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Abstract

We consider symmetric systems of two wave-type equations only one of them being controlled. The two equations are coupled
by zero order terms, localized in part of the domain. We prove an internal and a boundary controllability result in any space
dimension, provided that both the coupling and the control regions satisfy the Geometric Control Condition. We deduce similar
null-controllability results in any positive time for parabolic systems and Schrödinger-type systems under the same geometric
conditions on the coupling and the control regions. This includes several examples in which these two regions have an empty
intersection.
© 2012 Elsevier Masson SAS. All rights reserved.

Résumé

On s’intéresse au problème de contrôlabilité exacte pour des systèmes symétriques de deux équations d’ondes, dont une seule-
ment est contrôlée. Les équations sont couplées par des termes d’ordre zéro, localisés dans une partie du domaine. On montre des
résultats de contrôlabilité interne et frontière en toute dimension d’espace dès que les zones de couplage et de contrôle satisfont
toutes deux la condition de contrôle géométrique. On en déduit des résultats de contrôlabilité à zéro en temps arbitrairement petit
pour des systèmes d’équations de la chaleur ou de Schrödinger, sous les mêmes conditions géométriques sur les zones de couplage
et de contrôle. Ces résultats incluent de nombreux exemples pour lesquels les deux zones sont disjointes.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Motivation

During the last decade, the controllability properties of coupled parabolic equations like⎧⎪⎨
⎪⎩

∂tu1 − �cu1 + au1 + pu2 = bf in (0, T ) × Ω,

∂tu2 − �cu2 + au2 + pu1 = 0 in (0, T ) × Ω,

u1 = u2 = 0 on (0, T ) × ∂Ω,

(u1, u2)|t=0 = (
u0

1, u
0
2

)
in Ω,

(1)

have been intensively studied. Here, the coefficients p and b are smooth non-negative functions on the bounded
domain Ω and −�c is a second order selfadjoint elliptic operator. The null-controllability problem under view is
the following: given a time T > 0, is it possible to find, for any initial data (u0

1, u
0
2), a control function f so that the

associated solution (u1, u2) of (1) is driven to zero in time T ? It has been proved in [14,7,16,20] with different methods
that System (1) is null-controllable as soon as {p > 0} ∩ {b > 0} �= ∅. In these works, the case {p > 0} ∩ {b > 0} = ∅
has been left as an open problem. However, Kavian and de Teresa [19] have proved for a cascade system (i.e. without
the term pu2 in the first equation of (1)) that approximate controllability holds. The natural question is then whether
or not null-controllability (which is a stronger property) still holds in the case {p > 0} ∩ {b > 0} = ∅:

Question 1. Is System (1) null-controllable in the case {p > 0} ∩ {b > 0} = ∅?

The second problem under interest here is the boundary controllability of systems like⎧⎪⎨
⎪⎩

∂tu1 − �cu1 + au1 + pu2 = 0 in (0, T ) × Ω,

∂tu2 − �cu2 + au2 + pu1 = 0 in (0, T ) × Ω,

u1 = b∂f, u2 = 0 on (0, T ) × ∂Ω,

(u1, u2)|t=0 = (
u0

1, u
0
2

)
in Ω,

(2)

where b∂ is a smooth function on ∂Ω . The recent work [15] studies such systems in one space dimension and
with constant coupling coefficients. The cases of higher space dimensions and varying coupling coefficients (and
in particular when the coefficients vanish in a neighborhood of the boundary) are to our knowledge completely open.
The second question under interest is then:

Question 2. Is System (2) null-controllable for non-constant coupling coefficients p? Is System (2) null-controllable
if the dimension of Ω is larger than one?

Concerning these two open problems, it seems that the parabolic theory and associated tools encounter for the
moment some essential difficulties.

On the other hand, it is known from [29] that controllability properties can be transferred from hyperbolic equations
to parabolic ones. And it seems (at least for boundary control problems) that the theory for coupled hyperbolic
equations of the type ⎧⎪⎪⎨

⎪⎪⎩
∂2
t u1 − �cu1 + au1 + pu2 = bf in (0, T ) × Ω,

∂2
t u2 − �cu2 + au2 + pu1 = 0 in (0, T ) × Ω,

u1 = u2 = 0 on (0, T ) × ∂Ω,

(u1, u2, ∂tu1, ∂tu2)|t=0 = (
u0

1, u
0
2, u

1
1, u

1
2

)
in Ω,

(3)

and ⎧⎪⎪⎨
⎪⎪⎩

∂2
t u1 − �cu1 + au1 + pu2 = 0 in (0, T ) × Ω,

∂2
t u2 − �cu2 + au2 + pu1 = 0 in (0, T ) × Ω,

u1 = b∂f, u2 = 0 on (0, T ) × ∂Ω,

(u ,u , ∂ u , ∂ u )| = (
u0, u0, u1, u1

)
in Ω,

(4)
1 2 t 1 t 2 t=0 1 2 1 2
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is better understood (see [1,4]), even less studied. In the case of varying coefficients and several space-dimensions,
the associated stabilization problem is addressed in [2,3,6]. In particular in [6], a polynomial stability result is proved
for solutions of the system ⎧⎨

⎩
∂2
t u1 − �cu1 + au1 + pu2 + b∂tu1 = 0 in R

+ × Ω,

∂2
t u2 − �cu2 + au2 + pu1 = 0 in R

+ × Ω,

u1 = u2 = 0 on R
+ × ∂Ω,

(5)

in some cases where {p > 0} ∩ {b > 0} = ∅. This gives hope to prove some null-controllability results for (3) in the
same situations.

In the present work, we answer Questions 1 and 2 for hyperbolic problems (like (3) and (4)), improving the results
of [4,6]. Then, we deduce a (partial) solution to the two open questions raised above for parabolic systems. Indeed, we
prove that Systems (1)–(3) are null-controllable (in appropriate spaces) as soon as {p > 0} and {b > 0} both satisfy
the Geometric Control Condition (recalled in Definition 1.1 below) and ‖p‖L∞(Ω) satisfies a smallness assumption.
This contains several examples with {p > 0}∩{b > 0} = ∅, and partially answer to the first question. We prove as well
that similar controllability results hold for the boundary control problems (2) and (4), which partially answers to the
second question. Of course, the geometric conditions needed here are essential (and even sharp) for coupled waves,
but inappropriate for parabolic equations. However, this is a first step towards a better understanding of these types of
systems. In one space dimension in particular, the geometric conditions are reduced to a non-emptiness condition and
are hence optimal for parabolic systems as well.

In the end of the present introduction, we state our main results for wave/heat/Schrödinger-type Systems. In
Section 2, we introduce an abstract setting adapted to second order (in time) control problems. Then, in Section 3, we
present the tools used in the proof of the main theorem, together with a key lemma: an observability inequality for an
equation with a right-hand side (for which we give another proof in Appendix A). Section 4 is devoted to the proof
of the observability of hyperbolic systems in the abstract setting, and controllability is deduced in Section 5. Finally,
in Section 6, we come back to the applications to wave/heat/Schrödinger-type Systems. The results of this paper were
announced in [5].

1.2. Main results

Let Ω be a bounded domain in R
n with smooth (say C ∞) boundary (or a smooth connected compact Riemannian

manifold with or without boundary) and �c = div(c∇) a (negative) elliptic operator (or the Laplace Beltrami operator
with respect to the Riemannian metric) on Ω . Here, c denotes a smooth (say C ∞) positive symmetric matrix i.e. in
particular C−1

0 |ξ |2 � c(x)ξ · ξ � C0|ξ |2 for some C0 > 0, for all x ∈ Ω , ξ ∈ R
n. We consider the more general first

order (in time) control problem⎧⎪⎪⎨
⎪⎪⎩

eiθ ∂tu1 − �cu1 + au1 + pu2 = bf in (0, T ) × Ω,

eiθ ∂tu2 − �cu2 + au2 + pu1 = 0 in (0, T ) × Ω,

u1 = u2 = 0 on (0, T ) × ∂Ω,

(u1, u2)|t=0 = (
u0

1, u
0
2

)
in Ω,

(6)

with θ ∈ [−π/2,π/2], including Schrödinger-type systems for θ = ±π/2 and diffusion-type systems for
θ ∈ (−π/2,π/2). In particular we recover System (1) when taking (6) for θ = 0.

We also consider System (3), consisting in a wave-type system, with only one control force. In these systems,
a = a(x), p = p(x) and b = b(x) are smooth real-valued functions on Ω and f is the control function, that can act
on the system.

We shall also consider the same systems controlled from the boundary through the (smooth) real-valued
function b∂ : ⎧⎪⎪⎨

⎪⎪⎩
eiθ ∂tu1 − �cu1 + au1 + pu2 = 0 in (0, T ) × Ω,

eiθ ∂tu2 − �cu2 + au2 + pu1 = 0 in (0, T ) × Ω,

u1 = b∂f, u2 = 0 on (0, T ) × ∂Ω,

(u1, u2)|t=0 = (
u0

1, u
0
2

)
in Ω,

(7)

which includes System (2) when θ = 0.
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We first notice that, on the space (L2(Ω))2 endowed with the natural inner product

(U,V )L2(Ω)×L2(Ω) = (u1, v1)L2(Ω) + (u2, v2)L2(Ω), U = (u1, u2), V = (v1, v2),

the operator

Ap =
(−�c + a p

p −�c + a

)
,

with domain D(Ap) = (H 2(Ω) ∩ H 1
0 (Ω))2, is selfadjoint. As a consequence, for

f ∈ L2((0, T ) × Ω
)
,

the Cauchy problem (6), resp. (3), is well-posed in (L2(Ω))2, resp. (H 1
0 (Ω))2 × (L2(Ω))2, in the sense of semigroup

theory. Then, taking f ∈ L2((0, T ) × ∂Ω) the initial–boundary value problem (7), resp. (4), is well-posed in
(H−1(Ω))2, resp. (L2(Ω))2 × (H−1(Ω))2, in the sense of transposition solution (see [22,31]).

The strategy we adopt here is to prove some controllability results for the hyperbolic systems (3) and (4), extending
the two-levels energy method introduced in [4]. Then, using transmutation techniques, we deduce controllability
properties of (6) and (7).

An important remark to make before addressing the controllability problem for the hyperbolic systems (3)–(4)
is concerned with the regularity of solutions. If one takes for system (3) (resp. (4)) initial data (u0

1, u
0
2, u

1
1, u

1
2) ∈

H 1
0 (Ω) × (H 2 ∩ H 1

0 (Ω)) × L2(Ω) × H 1
0 (Ω) (resp. (u0

1, u
0
2, u

1
1, u

1
2) ∈ L2(Ω) × H 1

0 (Ω) × H−1(Ω) × L2(Ω)), and a
control function f ∈ L2((0, T ) × Ω) (resp. f ∈ L2((0, T ) × ∂Ω)), then the state (u1, u2, ∂tu1, ∂tu2) remains in the
space H 1

0 (Ω) × (H 2 ∩ H 1
0 (Ω)) × L2(Ω) × H 1

0 (Ω) (resp. L2(Ω) × H 1
0 (Ω) × H−1(Ω) × L2(Ω)) for all time. We

recall that for Systems (3) and (4), the null-controllability is equivalent to the exact controllability. As a consequence,
it is not possible, taking for instance zero as initial data to reach any target state in (H 1

0 (Ω))2 × (L2(Ω))2 (resp.
(L2(Ω))2 × (H−1(Ω))2). The controllability question for (3)–(4) hence becomes: starting from rest at time t = 0, is
it possible to reach all H 1

0 (Ω) × (H 2 ∩ H 1
0 (Ω)) × L2(Ω) × H 1

0 (Ω) (resp. L2(Ω) × H 1
0 (Ω) × H−1(Ω) × L2(Ω)) in

time t = T sufficiently large?
To state our results, we shall need the classical Geometric Control Conditions GCC (resp. GCC∂ ). We recall that

GCC was introduced in [26] for manifolds without boundaries, in [8] for domains with boundaries and that GCC∂

was introduced in [9]. From these works, it is known that, making the generic assumption that ∂Ω has no contact
of infinite order with its tangents, GCC (resp. GCC∂ ) is a necessary and sufficient condition for the internal (resp.
boundary) observability and controllability of one wave equation (see also [11]).

Definition 1.1 (GCC (resp. GCC∂ )). Let ω ⊂ Ω (resp. Γ ⊂ ∂Ω) and T > 0. We say that the couple (ω,T ) satisfies
GCC (resp. (Γ,T ) satisfies GCC∂ ) if every generalized geodesic (i.e. ray of geometric optics) traveling at speed one
in Ω meets ω (resp. meets Γ on a non-diffractive point) in a time t < T . We say that ω satisfies GCC (resp. Γ satisfies
GCC∂ ) if there exists T > 0 such that (ω,T ) satisfies GCC (resp. (Γ,T ) satisfies GCC∂ ).

We shall make the following key assumptions:

Assumption 1.2.

(i) We have ((−�c + a)u,u)L2(Ω) � λ0‖u‖2
L2(Ω)

, for some λ0 > 0, for all u ∈ (H 2(Ω) ∩ H 1
0 (Ω)).

(ii) We have p � 0 on Ω , {p > 0} ⊃ ωp for some open subset ωp ⊂ Ω and we set p+ := ‖p‖L∞(Ω).
(iii) We have b � 0 on Ω , {b > 0} ⊃ ωb (resp. b∂�0 on ∂Ω and {b∂ > 0} ⊃ Γ b) for some open subset ωb ⊂ Ω (resp.

Γb ⊂ ∂Ω).

Note that in the case where c = Id and a = 0, the best constant λ0 is the smallest eigenvalue of the Laplace operator
on Ω with Dirichlet boundary conditions. We also have the identity λ0 = 1/C2

P , where CP is the Poincaré’s constant
of Ω .

We shall also require that the operator Ap satisfies, for some constant C > 0,(
Ap(v1, v2), (v1, v2)

)
L2(Ω)×L2(Ω)

� C
(‖v1‖2

H 1
0 (Ω)

+ ‖v2‖2
H 1

0 (Ω)

)
,

for all (v1, v2) ∈ D(Ap). This is the case when assuming p+ < λ0.
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Fig. 1. Examples of open sets (Ω,ω,O) such that ω and O both satisfy GCC in Ω , with ω ∩ O = ∅: in the case (a), Ω is the flat torus (or the
square), in the case (b), Ω is the disk.

