(E2 − 2H)

and ah is compactly supported in ξ, H and satisfies

sup
h,z,ξ,t,H

h|β|h2ν |∂α
z ∂

β
ξ ∂

μ
t ∂ν

Hah| < +∞, for all α, β ∈ N
2, μ, ν ∈ N.

We then apply (8.9) to conclude.
Second, since A is compactly supported in the variable H , for suf-

ficiently large E it is clear that we may divide A(r, u, E, j, t, H) −
A(r, u,

√
2H , j, t, H) by E2 − 2H :

A(r, u, E, j, t, H)− A(r, u,
√
2H , j, t, H)

=
(
A(r, u, E, j, t, H)−A(r, u,

√
2H , j, t, H)

)
(E2 − 2H)−1(E2 − 2H).
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The conclusion of the lemma is obtained for large E by an argument
similar to those developed in the proof of Proposition 8.4 (we now need
a dyadic decomposition only in the variable E , since A(r, u, E, j, t, H) −
A(r, u,

√
2H , j, t, H) is compactly supported in H but not in E). ! 

Appendix E: Commutators

The goal of this section is to calculate explicitly (in terms of P) the expression
of the commutator [�, Ãt,h2Dt

(P)], where � is the laplacian on R
2. This

could, in principle, be done by brutal calculation, using the expression of
the laplacian in polar coordinates (�r,u = ∂2

∂r2
+ 1

r
∂
∂r + 1

r2
∂2

∂u2
). But this is

too cumbersome and we try a less frontal approach. We want to use the fact
that [�,At,h2Dt

(P)] is known (from the exact Egorov theorem, Eq. (12.1)
below) and to see how the calculus is modified when we replace At,h2Dt

(P)

by Ãt,h2Dt
(P).

Recall from Lemma 3.1 and formula (2.10) that we have the exact formula
(without remainder term)

[
− ih�

2
,U ∗Oph(P)U

]
= U ∗Oph

(
E∂1P − ih

2
∂21 P

)
U , (12.1)

where � is the Laplacian on R
2.

When doing this commutator analysis, the time variables are completely
transparent and (t, H) are frozen parameters. In particular, in the following,
Oph denotes the quantization with respect to space variables only.

E.1 Formal calculation of [�,At,H(P)]

We use the expression of ∇ in polar coordinates: ∇ = (∂r , r−1∂u) in the
orthonormal frame (er , eu). We also use the formula �( f g) = f �g+ 2∇ f ·
∇g+ g� f . We obtain the following expression of [�, It,H (P)] applied to eξ

at (x, y) = (−r sin u, r cos u):

[�, It,H (P)]eξ (x, y)=(2πh)−1
∫

�r,u A(r, u, E, j)e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j

+2i

h
(2πh)−1

∫
∂r A(r, u, E, j)E cos(θ − u)e

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j

+2i

h
(2πh)−1

∫
r−2∂u A(r, u, E, j) je

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j (12.2)
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Note that the details of the calculations are actually not important, we only
need to know “what the calculations look like” at a formal level (in particular,
small errors of calculation are harmless).

Similarly, [�, I It,H (P)] has the expression

[�, I It,H (P)]eξ (x, y)

= (2πh)−1
∫

�r,u B(r, u, E, j)E cos(θ − u)e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j

+2i

h
(2πh)−1

∫
∂r B(r, u, E, j)(E cos(θ − u))2e

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j

+2i

h
(2πh)−1

∫
r−2∂u B(r, u, E, j) j E cos(θ − u)e

i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j

= (2πh)−1
∫

�r,u B(r, u, E, j)E cos(θ − u)e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j

+2i

h
(2πh)−1

∫
∂r B(r, u, E, j)

[
(E cos(θ1))

2 + ih
cos θ1

(Er)2

]
e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j

+2i

h
(2πh)−1

∫
r−2∂u B(r, u, E, j) j

E cos(θ − u)e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j + O(h2) (12.3)

Similar calculations can be done for [�, I I It,H (P)] and [�, I Vt,H (P)].
Wedo not need the explicit expressions, but need only to note that it gives a final
expression modulo O(h2) of [−ih�/2,At,H (P)] applied to eξ at (x, y) =
(−r sin u, r cos u) in the form:

[−ih�/2,At,H (P)]eξ (x, y)= 1

2πh

∫
K (r, u, E, j)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθd j

+ 1

2πh

∫
L(r, u, E, j)E cos(θ − θ0)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθd j

+ ih

2πh

∫
M(r, u, E, j)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθd j

+ ih

2πh

∫
N (r, u, E, j)E cos(θ − θ0)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθd j

+ 1

2πh

∫
∂r B(r, u, E, j)

[
(E cos(θ1))

2 + ih
cos θ1

(Er)2

]
e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j

+ 1

2πh

∫
ih∂r D(r, u, E, j)(E cos(θ1))

2e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j.

123



594 N. Anantharaman et al.

Note that the last two lines may obviously be incorporated into the previous
terms; but we shall see later why it is convenient to keep them separate.

The functions K , L , M, N are partial differential operators applied to
A, B,C, D, and could in principle be expressed explicitly in terms of P , but
we actually do not need these expressions.

E.2 Identification

We know from (12.1) that

[
− ih�

2
,U ∗Oph(P)U

]
= U ∗Oph

(
E∂1P − ih

2
∂21 P

)
U

= At,H

(
E∂1P − ih

2
∂21 P

)
+ O(h2).

