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RESUME

On s’intéresse a des systémes constitués de deux équations d’ondes, de la chaleur ou de
Schrodinger, couplées par un terme d’ordre zéro, et dont seulement 'une est controlée. En
supposant que les zones de couplage et de controle satisfont toutes deux la Condition
Géométrique de Contrble, on montre un résultat de contrble interne et frontiére en
dimension quelconque d’espace. Ceci fournit de nombreux exemples pour lesquels ces deux
régions ne s'intersectent pas.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée
Durant les dix derniéres années, les propriétés de contrblabilité des systémes paraboliques du type

eul — Acuy +auy +8puy =bf dans (0,T) x £2,

e"eu/2 — Acuy +auy + puy; =0 dans (0, T) x £2, (1)
ui=uy=0 sur (0,T) x 052,
(U1, u)|e=o = (uf, u)) dans £,

avec 6 =0, ont été étudiées intensivement. Ici, a, b, p sont des fonctions réelles réguliéres de x € £2, avec b >0 et p > 0,
8 > 0 est un parameétre, —A. est un opérateur autoadjoint uniformément elliptique sur £2, et f est le contrdle. Le résultat
général concernant ces systémes, prouvé par différentes méthodes dans [6,4,8,10] est un théoréme de controlabilité a zéro
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dés qu'on suppose {p > 0}N{b > 0} £ @. Qu'en est-il du cas {p > 0}N{b > 0} =@ ? Le second probléme auquel on s'intéresse
ici est le probléeme du contrdle frontiére associé a (1) (cf. (4)). S'il semble résolu en dimension 1 d’espace pour a et p
constants (voir [7]), il reste complétement ouvert en dimension supérieure ou pour des coefficients variables. Pour ces deux
problémes, il semblerait que la théorie des équations paraboliques et les outils utilisés se heurtent pour le moment a de
sérieuses difficultés. D’autre part, on sait depuis [16] que les propriétés de contrdlabilité des équations hyperboliques se
transmettent aux équations paraboliques. Poursuivant I'étude initiée dans [2], nous répondons aux deux questions ci-dessus
pour le systéme hyperbolique (3) (consistant a remplacer e'pu} par u’j’, pour j=1,2, dans (1)) sous certaines hypothéses.
Nous en déduisons ensuite une réponse partielle a ces questions pour (1).

Dans le cadre du contrdle frontiére, on renvoie aux systémes (4) et (5) ci-dessous, pour lesquelles le contrble agit par
la condition au bord uq|se = bs f, avec by € €°(352), by > 0. On appellera GCC (resp. GCCy) la condition de controle
géométrique interne (resp. frontiére) de [5], que nous rappelons dans la Section 2.

Pour formuler nos résultats, on utilisera les hypothéses suivantes :

(i) L'opérateur —A. + a est uniformément coercif sur 2.
(ii) On a {p > 0} D wp pour un ouvert w, C £ et on pose pti=pliee)-
(iii) On a {b > 0} D @y, (resp. {by > 0} D I'}) pour un ouvert wy, C 2 (resp. I, C 352).

Théoréme 0.1 (Systémes d’équations d’ondes). On suppose que (i) est satisfaite, que w), satisfait GCC, et que wy, (resp. I'y) satisfait
GCC (resp. GCCy). Il existe alors une constante 8, > 0 telle que pour tout (8, p*) satisfaisant v/Sp™ < 8., il existe un temps T, > 0
tel que pour tout T > Ty, tous p, b (resp. by) satisfaisant (i) et (iii), et toutes données initiales (u, u3, u}, ul) € H}(£2) x H* N
Hi(2) x L2(2) x H{(2) (resp. 9, ud, ul, ul) € [2(2) x HY(£2) x H71(2) x L2(£2)), il existe un contrdle f € L>((0,T) x £2)
(resp. f € L2((0, T) x 852)) tel que la solution de (3) (resp. (5)) vérifie (u1, uz, u, ub)|e=r =0.

On remarque que les espaces dans lesquels u et uy sont contrélés ne sont pas les mémes, ce qui est naturel. Ce résultat
est montré dans un cadre abstrait (voir Section 3), incluant aussi des systémes de plaques couplées. On en déduit, grace
aux méthodes de transmutation de [16,12,14,13] les résultats suivants pour deux équations de diffusion ou de Schrédinger
couplées.