In the case of coupled wave equations, our main result can be formulated as follows.

Theorem 1.3 (Wave-type systems). Suppose that (i) holds, that ωp satisfies GCC and that ωb (resp. Γb) satisfies
GCC (resp. GCC∂ ). Then, for all b (resp. b∂ ) satisfying (iii), there exists a constant p∗ > 0 (depending only on
the geometry of Ω and on b, resp. b∂ ) such that for all p+ < p∗, there exists a time T∗ > 0 such that for all
T > T∗, all p satisfying (ii), and all initial data (u0

1, u
0
2, u

1
1, u

1
2) ∈ H 1

0 (Ω) × (H 2 ∩ H 1
0 (Ω)) × L2(Ω) × H 1

0 (Ω)

(resp. (u0
1, u

0
2, u

1
1, u

1
2) ∈ L2(Ω) × H 1

0 (Ω) × H−1(Ω) × L2(Ω)), there exists a control function f ∈ L2((0, T ) × Ω)

(resp. f ∈ L2((0, T ) × ∂Ω)) such that the solution of (3) (resp. (4)) satisfies (u1, u2, ∂tu1, ∂tu2)|t=T = 0.

Another way to formulate this result is to say that, under the assumptions of Theorem 1.3, the reachable set at time
T > T∗ with zero initial data is exactly H 1

0 (Ω)× (H 2 ∩H 1
0 (Ω))×L2(Ω)×H 1

0 (Ω) in the case of L2 internal control
and L2(Ω) × H 1

0 (Ω) × H−1(Ω) × L2(Ω) in the case of L2 boundary control.
Some comments should be made about this result. First this is a generalization of the work [4] where the coupling

coefficients considered have to satisfy p(x) � C > 0 for all x ∈ Ω . The geometric situations covered by Theorem 1.3
are richer, and include in particular several examples of coupling and control regions that do not intersect (see Fig. 1).
Second, we do not know if the coercivity assumption (i) for −�c + a and the smallness assumption on p+ are
only technical and inherent to the method we use here. Moreover, the control time T∗ we obtain depends upon all the
parameters of the system, and not only the sets ωp , ωb and Γb (as it is the case for a single wave equation). This feature
does not seem to be very natural. Finally, the fact that we consider twice the same elliptic operator �c is a key point
in our proof and it is likely that this result does not hold for waves with different speeds (see [4] for results with
different speeds and different operators). Similarly, the fact that p � 0 (see Assumption (ii)) is very important here. It
is possible that Theorem 1.3 does not work if the sign of p varies.

As a consequence of Theorem 1.3 and using transmutation techniques (due to [29,23] for heat-type equations and
to [25,24] for Schrödinger-type equations), we can now state the associated results for Systems (6) and (7).

Corollary 1.4 (Heat-type systems). Suppose that (i) holds, that ωp satisfies GCC and that ωb (resp. Γb) satisfies GCC
(resp. GCC∂ ). Then, for all b (resp. b∂ ) satisfying (iii), there exists a constant p∗ > 0 (depending only on the geometry
of Ω and on b, resp. b∂ ) such that for all p+ < p∗, for all T > 0, θ ∈ (−π/2,π/2), for all p satisfying (ii), and all
initial data (u0

1, u
0
2) ∈ (L2(Ω))2 (resp. (u0

1, u
0
2) ∈ (H−1(Ω))2), there exists a control function f ∈ L2((0, T ) × Ω)

(resp. f ∈ L2((0, T ) × ∂Ω)) such that the solution of (6) (resp. (7)) satisfies (u1, u2)|t=T = 0.

To our knowledge, this corollary gives the first controllability result for coupled parabolic symmetric equations
when the coupling region ωp and the control region ωb do not intersect. Moreover, this seems to be also the first
positive result for boundary control of parabolic symmetric systems in several space dimensions or with variable
coupling coefficients. A one-dimensional internal controllability result has also been obtained recently in [28] with a
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different method [13] for cascade systems of two parabolic equations (i.e. without the term pu2 in the first equation
of (1)).

Note that the spaces for which the controllability result of Corollary 1.4 holds are symmetric. This is due to the
smoothing effect of parabolic equations. The proof of this result is given in Section 6.2.

The geometric conditions in this theorem are not sharp for parabolic equations. This leads us to think that the
same result still holds under the only conditions ωp �= ∅ (i.e. p is not the null function) and ωb �= ∅ (i.e. b is not the
null function). This remains an open problem. Note that our control result holds for any T > 0, which is natural for
parabolic equations.

Concerning coupled Schrödinger equations, we have the following result.

Corollary 1.5 (Schrödinger-type systems). Suppose that (i) holds, that ωp satisfies GCC and that ωb (resp. Γb) satisfies
GCC (resp. GCC∂ ). Then, for all b (resp. b∂ ) satisfying (iii), there exists a constant p∗ > 0 (depending only on the
geometry of Ω and on b, resp. b∂ ) such that for all p+ < p∗, for all T > 0, all p satisfying (iii) and all initial data
(u0

1, u
0
2) ∈ L2(Ω) × H 1

0 (Ω) (resp. (u0
1, u

0
2) ∈ H−1(Ω) × L2(Ω)), there exists a control function f ∈ L2((0, T ) × Ω)

(resp. f ∈ L2((0, T ) × ∂Ω)) such that the solution of (6) (resp. (7)) with θ = ±π/2 satisfies (u1, u2)|t=T = 0.

The proof of this result is given in Section 6.3. Since there is no smoothing effect in this case, we still obtain a
controllability result in asymmetric spaces here: the uncontrolled variable u2 has to be more regular than the other
one. This shows that the attainable set from zero for an L2 internal control (resp. L2 boundary control) contains
L2(Ω) × H 1

0 (Ω) (resp. H−1(Ω) × L2(Ω)). Whether or not a general target in (L2(Ω))2 (resp. (H−1(Ω))2) is
reachable for (6) (resp. (7)) with θ = ±π/2 remains open.

Note finally that the geometric conditions GCC and GCC∂ are not necessary in the case of Schrödinger equations
but are not far from being optimal. The most general control result for a single Schrödinger equation [21] is that GCC
(resp. GCC∂ ) implies null-controllability in any positive time. However, in some cases (see [18,12]), these conditions
are not necessary. Here, we do not recover these properties (since our result is deduced from a controllability result for
waves). It would be interesting to prove such a result with weaker geometric conditions in particular situations (see
[28] in the case of a square). Remark that controllability results have also been obtained in [28] with a different method
based on [13] in the periodic case for cascade systems of two Schrödinger equations. Note also that our control result
holds for any T > 0, which is natural for Schrödinger equations [21] (and which is not the case in the results of [28]).

Remark 1.6. Different boundary conditions (like Neumann or Fourier boundary conditions) can also be addressed
with the same techniques since we use the observability inequality for a single wave equation as a black box. In the
work [9], the authors prove this observability inequality with all these boundary conditions (all compatible with the
Melrose–Sjöstrand theorem of propagation of singularities).

Remark 1.7. Similarly, our results also hold (in the case of Dirichlet boundary conditions) for a boundary ∂Ω and a
metric c having a limited smoothness (i.e. C 3 for ∂Ω and C 2 for c) according to the article [10]. Note as well that
we supposed that the coefficients a, p and b are smooth. It is sufficient that a and p preserve the regularity of u1 and
u2 and b (resp. b∂ ) that of the control function f . For instance, one can take b ∈ L∞(Ω) (resp. b∂∈L∞(∂Ω)) and
a,p ∈ W 2,∞(Ω).

Remark 1.8. We could also replace the operator Ap in all the systems studied here, by the operator(−�c + a δp

p −�c + a

)
,

for δ > 0. This is what we did in [5]. This operator is selfadjoint on (L2(Ω))2 endowed with the inner product
(U,V )δ = (u1, v1)L2(Ω) + δ(u2, v2)L2(Ω). The controllability results obtained in this case (for all equations, as well

as in the abstract setting) hold for all (δ,p+) such that
√

δp+ < p∗. Such results in this setting seem more general
since they allow to consider large p+ or large δ (provided that the other is small enough). For these choices of δ, the
systems obtained are “less symmetric” than the ones for δ = 1.
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However, we can pass from the system with δ to the system without δ with a change of variables. Suppose that
(z1, z2) is the solution of the system⎧⎪⎪⎨

⎪⎪⎩
∂2
t z1 − �cz1 + az1 + δpz2 = bf in (0, T ) × Ω,

∂2
t z2 − �cz2 + az2 + pz1 = 0 in (0, T ) × Ω,

z1 = z2 = 0 on (0, T ) × ∂Ω,

(z1, z2, ∂t z1, ∂t z2)|t=0 = (
z0

1, z
0
2, z

1
1, z

1
2

)
in Ω,

then, setting u1 = z1 and u2 = √
δz2, the new variable (u1, u2) satisfies the fully symmetric system⎧⎪⎪⎨

⎪⎪⎩
∂2
t u1 − �cu1 + au1 + √

δpu2 = bf in (0, T ) × Ω,

∂2
t u2 − �cu2 + au2 + √

δpu1 = 0 in (0, T ) × Ω,

u1 = u2 = 0 on (0, T ) × ∂Ω,

(u1, u2, ∂tu1, ∂tu2)|t=0 = (
z0

1,
√

δz0
2, z

1
1,

√
δz1

2

)
in Ω,

to which Theorem 1.3 applies (for
√

δp+ < p∗).

2. Abstract setting

In this section, we describe the abstract setting in which we prove Theorem 1.3 for Systems (3) and (4), and define
the appropriate spaces and operators. Let H be a Hilbert space and (A,D(A)) a selfadjoint positive operator on H

with compact resolvent. We denote by (·,·)H the inner product on H and ‖ · ‖H the associated norm. For k ∈ N, we

set Hk =D(A
k
2 ) endowed with the inner product (·,·)Hk

= (A
k
2 ·,Ak

2 ·)H and associated norm ‖ · ‖Hk
= ‖Ak

2 · ‖H . We

define H−k as the dual space of Hk with respect to the pivot space H = H0. We write 〈·,·〉Hk,H−k
= (A

k
2 ·,A− k

2 ·)H the

duality product between Hk and H−k , and ‖ · ‖H−k
= ‖A− k

2 · ‖H is the norm on H−k . The operator A can be extended
to an isomorphism from Hk to Hk−2 for any k � 1, still denoted by A. According to the properties of the operator A,
the injection Hk ↪→ Hk−1 is dense and compact for any k ∈ Z.

We denote by λ0 > 0 the largest constant satisfying

‖v‖2
H1

� λ0‖v‖2
H for all v ∈ H1, (8)

that is, the smallest eigenvalue of the selfadjoint positive operator A. Note that we also have, for all α � 0,∥∥A−α
∥∥
L(H)

= λ−α
0 .

In this abstract setting, we shall denote ϕ′ the derivative with respect to time of a function ϕ :R→ Hk , for some k ∈ Z.
In the following, as in [4], we shall make use of the different energy levels

ek

(
ϕ(t)

) = 1

2

(∥∥ϕ(t)
∥∥2

Hk
+ ∥∥ϕ′(t)

∥∥2
Hk−1

)
, k ∈ Z,

which are all preserved through time if ϕ is a solution of ϕ′′ +Aϕ = 0. Moreover, the coercivity assumption (8) yields,
for all k ∈ Z, v ∈ Hk ,

‖v‖2
Hk

� λ0‖v‖2
Hk−1

and ek(v) � λ0ek−1(v). (9)

We consider that the coupling operator P is bounded on H and denote by P ∗ is its adjoint, p+ := ‖P‖L(H) =
‖P ∗‖L(H).

Before addressing the control problem, let us introduce the adjoint system⎧⎨
⎩

v′′
1 + Av1 + Pv2 = 0,

v′′
2 + Av2 + P ∗v1 = 0,(
v1, v2, v

′
1, v

′
2

)∣∣
t=0 = (

v0
1, v0

2, v1
1, v1

2

)
,

(10)

which shall stand for our observation system. This system can be recast as a first order differential equation

V ′ =APV, V(0) = V0, (11)
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where

AP =
(

0 Id
−AP 0

)
, AP =

(
A P

P ∗ A

)
, V = (v1, v2), V = (

V,V ′) = (
v1, v2, v

′
1, v

′
2

)
.

Note that the operator AP is selfadjoint on the space H × H endowed with the inner product
(V , Ṽ )H×H = (v1, ṽ1)H + (v2, ṽ2)H . Using (9) with k = 1, we obtain

(AP V,V )H×H = (Av1, v1)H + (Av2, v2)H + 2(P v2, v1)H �
(

1 − p+

λ0

)(‖v1‖2
H1

+ ‖v2‖2
H1

)
. (12)

As a consequence, we shall suppose that p+ < λ0, so that AP is coercive. Under this assumption, (A
1
2
P V,A

1
2
P Ṽ )H×H

defines an inner product on (H1)
2, equivalent to the natural one. Assuming that P,P ∗ ∈ L(Hk) and writing

Hk = (Hk)
2 × H 2

k−1, k ∈ Z,

the operator AP is an isomorphism from Hk to Hk−1 and is skewadjoint on Hk , equipped with the inner product(
(U,V ), (Ũ , Ṽ )

)
Hk

= (
A

k
2
P U,A

k
2
P Ũ

)
H×H

+ (
A

k−1
2

P V,A
k−1

2
P Ṽ

)
H×H

.

Note that this is an inner product according to the coercivity assumption for AP , which is equivalent to the natural
inner product of Hk . Hence, AP generates a group etAP on Hk , and the homogeneous problem (10) is well-posed in
these spaces. An important feature of solutions V(t) of System (10) is that all energies

Ek

(
V(t)

) = 1/2
∥∥V(t)

∥∥2
Hk

, k ∈ Z,

are positive and preserved through time.