Using the identification Lemma 12.1 below, this leads directly to the iden-
tifications:

K (r, u, E, j)+ ∂r B(r, u, E, j)(E cos(θ1))
2 = AE∂1P

L(r, u, E, j) = BE∂1P

M(r, u, E, j)+ ∂r B(r, u, E, j)
cos θ1

(Er)2
+ ∂r D(r, u, E, j)(E cos(θ1))

2

= CE∂1P −
1

2
A∂21 P

N (r, u, E, j) = DE∂1P −
1

2
B∂21 P

where θ1 = θ1(r, E, j) denotes as before the solution in [−π/2, π/2) of
sin θ1 = j/Er . On the right-hand sides, notation such as AE∂1P , BE∂1P etc.
means “the functions A, B etc. associated to E∂1P by the formulas of Defin-
ition 10.6”.

To justify these identifications we are using the following:

Lemma 12.1 Let A and B be two smooth real-valued functions. Then the
values of

1

2πh

∫
A(r, u, E, j)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθd j

+ 1

2πh

∫
B(r, u, E, j) cos(θ − θ0)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθd j (12.4)

for all r, u, θ0, E determine A and B uniquely.
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Proof Integrating (12.4) along einθ0dθ0 (θ0 ∈ [0, 2π ], n an arbitrary integer)
yields the value

∫
A(r, u, E, nh)ein(u−θ)ei

Er cos(θ−θ0)

h dθ

+
∫

B(r, u, E, nh) cos(θ − θ0)e
in(u−θ)ei

Er cos(θ−θ0)

h dθ. (12.5)

If we take n = n(h) a family of even integers growing like 1/h, application
of the method of stationary phase yields that this is (up to O(h))

2einu(2πh)1/2[sin1/2 θ1 A(r, u, E, hn(h)) cos(−nθ1+Erh−1 cos θ1+π/4)

+i B(r, u, E, hn(h)) sin(−nθ1 + Erh−1 cos θ1 + π/4)] (12.6)

where θ1 is the solution in [−π/2, π/2) of sin θ1 = hn(h)
Er . If A and B are

continuous and real-valued then (12.6) suffices to determine A and B. ! 

E.3 Formal calculation of [�, Ãt,H(P)]

We want to use the previous identities to find the formal expression of
[�, Ãt,H (P)]. Remember that Ãt,H (P) is the operator we want to use in all
our proofs, because it comes naturally into a “tangential” part and a “radial”
part of degree 1.

If we compare the formal calculations leading to the expressions of
[�,At,H (P)] and [�, Ãt,H (P)], we see that they are identical and thus
[−ih�/2, Ãt,H (P)] applied to eξ at (−r sin u, r cos u) has the form

1

2πh

∫
K (r, u,

√
2H , j)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθd j

+ 1

2πh

∫
L(r, u,

√
2H , j)E cos(θ − θ0)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθd j

+ ih

2πh

∫
M(r, u,

√
2H , j)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθd j

+ ih

2πh

∫
N (r, u,

√
2H , j)E cos(θ − θ0)e

i j (u−θ)
h ei

Er cos(θ−θ0)

h dθd j

+(2πh)−1
∫

∂r B(r, u,
√
2H , j)

×
[
(E cos(θ1))

2 + ih
cos θ1

(Er)2

]
e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j

+(2πh)−1
∫

ih∂r D(r, u,
√
2H , j)(E cos(θ1))

2e
i j (θ−θ0)

h ei
Er cos(θ−u)

h dθd j
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Note that θ1 = θ1(r, E, j) and that the symbol in the last two lines still depends
on E (this is why we treat it separately). Everywhere else in the symbol, E

has been replaced by
√
2H . Note also that (E cos(θ1))2 = E2 − j2

r2
.

From this and from the identifications of Sect. 5.2, we deduce the following
final formula.

Proposition 12.2 There exists a function R(r, u, E,
√
2H , j) such that

[−ih�/2, Ãt,h2Dt
(P)] = Ãt,h2Dt

(E∂1P)− ih

2
Ãt,h2Dt

(∂21 P)+ O(h2)

+∂r B(r, u, h
√
2Dt , hDu) ◦ (−h2�− 2h2Dt )

+ihR(r, u,
√
−h2�, h

√
2Dt , hDu) ◦ (−h2�− 2h2Dt ), (12.7)

where B is the function given from P by Definition 10.6.

Proof Indeed, the identifications of Sect. 5.2 yield

[−ih�/2, Ãt,h2Dt
(P)] = Ĩt,h2Dt

(E∂1P)+ Ĩ I t,h2Dt
(E∂1P)

+ih
(̃
I I I t,h2Dt

(E∂1P)− 1/2 Ĩt,h2Dt
(∂21 P)

)

+ih ( Ĩ V t,h2Dt
(E∂1P)− 1/2 Ĩ I t,h2Dt

(∂21 P)
)

+∂r B(r, u, h
√
2Dt , hDu) ◦ (−h2�− 2h2Dt )

+ihR(r, u,
√
−h2�, h

√
2Dt , hDu) ◦ (−h2�− 2h2Dt ) (12.8)

where the function R is defined by the identity

R(r, u, E,
√
2H , j)(E2 − 2H)

= ∂r B(r, u,
√
2H , j)

[
cos θ1(r, E, j)

(Er)2
− cos θ1(r,

√
2H , j)

2Hr2

]
.

Indeed, we can apply a simple division lemma (actually the Taylor integral
formula) to write

cos θ1(r, E, j)

(Er)2
− cos θ1(r,

√
2H , j)

2Hr2
= S(r, u, E, j,

√
2H)(E2 − 2H),

and thus

R(r, u, E,
√
2H , j) = ∂r B(r, u,

√
2H , j)S(r, u, E, j,

√
2H).

! 
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