Théoréme 0.2 (Systémes d’équations de diffusion). On suppose que (i) est satisfaite, que w, satisfait GCC, et que wy (resp. Ip)
satisfait GCC (resp. GCCy). Il existe alors une constante 8, > 0 telle que pour tout (8, p™) satisfaisant /Spt < 8, pour tout
T >0, 0 e (—m/2,7/2), pour tous p, b (resp. by) satisfaisant (ii) et (iii), et toutes données initiales (u9,u9) € (L2(£2))? (resp.
@9, u9) € (H71(£2))?), il existe un controle f € L?((0,T) x £2) (resp. f € L?((0,T) x 352)) tel que la solution de (1) (resp. (4))
vérifie (U1, uz)|¢=t =0.

Ce résultat répond donc partiellement aux deux questions posées, fournissant de nombreux exemples pour lesquels
{p >0}N{b>0}=¢ ainsi qu'un résultat de contrdle frontiére en toute dimension d’espace pour un couplage variable. Ce-
pendant, on notera que les hypothéses géométriques ne sont pas naturelles pour des équations paraboliques. Par conséquent,
le théoreme 0.2 n'est qu'un premier pas pour cette étude.

Théoreme 0.3 (Systémes d’équations de Schridinger). Sous les hypothése du théoréme 0.2, le méme résultat de controlabilité est valide
pour le systéme (1) (resp. (4)) avec 6 = 7 /2, pour des données initiales (u9, u3) € L?(2) x H}(£2) (resp. w9, ud) € H71(2) x
L2(2)).

1. Introduction

During the last decade, the controllability properties of coupled parabolic equations like

el:au’1 — Acuy +auq +8puy =bf in(0,T) x £2,

e’eu/2 — Aclp +auy + puy =0 in(0,T) x £2, 2)
uy=u=0 on (0, T) x 082,

(U1, uz)le=o = (u3, ug) in £2,

with 6 = 0, have been intensively studied. Here, A, is a selfadjoint elliptic operator, and all the parameters are precisely
defined in Section 2. The null-controllability problem under view is the following: given a time T > 0 and initial data, is
it possible to find a control function f so that the state has been driven to zero in time T? It has been proved in [6,4,8,
10] with different methods that system (2) is null-controllable as soon as {p > 0} N {b > 0} # @. In these works, the case
{p > 0}N{b >0} =0 has been left as an open problem. However, Kavian and de Teresa [9] have proved for a cascade
system (i.e. taking § =0 in (2)) that approximate controllability holds. The natural question is then whether or not null-
controllability (which is a stronger property) still holds in the case {p > 0} N {b > 0} = @?

The second problem under interest here is the boundary controllability of systems like (2) (or more precisely system (4)
below). The recent work [7] studies slightly more general systems in one space dimension and with constant coupling
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coefficients. The cases of higher space dimensions and varying coupling coefficients (and in particular when the coefficients
vanish in a neighborhood of the boundary) are to our knowledge completely open.

Concerning these two open problems, it seems that the parabolic theory and associated tools encounter for the moment
some essential difficulties.

On the other hand, it is known from [16] that controllability properties can be transferred from hyperbolic equations to
parabolic ones. And it seems, at least for boundary control problems, that the theory for coupled hyperbolic equations of
the type

uy — Acuy +auy + 8puy = bf in(0,T) x £,
uy — Acuz +auy + pus =0 in(0,T) x £, 3)
ug=upy;=0 on (0, T) x 082,

(w1, uz, ufy, uh)|,_o = (3. ud.uj, u}) ing,

is better understood (see [2]), even less studied. In the case of varying coefficients and several space-dimensions, the asso-
ciated stabilization problem is addressed in [1,3].

In the present work, we answer these two questions for hyperbolic problems improving the results of [2,3], and then de-
duce a (partial) solution to the two open questions raised above. Indeed, we prove that systems (2)-(3) are null-controllable
(in appropriate spaces) as soon as {p > 0} and {b > 0} both satisfy the Geometric Control Condition (recalled below) and
\/5||p||Loo(_Q) satisfies a smallness assumption. This contains several examples with {p > 0} N {b > 0} = ¢ in any space-
dimension, and partially answers to the first question. We prove as well that the same controllability result holds for
boundary control, which partially answers to the second question. Of course, the geometric conditions needed here are
essential (and even sharp) for coupled waves, but inappropriate for parabolic equation. However, this is a first step towards
a better understanding of these types of systems. In one space dimension in particular, the geometric conditions are re-
duced to a non-emptiness condition and are hence optimal for parabolic systems as well. Similar results have been obtained
simultaneously in [15] with different methods in one space dimension for cascade systems.