2.1. Main results: admissibility, observability and controllability

For System (10), now studied in H1, we shall observe only the state of the first component, i.e. (u1, u
′
1), and

hence define an observation operator B∗ ∈ L(H2 × H,Y), where Y is a Hilbert space, standing for our observation
space. This definition is sufficiently general to take into account both the boundary observation problem (taking
B∗ ∈ L(H2, Y )) and the internal observation problem (taking B∗ ∈ L(H,Y )). We assume that B∗ is an admissible
observation for one equation:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

For all T > 0 there exists a constant C > 0,

such that all solutions ϕ of ϕ′′ + Aϕ = f ∈ L2(0, T ;H) satisfy
T∫

0

∥∥B∗(ϕ,ϕ′)∥∥2
Y

dt � C

(
e1

(
ϕ(0)

) + e1
(
ϕ(T )

) +
T∫

0

e1
(
ϕ(t)

)
dt +

T∫
0

‖f ‖2
H dt

)
.

(A1)

Under this assumption, we have the following lemma:

Lemma 2.1 (Admissibility). The operator B∗ is an admissible observation for (10). More precisely, for all p+ <
λ0√

2
and all T > 0, there exists a constant C > 0, such that all the solutions of (10) satisfy

T∫
0

∥∥B∗(v1, v
′
1

)
(t)

∥∥2
Y

dt � C
{
e1

(
v1(0)

) + e0
(
v2(0)

)}
. (13)

Note that only the e0 energy level of the second component v2 is necessary in this admissibility estimate. Hence,
we cannot hope to observe the whole H1 energy of V and the best observability we can expect only involves e0(v2).
Our aim is now to prove this inverse inequality of (13). For this, we have to suppose some additional assumptions on
the operators P and B∗. Let us first precise Assumption (A2), related to the operator P :⎧⎨

⎩
We have ‖Pv‖2

H � p+(P v, v)H and there exists an operator ΠP ∈ L(H),

‖ΠP ‖L(H) = 1, and a number p− > 0
such that (P v, v)H � p−‖ΠP v‖2

H ∀v ∈ H.

(A2)

Note that p− � p+ = ‖P‖L(H) and that (A2) implies that the operators P and P ∗ are non-negative.
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Next, we shall suppose that a single equation is observable both by B∗ and by ΠP in sufficiently large time:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exist TB,TP > 0 such that all solutions ϕ of ϕ′′ + Aϕ = 0 satisfy

e1
(
ϕ(0)

)
� CB(T )

T∫
0

∥∥B∗(ϕ,ϕ′)∥∥2
Y

for all T > TB,

e1
(
ϕ(0)

)
� CP (T )

T∫
0

∥∥ΠP ϕ′∥∥2
H

dt for all T > TP .

(A3)

In the context of Theorem 1.3, these observability assumptions are satisfied as soon as ωp and ωb satisfy GCC (resp.
Γb satisfies GCC∂ ). We can now state our main result, i.e. an observability inequality.

Theorem 2.2 (Observability). Suppose that Assumptions (A1)–(A3) hold. Then there exists a constant p∗ such that
for all p+ < p∗, there exists a time T∗ such that for all T > T∗ there exists C > 0, such that for all V0 ∈ H1, the
solution V(t) = etAP V0 of (10) satisfies

e1
(
v1(0)

) + e0
(
v2(0)

)
� C

T∫
0

∥∥B∗(v1, v
′
1

)
(t)

∥∥2
Y

dt. (14)

Note that the constants p∗ and T∗ can be given explicitly in terms of the different parameters of the system. In
particular, T∗ � max{TB,TP }, and p∗ depends only on λ0, on the time TB and on the observability constant CB(T ∗

B)

(given in Assumption (A3)) for some T ∗
B > TB . See Proposition 4.7 and Lemma 3.3 below for more precision.

Applying the Hilbert Uniqueness Method (HUM) of [22], we deduce now controllability results for the adjoint
system. In this context, we have to define more precisely the observation operator. We shall treat two cases: First,
B∗(v1, v

′
1) = B∗v′

1 with B∗ ∈ L(H,Y ), corresponding to internal observability (with Y = L2(Ω)), and second
B∗(v1, v

′
1) = B∗v1 with B∗ ∈ L(H2, Y ), corresponding to boundary observability (with Y = L2(∂Ω)). In both cases,

we define the control operator B as the adjoint of B∗, and the control problem reads, for a control function f taking
its values in Y , ⎧⎨

⎩
u′′

1 + Au1 + Pu2 = Bf,

u′′
2 + Au2 + P ∗u1 = 0,(
u1, u2, u

′
1, u

′
2

)∣∣
t=0 = (

u0
1, u

0
2, u

1
1, u

1
2

)
.

(15)

This is an abstract version of (3)–(4). Note that under this form, System (15) not only contains (3)–(4), but also locally
coupled systems of plate equations, with a distributed or a boundary control.

First case: B∗(v1, v′
1) = B∗v′

1 with B∗ ∈ L(H,Y ). In this case, B ∈ L(Y,H) and the control
problem (15) is well-posed in H1 for f ∈ L2(0, T ;Y). Note that, as in the concrete setting, it also preserves the
space H1 × H2 × H × H1 through time as soon as P ∈ L(H1). There is thus no hope to control in whole H1.
In this setting, we first deduce from (14) the following other observability estimate for solutions W of (10) in
H0: e0(w1(0)) + e−1(w2(0)) � C

∫ T

0 ‖B∗w1(t)‖2
Y dt . The internal control result of Theorem 1.3 is then a direct

consequence of the HUM since Assumptions (A1)–(A3) are satisfied in this application.

Theorem 2.3 (Controllability). Suppose that Assumptions (A1)–(A3) hold. Then, there exists a constant p∗ such that
for all p+ < p∗, there exists a time T∗ such that for all T > T∗ and U0 ∈ H1 × H2 × H × H1, there exists a control
function f ∈ L2(0, T ;Y) such that the solution U(t) of (15) satisfies U(T ) = 0.

To prove this theorem, we first have to deduce from the observability estimate (14) the following other observability
estimate for all W = etAP W0 (solution of (10) in H0): e0(w1(0)) + e−1(w2(0)) � C

∫ T

0 ‖B∗w1(t)‖2
Y dt . Then,

Theorem 2.3 is a direct consequence of the HUM.
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Second case: B∗(v1, v′
1) = B∗v1 with B∗ ∈ L(H2,Y ). As a consequence of the admissibility inequality (13),

System (15) is well-posed in H0 in the sense of transposition solutions. Moreover, System (15) also preserves the
space H × H1 × H−1 × H , and there is no hope to control in whole H0. In this setting, the boundary control result of
Theorem 1.3 is a direct consequence of the HUM and Theorem 2.2 since Assumptions (A1)–(A3) are satisfied in this
application.

Theorem 2.4 (Controllability). Suppose that Assumptions (A1)–(A3) hold. Then, there exists a constant p∗ such that
for all p+ < p∗, there exists a time T∗ such that for all T > T∗ and U0 ∈ H × H1 × H−1 × H , there exists a control
function f ∈ L2(0, T ;Y) such that the solution U(t) of (15) satisfies U(T ) = 0.

Theorem 1.3 is a consequence of Theorem 2.3 in the case of an internal control and of Theorem 2.4 in the case of
a boundary control since Assumptions (A1)–(A3) are satisfied in this application. Theorems 2.3 and 2.4 are proved in
Section 5.

2.2. Some remarks

Let us make some remarks about these results and their proofs.
First notice that System (15) is reversible in time, so that the concepts of exact controllability, null-controllability

and controllability from zero are equivalent.
A consequence of Lemma 2.1 and Theorem 2.2 is that we here describe exactly the attainable set of the control

system (15) (which was not considered in [4]). More precisely, starting for zero initial data, we prove that for T > T∗
the attainable set is H1 × H2 × H × H1 in the first case and H × H1 × H−1 × H in the second case.

Let us briefly describe the method of the proof of Theorem 2.2 which is inspired by the “two energy levels” method
of [4]. Everything here is based on energy estimates, considering the H1 energy of v1 and the H0 energy of v2. There
are three main ingredients in our proof.

Our first ingredient is an observability inequality for a single wave-type equation with a right-hand side (see
Lemma 3.3). Such observability inequality used to be proved with multiplier techniques [4,6], and thus, under
too strong (and not optimal) geometric conditions. Here, we prove such inequalities as a consequence of usual
observability inequalities. We also prove for wave equations that such an observability inequality with optimal
geometric conditions for an equation with a right-hand side is very natural (see Appendix A). This improvement
can in fact be used in several works using multiplier conditions, replacing them with optimal geometric conditions; in
particular, the stabilization results of [6] now hold with GCC.

Our second main ingredient is the energy estimate obtained by multiplying the first line of (10) by v2 and the
second one by v1 and taking the difference of the two equalities. This coupling inequality allows us to estimate the
“localized” energy of the unobserved component v2 by the energy of the observed one v1 (see Lemma 4.1 below).

Finally to conclude the proof, we use in a crucial way the conservation of the Hk-energy of the solution V . This
implies roughly that the integral on (0, T ) of the energy is increasing linearly with respect to T , for T sufficiently
large.

If the operator B is bounded, we proved in [6] (under similar assumptions) a polynomial decay result for the
E1(U(t)) energy of the system ⎧⎨

⎩
u′′

1 + Au1 + Pu2 + BB∗u′
1 = 0,

u′′
2 + Au2 + P ∗u1 = 0,(
u1, u2, u

′
1, u

′
2

)∣∣
t=0 = U0 ∈ H1 × H1 × H × H.

The observability estimates for a single equation with a right-hand side we prove here (Lemma 3.3) also improve the
results of [6] in the case B bounded. Now, these results also hold under optimal geometric conditions for waves. We
have the following proposition, where −�D denotes the Laplace operator with Dirichlet boundary conditions.

Proposition 2.5. Suppose that Assumption 1.2 holds, and that ωb and ωp satisfy GCC. Then there exists p∗ > 0 such
that for all 0 < p+ < p∗, the solution U = (u1, u2, ∂tu1, ∂tu2) of (5) satisfies for n ∈ N, for any initial data

U0 = (u1, u2, ∂tu1, ∂tu2)|t=0 ∈D
(
(−�D)

n+1
2

)2 ×D
(
(−�D)

n
2
)2

,
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the inequality

E1
(
U(t)

)
� Cn

tn

n∑
i=0

E1
(
U (i)(0)

) ∀t > 0.

Besides, if U0 ∈ (H 1
0 )2 × (L2)2, then E1(U(t)) converges to zero as t goes to infinity.

The method of energy estimates we use here has several advantages and drawbacks. The main advantage is that
it furnishes a systematic method for both internal and boundary controllability problems for a large class of second
order in time equations. We only have to check if an observability inequality is known for a single equation, and the
results can directly be transferred to systems.

However, we have here to make several assumptions: symmetry of the system, coercivity of the elliptic operator,
smallness of the coupling coefficients, large control time. . . We do not know precisely which assumptions are really
needed and which ones are unnecessary. We here provide a general a priori analysis of such coupled models. A more
precise analysis (for instance for wave systems) remains to be done.

Finally, note that these exact controllability results for abstract second order hyperbolic equations yield null-
controllability results for heat or Schrödinger type systems in the abstract setting as well. However, for the sake
of clarity, we do not state these results in an abstract setting but only for heat or Schrödinger systems (see Sections 6.2
and 6.3).

3. Two energy levels and two key lemmata

3.1. Two energy levels

In the following sections, when proving Lemma 2.1 and Theorem 2.2, we shall use two different energy levels. Let
us consider V an H1 solution of (11). We regularize the state V once by setting

W =A−1
P V, i.e.

⎧⎪⎪⎨
⎪⎪⎩

w′
1 = v1,

w′
2 = v2,

Aw1 + Pw2 = −v′
1,

Aw2 + P ∗w1 = −v′
2.

(16)

Note that this system has a unique solution (w1,w2), since the operator AP is coercive, that also satisfies{
w′′

1 + Aw1 + Pw2 = 0,

w′′
2 + Aw2 + P ∗w1 = 0.

(17)

Now, the idea, is that, for p+/λ0 sufficiently small, the e0 energy of v2 is almost equivalent to the e1 energy of w2.
And we shall see that the e1 energy level is more practical to handle. This is summarized in the first three identities
of the following proposition. The last two identities are technical estimates, used at some points of the proof of the
observability inequality.

Proposition 3.1. We have the following energy estimates for all V = (v1, v2, v
′
1, v

′
2) in H1 and W = (w1,w2,w

′
1,w

′
2)

defined by (16): (
1 − p+

λ0

)[
e1(v1) + e1(v2)

]
� E1(V) �

(
1 + p+

λ0

)[
e1(v1) + e1(v2)

]
, (18)(

1 − p+

λ0

)[
e1(w1) + e1(w2)

]
� E1(W) �

(
1 + p+

λ0

)[
e1(w1) + e1(w2)

]
, (19)

(
1

2
−

(
p+

λ0

)2)(
e1(w1) + e1(w2)

)
� e0(v1) + e0(v2) �

(
2 + 2

(
p+

λ0

)2)(
e1(w1) + e1(w2)

)
, (20)

e0(v2) � 2

(
1 + (p+)2

λ2

)2

e1(w2) + 2
(p+)2

λ2
e0(v1), (21)
0 0
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e1(v1) � λ0

2
e1(w1) − (p+)2

λ0
e1(w2). (22)

As a consequence of this lemma, assuming that p+
λ0

< 1√
2

, we see that the energies e1(v1)+e1(v2), e1(w1)+e1(w2)

and e0(v1) + e0(v2) are almost preserved through time for (v1, v2) solutions of (10).

Proof of Proposition 3.1. First recall that E1 is defined by

2E1(V) = ∥∥v′
1

∥∥2
H

+ ∥∥v′
2

∥∥2
H

+ (Av1, v1)H + (Av2, v2)H + 2(P v2, v1)H .

Then, using the fact that 2|(P v2, v1)H | � p+
λ0

(‖A 1
2 v1‖2

H + ‖A 1
2 v2‖2

H ), we have

2E1(V) �
∥∥v′

1

∥∥2
H

+ ∥∥v′
2

∥∥2
H

+
(

1 − p+

λ0

)(∥∥A
1
2 v1

∥∥2
H

+ ∥∥A
1
2 v2

∥∥2
H

)
� 2

(
1 − p+

λ0

)(
e1(v1) + e1(v2)

)
,

together with

2E1(V) �
∥∥v′

1

∥∥2
H

+ ∥∥v′
2

∥∥2
H

+
(

1 + p+

λ0

)(∥∥A
1
2 v1

∥∥2
H

+ ∥∥A
1
2 v2

∥∥2
H

)
� 2

(
1 + p+

λ0

)(
e1(v1) + e1(v2)

)
,

and (18) is proved. Since (18) holds for all V ∈H1, it also holds for W , which gives (19).

Now, applying A− 1
2 to the last two lines of System (16) gives⎧⎪⎪⎪⎨

⎪⎪⎪⎩
w′

1 = v1,

w′
2 = v2,

A
1
2 w1 + A− 1

2 Pw2 = −A− 1
2 v′

1,

A
1
2 w2 + A− 1

2 P ∗w1 = −A− 1
2 v′

2.

(23)

Since we have ‖A− 1
2 Pw2‖H � p+

λ0
‖A 1

2 w2‖H and ‖A− 1
2 P ∗w1‖H � p+

λ0
‖A 1

2 w1‖H , System (23) yields

2
(
e0(v1) + e0(v2)

) = ‖v1‖2
H + ‖v2‖2

H + ∥∥A− 1
2 v′

1

∥∥2
H

+ ∥∥A− 1
2 v′

2

∥∥2
H

�
∥∥w′

1

∥∥2
H

+ ∥∥w′
2

∥∥2
H

+ 2
∥∥A

1
2 w1

∥∥2
H

+ 2

(
p+

λ0

)2∥∥A
1
2 w2

∥∥2
H

+ 2
∥∥A

1
2 w2

∥∥2
H

+ 2

(
p+

λ0

)2∥∥A
1
2 w1

∥∥2
H

�
(

2 + 2

(
p+

λ0

)2)
2
(
e1(w1) + e1(w2)

)
,

together with

2
(
e0(v1) + e0(v2)

)
�

∥∥w′
1

∥∥2
H

+ ∥∥w′
2

∥∥2
H

+ 1

2

∥∥A
1
2 w1

∥∥2
H

−
(

p+

λ0

)2∥∥A
1
2 w2

∥∥2
H

+ 1

2

∥∥A
1
2 w2

∥∥2
H

−
(

p+

λ0

)2∥∥A
1
2 w1

∥∥2
H

�
(

1 −
(

p+ )2)
2
(
e1(w1) + e1(w2)

)
,

2 λ0
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and (20) is proved. To prove (21), we also use the last equation of (23), which gives

∥∥A− 1
2 v′

2

∥∥
H

� p+

λ0

∥∥A
1
2 w1

∥∥
H

+ ∥∥A
1
2 w2

∥∥
H

.

Using the third equation of (23) to eliminate A
1
2 w1 in this estimate, we obtain

∥∥A− 1
2 v′

2

∥∥
H

� p+

λ0

∥∥A− 1
2 Pw2

∥∥
H

+ p+

λ0

∥∥A− 1
2 v′

1

∥∥
H

+ ∥∥A
1
2 w2

∥∥
H

�
(

1 + (p+)2

λ2
0

)∥∥A
1
2 w2

∥∥
H

+ p+

λ0

∥∥A− 1
2 v′

1

∥∥
H

.

Hence, with the second equation of (23), we have

∥∥A− 1
2 v′

2

∥∥2
H

+ ‖v2‖2
H � 2

(
1 + (p+)2

λ2
0

)2∥∥A
1
2 w2

∥∥2
H

+ 2
(p+)2

λ2
0

∥∥A− 1
2 v′

1

∥∥2
H

+ ∥∥w′
2

∥∥2
H

,

which concludes the proof of (21). To prove (22), we first notice that the third line of (23) gives∥∥A
1
2 w1

∥∥2
H

� 2
∥∥A− 1

2 Pw2
∥∥2

H
+ 2

∥∥A− 1
2 v′

1

∥∥2
H

� 2λ−2
0

(
p+)2∥∥A

1
2 w2

∥∥2
H

+ 2λ−1
0

∥∥v′
1

∥∥2
H

.

Hence, using the first line of (23), we obtain

2e1(v1) = ∥∥A
1
2 w′

1

∥∥2
H

+ ∥∥v′
1

∥∥2
H

� λ0
∥∥w′

1

∥∥2
H

+ λ0

2

∥∥A
1
2 w1

∥∥2
H

− (p+)2

λ0

∥∥A
1
2 w2

∥∥2
H

� λ0e1(w1) − 2(p+)2

λ0
e1(w2),

which yields (22), and concludes the proof of the lemma. �
3.2. Two key lemmata

In this section, we prove Lemma 2.1 together with a key observability inequality for a classical “wave-type”
equation with a right-hand side. For both proofs, we shall use the classical well-posedness properties of the equation
ϕ′′ + Aϕ = f that we recall in the following lemma.

Lemma 3.2. For any k ∈ Z, there exists C > 0 such that for all (ϕ0, ϕ1) ∈ Hk × Hk−1 and f ∈ L1(R+;Hk−1) the
equation ϕ′′ + Aϕ = f has a unique solution, satisfying for all T > 0,

ek

(
ϕ(T )

)
� C

(
ek

(
ϕ(0)

) + ‖f ‖2
L1(0,T ;Hk−1)

)
. (24)

Note that in this energy inequality, the constant C does not depend on the time T .

3.2.1. Proof of Lemma 2.1: admissibility
Here, we prove that Assumption (A1) implies the admissibility inequality (13) for the whole system.

Proof of Lemma 2.1. We suppose that (v1, v2) satisfies System (10). In particular, we have,

v′′
1 + Av1 = −Pv2.

As a consequence of Assumption (A1), we have for all T > 0,

T∫
0

∥∥B∗(v1, v
′
1

)∥∥2
Y

dt � C(T )

(
e1

(
v1(0)

) + e1
(
v1(T )

) +
T∫

0

e1
(
v1(t)

)
dt +

T∫
0

∥∥Pv2(t)
∥∥2

H
dt

)
. (25)

Then, the energy estimate (24) for k = 1, the Cauchy–Schwarz inequality and the boundedness of P on H yield
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e1
(
v1(T )

)
� C

(
e1

(
v1(0)

) + ‖Pv2‖2
L1(0,T ;H)

)
� C

(
e1

(
v1(0)

) + T
(
p+)2‖v2‖2

L2(0,T ;H)

)
, (26)

together with

T∫
0

e1
(
v1(t)

)
dt � C

(
T e1

(
v1(0)

) + T 2(p+)2‖v2‖2
L2(0,T ;H)

)
. (27)

Now, according to (16), (19) and since p+ < λ0, we note that

‖v2‖2
L2(0,T ;H)

= ∥∥w′
2

∥∥2
L2(0,T ;H)

� 2

1 − p+/λ0

T∫
0

E1
(
W(t)

)
dt.

Since W is a solution of (17), its energy is preserved through time, so that

T∫
0

E1
(
W(t)

)
dt = T E1

(
W(0)

)
.

Using inequalities (19) and (20) (i.e. the equivalence of the different energies), we obtain, for all p+ <
λ0√

2
,

‖v2‖2
L2(0,T ;H)

� 2T
(1 + p+

λ0
)

1 − p+
λ0

[
e1

(
w1(0)

) + e1
(
w2(0)

)]

� 2T
(1 + p+

λ0
)

1 − p+
λ0

(
1

2
−

(
p+

λ0

)2)−1[
e0

(
v1(0)

) + e0
(
v2(0)

)]
. (28)

We recall that (9) yields e0(v1(0)) � λ−1
0 e1(v1(0)). Finally, combining (25)–(28), we obtain

T∫
0

∥∥B∗(v1, v
′
1

)∥∥2
Y

dt � C
(
T ,λ0,p

+)(
e1

(
v1(0)

) + e0
(
v2(0)

))
,

with C(T ,λ0,p
+) = C(T ){1 + C(1 + T ) + max(1,1/λ0)(p

+)2 2T (1 + CT + CT 2)
(1+ p+

λ0
)

1− p+
λ0

( 1
2 − (

p+
λ0

)2)−1}, and the

admissibility of B∗ is proved. �
3.2.2. Proof of an observability inequality with a right-hand side

Here, we prove the following lemma:

Lemma 3.3. Suppose that Assumptions (A1) and (A3) hold. Then, for all T ∗
B > TB and T ∗

P > TP , there exist constants
KB,KP > 0 such that for any solution ϕ of ϕ′′ + Aϕ = f ∈ L2(0, T ;H), we have

T∫
0

e1
(
ϕ(t)

)
dt � KB

( T∫
0

∥∥B∗(ϕ,ϕ′)∥∥2
Y

+
T∫

0

∥∥f (t)
∥∥2

H
dt

)
for all T � T ∗

B (29)

and
T∫

0

e1
(
ϕ(t)

)
dt � KP

( T∫
0

∥∥ΠP ϕ′∥∥2
H

dt +
T∫

0

∥∥f (t)
∥∥2

H
dt

)
for all T � T ∗

P . (30)
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Note that the crucial point in this lemma is that the observability constants KB,KP do not depend upon the time T

as T → +∞. It is linked to the invariance properties of the system with respect to translation in time. More precisely,
KB only depends on T ∗

B and on CB(T ∗
B) for some T ∗

B > TB , where TB and CB are defined in Assumption (A3). Such
observability inequalities are proved with multiplier techniques for the wave equation or the plate equation in [3–5].
It is then often used to perform energy estimates. Here, proving (29) and (30) as a consequence of the associated
observability inequality for the free equation (Assumption (A3)) and an admissibility assumption (A1) has several
advantages. In particular, we can use as a black-box the different observability inequalities obtained for the different
equations (i.e. for instance [8,9] for waves) and we hence obtain results with the optimal geometric conditions.

However, for the sake of completeness, we also prove Lemma 3.3 in a simple case for the wave equation in a direct
way in Appendix A, with optimal geometric conditions. This shows that the norms used here are the natural ones.

Proof of Lemma 3.3. We here only prove (29). The proof of (30) is simpler since the observation operator ΠP is
bounded (and we thus do not need an admissibility assumption).

To prove the first inequality of (29), we first split a solution of ϕ′′ +Aϕ = f into ϕ = φ +ψ , where φ and ψ satisfy{
φ′′ + Aφ = f,(
φ(0),φ′(0)

) = (0,0),

and {
ψ ′′ + Aψ = 0,(
ψ(0),ψ ′(0)

) = (
ϕ(0), ϕ(0)

)
.

We have
T∫

0

e1
(
ϕ(t)

)
dt � 2

T∫
0

e1
(
φ(t)

)
dt + 2

T∫
0

e1
(
ψ(t)

)
dt, (31)

and we provide upper bounds for both integrals on the right-hand side. The energy estimate (24) applied to φ gives,
for all t > 0,

e1
(
φ(t)

)
� C‖f ‖2

L1(0,t;H)
� Ct‖f ‖2

L2(0,t;H)
. (32)

Then, the observability Assumption (A3) can be applied to ψ , which gives, for all t > 0 and T > TB ,

e1
(
ψ(t)

) = e1
(
ψ(0)

)
� C(T )

T∫
0

∥∥B∗(ψ,ψ ′)∥∥2
Y

dt. (33)

Integrating (32) and (33) for t ∈ (0, T ), and using (31), we now have, for all T > TB ,

T∫
0

e1
(
ϕ(t)

)
dt � 2CT 2

T∫
0

‖f ‖2
H dt + 2C(T )T

T∫
0

∥∥B∗(ψ,ψ ′)∥∥2
Y

dt. (34)

To obtain the observation on ϕ instead of ψ in the right-hand side, we write

T∫
0

∥∥B∗(ψ,ψ ′)∥∥2
Y

dt � 2

T∫
0

∥∥B∗(ϕ,ϕ′)∥∥2
Y

dt + 2

T∫
0

∥∥B∗(φ,φ′)∥∥2
Y

dt. (35)

Then, using the admissibility Assumption (A1) for φ, we obtain

T∫
0

∥∥B∗(φ,φ′)∥∥2
Y

dt � C(T )

(
e1

(
φ(T )

) +
T∫

0

e1
(
φ(t)

)
dt +

T∫
0

‖f ‖2
H dt

)

� C(T )
(
T + T 2 + 1

) T∫
‖f ‖2

H dt, (36)
0
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after having used (32). Combining (34), (35) and (36), we finally obtain for all T > TB the existence of a constant
D(T ) such that

T∫
0

e1
(
ϕ(t)

)
dt � D(T )

( T∫
0

‖f ‖2
H dt +

T∫
0

∥∥B∗(ϕ,ϕ′)∥∥2
Y

dt

)
.

Now, we explain how this constant can be uniformly bounded for large times. For all T ∗
B > TB , we set

D∗(T ) = supT ∗
B�t�T D(t), so that the application T → D∗(T ) is nondecreasing on [T ∗

B,+∞). Since the equation
ϕ′′ + Aϕ = f is invariant under time translations, the last inequality yields, for all T2 � T1 + T ∗

B ,

T2∫
T1

e1
(
ϕ(t)

)
dt � D∗(T2 − T1)

( T2∫
T1

‖f ‖2
H dt +

T2∫
T1

∥∥B∗(ϕ,ϕ′)∥∥2
Y

dt

)
. (37)

For T � T ∗
B , there exists an integer k0 � 1 such that T ∈ [k0T

∗
B, (k0 + 1)T ∗

B). Assume first that k0 � 2, then we have,

T∫
0

e1
(
ϕ(t)

)
dt =

k0−2∑
k=0

(k+1)T ∗
B∫

kT ∗
B

e1
(
ϕ(t)

)
dt +

T∫
(k0−1)T ∗

B

e1
(
ϕ(t)

)
dt.