In this Note, we first state our results for wave/heat/Shrédinger-type systems. Then, we introduced an abstract setting
adapted to these problems and give some elements of the proof in this context.

2. Main results

Let 2 be a bounded domain in R" with smooth (say €°°) boundary (or a smooth connected compact Riemannian
manifold with or without boundary) and A, = div(cV) a (negative) Laplace operator (or Laplace Beltrami operator with
respect to the Riemannian metric) on £2. Here, ¢ denotes a smooth (say ¥°°) positive symmetric matrix, i.e. in par-
ticular Co’llél2 < c(X)E - £ < Colg)? for some Co > 1, for all x € 2, & € R". We consider the control problems (2) with
6 € [—m /2, /2], including Schrédinger-type systems for & = £ /2 and diffusion-type systems for 6 € (—m /2,7 /2), and (3)
consisting in a wave-type system, with only one control force. In these systems, a =a(x), p = p(x) and b = b(x) are smooth
real-valued functions on §2, § > 0 is a constant parameter and f is the control function, that can act on the system.

We shall also consider the same systems controlled from the boundary through the (smooth) real-valued function by:

e"‘gu/l — Acuy +auy +8pu; =0 in(0,T) x £2,

eieu/z—ACuz +auy+pu;=0 in(0,T) x £, 4)
uy=bsf, uy=0 on (0, T) x 382,

(1, uz)le=o = (u, ud) in £2,

ui — Acuy +auy +8puy =0 in(0,T) x £,

uj — Acuz +auy + pu; =0 in(0,T) x 2, )
uy=bsf, uz=0 on (0, T) x 982,

(w1, uz, uf, uh)|,_o = (. ud. uj, ul) ing.

We first notice that, on the space (L2(£2))? endowed with the inner product (u, v)s = (u1, VD2 +8(U2, v2)12(0), the
operator Ay = (7A;+a 7Aaf+a), with domain D(As) = (H2(£2) NH} (£2))?, is selfadjoint. As a consequence, for f € L2((0, T) x
£2), the Cauchy problem (2), resp. (3), is well posed in (L%(£2))?, resp. (H}(£2))? x (L%(£2))?, in the sense of semigroup
theory. Then, taking f € L2((0, T) x 3£2) the initial-boundary value problem (4), resp. (5), is well posed in (H~1(£2))?, resp.
(L%(£2))? x (H~1(£2))2, in the sense of transposition solution (see [11]).

An important remark to make before addressing the controllability problem is concerned with the regularity of solutions
of (3)-(5). If one takes for system (3) (resp. (5)) an initial data (u9,u,ul,ul) e H}(£2) x H2 N H{(2) x L?(22) x H{(2)
(resp. (9, ud, ul,ul) € [2(2) x H (2) x H~1(22) x L?(£2)), and a control f € L2((0, T) x £2) (resp. f € L?((0, T) x 32)), then
the state (u7, uz,u}, uy) remains in the space H}(£2) x H2 N H}(£2) x L?(2) x H}(£2) (resp. L2(2) x HA(2) x H™1(£2) x
L%(£2)) for all time. Recall that for systems (3) and (5), the null-controllability is equivalent to the exact controllability. As
a consequence, it is not possible, taking for instance zero as initial data to reach any target state in (H(l](.Q))2 x (L2(£2))2
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(resp. (L2(§2))2 x (H~1(£2))2). The controllability question for (3)-(5) hence becomes: starting from rest at time t = 0, is
it possible to reach all H}(2) x HX N H}(2) x L2(2) x H}(£2) (resp. L?(£2) x H}(2) x H71(22) x L*(2)) in time t =T
sufficiently large?

The strategy we adopt here is to prove some controllability results for the hyperbolic systems (3) and (5), extending the
two-levels energy method introduced in [2]. Then, using transmutation techniques, we deduce controllability properties of
(2) and (4).

To state our results, we recall the classical Geometric Control Conditions GCC (resp. GCCy), which, according to [5], is a
necessary and sufficient condition for the internal (resp. boundary) observability and controllability of one wave equation.
We say that o C §2 satisfies GCC (resp. I' C 952 satisfies GCCy) if every generalized geodesic traveling at speed one in £2
meets w (resp. meets I" on a non-diffractive point) in finite time.

We shall make the following key assumptions:

(i) We have ((—Ac¢ +a)u,u)j2(g) 2 )‘OHHH%Z(Q)' for some ig > 0, for all u € L2(£2). In the case where ¢ =Id and a =0, the
best constant Ag is 1/C%, where Cp is the Poincaré’s constant of £2.

(ii) We have p >0 on £2, {p > 0} D @, for some open subset w, C £2 and set p™ :=||p|l1=(g).

(iii) We have b >0 on £, {b > 0} D @ (resp. by > 0 on 32 and {bs > 0} D I'y) for some open subset wj C §2 (resp.
Iy, C382).

We shall also require that the operator A; satisfies, for C > 0, (As(v1, v2), (v1,v2))s = C(||v1 ||i11(9) +8||vz||21(m) for all
0 0

(v1,v2) € D(As). This is the case when assuming +/8pt < Ao.

Theorem 2.1 (Wave-type systems). Suppose that (i) holds, that w, satisfies GCC and that wy, (resp. I},) satisfies GCC (resp. GCCy).
Then, there exists a constant 8, > 0 such that for all (8, p™) satisfying \/gp+ < 8y, there exists a time T, > 0 such that forall T > T,
all p, b (resp. by) satisfying (i) and (iii), and all initial data (u9,ud,ul,ul) € H}(2) x H2 N H}(£2) x L?(2) x H}(£2) (resp.
@®,ul, ul ul) e [2(2) x H (2) x HT1(2) x L2(R2)), there exists a control f € L?((0, T) x £2) (resp. f € L*((0, T) x 3£2)) such
that the solution of (3) (resp. (5)) satisfies (u1, uz, uy, uy)|=r = 0.

Another way to formulate this result is to say that, under the assumptions of Theorem 2.1, the reachable set at time
T > T, with zero initial data is exactly H}(£2) x H> N H}(2) x L?(£2) x H}(£2) in the case of L? internal control and
L2(£2) x H{(£2) x H71(2) x L?(£2) in the case of L? boundary control.

Some comments should be made about this result. First this is a generalization of the work [2] where the coupling
coefficients considered have to satisfy p(x) > C > 0 for all x € £2. The geometric situations covered by Theorem 2.1 are
richer, and include in particular several examples of coupling and control regions that do not intersect. Second, the coercivity
assumption (i) for —A¢ +a together with the smallness assumption on +/3p* seem to be only technical and inherent to the
method we use here. Note by the way that this smallness assumption contains the coercivity assumption for As, and allows
to consider large p™* or large § (provided that the other is small enough). Moreover, the control time T, we obtain depends
on all the parameters of the system, and not only the sets wp, wp and I}, (as it is the case for a single wave equation).
Finally, the fact that we consider twice the same elliptic operator A, is a key point in our proof and it is likely that this
result does not hold for waves with different speeds (see [2] for results with different speeds and different operators).

As a consequence of Theorem 2.1 and using transmutation techniques (due to [16,12] for heat-type equations and to
[14,13] for Schrédinger-type equations), we can now state the associated results for systems (2) and (4).

Corollary 2.2 (Heat-type systems). Suppose that (i) holds, that wy, satisfies GCC and that wy, (resp. I'y) satisfies GCC (resp. GCCy). Then,
there exists a constant 8, > 0 such that for all (8, pT) satisfying v/5pT < 8, forall T > 0, 0 € (—m /2,7 /2), for all p, b (resp. by)
satisfying (i) and (iii), and all initial data (u9, ud) € (L2(£2))? (resp. (u9, u3) € (H~1(£2))?), there exists a control f € L?((0, T) x £2)
(resp. f € L2((0, T) x 8$2)) such that the solution of (2) (resp. (4)) satisfies (uy, u)|t=t = 0.