In each of these integrals the time interval is larger than T ∗
B so that we can apply (37). This yields, for all T � 2T ∗

B

T∫
0

e1
(
ϕ(t)

)
dt � D∗(T ∗

B

) k0−2∑
k=0

(k+1)T ∗
B∫

kT ∗
B

(‖f ‖2
H + ∥∥B∗(ϕ,ϕ′)∥∥2

Y

)
dt

+ D∗(T − (k0 − 1)T ∗
B

) T∫
(k0−1)T ∗

B

(‖f ‖2
H + ∥∥B∗(ϕ,ϕ′)∥∥2

Y

)
dt

� D∗(2T ∗
B

) T∫
0

(‖f ‖2
H + ∥∥B∗(ϕ,ϕ′)∥∥2

Y

)
dt,

since T ∈ [k0T
∗
B, (k0 + 1)T ∗

B) and D∗ is nondecreasing. This inequality is also true for T ∗
B � T � 2T ∗

B , that is in the
case k0 = 1. This concludes the proof of (29), taking KB = D∗(2T ∗

B). The proof of (30) is similar. �
4. Proof of Theorem 2.2

In this section, we shall often use the notation A � B , meaning that there exists a universal numerical constant
C > 0 (depending on none of the parameters of the system) such that A � CB .

4.1. The coupling lemma

In this section, we give the link between v1 and v2 that we shall use in the sequel.

Lemma 4.1. Let V = (v1, v2, v
′
1, v

′
2) ∈ H1 be solution of (10) and W = (w1,w2,w

′
1,w

′
2) be defined by (16). Then,

for all T � 0, we have

T∫
0

(P v2, v2)H dt �
T∫

0

(P v1, v1)H dt + 2λ
1
2
0

(
1 + (p+)2

λ2
0

)2[
e1

(
w2(T )

) + e1
(
w2(0)

)]

+ 1

λ
1
2

(
1 + 2

(p+)2

λ2
0

)[
e1

(
v1(T )

) + e1
(
v1(0)

)]
, (38)
0
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and
T∫

0

(Pw2,w2)H dt �
T∫

0

(Pw1,w1)H dt + 1

λ
1
2
0

(
1 + 2(p+)2

λ2
0

)[
e1

(
w2(T )

) + e1
(
w2(0)

)]

+ 2

λ
3
2
0

[
e1

(
v1(T )

) + e1
(
v1(0)

)]
. (39)

Proof. Since V is a solution of (10), we have

T∫
0

(
v′′

1 + Av1 + Pv2, v2
)
H

− (
v′′

2 + Av2 + P ∗v1, v1
)
H

dt = 0. (40)

We first notice that (Av1, v2)H − (Av2, v1)H = 0 since A is selfadjoint, and∣∣∣∣∣
T∫

0

(
v′′

1 , v2
)
H

− (
v′′

2 , v1
)
H

dt

∣∣∣∣∣
= ∣∣[(v′

1, v2
)
H

− (
v′

2, v1
)
H

]T
0

∣∣
� 1

2

[
1

ε
‖v2‖2

H + ε
∥∥v′

1

∥∥2
H

+ 1

ε

∥∥v′
2

∥∥2
H−1

+ ε‖v1‖2
H1

]
(t = 0)

+ 1

2

[
1

ε
‖v2‖2

H + ε
∥∥v′

1

∥∥2
H

+ 1

ε

∥∥v′
2

∥∥2
H−1

+ ε‖v1‖2
H1

]
(t = T )

� 1

ε

[
e0

(
v2(T )

) + e0
(
v2(0)

)] + ε
[
e1

(
v1(T )

) + e1
(
v1(0)

)]
,

for all ε > 0 and T � 0. Once having isolated the term
∫ T

0 (P v2, v2)H dt in (40), this yields

T∫
0

(P v2, v2)H dt �
T∫

0

(P v1, v1)H dt + 1

ε

[
e0

(
v2(T )

) + e0
(
v2(0)

)] + ε
[
e1

(
v1(T )

) + e1
(
v1(0)

)]
.

Using (21) in this expression, we now have for all ε > 0 and T � 0,

T∫
0

(P v2, v2)H dt �
T∫

0

(P v1, v1)H dt + 1

ε

[
2

(
1 + (p+)2

λ2
0

)2

e1
(
w2(T )

) + 2
(p+)2

λ2
0

e0
(
v1(T )

)

+ 2

(
1 + (p+)2

λ2
0

)2

e1
(
w2(0)

) + 2
(p+)2

λ2
0

e0
(
v1(0)

)] + ε
[
e1

(
v1(T )

) + e1
(
v1(0)

)]

�
T∫

0

(P v1, v1)H dt + 2

ε

(
1 + (p+)2

λ2
0

)2[
e1

(
w2(T )

) + e1
(
w2(0)

)]

+
(

ε + 2
(p+)2

ελ3
0

)[
e1

(
v1(T )

) + e1
(
v1(0)

)]
,

since e0(v1) � λ−1
0 e1(v1). We then set ε = λ

− 1
2

0 and estimate (38) is proved.
Since W is a solution of (17), we also have

T∫ (
w′′

1 + Aw1 + Pw2,w2
)
H

− (
w′′

2 + Aw2 + P ∗w1,w1
)
H

dt = 0.
0
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Following the same procedure, and recalling that w′
1 = v1, we obtain,

T∫
0

(Pw2,w2)H dt �
T∫

0

(Pw1,w1)H dt +
∣∣∣∣∣

T∫
0

(
w′′

1 ,w2
)
H

− (
w′′

2 ,w1
)
H

dt

∣∣∣∣∣
�

T∫
0

(Pw1,w1)H dt + ∣∣[(v1,w2)H − (
w′

2,w1
)
H

]T
0

∣∣. (41)

Next, we estimate

∣∣(v1,w2)H
∣∣ + ∣∣(w′

2,w1
)
H

∣∣ � 1

2

[
1

ε
‖w2‖2

H + ε‖v1‖2
H + ε

∥∥w′
2

∥∥2
H

+ 1

ε
‖w1‖2

H

]
, (42)

and notice that System (16) yields w1 = −A−1v′
1 − A−1Pw2, and hence

‖w1‖H � λ−1
0

∥∥v′
1

∥∥
H

+ p+λ
− 3

2
0

∥∥A
1
2 w2

∥∥
H

.

This, together with (42) gives

∣∣(v1,w2)H
∣∣ + ∣∣(w′

2,w1
)
H

∣∣ � 1

2

[
1

ελ0

∥∥A
1
2 w2

∥∥2
H

+ ε

λ0

∥∥A
1
2 v1

∥∥2
H

+ ε
∥∥w′

2

∥∥2
H

+ 2

ελ2
0

∥∥v′
1

∥∥2
H

+ 2(p+)2

ελ3
0

∥∥A
1
2 w2

∥∥2
H

]
.

Taking ε = λ
− 1

2
0 , we obtain

∣∣(v1,w2)H
∣∣ + ∣∣(w′

2,w1
)
H

∣∣ � 1

λ
1
2
0

[
1 + 2(p+)2

λ2
0

]
e1(w2) + 2

λ
3
2
0

e1(v1),

which, together with (41) yields estimate (39), and concludes the proof of the lemma. �
4.2. A first series of estimates

Note that until now, we did not assume that p+/λ0 is small, except for the coercivity assumption on AP and
the equivalence of the different energies in (19)–(20) (used in the proof of the Admissibility Lemma 2.1). Using the
coupling relation (38), we now prove a first series of estimates, that will be made more precise later.

Lemma 4.2. For all T � 0, all (p+)2

λ2
0

� 1
2 , all V = (v1, v2, v

′
1, v

′
2) ∈ H1 solution of (10) and W = (w1,w2,w

′
1,w

′
2)

defined by (16), we have the following estimates

e1
(
w2(T )

) + e1
(
w2(0)

)
� λ−1

0 e1
(
v1(0)

) + p+

λ
3
2
0

T∫
0

e1
(
v1(t)

)
dt

+ e1
(
w2(0)

) + p+λ
1
2
0

T∫
0

‖w1‖2
H dt, (43)

e1
(
v1(T )

) + e1
(
v1(0)

)
� e1

(
v1(0)

) + p+

λ
1
2
0

T∫
0

e1
(
v1(t)

)
dt

+ λ0e1
(
w2(0)

) + p+λ
3
2
0

T∫
‖w1‖2

H dt, (44)
0
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T∫
0

(P v2, v2)H dt � 1

λ
1
2
0

e1
(
v1(0)

) + p+

λ0

T∫
0

e1
(
v1(t)

)
dt

+ λ
1
2
0 e1

(
w2(0)

) + p+λ0

T∫
0

‖w1‖2
H dt. (45)

Proof. Taking the inner product of the first equation of (10) by v′
1, we obtain the following H1-dissipation relation

for v1:

d

dt
e1(v1) = −(

Pv2, v
′
1

)
H

.

Integrated on the time interval (0, T ), this yields,

e1
(
v1(T )

) + e1
(
v1(0)

) = 2e1
(
v1(0)

) −
T∫

0

(
Pv2, v

′
1

)
H

dt

� 2e1
(
v1(0)

) + p+

2ελ
1
2
0

T∫
0

∥∥v′
1

∥∥2
H

dt + ελ
1
2
0

2

T∫
0

(P v2, v2)H dt,

after having used Assumption (A2) on P and the Young inequality. Using the coupling relation (38) of Lemma 4.1 in
this estimate gives

e1
(
v1(T )

) + e1
(
v1(0)

)
� 2e1

(
v1(0)

) + p+

2ελ
1
2
0

T∫
0

∥∥v′
1

∥∥2
H

dt + ελ
1
2
0 p+

2

T∫
0

‖v1‖2
H dt

+ ελ0

(
1 + (p+)2

λ2
0

)2[
e1

(
w2(T )

) + e1
(
w2(0)

)]

+ ε

2

(
1 + 2

(p+)2

λ2
0

)[
e1

(
v1(T )

) + e1
(
v1(0)

)]
.

We obtain for all (p+)2

λ2
0

� 1
2 and ε sufficiently small,

e1
(
v1(T )

) + e1
(
v1(0)

)
� e1

(
v1(0)

) + p+

λ
1
2
0

T∫
0

∥∥v′
1

∥∥2
H

dt + λ
1
2
0 p+

T∫
0

‖v1‖2
H dt

+ λ0
[
e1

(
w2(T )

) + e1
(
w2(0)

)]
. (46)

Putting this back into (38), we also have for all (p+)2

λ2
0

� 1
2 ,

T∫
0

(P v2, v2)H dt �
T∫

0

(P v1, v1)H dt + λ
1
2
0

[
e1

(
w2(T )

) + e1
(
w2(0)

)] + 1

λ
1
2
0

e1
(
v1(0)

)

+ p+

λ0

T∫
0

∥∥v′
1

∥∥2
H

dt + p+
T∫

0

‖v1‖2
H dt

� 1

λ
1
2

e1
(
v1(0)

) + p+

λ0

T∫
e1

(
v1(t)

)
dt + λ

1
2
0

[
e1

(
w2(T )

) + e1
(
w2(0)

)]
. (47)
0 0
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Now, we take the inner product of the second equation of System (17) on W by w′
2 = v2. We obtain the following

H1-dissipation relation for w2:

d

dt
e1(w2) = −(

P ∗w1,w
′
2

)
H

= −(w1,P v2)H .

Integrated on the time interval (0, T ), this yields,

e1
(
w2(T )

) + e1
(
w2(0)

) = 2e1
(
w2(0)

) −
T∫

0

(w1,P v2)H dt

� 2e1
(
w2(0)

) + p+λ
1
2
0

2ε

T∫
0

‖w1‖2
H dt + ε

2λ
1
2
0

T∫
0

(P v2, v2)H dt,

for all ε > 0, after having used Assumption (A2) on P and the Young inequality. Using (47) in this last inequality, we
obtain, for all ε > 0,

e1
(
w2(T )

) + e1
(
w2(0)

)
� e1

(
w2(0)

) + p+λ
1
2
0

ε

T∫
0

‖w1‖2
H dt + ε

λ0
e1

(
v1(0)

)

+ p+ε

λ
3
2
0

T∫
0

e1
(
v1(t)

)
dt + ε

[
e1

(
w2(T )

) + e1
(
w2(0)

)]
.

Taking ε sufficiently small, this yields

e1
(
w2(T )

) + e1
(
w2(0)

)

� e1
(
w2(0)

) + p+λ
1
2
0

T∫
0

‖w1‖2
H dt + 1

λ0
e1

(
v1(0)

) + p+

λ
3
2
0

T∫
0

e1
(
v1(t)

)
dt.

When using this estimate in (46) and (47), we obtain

e1
(
v1(T )

) + e1
(
v1(0)

)

� e1
(
v1(0)

) + p+

λ
1
2
0

T∫
0

e1
(
v1(t)

)
dt + λ0e1

(
w2(0)

) + p+λ
3
2
0

T∫
0

‖w1‖2
H dt,

and

T∫
0

(P v2, v2)H dt � 1

λ
1
2
0

e1
(
v1(0)

) + p+

λ0

T∫
0

e1
(
v1(t)

)
dt

+ λ
1
2
0 e1

(
w2(0)

) + p+λ0

T∫
0

‖w1‖2
H dt.

These three inequalities yield the result of the lemma. �
4.3. A second series of estimates

Using the weak coupling relation (39), we now eliminate the terms with
∫ T

0 ‖w1‖2
H dt in estimates (43)–(45) of the

previous section.



564 F. Alabau-Boussouira, M. Léautaud / J. Math. Pures Appl. 99 (2013) 544–576
Lemma 4.3. There exists η > 0 such that for all T � 0, p+
λ0

� η, V = (v1, v2, v
′
1, v

′
2) ∈ H1 solution of (10) and

W = (w1,w2,w
′
1,w

′
2) defined by (16), we have the estimates

T∫
0

‖w1‖2
H dt � 1

λ2
0

T∫
0

e1
(
v1(t)

)
dt + p+

λ
7
2
0

e1
(
v1(0)

) + p+

λ
5
2
0

e1
(
w2(0)

)
(48)

and
T∫

0

(P v2, v2)H dt � 1

λ
1
2
0

e1
(
v1(0)

) + p+

λ0

T∫
0

e1
(
v1(t)

)
dt + λ

1
2
0 e1

(
w2(0)

)
. (49)

Proof. Using estimates (43) and (44) in relation (39), together with p+
λ0

� 1
2 , we have

T∫
0

(Pw2,w2)H dt � p+
T∫

0

‖w1‖2
H dt + 1

λ
1
2
0

(
1 + 2(p+)2

λ2
0

)

×
[

1

λ0
e1

(
v1(0)

) + p+

λ
3
2
0

T∫
0

e1
(
v1(t)

)
dt + e1

(
w2(0)

) + p+λ
1
2
0

T∫
0

‖w1‖2
H dt

]

+ 1

λ
3
2
0

[
e1

(
v1(0)

) + p+

λ
1
2
0

T∫
0

e1
(
v1(t)

)
dt + λ0e1

(
w2(0)

) + p+λ
3
2
0

T∫
0

‖w1‖2
H dt

]

� p+
T∫

0

‖w1‖2
H dt + 1

λ
3
2
0

e1
(
v1(0)

) + p+

λ2
0

T∫
0

e1
(
v1(t)

)
dt + 1

λ
1
2
0

e1
(
w2(0)

)
. (50)

Now, we want to eliminate the term with
∫ T

0 ‖w1‖2
H dt in these estimates. According to the third line of (16), we have

w1 = −A−1v′
1 − A−1Pw2, so that

‖w1‖2
H � 2

∥∥A−1v′
1

∥∥2
H

+ 2
∥∥A−1Pw2

∥∥2
H

� 2λ−2
0

∥∥v′
1

∥∥2
H

+ 2λ−2
0 p+(Pw2,w2)H

after having used Assumption (A2) on the operator P . Integrating this estimate on (0, T ) and using (50) yields

T∫
0

‖w1‖2
H dt � 1

λ2
0

T∫
0

∥∥v′
1

∥∥2
H

+ (p+)2

λ2
0

T∫
0

‖w1‖2
H dt + p+

λ
7
2
0

e1
(
v1(0)

)

+ (p+)2

λ4
0

T∫
0

e1
(
v1(t)

)
dt + p+

λ
5
2
0

e1
(
w2(0)

)
.

Now, we suppose that p+
λ0

� η, with η sufficiently small. This yields

T∫
0

‖w1‖2
H dt � 1

λ2
0

T∫
0

∥∥v′
1

∥∥2
H

+ p+

λ
7
2
0

e1
(
v1(0)

) + (p+)2

λ4
0

T∫
0

e1
(
v1(t)

)
dt + p+

λ
5
2
0

e1
(
w2(0)

)

� 1

λ2
0

T∫
0

e1
(
v1(t)

)
dt + p+

λ
7
2
0

e1
(
v1(0)

) + p+

λ
5
2
0

e1
(
w2(0)

)
,

which is exactly (48). Finally, using this inequality in (45), we obtain for all p+
� η,
λ0



F. Alabau-Boussouira, M. Léautaud / J. Math. Pures Appl. 99 (2013) 544–576 565
T∫
0

(P v2, v2)H dt � 1

λ
1
2
0

e1
(
v1(0)

) + p+

λ0

T∫
0

e1
(
v1(t)

)
dt + λ

1
2
0 e1

(
w2(0)

)

+ p+λ0

[
1

λ2
0

T∫
0

e1
(
v1(t)

)
dt + p+

λ
7
2
0

e1
(
v1(0)

) + p+

λ
5
2
0

e1
(
w2(0)

)]

� 1

λ
1
2
0

e1
(
v1(0)

) + p+

λ0

T∫
0

e1
(
v1(t)

)
dt + λ

1
2
0 e1

(
w2(0)

)
.

This yields (49), and concludes the proof of the lemma. �
Using the two estimates of this lemma, together with the observability inequality with a right-hand side for the

operator ΠP , given in Lemma 3.3, we are now able to prove the following lemma.

Lemma 4.4. Assume the hypotheses of Lemma 3.3 and that (A2) holds. Then, there exists η > 0 such that for all
T ∗

P > TP , there exists a constant KP such that for all T > T ∗
P and p+/λ0 � η, for all V = (v1, v2, v

′
1, v

′
2) ∈ H1

solution of (10) and W = (w1,w2,w
′
1,w

′
2) defined by (16), we have

T∫
0

e1
(
w2(t)

)
dt � KP

(
1

p− + 1

)(
1

λ
1
2
0

e1
(
v1(0)

) + p+

λ0

T∫
0

e1
(
v1(t)

)
dt + λ

1
2
0 e1

(
w2(0)

))
. (51)

Proof. First, we apply (30) to w2 for some T ∗
P > TP , which, according to (17), satisfies w′′

2 + Aw2 = −P ∗w1.
We have, for all T > T ∗

P ,

T∫
0

e1
(
w2(t)

)
dt � KP

( T∫
0

∥∥ΠP w′
2

∥∥2
H

dt +
T∫

0

∥∥P ∗w1
∥∥2

H
dt

)
.

Using Assumption (A2) on P together with the fact that w′
2 = v2, this yields

T∫
0

e1
(
w2(t)

)
dt � KP

(
1

p−

T∫
0

(P v2, v2)H dt + (
p+)2

T∫
0

‖w1‖2
H dt

)
.

Combining this inequality with estimates (48)–(49) of Lemma 4.3, we obtain, for all T > T ∗
P and p+/λ0 � η,

T∫
0

e1
(
w2(t)

)
dt � KP

1

p−

(
1

λ
1
2
0

e1
(
v1(0)

) + p+

λ0

T∫
0

e1
(
v1(t)

)
dt + λ

1
2
0 e1

(
w2(0)

))

+ KP

(
p+)2

(
1

λ2
0

T∫
0

e1
(
v1(t)

)
dt + p+

λ
7
2
0

e1
(
v1(0)

) + p+

λ
5
2
0

e1
(
w2(0)

))

� KP

λ
1
2
0

(
1

p− + 1

)
e1

(
v1(0)

) + KP p+

λ0

(
1

p− + 1

) T∫
0

e1
(
v1(t)

)
dt

+ KP λ
1
2
0

(
1

p− + 1

)
e1

(
w2(0)

)
,

which concludes the proof of the lemma. �
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Lemma 4.5 (Almost conservation of the energy). For all T � 0, all p+
λ0

� 1√
2

, all V = (v1, v2, v
′
1, v

′
2) ∈ H1 solution

of (10) and W = (w1,w2,w
′
1,w

′
2) defined by (16), we have

T∫
0

[
λ−1

0 e1
(
v1(t)

) + e1
(
w2(t)

)]
dt � T

2

(
1 + p+

λ0

)−1(
1 − p+

λ0

)[
e1

(
w1(0)

) + e1
(
w2(0)

)]
. (52)

Proof. First, as a consequence of (22) of Proposition 3.1, we have

λ−1
0 e1(v1) + e1(w2) � 1

2
e1(w1) +

(
1 − (p+)2

λ2
0

)
e1(w2) � 1

2

[
e1(w1) + e1(w2)

]
,

as soon as (p+)2

λ2
0

� 1
2 . Integrating this inequality on the interval (0, T ), and using Identity (19) together with the

conservation of the energy E1(W), we obtain

T∫
0

[
λ−1

0 e1
(
v1(t)

) + e1
(
w2(t)

)]
dt � 1

2

T∫
0

[
e1

(
w1(t)

) + e1
(
w2(t)

)]
dt

�
(

1 + p+

λ0

)−1 1

2

T∫
0

E1
(
W(t)

)
dt

�
(

1 + p+

λ0

)−1
T

2
E1

(
W(0)

)

� T

2

(
1 + p+

λ0

)−1(
1 − p+

λ0

)[
e1

(
w1(0)

) + e1
(
w2(0)

)]
,

which yields (52), and concludes the proof of the lemma. �
Lemma 4.6 (Lower bound for

∫ T

0 e1(v1(t)) dt ). There exist C > 0 and η > 0 such that for all T � 0, all p+
λ0

� η, all
V = (v1, v2, v

′
1, v

′
2) ∈ H1 solution of (10) and W = (w1,w2,w

′
1,w

′
2) defined by (16), we have

(
1 + Tp+

λ
1
2
0

) T∫
0

e1
(
v1(t)

)
dt � T e1

(
v1(0)

) − T λ0e1
(
w2(0)

)
. (53)

Proof. Taking the inner product of the first equation of (10) with v′
1 gives

d

dt
e1(v1) = −(

Pv2, v
′
1

)
H

.

For 0 < t < T , we integrate this identity on the interval (0, t) and obtain, for all ε > 0,

e1
(
v1(t)

)
� e1

(
v1(0)

) −
t∫

0

‖Pv2‖H

∥∥v′
1

∥∥
H

ds � e1
(
v1(0)

) − ε

2

T∫
0

‖Pv2‖2
H dt − 1

2ε

T∫
0

∥∥v′
1

∥∥2
H

dt.

Using now Assumption (A2) and integrating the last inequality on the interval (0, T ), this gives, for all ε > 0,

T∫
0

e1
(
v1(t)

)
dt � T e1

(
v1(0)

) − T εp+

2

T∫
0

(P v2, v2)H dt − T

ε

T∫
0

e1
(
v1(t)

)
dt.

This, together with (49) yields, for some constant C > 0 and for all ε > 0,
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T∫
0

e1
(
v1(t)

)
dt � T e1

(
v1(0)

) − CT εp+

λ
1
2
0

e1
(
v1(0)

)

−
(

CT ε(p+)2

λ0
+ T

ε

) T∫
0

e1
(
v1(t)

)
dt − CT εp+λ

1
2
0 e1

(
w2(0)

)
.

Now we choose ε = λ
1
2
0

2Cp+ , so that we have

T∫
0

e1
(
v1(t)

)
dt � T

2
e1

(
v1(0)

) − Tp+

λ
1
2
0

(
2C + 1

2

) T∫
0

e1
(
v1(t)

)
dt − T λ0

2
e1

(
w2(0)

)
,

and the lemma is proved. �
4.4. End of the proof of Theorem 2.2

In this section, we conclude the proof of Theorem 2.2. Using the key estimates of the preceding sections, we prove
in fact the following more precise proposition:

Proposition 4.7. Suppose that Assumptions (A1)–(A3) hold. Then, there exist η, γ > 0 such that for all

p+ < p∗ := min{ηλ0, γ

√
λ0
KB

}, there exists a time T∗ � max{T ∗
B,T ∗

P } (depending on p+,p−, λ0,KB,KP ) such that

for all T > T∗ there exists C > 0, such that for all V0 ∈ H1, the solution V(t) = etAP V0 of (10) satisfies

e1
(
v1(0)

) + e0
(
v2(0)

)
� C

T∫
0

∥∥B∗(v1, v
′
1

)
(t)

∥∥2
Y

dt.

A numerical inspection of the proof shows that one can take for instance η = 1
5 and γ = 1

50 .

Proof. We proceed as in [4] and use balance of energies. First, we use the observability inequality for a single equation
with a right-hand side, given by Lemma 3.3. Since v1 is a solution of v′′

1 +Av1 +Pv2 = 0 from (10), Assumptions (A1)
and (A3) and estimate (29) yield, for all T � T ∗

B ,

T∫
0

e1
(
v1(t)

)
dt � KB

( T∫
0

∥∥B∗(v1, v
′
1

)∥∥2
Y

dt +
T∫

0

‖Pv2‖2
H dt

)
.

According to Assumption (A2), this gives

KB

T∫
0

∥∥B∗(v1, v
′
1

)∥∥2
Y

�
T∫

0

e1
(
v1(t)

)
dt − KBp+

T∫
0

(P v2, v2)H dt

� ε

T∫
0

(
e1

(
v1(t)

) + λ0e1
(
w2(t)

))
dt + (1 − ε)

T∫
0

e1
(
v1(t)

)
dt

− ελ0

T∫
e1

(
w2(t)

)
dt − KBp+

T∫
(P v2, v2)H dt,
0 0
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for some ε ∈ (0,1), to be chosen later on. In this expression, we replace
∫ T

0 (P v2, v2)H dt by estimate (49) given

in Lemma 4.3 and
∫ T

0 e1(w2(t)) dt by estimate (51) given in Lemma 4.4. We obtain, for some constant C0 > 0 all
T � max{T ∗

B,T ∗
P },

KB

T∫
0

∥∥B∗(v1, v
′
1

)∥∥2
Y

� ε

T∫
0

(
e1

(
v1(t)

) + λ0e1
(
w2(t)

))
dt + (1 − ε)

T∫
0

e1
(
v1(t)

)
dt

− ελ0C0KP

(
1

p− + 1

){
1

λ
1
2
0

e1
(
v1(0)

) + p+

λ0

T∫
0

e1
(
v1(t)

)
dt + λ

1
2
0 e1

(
w2(0)

)}

− C0

{
KBp+

λ
1
2
0

e1
(
v1(0)

) + KB(p+)2

λ0

T∫
0

e1
(
v1(t)

)
dt + KBp+λ

1
2
0 e1

(
w2(0)

)}
.

This can be rewritten under the form

KB

T∫
0

∥∥B∗(v1, v
′
1

)∥∥2
Y

� ε

T∫
0

(
e1

(
v1(t)

) + λ0e1
(
w2(t)

))
dt + L1(ε)

T∫
0

e1
(
v1(t)

)
dt

− L2(ε)e1
(
v1(0)

) − L3(ε)e1
(
w2(0)

)
, (54)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1(ε) = 1 − ε − εC0KP p+
(

1

p− + 1

)
− C0

KB(p+)2

λ0
,

L2(ε) = εC0KP λ
1
2
0

(
1

p− + 1

)
+ C0

KBp+

λ
1
2
0

,

L3(ε) = εC0KP λ
3
2
0

(
1

p− + 1

)
+ C0KBp+λ

1
2
0 .

Taking p+ such that C0
KB(p+)2

λ0
< 1 and ε sufficiently small, we obtain L1(ε) > 0.