Corollary 2.3 (Schrodinger-type systems). Under the assumptions of Corollary 2.2, the same null-controllability result holds for sys-
tem (2) (resp. (4)) with 6 = =7 /2, taking initial data (u9, u9) € L2(22) x H}(£2) (resp. (%, u3) € H=1(2) x L2(2)).

Corollary 2.2 is a direct consequence of Theorem 2.1, combined with [13, Theorem 3.4] and the smoothing effect of the
heat equation. Corollary 2.3 is a direct consequence of Theorem 2.1, combined with [12, Theorem 3.1]. Since there is no
smoothing effect in this case, we still obtain a controllability result in asymmetric spaces here: the uncontrolled variable
uy has to be more regular than the other one. This shows that the attainable set from zero for a L? internal control (resp.
L? boundary control) contains L?(£2) x H}(£2) (resp. H1(£2) x L?(£2)). Whether or not a general target in (L?(£2))? (resp.
(H~1(£2))?) is reachable for (2) (resp. (4)) with 6 = +7 /2 remains open.

3. Abstract setting and ingredients of proof

In this section, we describe the abstract setting (already used in [3]) in which we prove Theorem 2.1 for systems (3)-(5),
and define the appropriate spaces and operators. Let H be a Hilbert space and (A, D(A)) a selfadjoint positive operator on



F. Alabau-Boussouira, M. Léautaud / C. R. Acad. Sci. Paris, Ser. 1 349 (2011) 395-400 399

H with compact resolvent. We denote by (-,-)y the inner product on H and || - ||y the associated norm. For k € N, we set

Hy = D(A%) endowed with the inner product (:,-)y, = (A%~, A§~)H and associated norm || - ||, = ||A§ - ||g. We define H_j,
. . k .

as the dual space of Hj with respect to the pivot space H = Hog, and |- |y_, =[|A™2 - ||y is the norm on H_j. The operator

A can be extended to an isomorphism from Hj to Hy_ for any k < 1, still denoted by A. We denote by Ag > O the largest
constant satisfying ||v||f,1 > xo||v\|%, for all v € Hy, that is, the smallest eigenvalue of the selfadjoint positive operator A. We
consider that the coupling operator P is bounded on H and denote by P* is its adjoint pti= IPllzcHy = IP* Il £(hy- In the
following, as in [2], we shall make use of the different energy levels ey (¢(t)) = 5 (||<p(t)||Hk + ||g0/(t)||i,k71), k € Z which are

all preserved through time if ¢ is a solution of ¢” + A =0.
Before addressing the control problem, let us introduce the adjoint system

v{ +Avi+38Pvy =0,

V,2/ + Avy + P*v1 =0, (6)
0.0 ,1 1

(V1. v2, vy, V)| = (V1. V2, Vi v3).

which shall stand for our observation system. This system can be recast as a first order differential equation V' = A;),
V(0) =V, where

0 Id A 6P
a=(5 0) a=(2 %) veme vem) =)

Note that the operator Aj is selfadjoint on the space H x H endowed with the weighted inner product (V, V)s = (v1, V1) +
8(va, V2)p. Since we have (AsV,V)s = (Avy,vi)y + 8(Ava, vo)y + 28(Pva, vy > (1 — f)(llvlllz +5||V2||H1) we

shall suppose that pt+/§ < Ag, so that Ajs is coercive. Under this assumption, (AZV A V)s defines an inner prod-

uct on (Hp)?, equivalent to the natural one. Assuming that P, P* € £L(Hy) and wrltmg Hi = (Hp)? x Hk » kez,

the operator 4; is an 1somorphlsm from ‘Hy to Hg—1 and is skewadjoint on Hj, equipped with the inner product
k —1

(U, v), U, V))Hk (A U, A U)s + (As? V Ag? V)s. Note that this is an inner product according to the coercivity as-

sumption for As, which is equnvalent to the natural inner product of Hy. Hence, .As generates a group e'4 on My, and the

homogeneous problem (6) is well posed in these spaces. An important feature of solutions V(t) of system (6) is that all

energies Ex(V(t)) = 1/2||V(t)||%{k are positive and preserved through time.