In inequality (54), we replace the two terms integrated on (0, T ) by their estimates (52) given in Lemma 4.5 (almost

conservation of the energy) and (53) of Lemma 4.6. We obtain, for some C1 > 0, for p+
λ0

� η, (p+)2 <
λ0

C0KB
,

KB

T∫
0

∥∥B∗(v1, v
′
1

)∥∥2
Y

� ελ0
T

3

[
e1

(
w1(0)

) + e1
(
w2(0)

)] − L2(ε)e1
(
v1(0)

) − L3(ε)e1
(
w2(0)

)

+ C1L1(ε)

(
1 + Tp+

λ
1
2
0

)−1[
T e1

(
v1(0)

) − T λ0e1
(
w2(0)

)]
.

This yields

KB

T∫
0

∥∥B∗(v1, v
′
1

)∥∥2
Y

� M1(ε)e1
(
v1(0)

) + M2(ε)e1
(
w2(0)

) + ελ0
T

3
e1

(
w1(0)

)
, (55)

with
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M1(ε) = C1L1(ε)

(
1 + Tp+

λ
1
2
0

)−1

T − L2(ε),

M2(ε) = ελ0
T

3
− C1L1(ε)T λ0

(
1 + Tp+

λ
1
2
0

)−1

− L3(ε).

Now, it remains to check that these coefficients are positive for a suitable choice of ε (small) and T (large). The
coefficients M1(ε) and M2(ε) are positive if and only if we have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T

{
C1L1(ε) − L2(ε)p

+

λ
1
2
0

}
− L2(ε) > 0,

T 2
(

ε

3
λ

1
2
0 p+

)
+ T

{
ελ0

3
− C1L1(ε)λ0 − L3(ε)p

+

λ
1
2
0

}
− L3(ε) > 0.

(56)

The first condition of (56) is satisfied for large T if

1 − ε − εC0

(
1 + 1

C1

)
KP p+

(
1

p− + 1

)
− C0

(
1 + 1

C1

)
KB(p+)2

λ0
> 0,

i.e. as soon as ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C0

(
1 + 1

C1

)
KB(p+)2

λ0
< 1, and

ε

(
1 + C0

(
1 + 1

C1

)
KP p+

(
1

p− + 1

))
< 1 − C0

(
1 + 1

C1

)
KB(p+)2

λ0
.

This is the case when taking p+ � min{ηλ0, γ

√
λ0
KB

} for some constant γ > 0, and ε sufficiently small. Then, the

second condition of (56) is always satisfied for large T since ε > 0. Hence, for this choice of p+, ε sufficiently small,
and T sufficiently large, we obtain from (55) the existence of a constant C > 0 such that

C

T∫
0

∥∥B∗(v1, v
′
1

)∥∥2
Y

� e1
(
v1(0)

) + e1
(
w2(0)

)
.

This concludes the proof of Proposition 4.7 (and hence, that of Theorem 2.2), since e0(v2(0)) can be estimated by
e1(w2(0)) and e1(v1(0)) according to (21). �
5. From observability to controllability

In this section, we prove that the observability inequality of Theorem 2.2 (or equivalently Proposition 4.7) implies
the controllability results of Theorems 2.3 and 2.4. This is done classically with the use of the Hilbert Uniqueness
Method (see [22]), that we shall follow here.

5.1. First case: B∗(v1, v
′
1) = B∗v′

1 with B∗ ∈ L(H,Y ).

In this case, B ∈ L(Y,H) and the control problem (15) is well-posed in H1 for f ∈ L2(0, T ;Y). Note that, as in
the concrete setting, it also preserves the space H1 × H2 × H × H1 through time as soon as P ∈ L(H1). There is thus
no hope to control in whole H1.

Note that a direct application of the HUM, at the H1 ×H ×H ×H−1 energy level for the adjoint variable V would
yield a controllability result in H ×H−1 ×H1 ×H with a control Bf ∈ L2(0, T ;H−1) (and we would have to suppose
that B ∈ L(Y,H−1)). Since we want the control result to hold at a more regular level, we study an adjoint problem in
a less regular space.
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Lemma 5.1. For any ZT = (zT
1 , zT

2 , z̃T
1 , z̃T

2 ) ∈ H × H−1 × H−1 × H−2 the system⎧⎪⎨
⎪⎩

z′′
1 + Az1 + Pz2 = 0,

z′′
2 + Az2 + P ∗z1 = 0,(
z1, z2, z

′
1, z

′
2

)∣∣
t=T

= (
zT

1 , zT
2 , z̃T

1 , z̃T
2

)
,

(57)

is well-posed backward in time and the unique solution satisfies Z ∈ C 0([0, T ];H × H−1 × H−1 × H−2). Moreover

suppose that Assumptions (A1)–(A3) hold and that p+ < p∗ = min{ηλ0, γ

√
λ0
KB

} (where η and γ are given by

Proposition 4.7). Then, for all T > T∗ (given by Proposition 4.7), the solution Z satisfies for some constant C > 1 the
estimates

C−1

T∫
0

∥∥B∗z1(t)
∥∥2

Y
dt � e0

(
z1(0)

) + e−1
(
z2(0)

)
� C

T∫
0

∥∥B∗z1(t)
∥∥2

Y
dt. (58)

Of course, we prove this lemma as a consequence of (13) and (14) for more regular functions. We thus regularize Z ,
setting V := A−1

P Z , end then apply to V the results of the previous sections.

Proof. First, we know that AP generates a group on H−1. Hence, for ZT ∈ H × H−1 × H−1 × H−2 ⊂ H−1,
System (57) has a unique solution Z in C 0([0, T ];H−1), and, in particular, z2 ∈ C 0([0, T ];H−1). Then, z1 is solution
of the first line of (57) with final data in H ×H−1 and a right-hand side −Pz2 ∈ C 0([0, T ];H−1). Hence, the solution
(z1, z

′
1) (which is unique in H−1 × H−2) is in C 0([0, T ];H × H−1). Since Z in C 0([0, T ];H−1), this concludes the

first part of the lemma.
Second, we set (vT

1 , vT
2 , ṽT

1 , ṽT
2 ) = VT := A−1

P ZT . We define

V = e(T −t)AP VT = (
v1, v2, v

′
1, v

′
2

)
,

which satisfies {
v′′

1 + Av1 + Pv2 = 0,

v′′
2 + Av2 + P ∗v1 = 0,

and we have, for all t ∈ (0, T ), ⎧⎪⎪⎨
⎪⎪⎩

v′
1 = z1,

v′
2 = z2,

Av1 + Pv2 = −z′
1,

Av2 + P ∗v1 = −z′
2.

(59)

Now, let us only consider the smooth solutions, i.e. Z ∈ C 0([0, T ];H0), which yields V ∈ C 0([0, T ];H1). For these
solutions, Theorem 2.2 and Lemma 2.1 yield

C−1

T∫
0

∥∥B∗v′
1(t)

∥∥2
Y

dt � e1
(
v1(0)

) + e0
(
v2(0)

)
� C

T∫
0

∥∥B∗v′
1(t)

∥∥2
Y

dt. (60)

We notice that B∗v′
1 = B∗z1, so that in order to prove (58), it only remains to show the existence of a constant C > 1

such that

1

C

{
e1

(
v1(0)

) + λ0e0
(
v2(0)

)}
� e0

(
z1(0)

) + λ0e−1
(
z2(0)

)
� C

{
e1

(
v1(0)

) + λ0e0
(
v2(0)

)}
. (61)

According to (59), we have (skipping the time dependence)

2
{
e0(z1) + λ0e−1(z2)

} = ∥∥A− 1
2 z′

1

∥∥2
H

+ ‖z1‖2
H + λ0

∥∥A−1z′
2

∥∥2
H

+ λ0
∥∥A− 1

2 z2
∥∥2

H

= ∥∥A
1
2 v1 + A− 1

2 Pv2
∥∥2

H
+ ∥∥v′

1

∥∥2
H

+ λ0
∥∥v2 + A−1P ∗v1

∥∥2
H

+ λ0
∥∥A− 1

2 v′
2

∥∥2
H

� 2
∥∥A

1
2 v1

∥∥2 + 2
∥∥A− 1

2 Pv2
∥∥2 + ∥∥v′

1

∥∥2 + 2λ0‖v2‖2
H
H H H
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+ 2λ0
∥∥A−1P ∗v1

∥∥2
H

+ λ0
∥∥A− 1

2 v′
2

∥∥2
H

� 2
(
1 + (

p+)2
λ−2

0

)∥∥A
1
2 v1

∥∥2
H

+ ∥∥v′
1

∥∥2
H

+ 2
(
λ0 + (

p+)2
λ−1

0

)‖v2‖2
H

+ λ0
∥∥A− 1

2 v′
2

∥∥2
H

� 2C
{
e1(v1) + λ0e0(v2)

}
,

which proves the right inequality of (61). We also have

2
{
e1(v1) + λ0e0(v2)

} = ∥∥v′
1

∥∥2
H

+ ∥∥A
1
2 v1

∥∥2
H

+ λ0
∥∥A− 1

2 v′
2

∥∥2
H

+ λ0‖v2‖2
H

= ‖z1‖2
H + ∥∥A− 1

2 z′
1 + A− 1

2 Pv2
∥∥2

H
+ λ0

∥∥A− 1
2 z2

∥∥2
H

+ λ0
∥∥A−1P ∗v1 + A−1z′

2

∥∥2
H

� ‖z1‖2
H + 2

∥∥A− 1
2 z′

1

∥∥2
H

+ 2
∥∥A− 1

2 Pv2
∥∥2

H
+ λ0

∥∥A− 1
2 z2

∥∥2
H

+ 2λ0
∥∥A−1P ∗v1

∥∥2
H

+ 2λ0
∥∥A−1z′

2

∥∥2
H

� 4
{
e0(z1) + λ0e−1(z2)

} + 2
(
p+)2

λ−1
0 ‖v2‖2

H + 2
(
p+)2

λ−2
0

∥∥A
1
2 v1

∥∥2
H

.

For (p+)2λ−2
0 < 1/2, the last two terms in this inequality can be absorbed in the left-hand side, yielding

e1(v1) + λ0e0(v2) � C
{
e0(z1) + λ0e−1(z2)

}
.

This proves (61) and concludes the proof of the lemma. �
To prove Theorem 2.3 with the HUM, we shall also make use of the following lemma.

Lemma 5.2. Let (u1, u2, u
′
1, u

′
2) be the solution of (15) associated with (u0

1, u
0
2, u

1
1, u

1
2) ∈ H1 × H2 × H × H1, and

f ∈ L2(0, T ;Y) and (z1, z2, z
′
1, z

′
2) the solution of (57) associated with(

zT
1 , zT

2 , z̃T
1 , z̃T

2

) ∈ H × H−1 × H−1 × H−2.

Then, we have [(
u′

1, z1
)
H

− 〈
u1, z

′
1

〉
H1,H−1

+ 〈
u′

2, z2
〉
H1,H−1

− 〈
u2, z

′
2

〉
H2,H−2

]T
0 = (

f,B∗z1
)
L2(0,T ;Y)

. (62)

Proof. It suffices to prove (62) for regular data. The general case can be deduced with a density argument. We take
the inner product of the first line of (15) with z1 and the second line of (15) with z2 and integrate on (0, T ). Summing
the two identities, we obtain

T∫
0

(Bf, z1)H dt =
T∫

0

((
u′′

1 + Au1 + Pu2
)
, z1

)
H

dt +
T∫

0

((
u′′

2 + Au2 + P ∗u1
)
, z2

)
H

dt.

After two integrations by parts, using the selfadjointness of A together with (57), we have

T∫
0

(
f,B∗z1

)
Y

dt = [(
u′

1, z1
)
H

− (
u1, z

′
1

)
H

+ (
u′

2, z2
)
H

− (
u2, z

′
2

)
H

]T
0 ,

which directly yields (62) for smooth solutions. We conclude the proof of the lemma with a density argument. �
With Lemmata 5.1 and 5.2, we can now prove Theorem 2.3, following [22].

Proof of Theorem 2.3. Let us fix initial data (u0
1, u

0
2, u

1
1, u

1
2) ∈ H1 × H2 × H × H1. On the Hilbert space

X := H × H−1 × H−1 × H−2, we consider the bilinear form

a
(
ZT ,ZT

) =
T∫ (

B∗z1(t),B
∗z1(t)

)
Y

dt,
0
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and the linear form

L
(
ZT

) = (
u1

1, z1(0)
)
H

− 〈
u0

1, z
′
1(0)

〉
H1,H−1

+ 〈
u1

2, z2(0)
〉
H1,H−1

− 〈
u0

2, z
′
2(0)

〉
H2,H−2

,

where Z = (z1, z2, z
′
1, z

′
2) (resp. Z = (z1, z2, z1

′, z2
′)) is the solution of (57) associated with the final data

ZT = (zT
1 , zT

2 , z̃T
1 , z̃T

2 ) (resp. ZT = (z1
T , z2

T , z̃1
T , z̃2

T )). The linear form L is continuous on X by definition and,
according to (58), the bilinear form a is both continuous and coercive on X ×X as soon as T > T∗. The Lax–Milgram
theorem then yields for T > T∗ the existence (and uniqueness) of ZT such that

a
(
ZT ,ZT

) = −L
(
ZT

)
, for all ZT ∈X .

Now, choosing f = B∗z1 ∈ L2(0, T ;Y) as a control function for the data (u0
1, u

0
2, u

1
1, u

1
2), we obtain for all test

function ZT ∈ X ,(
u1

1, z1(0)
)
H

− 〈
u0

1, z
′
1(0)

〉
H1,H−1

+ 〈
u1

2, z2(0)
〉
H1,H−1

− 〈
u0

2, z
′
2(0)

〉
H2,H−2

= (
f,B∗z1

)
L2(0,T ;Y)

.

According to (62), this yields (
u1(T ), u2(T ), u′

1(T ), u′
2(T )

) = (0,0,0,0),

where (u1, u2, u
′
1, u

′
2) is the solution of (15) associated with (u0

1, u
0
2, u

1
1, u

1
2) and f . This concludes the proof of

Theorem 2.3. �
5.2. Second case: B∗(v1, v

′
1) = B∗v1 with B∗ ∈ L(H2, Y ).

In this setting, we directly apply the HUM in the space H × H1 × H−1 × H for the control problem, and thus
in H1 × H × H × H−1 for the observation problem. There is no need of regularizing our observation system and
observability inequality.

This means that the adjoint problem of the control problem (15) is directly System (10), for which we proved the
admissibility inequality (13) and the observability inequality (14). Recall that in this case, the control operator B is
in L(Y,H−2), which is not sufficient for (15) to be well-posed in the classical sense in H0 for a control function
f ∈ L2(0, T ;Y). Nevertheless, as a consequence of the admissibility inequality (13), System (15) is well-posed in H0
in the sense of transposition solutions (see [22]). Moreover, these solutions remain in H ×H1 ×H−1 ×H for all time
if the initial data are in this space, and there is no hope to control in whole H0.

In this setting, the boundary control result of Theorem 1.3 is a direct consequence of the HUM and Theorem 2.2
since Assumptions (A1)–(A3) are satisfied in this application.

Lemma 5.3. Let (u1, u2, u
′
1, u

′
2) be the transposition solution of (15) associated with (u0

1, u
0
2, u

1
1, u

1
2) ∈ H × H1 ×

H−1 × H and f ∈ L2(0, T ;Y) and (v1, v2, v
′
1, v

′
2) the backward solution of (10) associated with (vT

1 , vT
2 , ṽT

1 , ṽT
2 ) ∈

H1 × H × H × H−1. Then, we have[〈
u′

1, v1
〉
H−1,H1

− (
u1, v

′
1

)
H

+ (
u′

2, v2
)
H

− 〈
u2, v

′
2

〉
H1,H−1

]T
0 = (

f,B∗v1
)
L2(0,T ;Y)

. (63)

The proof of this lemma is exactly the same as the one of Lemma 5.2. We can now sketch the proof of Theorem 2.4,
which follows that of Theorem 2.3.

Proof of Theorem 2.4. We fix initial data (u0
1, u

0
2, u

1
1, u

1
2) ∈ H × H1 × H−1 × H . On the Hilbert space

X := H1 × H × H × H−1, we consider the bilinear form

a
(
VT ,VT

) =
T∫

0

(
B∗v1(t),B

∗v1(t)
)
Y

dt,

and the linear form

L
(
VT

) = 〈
u1

1, v1(0)
〉 − (

u0
1, v

′
1(0)

) + (
u1

2, v2(0)
) − 〈

u0
2, v

′
2(0)

〉
,

H−1,H1 H H H1,H−1
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where V = (v1, v2, v
′
1, v

′
2) (resp. V = (v1, v2, v1

′, v2
′)) is the solution of (10) associated with the final data

VT = (vT
1 , vT

2 , ṽT
1 , ṽT

2 ), (resp. VT = (v1
T , v2

T , ṽ1
T , ṽ2

T )). The linear form L is continuous on X and, according
to the admissibility inequality (13) and the observability inequality (14), the bilinear form a is both continuous and
coercive on X × X as soon as T > T∗. We conclude the proof as the one of Theorem 2.3, using the Lax–Milgram
theorem. �
6. Applications

In this section, we explain how Theorem 1.3 and Corollaries 1.4 and 1.5 can be deduced from the abstract results.

6.1. Control of wave systems: Proof of Theorem 1.3

Here, we prove Theorem 1.3. We only have to explain how the situation of this theorem can be put in the
abstract setting. Here, H = L2(Ω) with usual inner product. For A, we take the operator −�c + a with domain
H 2(Ω) ∩ H 1

0 (Ω), which, according to Assumption 1.2(i) is coercive. Hence H1 = H 1
0 (Ω) is endowed with the inner

product (u, v)H1 = (c∇u,∇v)L2(Ω) + (au, v)L2(Ω), H−1 = H−1(Ω) and H2 = H 2(Ω) ∩ H 1
0 (Ω).

For the operator P we take the multiplication in L2(Ω) by the bounded function p, and the operator ΠP needed in
Assumption (A2) is the multiplication in L2(Ω) by the characteristic function 1ωp . According to Assumption 1.2(ii),
ωp satisfies GCC, so that the observability inequality of [8,9] directly implies the second part of Assumption (A3).

First case: internal control. The observation space here is Y = L2(Ω) and the observation operator B∗ is the
multiplication in L2(Ω) by the bounded (real) function b. In this case, the operator B∗ is bounded and we
have B = B∗. Since B∗ is bounded, the admissibility assumption (A1) is directly satisfied. Finally, according to
Assumption 1.2(iii), ωb satisfies GCC, so that the observability inequality of [8,9] directly implies the first part of
Assumption (A3).

All the assumptions of Theorem 2.3 are then satisfied, so that it implies Theorem 1.3 in the internal control case.

Second case: boundary control. The observation space here is Y = L2(∂Ω) and the observation operator B∗ is
defined on H 2(Ω) ∩ H 1

0 (Ω) by

B∗v = b∂

∂v

∂n
,

where n denotes the outward normal to ∂Ω . Hence, in this case B∗ ∈ L(H 2(Ω)∩H 1
0 (Ω);L2(∂Ω)). The fact that this

observation is admissible is a well-known hidden regularity result, see [22] or [31, Section 7.1]. As a consequence,
the admissibility assumption (A1) is satisfied. The control operator B is defined in this case as the Dirichlet map for
which we refer to [31, Section 10.6]. The duality identity (63) shows in fact that it corresponds to a boundary control,
i.e. to Problem (4). Finally, according to Assumption 1.2(iii), Γb satisfies GCC∂ , so that the observability inequality
of [9] directly implies the first part of Assumption (A3).

All the assumptions of Theorem 2.4 are then satisfied, so that it implies Theorem 1.3 in the boundary control case.

6.2. Control of diffusive systems

Here, we prove Corollary 1.4. Our control strategy consists in first regularizing the initial data (thanks to the natural
smoothing effect of the heat equation), and then apply a transmutation argument.

First case: internal control. Let T > 0. On the time interval (0, T
2 ), we set f = 0. Hence, the initial data

(u0
1, u

0
2) ∈ (L2(Ω))2 are driven to some (u1, u2)|t= T

2
∈ D(Ap) = (H 2(Ω) ∩ H 1

0 (Ω))2 ⊂ H 1
0 (Ω) × L2(Ω). As a

consequence of Theorem 1.3, combined with [24, Theorem 3.4] there exists a control function f ∈ L2(( T
2 , T ) × Ω)

such that (u1, u2)|t=T = 0.
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Second case: boundary control. Let T > 0. On the time interval (0, T
2 ), we set f = 0. Hence, the initial data

(u0
1, u

0
2) ∈ (H−1(Ω))2 are driven to some (u1, u2)|t= T

2
∈ (H 1

0 (Ω))2 ⊂ L2(Ω) × H−1(Ω). As a consequence of

Theorem 1.3, combined with [24, Theorem 3.4] there exists a control function f ∈ L2(( T
2 , T ) × ∂Ω) such that

(u1, u2)|t=T = 0.
Note that we could have taken the initial data in less regular spaces, provided that the coefficients a, p are smooth

enough.

6.3. Control of Schrödinger systems

The proof of Corollary 1.5 is the same as that of Corollary 1.4, except that the Schrödinger equation does not enjoy
smoothing properties. Hence, Corollary 1.5 is a direct consequence of Theorem 1.3, combined with [23, Theorem 3.1].
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Appendix A. A direct proof of Lemma 3.3: Observability for a wave equation with a right-hand side

In this section, we provide a direct proof of Lemma 3.3 for a wave equation in a very simple setting. For this, we
suppose that (Ω,g) is a compact connected Riemannian manifold without boundary, and we closely follow the proofs
of [26,8,9]. This shows in particular that the observability inequality for equations with a right-hand side (29)–(30)
are indeed the natural energy estimates in the spaces we consider. In the following, � denotes the (negative) Laplace–
Beltrami operator on Ω for the metric g, and P = P(t, x, ∂t , ∂x) = ∂2

t −� denotes the d’Alembert operator on R×Ω .
Its principal symbol is given by p(t, x, τ, η) = −τ 2 + |η|2x for (t, x, τ, η) ∈ R× Ω ×R× T ∗

x Ω ⊂ T ∗(R× Ω), where
|η|2x = gx(η, η) denotes the Riemannian norm in the cotangent space of Ω at x.

Lemma A.1. Suppose that the couple (ωb,Tb) satisfies GCC. Then, there exists a constant Cb > 0 such that for all
T � Tb and v ∈ H 1((0, T ) × Ω) solution of Pv = f ∈ L2((0, T ) × Ω), we have

T∫
0

‖v‖2
H 1(Ω)

+ ‖∂tv‖2
L2(Ω)

dt � Cb

( T∫
0

∫
ω

|∂tv|2 dx dt +
T∫

0

‖f ‖2
L2(Ω)

dt

)
. (64)

Proof. We first remark that it is sufficient to prove (64) with a time depending constant Cb = C(T ). The time invari-
ance property of the equation Pv = f then yields the desired result.

The proof relies on a compactness-uniqueness method. In a first step, we prove the following weaker energy
estimate

T∫
0

‖v‖2
H 1(Ω)

+ ‖∂tv‖2
L2(Ω)

dt � C(T )

( T∫
0

∫
ω

|∂tv|2 dx dt +
T∫

0

‖f ‖2
L2(Ω)

dt +
T∫

0

‖v‖2
L2(Ω)

dt

)
, (65)

in which a compact term has been added in the right-hand side. In a second step we use a uniqueness argument to get
rid of this additional term.

We define the following two vector spaces:

E = F = {
v ∈ H 1((0, T ) × Ω

); Pv ∈ L2((0, T ) × Ω
)}

,

endowed with the norms



F. Alabau-Boussouira, M. Léautaud / J. Math. Pures Appl. 99 (2013) 544–576 575
‖v‖2
E = ‖v‖2

H 1((0,T )×Ω)
+ ‖Pv‖2

L2((0,T )×Ω)
,

‖v‖2
F = ‖v‖2

L2((0,T )×Ω)
+ ‖∂tv‖2

L2((0,T )×ω)
+ ‖Pv‖2

L2((0,T )×Ω)
.

We first remark that E is a Hilbert space for the norm ‖ · ‖E and that we have E ⊂ F with ‖ · ‖F � ‖ · ‖E . If we prove
that the space F is complete, the Banach isomorphism theorem then yields the inverse inequality: ‖ · ‖E � C‖ · ‖F ,
which implies (65). Let us consider a Cauchy sequence (vk)k∈N of F . Since L2((0, T ) × Ω) and L2((0, T ) × ω) are
complete, there exist v ∈ L2((0, T ) × Ω), w ∈ L2((0, T ) × ω) and f ∈ L2((0, T ) × Ω) such that

vk → v in L2((0, T ) × Ω
)
,

∂t v
k
∣∣
ω

→ w in L2((0, T ) × ω
)
,

P vk → f in L2((0, T ) × Ω
)
.

Since ∂tv
k → ∂tv and Pvk → Pv in D′((0, T ) × Ω), we also have ∂tv|ω = w ∈ L2((0, T ) × ω) and

Pv = f ∈ L2((0, T ) × Ω). The first order differential operator ∂t is microlocally elliptic on

Char(P ) = {ρ ∈ T ∗(R× Ω) \ 0,p(ρ) = 0}, so that v ∈ H 1((0, T ) × ω). As a consequence, v satisfies{
Pv = f ∈ L2

(
(0, T ) × Ω

)
,

v ∈ H 1
(
(0, T ) × ω

)
.

(66)

Now, pick any point ρ = (t, x, τ, η) ∈ T ∗(R × Ω) \ 0 such that t ∈ (0, T ). If ρ /∈ Char(P ), then P is elliptic of
order two at ρ and the first equation of (66) yields that v ∈ H 2 microlocally at ρ. If ρ ∈ Char(P ), we denote by
Γ = {γ (s), s ∈ (−S−, S+)} the maximal bicharacteristic curve of P satisfying γ (0) = ρ. Since the couple
(ω,T ) satisfies the geometric control condition, there exists s∗ ∈ (−S−, S+) such that π(γ (s∗)) ∈ (0, T ) × ω,
where π :T ∗(R × Ω) → R × Ω denotes the natural projection. The second line of (66) implies that v ∈ H 1,
microlocally at γ (s∗). Hörmander’s theorem on propagation of singularities [30, Chapter 6, Theorem 2.1] (see also
[17, Theorem 26.1.1]) yields that v ∈ H 1 microlocally at ρ since v satisfies Pv ∈ L2. Note that the L2 regularity for
f is the natural one, required by the propagation theorem.

Finally we obtain v ∈ H 1((0, T ) × Ω). Hence, the Cauchy sequence (vk)k∈N of F converges towards v ∈ F , and
F is complete. The Banach isomorphism theorem gives the existence of a constant C > 0 (depending on T ) such that
‖ · ‖E � C‖ · ‖F , which implies (65).

Now, we must get rid of the additional term ‖v‖2
L2((0,T )×Ω)

in (65). For this, we prove that there exists a constant

C > 0 such that for all v ∈ E satisfying Pv = f ∈ L2((0, T ) × ω), we have

‖v‖2
L2((0,T )×Ω)

� C
(‖∂tv‖2

L2((0,T )×ω)
+ ‖f ‖2

L2((0,T )×Ω)

)
. (67)

We suppose that this inequality is false. Then, there exists a sequence (vk)k∈N, such that∥∥vk
∥∥

L2((0,T )×Ω)
= 1,

∂t v
k
∣∣
ω

→ 0 in L2((0, T ) × ω
)
,

P vk → 0 in L2((0, T ) × Ω
)
.

Hence, the energy estimate (65) gives ‖vk‖H 1((0,T )×Ω) � C uniformly, so that we can extract a subsequence (also
denoted vk) that converges in L2((0, T ) × Ω). Calling v ∈ L2((0, T ) × Ω) its limit, we have{‖v‖L2((0,T )×Ω) = 1,

∂t v|ω = 0 on (0, T ) × ω,

Pv = 0 in (0, T ) × Ω.

(68)

Once again, the propagation of regularity [30, Chapter 6, Theorem 2.1] together with GCC gives (for instance)
v ∈ H 2((0, T ) × Ω). According to a uniqueness result [27], the last two lines of (68) yield v = 0 on (0, T ) × Ω ,
which contradicts the first line of (68). This gives (67), and concludes the proof of the lemma. �
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