For this system, now studied in /1, we shall observe only the state of the first component, i.e. (u1, u’1), and hence define
an observation operator B* € L(Hy x H,Y), where Y is a Hilbert space, standing for our observation space. This definition
is sufficiently general to take into account both the boundary observation problem (taking B* € L(H3,Y)) and the internal
observation problem (taking B* € £L(H,Y)). We assume that 3* is an admissible observation for one equation:

{ For all T > 0 there exists a constant C > 0, such that all the solutions ¢ of ¢” + Ap = f satisfy (A1)

J3 IB*(@, @13 dt < Cle1(@(0)) + ex(@(T)) + fi er(@®)de+ [ [ f13 do).

Under this assumption, we have the following lemma:

Lemma 3.1. The operator B* is an admissible observation for (6). More precisely, for all T > 0, there exists a constant C > 0, such that
all the solutions of (6) satisfy

/ 5 (41 93) O e < Cfes(10) +0(v200). g

Note that only the eg energy level of the second component v, is necessary in this admissibility estimate. Hence, we
cannot hope to observe the whole ; energy of V and the best observability we can expect only involves eg(v3). Our aim
is now to prove this inverse inequality of (7). For this, we have to suppose some additional assumptions on the operators P
and B*. Let us first precise assumption (A2), related with the operator P:

{We have ||Pv||%1 < pT(Pv, v)y and there exists an operator I1p € L(H), | Tp |z =1,

A2
and a number p~ > 0 such that (Pv, v)y > p~|[Tpv||? Vv € H. (A2)

Note that p~ < p™ = |Pllzm) and that (A2) implies that the operators P and P* are non-negative. In the applications
to coupled wave equations, P is the multiplication by the function p and the operator /7p is the multiplication by the
characteristic function 1,,. Next, we shall suppose that a single equation is observable both by B* and by ITp in sufficiently
large time:

{ 3T > 0 such that for all T > T there exists a constant C > 0, such that all solutions ¢ of ¢” + A@ =0 (A3)

satisfy both e1(¢(0)) < C [y 18*(¢. @)1} and e1(p(0)) < C [y [Tpe' (13 dt.
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In the context of Theorem 2.1, these observability assumptions are satisfied as soon as w, and w, satisfy GCC (resp. I}
satisfies GCCy). We can now state (without proof) the main result of this Note.

Theorem 3.2. Suppose that assumptions (A1)-(A3) hold. Then there exists a constant 8, such that for all (8, p*) satisfying v/5pT < 8,
there exists a time Ty, such that for all T > T, there exists C > 0, such that for all V0 € H;, the solution V(t) = 4510 of (6) satisfies

T
e1(v1(0)) +eo(v2(0)) <C/||B*(V1,V’1)(t)|lzydt. (8)
0

Applying the Hilbert Uniqueness Method (HUM) of [11], we deduce now controllability results for the adjoint system.
In this context, we have to define more precisely the observation operator. We shall treat two cases: First, B*(vq, v}) =
B*v| with B* € L(H,Y), corresponding to internal observability (with Y = L%2(£2)), and second B*(v1, v)) = B*vq with
B* € L(H>, Y), corresponding to boundary observability (with Y = L2(3£2)). In both cases, we define the control operator B
as the adjoint of B*, and the control problem reads, for a control function f taking its values in Y,

u + Auy + 8Puy = Bf,

u’2’+Au2 + P*uq =0, (9)
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(u1,uz, uf, uh)|,_o = (uf. ud, uj, uj).

This is an abstract version of (3)-(5). Note that under this form, system (9) not only contains (3)-(5), but also locally coupled
systems of plate equations, with a distributed or a boundary control.

First case: B*(v1, v|) = B*v} with B* € L(H, Y). In this case, B € L(Y, H) and the control problem (9) is well posed in
Hq for f e L2(0,T;Y). In this setting, we first deduce from (8) the following other observability estimate for solutions
W of (6) in Hop: eg(w1(0)) +e_1(w2(0)) < CfOT ||B*w1(t)||f, dt. The internal control result of Theorem 2.1 is then a direct
consequence of the HUM since assumptions (A1)-(A3) are satisfied in this application.

Second case: B*(v1, v}) = B*vy with B* € L(H3,Y). As a consequence of the admissibility inequality (7), system (9) is
well posed in Hp in the sense of transposition solutions. In this setting, the boundary control result of Theorem 2.1 is a
direct consequence of the HUM and Theorem 3.2 since assumptions (A1)-(A3) are satisfied in this application.
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